
 1

Hydrological modelling of temporally-varying catchments: 
Facets of change and the value of information 
 
A. Efstratiadis1, I. Nalbantis2, and D. Koutsoyiannis1 
 
1School of Civil and Environmental Engineering, National Technical University of Athens, Heroon 
Polytechneiou 5, GR-157 80, Zographou, Greece 
andreas@itia.ntua.gr 
2 School of Rural and Surveying Engineering, National Technical University of Athens, Heroon 
Polytechneiou 5, GR-157 80, Zographou, Greece 
  
 
Received … 
 
Citation ... 
 

Abstract : River basins are by definition temporally varying systems: changes are apparent at every 
temporal scale, in terms of changing meteorological inputs and catchment characteristics, 
respectively due to inherently uncertain natural processes and anthropogenic interventions. In an 
operational context, the ultimate goal of hydrological modelling is predicting responses of the basin 
under conditions that are similar or different from those observed in the past. Since water 
management studies require that anthropogenic effects are considered known and a long 
hypothetical period is simulated, the combined use of stochastic models, for generating the inputs, 
and deterministic models that also represent the human interventions in modified basins, is found to 
be a powerful approach for providing realistic and statistically consistent simulations (in terms of 
product moments and correlations, at multiple time scales, and long-term persistence). The 
proposed framework is investigated on the Ferson Creek basin (USA) that exhibits significantly 
growing urbanization during the last 30 years. Alternative deterministic modelling options include a 
lumped water balance model with one time-varying parameter and a semi-distributed scheme based 
on the concept of hydrological response units. Model inputs and errors are respectively represented 
through linear and non-linear stochastic models. The resulting nonlinear stochastic framework 
maximizes the exploitation of the existing information, by taking advantage of the calibration 
protocol used in this issue. 
 
Key words modified basins; hydroclimatic variability; model and parameter uncertainty; statistical 
consistency; Hurst-Kolmogorov dynamics; hydrological response units; error model; stochastic 
simulation; hybrid calibration; nonlinear stochastic modelling 

 
Modélisation hydrologique des bassins versants temporellement variables: Facettes du 
changement et la valeur de l'information 
Résumé : Les bassins versants sont par définition des systèmes temporellement variables : des 
changements sont apparents à toutes les échelles de temps, en termes de forçages météorologiques 
ou de caractéristiques des bassins changeants, respectivement dus à des processus naturels 
incertains inhérents et à des interventions humaines. Dans un contexte opérationnel, le but ultime de 
la modélisation hydrologique est la prévision des réponses du bassin sous des conditions qui sont 
similaires ou différentes de celles observées dans le passé. Puisque les études sur la gestion de l’eau 
requièrent que les influences anthropiques soient considérées connues et qu’une longue période 
hypothétique soit simulée, l’utilisation combinée de modèles stochastiques, pour générer les 
forçages, et de modèles déterministes qui représentent aussi l’intervention humaine dans des bassins 
modifiés, a montré être une approche performante pour fournir des simulations réalistes et 
statistiquement consistantes (en termes de moments produits et de corrélations, à des échelles 
multiples, et de persistance à long terme). Le cadre de travail proposé est mis en œuvre sur le bassin 
du Ferson Creek (USA) qui montre une urbanisation significativement croissante durant les 30 
dernières années. Des options alternatives de modélisation déterministe incluent un modèle global 
de bilan en eau avec un paramètre variable temporellement et un schéma semi-distribué basé sur le 
concept des unités de réponse hydrologique. Les forçages et erreurs du modèle sont respectivement 
représentés par des modèles linéaires et non-linéaires stochastiques. La structure stochastique non-
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linéaire résultante maximise l’exploitation de l’information existante, en profitant du protocole de 
calage utilisé dans ce numéro spécial. 

 
Mots-clés : bassins modifiés; variabilité hydro-climatique; incertitude du modèle et paramétrique; 
consistance statistique; dynamique de Hurst-Kolmogorov; unités de réponse hydrologique; erreur 
du modèle; simulation stochastique; calage hybride; modélisation non-linéaire stochastique 
 

1. INTRODUCTION 
Change is intrinsic in natural systems. Particularly, in hydrological systems change is 
present at all temporal scales, and is reflected in both the short- and long-term 
variability of the observed states and fluxes (Koutsoyiannis 2013). Actually, this 
variability is manifested not exclusively in the system processes (i.e., input, output 
and state variables) but also in its properties (i.e., physical characteristics), which are 
changing over time. In this context, catchments should always be handled as 
temporally-variable systems. In fact, according to the new concept introduced within 
the “Panta Rhei” initiative, river basins are considered as the “changing interface 
between environment and society” (Montanari et al. 2013). This accounts for both 
systematic and non-systematic changes, respectively referring to stationary stochastic 
processes and deterministic time evolution. In general, systematic changes are prone 
to some kind of deterministic mathematical description, as far as they are recognizable 
and relatively easy to interpret. For instance, major anthropogenic interventions by 
means of large-scale hydraulic structures (e.g. dams) obviously result in permanent 
modifications of the hydrological regime of a river basin. For this reason, such 
catchments are usually referred to as human-modified, and they can be thoroughly 
represented through effective coupling of hydrological and water management models 
(Nalbantis et al. 2011). Systematic changes may also be observable in the land cover 
characteristics of the catchment, which are due to deforestation, urbanization or 
change of agricultural practices. However, an explanation of the overall changing 
behaviour of the catchment, which would allow for predicting its responses in the 
long run, is still far from feasible. 

Usually, catchments are modelled through nonlinear deterministic approaches, 
aiming to establish simplified cause-effect relationships between the varying inputs 
(e.g., precipitation, temperature) and the associated responses. In this context, the 
model parameters, representing catchment properties in an abstract sense, are 
considered as time invariant quantities. Under this premise, the observed variability of 
the simulated fluxes is expected to be explained by the variability of the hydrological 
inputs, to a large extent. Yet, in several cases the deterministic models show 
unexpectedly poor performance, mainly because they underestimate the observed 
variability of the system responses. Such failure is typically attributed to data errors, 
improper parameterizations or non-robust calibrations (cf. Andréassian et al. 2010; 
Kuczera et al. 2010).  

In fact, the improper representation of uncertainty is an intrinsic drawback of 
the deterministic hydrological models, since these are not equipped with tools 
enabling the preservation of the associated statistical characteristics of the historical 
data (Efstratiadis 2011). In general, as the result of their simplified structure (e.g., 
representation of complex regulating mechanisms through linear reservoirs), models 
provide smoother responses than real-world systems. This structural deficiency will 
next be referred to as the model uncertainty, which is quantified in terms of error 
measures between the observed and simulated fluxes (e.g. the Nash-Sutcliffe 
efficiency, NSE). Modelling is generally aimed to ensure the minimum model 
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uncertainty, through the most parsimonious parameterization. This task is not 
straightforward, given that more complex schemes tend to provide smaller errors in 
calibration, due to over-fitting. However, a large number of parameters, if they are 
poorly constrained by the available information, can result to considerable variability 
and associated parameter uncertainty (Hrachowitz et al. 2013). In order to 
simultaneously reduce model and parameter uncertainty, it is essential to maximize 
the information embedded in calibration, e.g. through using multicriteria approaches 
(Efstratiadis and Koutsoyiannis 2010), as well as ensuring transposability of models 
in time, by optimizing their performance across different periods and under different 
hydroclimatic conditions (Andréassian et al. 2009). In this vein, Thirel et al. (2014) 
proposed a parameter estimation protocol for catchments under changing conditions, 
which accounts for multiple criteria and aims to provide “stable” calibrations. 

