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1. Proof of Equation (5) 8 

The error of an estimated missing variable at time t is defined as the difference between the real 9 

variable tx  and the estimate ˆ tx . In the Optimal Local Average (OLA) methodology, a missing 10 

variable is estimated as  1 1
ˆ / 2

n n

t t i t ii i
x x x n  
    where 2n is the number of time-adjacent 11 

values used for the infilling (i.e., n neighboring values before, and n after the missing 12 

observation). The squared error of the estimate is then given by: 13 
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The expected value of the squared error is the MSE of the estimation and it can be expressed as: 17 
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 20 

Assuming that the underlying process is stationary with mean μ, standard deviation σ, and 21 

correlation coefficient for lag i 
i , following basic rules of statistics we obtain: 22 
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The MSE can then be written as: 27 
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And after some algebraic simplifications: 31 
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A Monte Carlo confirmation of the relationship between MSE and lag-1 autocorrelation is 33 

illustrated in Figure S1. Figure S2 provides also an additional illustration of the Eq. (5) for the 34 

two examined autocorrelation structures. 35 



 36 

Figure S1. Monte Carlo confirmation of Eq. (5). Solid lines represent the Mean Squared Error 37 

(MSE) as estimated by Eq. (5), while the points correspond to the calculated MSE from the 38 

Monte Carlo simulations. Time series with 100000 values were generated from AR(1) and HK 39 

processes with zero mean and standard deviation equal to one and various values of lag-1 40 

autocorrelation coefficient. The time series with HK dynamics were simulated using the function 41 

SimulateFGN from the R package FGN (Veenstra & McLeod, 2012). 42 



2. Optimal Local Average (OLA) additional material 43 

 44 

Figure S2. Surface plots illustrating the Optimal Local Average (OLA) methodology, based on 45 

Eq. (5) with σ = 1, for processes with exponential (a), and with power-law (b) autocorrelation 46 

structure. For a wide range of lag-1 autocorrelations, for both structures, the optimal infilling, 47 

i.e., minimum Mean Squared Error (MSE) occurs when a local average is used, instead for the 48 

commonly used sample (global) average (depicted above with 30 time-adjacent values). For lag-49 

1 autocorrelation greater than 0.52, for both the examined autocorrelation structures, the strictly 50 

local average (i.e., by using one value before and one after the missing record) provides the best 51 

results (minimum MSE) while the use of sample average inflates the MSE. 52 

3. Proof of Equation (8) 53 

The error of an estimated missing value at time t is defined as the difference between the real 54 

value of the variable tx  and the estimated value ˆ tx . When the Weighted Sum of local and total 55 

Average (WSA) is applied, the missing variable is estimated as 56 
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    where N is the number of 57 



available observations before (or after) the missing values, corresponding to the global average, 58 

n is the range of the local average (i.e., the number of time-adjacent values used for the infilling) 59 

and λ is a factor (weight) regulating the contribution of the global (i.e.,  
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 ) and 60 

the local (i.e.,  1 1
/ 2
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  ) average. Since the methodology is developed 61 

envisioning fast and direct applicability, the local average is restricted to only one neighboring 62 

value (i.e., n = 1, one value before, and one after the missing observation). Therefore, the 63 

missing value is estimated as    1 1
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 . The squared 64 

error of the estimate is then given by: 65 
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For the sake of readability, we separate the following quantities: 69 

 70 
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 72 

The squared error can be then summarized as 
2 22e A B C     and the Mean Squared Error 73 

(MSE), 
2

E e 
 

, is given by      2 2MSE : E E 2 E Ee A B C     
 

. Assuming that the 74 

underlying process is stationary with mean μ, standard deviation σ, and correlation coefficient for 75 

lag i i , we have for each quantity: 76 
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But from Eq. (5) we have proven that 78 
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Therefore, for n = 1,  E A  can be written as 80 
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We examine each term separately: 84 
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Based on algebraic manipulations similar to the ones presented in S1 we have: 86 
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By combining the abovementioned quantities we obtain: 91 
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 E C  can be then written as 102 
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Summarizing the previous quantities 105 

      2 2MSE : E E 2 E Ee A B C      
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 109 

A Monte Carlo confirmation of the abovementioned relationship between MSE and lag-1 110 

autocorrelation is illustrated in Figure S3. 111 

 112 

Figure S3. Monte Carlo confirmation of Eq. (8). Solid lines represent the Mean Squared Error 113 

