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Introduction 

Water resource problems are characterized by the presence of multiple sources of 

uncertainty. The implementation of Monte Carlo simulation techniques within 

powerful optimization methods is required, in order to handle these uncertainties. In 

the framework of the present thesis we investigate how the various sources of 

uncertainty affect the optimization procedure as well as the various models. 

Furthermore, we investigate a modified version of the evolutionary annealing-simplex 

method in global optimization applications, where uncertainty is explicitly considered 

in terms of stochastic objective functions. We evaluate the algorithm against several 

benchmark functions, as well as in the stochastic calibration of a lumped rainfall-

runoff model (Zygos). In this context, we examine different calibration criteria and 

different sources of uncertainty, in order to assess not only the robustness of the 

derived parameters but also the predictive capacity of the models. As one other 

problem that requires the combined use of optimization and simulation, we examine 

the applicability of a widely used rainfall model for the case of Athens. Taking 

advantage of the simulation and optimization functionalities of HyetosR package, we 

evaluate the performance of two versions of Bartlett-Lewis model in representing the 

convective and frontal rainfall of Athens. We demonstrate that although these models 

reproduce the essential statistical characteristics of rainfall at the hourly as well as 

daily time scales (mean, variance, autocorrelation structure), they fail to preserve 

important temporal properties, such as the duration and time distance of rainfall 

events.      

Posing the problem of optimization under uncertainty 

Uncertainty appears in the majority of the real-world optimization problems, 

including hydrological. Typical sources are: (a) data uncertainty, due to observation 

and processing errors; (b) model uncertainty, due to simplified representation of 

significantly complex systems; (c) parameter uncertainty, due to statistically 

inconsistent fitting criteria and inefficient calibrations. 



The optimization problem under uncertainty can be formulated as: 

min f(x) = min F(x, ω), a < x < b 

where x is a vector of n control variables, f(x) is the fitness function, ω is a noise 

component and F(x, ω) a random estimate at x. In the case of simulation models, 

where the system performance f is inferred either from historical or synthetic data 

samples, ω represents the sampling uncertainty. Uncertainty makes the response 

surface of the function even rougher, by randomly creating local minima and maxima 

(Fig. 1). 

 

Figure 1: Response surface of noisy sphere function f(x1, x2) = x12 + x2
2
 + N(0, 1). 

The modified evolutionary annealing-simplex method for stochastic objective 

function 

The evolutionary annealing-simplex method is a heuristic global optimization 

technique coupling the strength of simulated annealing in rough search spaces with 

the efficiency of the downhill simplex method (Nelder & Mead, 1965) in smoother 

spaces (Efstratiadis & Koutsoyiannis, 2002). The key features of the method are: 

 an adaptive annealing cooling schedule determines the degree of randomness 

through the search procedure; 

 all transitions are probabilistic, since a stochastic term is added to the objective 

function, relative to temperature, thus g(x) = f(x) + uT; 

 new points are generated via simplex transformations or mutations; 

 all simplex configurations employ quasi-stochastic scale factors; 



 multiple expansions and uphill transitions are allowed, in order to accelerate the 

search and escape from local minima, respectively. 

The original version of the above described method was modified to handle  noisy 

objective functions and avoid early convergence to false optima or local minima, due 

to the dominance of noise. The modifications include: 

 Dynamic adjustment of shrinkage coefficient, based on the current temperature 

of the system, T, which protects the algorithm from an early degeneration of the 

simplex (Fig. 2).  

 Re-evaluation of the current best point in the population after n subsequent 

transformations that reduce the size of the simplex; this ensures that search will 

not be guided by a point, in which has assigned an erroneously low value, due to 

noise. 

 Re-annealing of the system when the temperature, T, becomes lower than a 

specific value, to enhance the search procedure with sufficient randomness.  

 

Figure 2: Shrinkage of the simplex around the current best vertex x1 according to the Nelder-

Mead formula, i.e. x’i = 0.5 (xi + x1) and the dynamic adjustment formula, given by x’i = δ xi 

+ (1 – δ) x1, where δ = 1 - 0.5 (T – T0), T is the current temperature and T0 is the initial 

temperature. 

Test new evolutionary annealing-simplex algorithm in mathematical functions 

We tested six benchmark functions of ranging complexity in deterministic and 

stochastic setting, assuming three levels of Gaussian noise by changing the standard 

deviation of the stochastic term, N(0.0, 0.75), N(0.0, 1.00) and N(0.0, 1.25). In all 

cases the global minimum lies in the origin (x* = 0). For each test function we carried 

out 100 independent runs of the algorithm, for n = 2 and n = 10 variables, as well as 



three population sizes (n+1, 2n+1, 8n+1). The results are summarized in the next 

figure (Fig.3).  