An alternative approach to simulate temporally-varying catchments is through 
stochastic simulation, typically based on linear stochastic processes. Here linearity 
refers to the mathematical representation of processes in terms of linear relationships 
(correlations) between variables in space and time. In contrast to the deterministic 
models, which are often designed to reproduce the expected value of the involved 
processes, the stochastic models are by nature built to reproduce the essential 
statistical characteristics (at least of the second order) of the observed processes, in an 
attempt to capture their total variability, as this is reflected in the related observations. 
We remark that in stochastic theory, change is not synonymous with non-stationarity, 
which has been widely used in recent years to denote all irregular variations of 
hydrometeorological processes (e.g., trends). Quoting Koutsoyiannis (2011), 
stochastic models hypothesizing stationarity but in parallel admitting a scaling 
behaviour (the so-called Hurst-Kolmogorov dynamics) can adequately describe “even 
prominent changes, at a multitude of time scales”. Hence, stochastic models handle 
change from a macroscopic (i.e., statistical) point-of-view, without accounting for its 
individual components (and causes). However, in the case of systematic and feasible 
to quantify changes that are embedded in the historical data while not being 
representative of future conditions, stochastic approaches that do not explicitly 
consider catchment dynamics will most likely lead to overestimation of uncertainty. 
Therefore, stochastic modelling of this type of the catchment responses, based on 
historical data under temporally-varying conditions, may result to erroneous 
decisions, due to misleading statistical information of these data. 

It becomes evident that the incorporation of stochastic components to 
deterministic models can significantly improve the estimation of uncertainty in 
temporally-varying catchments. In this respect, in some hydrological models residual 
error components are embedded, which enable, among others, the specification of 
confidence intervals of the simulated responses (yet, in this case, the models are no 
longer purely deterministic). Uncertainty estimations are also improved when 
deterministic models are combined with stochastic generators of meteorological 
inputs. Such approaches have been mainly reported in continuous flood simulation 
applications, in which what is asked is to estimate extreme probabilistic quantities 
(e.g., Franchini et al. 2000; Kuchment and Gelfan 2002; Blazkova and Beven 2004; 
Fiorentino et al. 2007; Gelfan 2010). Deterministic hydrological models fed by 
stochastic inputs are also used in the context of water management studies (e.g., 
Nalbantis et al. 2011). Yet, none of the above approaches can guarantee full 
exploitation of the statistical information contained in the historical data, combined 
with knowledge about recent or expected modifications of the basin characteristics. 
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In this paper we propose an integrated stochastic-deterministic modelling 
framework for distinguishing between uncertainty due to systematic changes and 
uncertainty attributed to other causes, including non-systematic facets of change. 
Within this framework, change is considered as the apparent effect of varying 
meteorological inputs on catchments with time-varying characteristics. Part of this 
change is assumed to be known and is explicitly accounted for in simulations. By 
coupling the two classical modelling approaches we wish to take advantage of the 
physical consistency of deterministic hydrological models and the statistical 
consistency of the linear stochastic models. The result of this coupling is in effect a 
stochastic model, but not a linear one. The nonlinearity of the combined approach, 
induced by the deterministic model, allows for a more faithful representation of the 
catchment behaviour and provides a better basis to exploit the available information, 
while the stochastic output is an advantage over the single output of the deterministic 
approach. The proposed framework is applicable for long-term simulations accepting 
stationarity of input processes and steady-state basin properties, and it is in harmony 
with the recently proposed theoretical scheme by Montanari and Koutsoyiannis (2012; 
see also Sikorska et al. 2014), although the latter is more suitable for short-term 
predictions, based on synthetically generated ensembles. 

The methodology is tested in an urbanized catchment in the USA (Ferson 
Creek), for which we initially employ three alternative deterministic modelling 
schemes. Their calibration is based on a hybrid (i.e. manual and automatic) calibration 
procedure. In order to check the acceptability of each model, we follow the protocol 
by Thirel et al. (2014), which assists the detection of robust parameter sets. The most 
appropriate of deterministic modelling schemes is then coupled with two stochastic 
models, one for the generation of model inputs and the other for the model errors, thus 
formulating a nonlinear stochastic scheme. This scheme is employed in stochastic 
simulation mode, considering three different sources of uncertainty: (a) hydroclimatic 
uncertainty, by means of variability of input processes (precipitation, temperature); 
(b) model uncertainty, by means of variability of model residuals; and (c) changes 
induced by urbanization, by means of scenarios for steady-state urban development. 
Within this approach, two types of “hard-type” information are explicitly accounted 
for, namely systematic hydrological observations and sparse data of urban 
development, for a 32-year period. Additionally, hydrological experience holds a key 
role in all aspects of the proposed framework, which can be viewed as “soft-type” 
information. 

2. THE NONLINEAR STOCHASTIC MODELLING FRAMEWORK 
 
2.1 Questions to be answered 
As stressed in the introduction, we focus on model use for solving water management 
problems. Such problems include the planning, design and operation of man-made 
components of hydrosystems. By restricting our scope to medium-term problems, we 
will fix future time horizon to few years ahead. Daily flow availability at that time 
will be estimated, which correctly reflects meteorological variability. Although the 
basin under study will be temporally-varying in historical time, such variability is 
undesirable when studying future basin responses. What is sought is the response of 
the basin under a future steady state of its properties. Scenarios of the basin state will 
provide a rational basis for predicting the basin response (i.e. daily runoff) under an 
upper, mean and lower urban development state.  
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Herein, we set out to find the optimal modelling scheme, by means of 
preserving the statistical behaviour (at multiple scales, from daily to over-annual) of 
the basin response under steady basin state, i.e. statistics reflecting the effect of 
meteorological input only. The modelling scheme is summarized in the following 
equation 

 yt = DM(xt, θ)٠εt (1) 

where yt is the output vector at time t; DM(.,.) is the deterministic model with input 
vector xt at time t and parameters θ; ٠ is an arithmetic operator (e.g., summation or 
multiplication); and εt is an error term. The input vector xt will be generated through a 
linear stochastic modelling scheme described in 2.5, and the error term εt will be 
generated by the stochastic model described in 2.6.  
The following questions arise:  
(1) How can the advantages of linear stochastic and nonlinear deterministic models be 

jointly exploited?  
(2) How can we effectively parameterize the deterministic model for the kind of 

change selected (i.e., growing urbanization)?  
(3) How can we ensure a satisfactory compromise between model and parameter 

uncertainty? 
(4) What is the gain of a nonlinear stochastic approach over a linear stochastic one?  
(5) What is the effect of ignoring the error (model uncertainty) of the deterministic 

model?  
To answer the above questions, a number of deterministic models (DM of eq. 

1) have been devised or simply used, which are described next. The way the models 
are employed to address the above questions is presented in sub-section 2.7.  
 