(MSE) as estimated by Eq. (8) for different values of parameter λ, while the points correspond to 114 

the calculated MSE from the Monte Carlo simulations. Time series with 100000 values were 115 

generated from AR(1) and HK processes with zero mean and standard deviation equal to one and 116 

various values of lag-1 autocorrelation coefficient. The time series with HK dynamics were 117 

simulated using the function SimulateFGN from the R package FGN (Veenstra & McLeod, 118 

2012). 119 



4. Weighted Sum of local and total Average (WSA): method's sensitivity to time 120 

series length 121 

Since the conclusions of the WSA methodology may depend on the overall length of the 122 

available time series (i.e., the term 2N in Eq. (8), where N is the number of available 123 

observations before or after the missing value), it is important to investigate the sensitivity of the 124 

presented methodology to different values of time series length (Figure S4). 125 

As it is clearly illustrated in Figure S4, for the AR(1) process there is no significant effect on the 126 

minimum MSE vs λ relationship with the time series length. For processes presenting HK 127 

behavior (particularly for very high values of lag-1 autocorrelation), the optimal value of the 128 

parameter λ (i.e., the one that minimizes the MSE) depends strongly on the time series length. 129 

This is due to the nature of the HK processes. More specifically, when the available time series 130 

length is relatively small, the estimated global average is in essence a local rather than a global 131 

average. This peculiarity is therefore reflected in the optimal values of parameter λ, especially for 132 

high values of lag-1 autocorrelations (Figure S4). More specifically, since the parameter λ is the 133 

weighted factor ascribed to the overall global average (see also Eq. (7) in the main text), it 134 

should be expected that as the lag-1 autocorrelation increases, the value of λ that minimizes the 135 

MSE should also smoothly approach zero. This is indeed the case when the overall time series 136 

length is relatively high (Figure S4), but for shorter time series, given that what we estimate as 137 

global is rather a local average, the change of λ with the minimum MSE is more abrupt for high 138 

values of lag-1 autocorrelation (Figure S4). 139 



 140 

Figure S4. Sensitivity of the Mean Squared Error (MSE) estimation based on the Weighted Sum 141 

of local and total Average (WSA) method to the total time series length. The matrix of plots 142 

illustrates the relationship of MSE with the parameter λ for different values of lag-1 143 

autocorrelation. The columns contain the results for processes with exponential (AR(1)) and 144 

power-law (HK) autocorrelation structure, while the rows include hypothetical time series 145 

lengths (from 2×5 to 2×10
7
). While for AR(1) process there is no significant difference in the 146 

minimum MSE vs λ relationship with the time series length, for processes presenting HK 147 

behavior (particularly for very high values of lag-1 autocorrelation), the optimal value of the 148 

parameter λ (i.e., the one that minimizes the MSE) depends strongly on the time series length. 149 



5. Weighted Sum of local and total Average (WSA): parameterization of the time 150 

series length 151 

Figure S5 and S6 summarize the results of the sensitivity analysis to the overall time series 152 

length and the fitted functions to mimic these responses. 153 

  154 

 155 

Figure S5. Optimal values (i.e., minimum MSE) of parameter λ, based on numerical experiment, 156 

for different lag-1 autocorrelations (ρ) and hypothetical time series lengths for processes with 157 

exponential (AR(1)) autocorrelation structure (red circles), as well as the fitted function 158 

describing the ρ vs λ relationship (Eq. (9) in the main text). There is no significant effect on the ρ 159 

vs λ relationship with the time series length. 160 



 161 

Figure S6. (a) Optimal values (i.e., minimum MSE) of parameter λ, based on numerical 162 

experiment, for different lag-1 autocorrelations (ρ) and hypothetical time series lengths for 163 

processes with power-law autocorrelation structure (blue circles), as well as the fitted function 164 

(solid black line; Eq. (10) in the main text). The optimal values of the parameter λ depend highly 165 

on the time series length. As the time series length increases, the ρ vs λ relationship of the HK 166 

process approaches the one of the AR(1). (b) Dependence of parameter λ1 to the time series 167 

length. Parameter λ1 reflects the value of parameter λ when ρ→1. (c) Dependence of parameter γ 168 

to the time series length. Blue circles correspond to the results of numerical experiment and 169 

black lines is the fitted function (λ1 and γ are described n Eq. (10) of the main text). 170 
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