 

Figure 3: Box plots with optimization results, derived from 100 runs of each problem 

Stochastic calibration of hydrological models 

It is well-known that the parameters of conceptual hydrological models may vary 

substantially across different calibration periods. This questions model transposability 

in time, which is key requirement for ensuring a satisfactory predictive capacity 

(Gharari et al., 2013). In this context, we propose a stochastic calibration procedure, 

in which the fitting criterion (e.g. Nash-Sutcliffe efficiency, NSE) is estimated from 

randomly changing samples that are determined by means of (typically short) moving 

windows across the full series of the observed responses. The above strategy was 

tested in three large-scale river basins of Greece (Acheloos, Aliakmon and Boeoticos 

Kephisos) that exhibit different hydrological behaviour, where we fitted the 

conceptual model Zygos against the observed runoff. The software supports various 

parameterizations, according to the complexity of each basin and the available data, 

and its full structure uses nine parameters (http://itia.ntua.gr/en/softinfo/22). We 

applied the EAS algorithm to provide 100 independent stochastic calibrations at each 

basin, with different moving windows. As shown in the next Figures (Fig. 4-6), even 

when using very short windows (i.e. from 1 to 5 years), the NSE values are close to 

the ones estimated from the full sample of observed runoff. 

http://itia.ntua.gr/en/softinfo/22


 

Figure 4: Boxplot of NSE at Acheloos Basin for different moving windows 

 

Figure 5: Boxplot of NSE at Aliakmonas Basin for different moving windows 

 

 

Figure 6: Boxplot of NSE at Boeotikos Kephisos Basin for different moving windows 

 



Applicability of Bartlett-Lewis model in Athens Rainfall 

In the framework of present study, we investigate the applicability of rectangular 

pulse Bartlett-Lewis model for the simulation of Athens rainfall. The main 

assumptions of the model are (Fig. 7): 

 Storm origins ti occur in a Poisson process, with rate λ 

 Cell origins tij occur in a Poisson process, with rate β 

 Cell arrivals terminate after time vi, which is exponentially distributed (parameter 

γ) 

 Cell durations wij are exponentially distributed (parameter η) 

 Cell intensities xij are either exponentially or gamma distributed. 

In the modified version (Rodriguez-Iturbe et al., 1988), parameter η is assumed 

gamma distributed, with scale parameter v and shape parameter a, and varies for each 

event, such as β/η and γ/η remain constant. Model parameters are estimated via 

calibration, seeking to minimize the departures between the key theoretical and 

observed statistics. 

 

Figure 7: The Bartlett-Lewis model 

We examined the performance of the original (BL) and modified (MBL) Bartlett-

Lewis model using hourly rainfall data from the National Observatory of Athens 

(1927-1996), for two months with different meteorological behaviour (January, June). 

Model parameters were calibrated against the theoretical statistics (mean, standard 

deviation, autocovariance and probability dry), for 1 and 24 h. The simulated statistics 

were estimated from a synthetic series of 1000 years length. For the generation of 

synthetic series we used HyetosR package (Kossieris et al., 2011). The next table 

represents a comparison between the historical, modelled and simulated statistics for 

the two versions of Bartlett-Lewis model. 



 

Table 1: Historical, modeled and simulated characteristics of BL model for daily and hourly 

rainfall of January and June 

Apart from the main statistics, we also examined the performance of the two models 

on the temporal characteristics of Athens rainfall. Both versions of the BL model fail 

to reproduce the significant variability of rainfall events, due to the overclustering of 

pulses. This also results to an over-estimation of probability dry, at the hourly and 

daily time scales (Fig. 8) as well as the generation of rainfall events of shorter 

duration, and thus longer dry intervals (Figs. 9 and 10).   

 

Figure 8: Probabilities of dry hour and dry day for January (left) and June (right). 



 

Figure 9: Mean (md) and standard deviation (sd) of dry time intervals for January (left) and 

June (right). 

 

Figure 10: Mean (mw) and standard deviation (sw) of duration of rainfall events for January 

(left) and June (right). 

 

Conclusions 

 The various sources of uncertainty, involved either directly or indirectly, in real 

system optimization problems pose particular difficulties in the search of optimal 

solutions and decision-making. Uncertainties transferred to optimization problems 

creating response surfaces which are strongly disordered, rough and non-convex. 

 The evolutionary annealing-simplex algorithm was tested on a series of 

mathematical functions when the response surface is disrupted by the addition of a 

stochastic term by normal distribution. As revealed by the increase in the intensity 

of noise, which is controlled through the standard deviation of the distribution, the 

performance of the algorithm is deteriorated. However, it seemed that the use of 

large populations for efficient exploration of the feasible search space allows the 

detection of global optimal point with relatively high accuracy. This finding is 



consistent with the general literature which stated that the algorithms that make 

use of large populations (e.g. genetic algorithms) supersede those based on a small 

number of points to identify any area attraction. 

 The presence of noise in the response of objective function changes drastically the 

search path of the algorithm against deterministic problems. Specifically, at each 

iteration the probability of executed move that reduces the volume of the simplex 

is twice the probability that the simplex become larger. This has as a consequence 

the strong disturbance of the shape and size of the simplex and fast convergence 

of the algorithm suboptimal spots. 

 The integration of original annealing-simplex algorithm with new techniques and 

mechanisms has a positive effect on the overall performance of the algorithm. 

These techniques aim at preservation of simplex from premature degeneration and 

incorrect convergence to a sub-optimal point. The performance improvement was 

more pronounced in the use of smaller populations, while the performance of the 

two algorithms is almost identical for large populations. 

 From the stochastic calibration of the conceptual hydrological model Zygos was 

proven both the robustness of the solutions found by the algorithm and the 

adequate predictive capacity of the model. Even with the use of very small sample 

length, model succeeds to yield sufficiently large amplitude responses that 

produce three basins with completely different characteristics. 

 The Bartlett-Lewis model reproduces with high accuracy the basic statistical 

characteristics of Athens rainfall at different scales for a single set of parameters. 

However, the model fails to maintain the temporal properties of rainy episodes 

and dry periods so that its use is limited to the field of study of flooding. 

 