2.2 Lumped deterministic model without consideration of urbanization (DM0) 
The hydrological processes are modelled through a lumped conceptual scheme, which 
uses 11 parameters. The basin is vertically subdivided into three storage elements or 
tanks that represent the snowpack, soil water and groundwater (Fig. 1). Model inputs 
are daily precipitation, P, and mean daily temperature, T. Fluxes are expressed in units 
of water depth (i.e., mm) per unit time, while storages are water depths. The time 
interval of simulations is denoted as ∆t (in the specific case, ∆t = 1 d). 

First, precipitation is considered as snowfall, SN, if T is below a certain 
threshold, T0 (oC). In this case, potential evapotranspiration (PET) is considered as 
sublimation and has no further influence to soil water. In the opposite case, 
precipitation is considered to be liquid and fulfils, by priority, the potential 
evapotranspiration. The latter is estimated according to the empirical formula by 
Oudin et al. (2005): 

 PET = (Ra / λ) (T + k2) / k1 (2) 

where Ra is the extraterrestrial radiation, which is function of latitude and time within 
the year; λ is the latent heat of vaporization, with typical value 2460 kJ/kg; k1 (°C) is a 
scale parameter; and k2 (°C) is a parameter related to the threshold for air temperature, 
i.e. the minimum value of air temperature for which evapotranspiration is not zero. In 
the model we employ the generally recommended values k1 = 100°C and k2 = 5°C. 

Snowfall and sublimation allow for updating the water equivalent of the 
snowpack tank via the snowpack water balance. Then, the snowmelt, SM, is estimated 
through the degree-day method as 

 SM = DDF (T – Tm) (3) 
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where DDF is the degree-day factor (mm/d/oC) and Tm is a temperature threshold (oC) 
above which melt occurs.  

A time-varying fraction of the liquid precipitation or snowmelt is assumed to 
contribute to direct runoff, QD, as 

 QD = c (P + SM) exp (SW/K – 1) (4) 

where c is a dimensionless parameter, SW is the soil water storage and K (mm) is the 
associated capacity of the soil water tank. According to the above relationship, the 
runoff rate increases as the soil tank tends to saturation.  

The remainder enters the soil water storage tank if there is enough empty 
space in it. Otherwise, saturation excess runoff, QS, is produced that is obtained as 

 QS = max [0, (SW – K)/∆t + P + SM – QD]  (5) 

The soil water tank looses water through actual evapotranspiration, ES, as 

 ES = (SW/H1) PET (6) 

where, PET is potential evapotranspiration and H1 is a threshold (mm).  
The second loss is interflow, QH, which is a fraction, µ, of the soil water 

above the same threshold H1 as before. The quantity µ acts as a recession parameter. 
Analytically,  

 QH = max [0, µ (SW – H1)]  (7) 

Last, soil water is lost through percolation to groundwater, which is 
determined as fraction ν of soil storage (also acting as a recession parameter), i.e. 

 PERC = ν SW (8) 

The quantity PERC enters the groundwater storage tank that looses water 
through baseflow and lateral outflow to the downstream groundwater system. 
Baseflow, QB, is calculated as 

 QB = max [0, ξ (Y – Y1)]  (9) 

where ξ is a recession parameter, Y is the current groundwater storage and Y1 is a 
threshold value. Similarly, underground losses are obtained as 

 QL = φ Y (10) 

where φ is a recession parameter. All recession parameters (µ, ν, ξ, φ) are expressed in 
inverse time units (d-1). 

The total runoff Q is obtained through summing the four runoff components as 

 Q = QD + QS + QH + QB (11) 

Last, water balance equations are used for the three tanks of the model.  
 
2.3 Lumped deterministic model with consideration of urbanization (DM1) 
All hydrological processes are represented in a way that is identical to that of model 
DM0, with the exception of direct runoff. The latter is hypothesized to exclusively 
represent runoff from urban impervious area, which, in turn, is assumed to linearly 
depend on the fraction of the urban area, fU. The percentage of area of the rural 
impervious surface is assumed negligible, which is realistic in most watersheds of the 
temperate zone of the Earth, such as the one used in our tests.  
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The above assumptions are mathematically expressed by considering 
parameter c of eq. (4) as a constant fraction, θ, of the urban area fraction fU. 
Analytically 

 c = θ fU (12)  

where fU is given in the form of input time series.  
  
2.4 The semi-distributed deterministic hydrological model (DM2) 
The growing urbanization is taken into account by considering two Hydrological 
Response Units (HRUs). The concept dates back to Flügel (1995) who proposed it to 
characterize homogeneous areas with similar geomorphologic and hydrodynamic 
properties. This is commonly defined as a spatial element of pre-determined 
geometry, following exactly the logic of the schematization of the watershed. 
Recognizing that this leads to models with unnecessarily large number of parameters, 
Efstratiadis et al. (2008), in proposing their model known as Hydrogeios, defined 
HRU as a partition of the basin corresponding to a specific class combination of basin 
properties such as soil permeability, land cover, or terrain slope, not necessarily 
comprised of contiguous geographical areas. 

In this model the urbanization effect is assumed to be predominant with regard 
to spatial differences in the hydrological response within the studied basin. Due to the 
large urban fraction and its rapid growth this assumption is expected to be realistic. 
Also, the contiguity of time-varying urban areas cannot be ascertained. Obviously, 
this led us to adopting the concept of two HRUs: the first one (HRU 1) represents the 
time-varying (growing) urban area, while the second one (HRU 2) corresponds to 
rural areas that are also time-varying (shrinking). At each HRU we implement the 
model DM0 up to eq. (8), assuming common parameters for snow accumulation and 
melting (DDF, T0, Tm), as is logical, but different parameterization for the overland 
and soil processes. In particular, in urban areas the generation of direct runoff is 
considered as a constant fraction, c, of the sum of the available precipitation and 
snowmelt, i.e. 

 QD = c (P + SM) (13) 

while in rural areas, QD is expressed as nonlinear function of the actual soil moisture 
storage (eq. 4). Similarly to the process representation in rural areas, the remainder 
quantity, i.e. P + SM – QD, enters a soil moisture accumulation tank that lies 
underneath the urban area. Next, the other two components of surface runoff (i.e., 
overland flow due to saturation, QS, and interflow, QH), the actual evapotranspiration 
through the soil, ES, and the deep percolation, PERC, are estimated through eqs. (5) 
to (8), in which we assign different values for the storage (K, H1) and recession (µ, ν) 
parameters. 

In order to preserve parsimony, for the groundwater processes we follow a 
lumped approach, by employing eqs. (9) to (11) to a common groundwater tank. The 
latter is fed by a weighted sum of the percolations generated by the two distinct 
HRUs, as: 

 PERC = PERC1 fU + PERC2 (1 – fU) (14)  

where PERC1 and PERC2 are the percolation depths from the urbanized (HRU 1) and 
rural areas (HRU 2), respectively. 

The total runoff of the basin is calculated as: 

 Q = Q1 fU + Q2 (1 – fU) + QB (15)  
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where Q1 and Q2 is the surface runoff depth from the urbanized and rural areas, 
respectively, and QB is the baseflow depth, which is generated by the groundwater 
tank. Each one of components Q1 and Q2 is equal to the sum of QD, QS, QH of the 
respective HRU.  

This version of the model has 16 parameters. The five extra parameters with 
respect to those of DM0 and DM1 are associated with the hydrological processes in 
the urban HRU. 
  
