A quick gap filling of missing hydrometeorological data
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1. Introduction
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Figure 1. Theoretical autocorrelation functions for (i) Markovian processes, AR(1), with exponential decay of
autocorrelation with lag and (ii) processes with HK behavior, described by the Hurst exponent H, with a
power law relationship of autocorrelation with lag. The lag-1 autocorrelation, p, characterizes the strength
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of short-term persistence while the Hurst exponent, H, quantifies long-term dependences.

2. Methodology
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Figure 2. lllustration of the rationale underly-
ing the Optimal Local Average (OLA) meth-
odology for processes (a) with exponential
and (b) with power law autocorrelation
structure. The mean-squared error of an es-
timated missing value, based on local aver-
ages with different range (i.e., different
number of neighboring values), for hypo-
thetical time series with different lag-1 au-
tocorrelation and standard deviation equal
to 1, is depicted. When the number of time
adjacent values used for the local average
estimation equals 1, one value before and
one after the missing observation are used
for estimating the missing value, while
when this number equals 30, the sample
average is used (i.e., the average of all avail-
able observations, here for illustration as-
sumed to be 30 before and 30 after the
missing value).
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Figure 4 (left-hand side). Estimated mean-
squared error (MSE) based on different in-
filling methodologies (sample average i.e,,
using all the available values (here for illus-
tration purposes 2 X 30 values are used);
strictly local average using one observa-
tion before and one after the missing
record; OLA; and WSA. Results correspond
to processes with (a) exponential and (b)
power law autocorrelation structure for dif-
ferent values of lag-1 autocorrelation. The
solid lines depict the theoretical values of
MSE while the dashed lines and uncer-
tainty bounds correspond to the ensemble
of the Monte Carlo simulations, filling artifi-
cial data gaps.

Figure 5 (right-hand side). Real-world exam-
ples of time series with Markovian behav-
ior ((@) AR(1); annual precipitation) and
with HK dynamics ((c) annual temperature
and (e) annual minimum water depth).
Original data are depicted in white circles,
while the infilled time series are depicted
in continuous colored lines.
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MOTIVATION AND RESEARCH GOAL:

Data gaps are ubiquitous in hydrometeorological time series, and fill-
ing these values still remains a challenge. Here, we present a quick
and efficient gap-filling methodology for filling sporadic gaps based
on the information content of the autocorrelation structure of the
data.

KEY FINDINGS:

1. A definitive argument against the use of the sample average for fill-
ing correlated hydrometeorological data.

2. An innovative methodology, tailored for a quick filling of sporadic
gaps, using information from time-adjacent values.

*Pappas, C., S. M. Papalexiou, and D. Koutsoyiannis (2014), A quick gap filling of missing hydrom-
eteorological data, J. Geophys. Res. Atmos., 119, 9290-9300, do0i:10.1002/2014JD021633.
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Figure 3. Surface plots of the mean-squared error
(MSE) estimated according to the weighted
sum of local and total average (WSA) methodol-
ogy for different values of parameter A, for proc-
esses with (a) exponential and (b) power law au-
tocorrelation structure. The optimal values of
parameter A, i.e., the ones that minimize the
MSE are also highlighted (black dots). As the
lag-1 autocorrelation increases, the optimal
value of parameter A, which indicates the over-
all contribution of the global average, de-
creases.
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