2.5 The linear stochastic modelling scheme for time series generation (LSM) 
Stochastic simulation using synthetic data that represent non-deterministic inputs to a 
water resource system (e.g., precipitation, runoff, temperature) is a powerful 
technique, which allows accounting for uncertainty of the related processes. The key 
concept is providing long time series of synthetic data, thus allowing running the 
underlying simulation model of the system for a large time horizon, in order to 
estimate its performance in statistical means (e.g. reliability, safe yield, risk), with 
satisfactory accuracy. This is of high importance, since the usually small length of 
historical data is inadequate for estimations of the desired probabilistic performance 
indices. This option can be offered by synthetic data, whose statistics up to a certain 
order (usually the third order) are statistically equivalent to those of the observed data. 
Such consistency is ensured when the essential statistical properties of the historical 
time series are reproduced in the synthetic ones, as close as possible. According to the 
classical study by Matalas and Wallis (1976) these include the marginal statistics up 
to third order (mean, standard deviation, skewness) and the joint second order 
statistics (autocorrelations and lag zero cross-correlations). The preservation of the 
statistical characteristics should be ensured not only for the time scale of the parent 
historical data (i.e., the time resolution of simulation), but also for coarser scales. We 
emphasize that the preservation of the statistical characteristics merely at the finer 
temporal scale may result to significant underestimation of the uncertainty metrics 
(e.g. variance) at the coarser scales, including the long-term persistence (Hurst-
Kolmogorov dynamics), which is a dominant facet of uncertainty at all temporal 
scales (Koutsoyiannis 2011). Typically, this problem (also referred to as 
“overdispersion”; cf. Katz and Parlange 1998) is tackled by disaggregation 
techniques, which allow for properly representing the different statistical behaviour of 
the simulated hydrometeorological processes across different temporal scales. 

As explained in sub-section 2.7, in the context of our simulations we aim to 
generate daily time series of 1000 year length for three processes of interest, namely 
precipitation, temperature and runoff. In this vein, we use the enhanced version of 
Castalia software, which is thoroughly described in Efstratiadis et al. (2014). Castalia 
implements a three-level linear multivariate stochastic simulation scheme, which 
preserves the aforementioned essential statistics at the daily, monthly and annual time 
scales. Moreover, it reproduces the long-term persistence (LTP) at the annual and 
over-annual scales, the periodicity at the monthly scale, and the intermittency at the 
daily scale in terms of preserving the so-called probability dry of the process of 
interest (“probability dry” is often used to denote the probability that the value of a 
hydrological process within a time interval is zero). Models are linear in the sense that 
only linear combinations of random variables appear in model equations. The 
generation procedure is employed from the annual to monthly and then to daily time 
scale, through subsequent disaggregation approaches as follows: 
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First the annual time series are generated, through a Symmetric Moving 
Average (SMA) scheme, introduced by Koutsoyiannis (2000). SMA implements the 
generalized autocovariance function  

 γj = γ0 [1 + κ β j] – 1/ β (16)  

where γj is the autocovariance of the annual stochastic process for lag j, γ0 is the 
variance and κ, β are shape and scale parameters, respectively, that are related to the 
persistence of the simulated process. By adjusting the values of κ and β, one can take 
a wide range of feasible autocovariance structures, which enables representing 
processes from the ARMA-type to highly persistent ones. In order to reproduce LTP, 
the recommended (and default) value of the scale parameter is β = 2, while the shape 
parameter κ is conditioned by the observed lag-1 autocorrelation, ρ1, defined as γ1 / γ0.  

For the monthly time scale, auxiliary time series are initially provided by a 
multivariate first-order autoregression scheme, PAR(1), the parameters of which are 
periodic (monthly) functions of time (Koutsoyiannis 1999). Next, a disaggregation 
approach is employed to establish statistical consistency between the monthly and 
annual temporal scales, using a linear adjusting procedure (Koutsoyiannis 2001).  

The general approach for generating synthetic daily data resembles the case of 
monthly data, since auxiliary time series are initially produced through a PAR(1) 
model, and these are then adjusted to the known monthly values. Yet, the 
computational procedure is more complicated, given that, apart from the essential 
statistical characteristics that are, similarly to monthly simulations, periodic functions 
of time, it is also necessary to reproduce intermittency, i.e. the proportions of intervals 
with zero (or near-zero) values of the modelled variables. Thus, in the disaggregation 
context, we employ a proportional adjusting scheme, combined with hybrid rules for 
the preservation of intermittency, proposed by Koutsoyiannis et al. (2003). 
 
2.6 The stochastic model for errors of deterministic hydrological models (EM) 
In the everyday practice, model errors of deterministic hydrological models are 
usually neglected and predicted or forecasted fluxes via deterministic models are 
directly employed in water resources management studies. As mentioned in the 
introduction, the implementation of simplified storage-discharge relations smoothes 
the flux signal (e.g., Suweis et al. 2010); this in turn creates biases in critical water 
management quantities that are estimated through models (e.g., the reservoir storage 
capacity required for fixed target release and reliability level). By defining model 
errors, et, as the differences between the observed and simulated fluxes, all sources of 
uncertainty are assumed to be embedded in them. For an ideal hydrological model the 
following properties of error are desirable (e.g., Sorooshian and Dracup 1980): (1) the 
error is uncorrelated with the simulated runoff; (2) the error is uncorrelated with itself 
(zero autocorrelation); and (3) the error is an i.i.d. random variable, i.e., without 
periodicity or other kind of time variation in its statistical properties.  

In this paper it is assumed that the requirement 3 is fulfilled and is only 
checked a posteriori on stochastic residual time series. Preliminary tests showed that 
requirements 1 and 2 are not fulfilled. To overcome this problem we defined the 
transformed runoff 

 Q΄ = ε ln(1 + Q/ε) (17)  

where ε is a scale parameter introduced to avoid zero flow values, which was set the 
1% of the mean daily observed runoff (in this study, ε = 0.01 mm). The rationale of 
this transformation, which is related to the definition of entropy for non-negative 
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variables and non-Euclidean measures, is explained in Koutsoyiannis (2014). 
Accordingly, the error process, wt, non-dimensioned by ε, is 

 wt = ln(1 + Qsim,t/ε) – ln(1 + Qt/ε) (18)  

where Qt and Qsim,t are the “true” and simulated runoff at time t, respectively. The 
transformed errors are decorrelated from flows, while to obtain actual errors it suffices 
to use the inverse transformation.  

The wt’s are still autocorrelated and a first order autoregressive model, or 
AR(1), is used to model them. Low-order stationary autoregressive models as error 
models are reported to have commonly been used in the past (e.g., Nalbantis 2000). 
The model is applied in the form  

 wt = φ1 wt-1 + zt (19)  

where wt is the transformed error process defined by eq. (18), with mean µ, standard 
deviation σ, skewness γ, and lag-1 autocorrelation coefficient ρ; φ1 is the first order 
autoregression coefficient; and zt is a random process with mean µz, standard deviation 
σz, skewness coefficient γz, and zero autocorrelation. The statistical characteristics of 
the random process zt are given by: 

 µz = µ (1 – ρ) (20)  

 σz = σ (1 – ρ2)1/2 (21)  

 γz = γ (1 – ρ3)/[(1 – ρ2)3/2] (22)  

The parameters of the AR(1) model are estimated as follows: (1) the residuals 
of the deterministic model (DM0, DM1 or DM2, where applicable) are obtained from 
eq. (18), where the true runoff is replaced by the observed one; (2) the essential 
statistics of these residuals are estimated, i.e. mean, µ̂ , standard deviation, σ̂ , 
skewness coefficient, γ̂ , and lag-1 autocorrelation coefficient, ρ̂ ; (3) the statistics of 
the random process are obtained through eqs. (19), (20) and (21), by replacing µ, σ, γ 
and ρ with their estimates, i.e. µ̂ ,σ̂ , γ̂  and ρ̂ , respectively. The three parameter 
gamma distribution is considered to represent the random process zt. Its parameters 
(shape, scale and location) are estimated using the method of moments, as functions 
of µ̂ ,σ̂  and γ̂ . 

Let Qsim,t be a runoff process estimated through a deterministic modelling 
approach, without accounting for the error induced due to model uncertainty. 
Inverting eq. (18) allows the calculation of the “true” runoff, Q, in simulation mode as 

 Qt = (Qsim,t + ε) exp(−wt) – ε (23)  

which is equivalent to considering an untransformed error 

 et = (Qsim,t + ε)[exp(−wt) – 1] (24)  

Multiplicative errors of runoff similar to those of eq. (24) are not new in 
hydrological research studies, but have also been used in the past (e.g., by Nalbantis et 
al. 1995). 
 
2.7 The proposed modelling framework and the testing experiment  
In sub-section 2.1 five research questions were posed. Responses to those questions 
required the formulation of a nonlinear stochastic modelling framework. The 
necessary steps to exploit this framework towards responding the above questions 
form our testing experiment, which is described next. 
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To respond to Question 1 we set up the combined deterministic-stochastic 
framework of Figure 2. Two alternative deterministic models are used, namely DM1 
and DM2, which are described in sub-sections 2.3 and 2.4, respectively. These models 
have the advantage to exploit information on the known systematic change of the test 
basin, i.e., urbanization. As explained in the introduction, modelling the errors of 
deterministic models cannot be avoided for a wide spectrum of applications. For this 
reason, a stochastic error model (EM) for the errors of deterministic models was 
constructed, which is described in sub-section 2.6. As also mentioned in the 
introduction, the stochastic approach has the advantage to allow the accurate 
estimation of probabilistic metrics or indices often required in water resources studies. 
This led us add a second phase in our testing experiment, where the proposed 
modelling framework is fed with synthetically generated input data series to produce 
long series of model responses under a scenario of constant level of urbanization. The 
tool to achieve this is the linear stochastic model (LSM) of sub-section 2.5. Within 
this phase the error model is also used to generate model error sequences to be added 
to simulated responses from the deterministic models. The success or not of the 
proposed modelling framework is evaluated based on the plausibility of model 
predictions in terms of statistics of the basin response at coarse time scales (monthly 
and annual). 

Question 2 referring to the effectiveness of deterministic model 
parameterization is simple to address: It suffices to compare the performance of 
models DM1 and DM2 with each other and with the model that ignores urbanization 
i.e., DM0. 

Question 3 is mainly addressed at the stage of calibration, which requires a 
strong hydrological background; therein, we seek a deterministic model with the least 
number of parameters such that the magnitude of the unexplained part of basin 
response variability reaches an acceptable level. A good equilibrium between model 
and parameter uncertainty is established by calibrating a number of deterministic 
models on observed data, until a model with fairly stable model performance is found. 
Performance stability (and, to a lesser degree, parameter stability) is checked using 
the protocol proposed by Thirel et al. (2014); the latter is based on the subdivision of 
the observation period into subsequent non-overlapping sub-periods and checking the 
differences of model performance (by means of nine evaluation criteria, which are 
specified in the protocol) between sub-periods. 

Question 4 requires the comparison of the proposed modelling framework 
with a linear stochastic approach; the latter is easily implemented by including the 
basin response in the multivariate stochastic model LSM of sub-section 2.5. 
Multivariate simulations (i.e. simultaneous generation of synthetic inputs and 
responses) are essential, in order to preserve their observed cross-correlations. 

Question 5 can be answered by simply comparing the long-term statistics of 
the basin response and, particularly, the variability metrics, under stochastic 
simulation as these are obtained by the proposed framework (deterministic and error 
model) and the deterministic model alone.  

3. STUDY BASIN AND DATA 
The study basin is the Ferson Creek at St. Charles, Chicago, USA, with a drainage 
area of 134 km2 (sub-catchment of the Lower Fox river basin). The watershed is 
located on the urban fringe of the Chicago Metropolitan area in Kane County, the 5th 
fastest growing county in Illinois (CMAP 2011). Indeed, the basin has undergone a 
rapid urbanization, as the fraction of urbanized area increased from 21.6% in 1980 to 
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63.8% in 2010. The study basin is briefly described by Thirel et al. (2014; a more 
complete description is provided in the supplementary material). 

The available hydrological data include: (a) daily precipitation, P, and air 
temperature, T, provided by DayMet and aggregated using the USGS Geo Data Portal 
(Blodgett et al. 2011; Thornton et al. 2012); (b) daily potential evapotranspiration, 
PET, computed from temperature, using the empirical formula (2), and (c) daily 
discharge rate, provided by USGS and expressed in terms of equivalent depths, Q. All 
data series refer to a period of 32 calendar years, i.e. from 1/1/1980 to 31/12/2011. 
Annual urban fraction from 1980 to 2010 is also given as external information, which 
is extrapolated until the end of 2011. The annual values of P, T, PET and Q are 
plotted in Fig. 3. Interestingly, the anticipated effects of the substantially increasing 
urbanization cannot be recognized in the graphical representation of annual runoff 
(e.g. in terms of a positive trend). In fact, the signal of annual runoff generally follows 
the precipitation, which is reasonable since the two variables are highly correlated (r = 
0.807 on annual basis, and 0.505 on daily basis). 

4. RESULTS 
4.1 Evaluation of deterministic models  
The first step of the proposed framework was the selection of the most suitable out of 
the three deterministic modelling schemes (DM0, DM1, and DM2), as explained in 
sub-section 2.7. The three models were calibrated and evaluated on the basis of both 
objective and subjective criteria, taking significant advantage from the protocol by 
Thirel et al. (2014). In general, the protocol dictated that five sub-periods are taken 
from the complete period, with calibration and evaluation on each of them. This is 
adapted to our methodology in which, for each model, we employed the following 
procedure: 

Initially, we attempted to calibrate the model parameters (11 for DM0 and 
DM1, and 16 for DM2) for the complete data period (32 years), by formulating the 
associated global optimization problem, adopting as objective the maximization of the 
model efficiency (NSE). No warming up was accounted for, since the effect of errors 
in initial conditions has been practically eliminated through manual adjustment of 
initial storages in the three conceptual tanks. To cope with parameter uncertainty, we 
followed a hybrid (i.e. partially automatic and partially manual) calibration approach 
that aims to combine the computational power of modern optimization algorithms 
with the hydrological experience, thus resulting to robust and realistic parameter 
values (Rozos et al. 2004; Efstratiadis and Koutsoyiannis 2010; Nalbantis et al. 
2011). In particular, the optimizations were carried out using the evolutionary 
annealing-simplex algorithm by Efstratiadis and Koutsoyiannis (2002; see also Rozos 
et al. 2004). For each model, we run several optimizations of 5000 trials each, starting 
from different initial solution populations and also assuming different combinations of 
control variables as well as different parameter bounds. This approach helped to avoid 
local maxima and guide optimization towards solutions that are both optimal, in terms 
of NSE values, and consistent, in terms of hydrological behaviour. Signals of 
hydrological consistency were: (a) the representation of low flows, (b) the regularity 
of simulated state variables (snow accumulation, soil moisture storage, groundwater 
storage), and (c) the plausibility of optimized parameters. The reproduction of low 
flows was evaluated through a modified version of the NSE (NSELF), where the 
inverse transformed flows 1/(Q + ε) are used, instead of Q and ε is a small constant 
that allows to avoid division by zero flows (Thirel et al. 2014). Similarly to eq. (17), 
this is defined as 1% of mean daily runoff. The regularity of the state variables was 
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examined through graphical inspection, in order to reject calibrations resulting to 
unreasonable long-term trends or abnormal patterns of the internal variables of the 
model (Efstratiadis et al. 2008; Nalbantis et al. 2011). Finally, the physical 
consistency of the extracted parameter values was empirically evaluated, based on our 
experience. 

After detecting the optimal parameter values for each scheme, we calculated 
the nine evaluation criteria (Nash-Sutcliffe efficiency and decomposition, Nash-
Sutcliffe efficiency on low flows, bias, frequency of low flows, linear correlation 
coefficient, relative variability in the simulated and observed discharges, bias 
normalized by the standard deviation of the observed discharges, modified Kling-
Gupta efficiency, variation coefficient ratio) for the complete data period (1980-2011) 
as well as the five sub-periods, as asked by Thirel et al. (2014). The duration of each 
sub-period is about 2340 days or 77 months (11 688 days, in total; exact definitions of 
sub-periods are given in Table 1). Next, we repeated the aforementioned hybrid 
calibration procedure for each sub-period separately and validated for the rest of 
periods/sub-periods. Hence, we extracted nine tables (i.e., one for each criterion) of 
size 6×6, where the diagonal elements indicate the criteria values in calibration and 
the off-diagonal ones the criteria in validation. In addition, we extracted the optimized 
parameter values across all periods/sub-periods. This amount of exhaustive 
information helped us assess the model performance stability and evaluate its 
predictive capacity 

Tables 1-3 show the NSE values for the three deterministic models, while 
Tables 4-6 give the corresponding NSELF values. We recall that all models were 
optimized against NSE, whilst NSELF has been used as auxiliary criterion within the 
hybrid calibration procedure. As shown, DM0 and DM1 exhibit practically similar 
performances, both in calibration and validation. As DM0, model DM1 has 11 
parameters, and its unique difference from DM0 is the assumption of a time-varying 
direct runoff rate (parameter c), linearly depending on the urban area fraction (eq. 12). 
The introduction of this information did not improve the model uncertainty, which 
indicates that a more complex parameterization is required. This is offered by model 
DM2, which has five additional parameters for representing the surface hydrological 
processes. As shown in Table 3, all optimized NSE values (diagonal elements) are 
increased by 5-10%, while their improvement in validation (off-diagonal elements) is 
even higher. With respect to low flows, there is also a significant improvement of the 
NSELF scores, although the score values themselves are marginally only satisfactory. 
A very important advantage of model DM2 over DM0 and DM1 is its limited 
variability of score values across the different data periods. For instance, when DM2 
is calibrated against the observed runoff of the first sub-period (P1), the NSE values 
across the five data periods range from 0.440 (P2) to 0.755 (P1, optimized value). In 
the case of models DM0 and DM1 the corresponding ranges are from 0.376 to 0.658, 
and from 0.341 to 0.658, respectively. Assuming the full sample of NSE scores across 
all different calibration and evaluation sub-periods (i.e. 5×5 = 25 values, in total), the 
corresponding coefficients of variation of NSE are 0.378 for model DM0, 0.359 for 
model DM1 and only 0.204 for model DM2. This indicates that model DM2 exhibits 
higher “stability” than DM0 and DM1, since it ensures the minimum variability of 
NSE values (similar conclusions are drawn for the rest of performance scores). 
Therefore, the model remains robust even when calibrated against a small portion of 
the available hydrological and urbanization information. Likewise, the 16 parameters 
of scheme DM2 remain quite stable, as shown in Table 7. 
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The above investigation reveals the obvious superiority of configuration DM2, 
based on the HRU concept, which ensures conciliation between model and parameter 
uncertainty. In all next analyses, we used this scheme, with parameters optimized over 
the complete period (Table 7, column P0). The full range of model scores for this 
version of DM2 (hereafter referred to as DM2_P0) is given in Table 8, while the 
model fitting to the observed runoff, for the first and last sub-period of relatively low 
and high urbanization, respectively, are illustrated in Fig. 4.  
 
4.2 Investigation of model residuals and construction of stochastic error model 
(model EM) 
In the proposed framework, the statistical behaviour of the model errors is a critical 
issue, and should be properly represented in the stochastic error model. Table 9 shows 
the statistical characteristics of the model residuals (i.e. differences between observed 
and simulated runoff), as well as those of the transformed residuals, which are 
estimated by eq. (18). Opposite to the initial residuals, which are correlated with the 
observed runoff (r = 0.480), the transformed ones are less correlated (r = –0.235). On 
the other hand, the transformation through eq. (18) results in a significant increase of 
the lag-1 autocorrelation coefficient, from ρ = 0.487 to 0.779. Moreover, the skewness 
coefficient is decreased, from γ = 5.595 to 1.170.  

The elimination of the cross-correlation allows for using the simple error 
model (19), with φ1 = 0.779, which reproduces the strong autocorrelation structure of 
the transformed errors. The radical decrease of the skewness coefficient is also very 
important, given that the reproduction of such high values of γ by stochastic models is 
practically unachievable (Koutsoyiannis 1999).  
 
4.3 Generation of synthetic hydrological data through linear stochastic 
approaches (model LSM) 
Next step was the generation of 1000 years of daily synthetic data for precipitation, 
temperature and runoff, through the three-level multivariate disaggregation scheme 
that has been implemented in Castalia. The generation of synthetic precipitation and 
temperature, the latter being used for estimating PET through formula (2), was 
essential for running model DM2_P0 in a stochastic simulation context. On the other 
hand, the generation of synthetic runoff was only made for comparison reasons, since 
the statistical characteristics of the historical data (i.e. the observed runoff at the basin 
outlet) are not representative of the future conditions of the basin, which in most 
studies (and herein) are handled as stationary. Stationarity is an essential hypothesis of 
linear stochastic models that run in steady-state simulation and they are not 
conditioned to any “external” information (in the specific case, urbanization). 

The consistency of the synthetic data is evaluated by comparing the statistical 
properties of simulated time series against the historical ones. For convenience, 
evaluations are made on the grounds of the aggregated (i.e., monthly and annual) data. 
Particularly, in Table 10 the annual mean, standard deviation, skewness coefficient 
and lag-1 autocorrelation for each variable are compared. The same characteristics are 
illustrated, by means of monthly diagrams, for the monthly time series (Figs. 5 to 7). 
In Fig. 8 the monthly cross-correlations of precipitation and runoff are also plotted. As 
shown, the stochastic modelling scheme preserves with satisfactory accuracy all 
desirable statistical properties, including the major measures of variability (standard 
deviations and coefficients of skewness). The preservation of the statistical 
characteristics of historical data, which are representative of the hydrological 
behaviour of the real-world processes, also stands for the daily time scale. An 
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example is given in Fig. 9, where we plot the daily time series of the three variables of 
interest (precipitation, runoff, PET), for the first two years of simulation. Their 
patterns are realistic, which indicates that the mathematical framework of Castalia, 
implementing linear stochastic models and simple transformations within 
disaggregation procedures, provides synthetic data that resemble the actual processes.  

As highlighted above, although the statistical characteristics of the observed 
runoff are accurately reproduced in the simulated data, the latter are not usable in the 
context of a water planning or management study. In fact, these statistics reflect the 
effects of the changing (i.e. systematically increasing) urbanization during the 
calibration period and, therefore, may result to a significant overestimation of the 
basin response variability with respect to a case in which the urbanization is known or 
fixed (e.g. because it reached saturation). In the lack of observations under steady-
state conditions of the basin, the (probably) unique yet convincing evidence of this 
overestimation is the performance of the simulated series. As shown in Fig. 10 (lower 
left diagram), we detect an unrealistic (i.e. too sharp) fluctuation of runoff at the over-
annual scales, which is quantified in terms of a Hurst coefficient as much as H = 0.80. 
The long-term persistence of runoff differs substantially from that of its driving 
processes, i.e. precipitation and temperature, which exhibit a reasonable scaling 
behaviour, as indicated by the associated Hurst coefficient values (H = 0.62 and 0.65, 
respectively).  
 
4.4 Runoff simulations using model DM2_P0 with synthetic inputs 
Given that the direct stochastic approach failed to provide realistic simulations, we 
proceeded to the use of the deterministic model DM2_P0, which was fed with the 
already available synthetic time series of precipitation and temperature. We run the 
model in steady-state mode, assuming three urban development scenarios. The first 
scenario refers to the current urban development, i.e., for the 1000-year simulation 
horizon we set a constant urban fraction of 66%. In the other two scenarios we 
assumed fractions of 40 and 80%, which can be considered as reasonable lower and 
upper limits of urban development. We remark that the 40% fraction is representative 
of the average urban development conditions during the 32-year period of 
observations. Next, these scenarios will be referred to as S66, S40 and S80. 

Table 11 summarizes the statistical characteristics of the simulated runoff, 
which are compared with the statistics of the observed data. Comparisons are made at 
the annual scale, but similar conclusions stand for finer scales. By comparing the 
mean annual runoff values, it is shown that the river basin, even for the upper urban 
development scenario (S80), produces lower runoff than during the period of 
observations, which is not reasonable. This happens because the output of the 
deterministic model used for the rainfall-runoff transformation is not unbiased. In fact, 
there is a bias of 3% (0.026 mm per day; cf. Table 9), which is reflected in the 
underestimations of the mean values of the simulated runoff series. Even worse, the 
variability measures (standard deviation and, particularly, skewness) as well as the 
lag-one autocorrelations are significantly underestimated. As discussed in the 
introduction, this is a known drawback of deterministic hydrological models, i.e., the 
fact that they cannot explain the total variability of the observed fluxes of a river 
basin. However, in everyday practice, this issue is usually neglected, which leads to 
predictions that underrate uncertainty. On the other hand, it is important to recall once 
again that the statistical characteristics of the observed runoff are not fully comparable 
with those of the simulated runoff, due to the impacts of changing conditions during 
the period of observations. Thus, the variability metrics of the observed runoff should 
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only be considered as upper limits of the associated statistics in steady state 
conditions. 
 
4.5 Runoff simulations using model DM2_P0 with synthetic inputs and 
considering a stochastic error term 
In order to properly represent the total variability of runoff, we should account for the 
statistical properties of the remaining uncertainty of the deterministic model DM2_P0. 
In this context, the final step of the proposed framework was the introduction of a 
stochastic error term to the simulated runoff, thus providing fully consistent synthetic 
runoff data. This step was not straightforward and required an iterative procedure, as 
follows: 

First, we produced 1000 years of synthetic wt’s (~ 365 250 values, in total), by 
employing (19), in which the random variables zt were produced by a three-parametric 
gamma generator. By examining the statistical characteristics of the simulated wt’s for 
different simulation lengths we found that the 1000 years were absolutely necessary 
for reproducing the theoretical statistics of Table 9 (particularly, the coefficient of 
skewness, γ = 1.170) with high accuracy. The wt’s were next transformed back to 
error terms, et, by considering the synthetic runoff values, Qsim,t, obtained through the 
combined use of models LSM and DM2_P0, and then applying eq. (23).  

However, due to the nonlinearity of (23) and (24), the preservation of the 
statistical characteristics of the parent residual terms, which are shown in Table 9, is 
not guaranteed, although the statistics of the simulated wt’s are explicitly preserved in 
the theoretical model (Table 9). This approach was repeated for the three sets of 
simulated runoff, which refer to the three urban development scenarios. 

After obtaining a sequence of et’s, we added them to the corresponding 
Qsim,t’s, to obtain the final data of synthetic runoff. An example of the difference 
between the daily runoff series, considering the error term or not, is illustrated in Fig. 
11. As shown, during the low flow periods the introduction of the error term results to 
slight fluctuations. Conversely, the daily peaks may change considerably, as expected 
due to heteroscedasticity. Actually, the uncertainty of any deterministic hydrological 
model in the region of high flows is much higher than in the case of normal and low 
flows, and this uncertainty should also be reflected in the simulated data. 

Table 12 gives the statistical characteristics of the final runoff data, which are 
contrasted to the statistics of the observed runoff. By considering the error term, the 
mean values for all urban development scenarios are increased with respect to the 
values given in Table 11, and similarly, the variability metrics (standard deviation and 
skewness) are increased, as required. On the other hand, the lag-1 autocorrelations and 
the Hurst coefficients are not affected by adding up the error term, which is strongly 
desirable. Similar conclusions stand for the monthly time scale, for which we provide 
detailed statistical comparisons for the three scenarios, in Figs. 12-14. 

Following the proposed framework, we anticipate that the final synthetic data 
ensure both physical and statistical consistency. As explained above, this consistency 
cannot be strictly evaluated, due to the temporally-varying conditions in the study 
catchment during the period of observations. It is yet important to notice the effects of 
urbanization to runoff generation are not so impressive. The mean annual runoff under 
steady state conditions, as estimated through stochastic simulation, increases by only 
10% (i.e. from 307.5 to 338.6 mm) for an increase of urbanization fraction from 40 to 
80%. This conclusion is in line with historical data, given that no remarkable trend of 
runoff has been indicated during three decades of substantial increase of urbanized 
areas. Apparently, in the specific catchment, urbanization refers to a rather mild 
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development (e.g. residential areas), which cannot change significantly the average 
response of the basin. Anyway, the limited impacts of urbanization, at least at the 
mean annual scale, should not be surprising, since similar conclusions have been 
extracted in several modelling studies worldwide (e.g., Du et al. 2012). 

5. CONCLUSIONS AND DISCUSSION  
Research results presented in this paper addressed mainly five research questions (see 
sub-section 2.1) dealing with hydrological modelling of catchments with temporally 
varying characteristics. The focus was on systematic changes in catchment properties, 
by choosing urbanization as our working example of such changes. A number of 
conclusions are drawn, which are listed next, in line with the five questions posed.  
(1) A modelling framework was set up by combining stochastic and deterministic 

models in an attempt to exploit the advantages of the two approaches. Our 
ultimate goal was to provide synthetically generated runoff predictions with 
consistent statistical characteristics for use in water resources studies. The 
proposed modelling framework involved two phases: (a) calibrating a 
deterministic hydrological model through a hybrid (manual/automatic) procedure, 
which exploits the capability of the parameter estimation protocol by Thirel et al. 
(2014); also, a stochastic model for model errors is calibrated in this phase; (b) 
using a linear stochastic model to generate inputs fed to the deterministic model 
that yields simulated responses of the basin under study; errors are added to these 
responses, which are synthetically generated via the error model.  

(2) An essential part of the proposed modelling framework is the use of a 
deterministic hydrological model; in our work this was effectively parameterized 
to account for the kind of change selected (i.e., growing urbanization). Two 
parameterizations were tested: a lumped model with eleven parameters, one of 
which is related to the known urban area fraction, and a 16-parameter model 
which involves two Hydrological Response Units (HRUs), representing urban and 
rural areas of time-varying surface area. In out tests, we found no essential 
increase in performance of the lumped model over its counterpart without 
consideration of urbanization. Contrary to this, the HRU-based approach allowed 
a gain in NSE equal to 5-10%; the gain in terms of low-flow efficiency was even 
higher. Through calibration on part of the available data, we obtained a model that 
is robust in terms of performance and parameter values.  

(3) The final parameterization of the deterministic model resulted as a compromise 
between model and parameter uncertainty, i.e., the minimum required 
parameterization that allows an acceptable model performance as the latter is 
dictated by experience. Passing from an 11-parameter model to a 16-parameter 
one was judged to be necessary. The protocol by Thirel et al. (2014) was critical 
for enhancing model robustness within a frame of hybrid calibration.  

(4) It was shown that a linear stochastic approach can result in unrealistic variability 
of the basin responses, which is reflected in large discrepancy between the Hurst 
coefficient of inputs (around 0.65) and the response (0.80); conversely, our 
nonlinear stochastic modelling framework brings the variability of these responses 
down to a value that is justified by the variability of the input. This indicated a 
higher credibility over the linear stochastic approach.  

(5) With regard to the known drawback of deterministic hydrological models, i.e., the 
fact that these underrate the total variability of the observed responses of a river 
basin, our research results confirmed that using an appropriate error model can 
effectively tackle the problem. The best deterministic model resulted in a bias in 
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the mean runoff equal to 3%, while higher downward bias appeared in the 
variability measures (standard deviation and skewness) as well as the lag-one 
autocorrelations. In our case a stochastic error model of the autoregressive family 
was designed, based on log-transformed residuals.  

The testing experiment also revealed the benefits of information across all 
steps of the modelling procedure. Obviously, the observed hydrological data were 
essential yet not unique component of this information. The hydrological experience 
also played a key role, since the evaluation of models was also based on subjective 
criteria and empirical judgment. By this it is meant that we exploited knowledge of 
the model structure on a series of successive sessions of parameter optimization, with 
manual adjustment of parameter space boundary between these sessions. We also 
highlighted that the available information of urbanization growth allowed the 
formulation of a nonlinear stochastic model for representing the runoff. In the lack of 
such information, the use of a linear stochastic model, considering the statistical 
characteristics of the observed runoff, would be mandatory. On the other hand, the 
apparent lack of information about the future conditions of the basin was handled by 
running steady state scenarios of time-invariant urban development. Under this 
premise, probable future changes of the basin mechanisms are effectively represented 
by stochastic approaches hypothesizing stationarity. 

In closing, we wish to reiterate the fact that hydrological models used in this 
work are viewed as tools or methods that assist in a wide spectrum of applications in 
water resources management, where decisions are taken under high uncertainty. One 
form of such uncertainty is due to the kind of change that we treated in the work, i.e., 
growing urbanization. Results of this work let us believe that the proposed framework 
can be an effective way to account for any systematic changes in water resources 
systems. We also remark that the choice of the simulation setting also depends on the 
extent of such changes. For instance, it appears that, in the studied catchment, 
urbanization is related to mild changes in land cover, which are not reflected to 
pronounced changes in the average response of the basin. Therefore, even a linear 
stochastic model in a stationary setting would provide quite realistic results, although 
with overestimated variability. In any case, since the actual variability of the basin’s 
responses is impossible to be known, catchment models should definitely handle these 
responses as stochastic processes. 
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TABLES 
 
Table 1: NSE values across different data periods, for modelling scheme DM0. 
Diagonal elements indicate calibrated values, while off-diagonal elements indicate 
values obtained in validation (similar for Tables 2-6). 
 P0 P1 P2 P3 P4 P5 
Complete period P0 0.690 0.633 0.356 0.720 0.671 0.745 
Sub-period P1 0.637 0.658 0.376 0.704 0.614 0.632 
Sub-period P2 0.537 0.503 0.603 0.556 0.544 0.509 
Sub-period P3 0.498 0.323 0.053 0.781 0.635 0.417 
Sub-period P4 0.533 0.347 0.206 0.664 0.732 0.497 
Sub-period P5 0.652 0.487 0.098 0.678 0.638 0.782 
P0 (full period): 1/1/1980-31/12/2011; P1: 1/1/1980-31/5/1986; P2: 1/6/1986-31/10/1992; P3: 
1/11/1992-31/12/1998; P4: 1/1/1999-31/8/2005; P5: 1/9/2005-31/12/2011. 
 
Table 2: NSE values across different data periods, for modelling scheme DM1. 
 P0 P1 P2 P3 P4 P5 
Complete period P0 0.689 0.578 0.422 0.711 0.684 0.751 
Sub-period P1 0.581 0.658 0.341 0.699 0.490 0.546 
Sub-period P2 0.556 0.490 0.587 0.546 0.550 0.567 
Sub-period P3 0.640 0.581 0.247 0.760 0.636 0.649 
Sub-period P4 0.505 0.136 0.295 0.625 0.740 0.509 
Sub-period P5 0.641 0.470 0.025 0.670 0.631 0.781 
 
Table 3: NSE values across different data periods, for modelling scheme DM2. 
 P0 P1 P2 P3 P4 P5 
Complete period P0 0.746 0.697 0.582 0.769 0.777 0.757 
Sub-period P1 0.608 0.755 0.440 0.780 0.552 0.494 
Sub-period P2 0.687 0.625 0.682 0.707 0.737 0.670 
Sub-period P3 0.671 0.727 0.508 0.818 0.655 0.592 
Sub-period P4 0.736 0.673 0.604 0.744 0.790 0.748 
Sub-period P5 0.694 0.548 0.238 0.701 0.732 0.794 
 
Table 4: NSELF values across different data periods, for modelling scheme DM0. 
 P0 P1 P2 P3 P4 P5 
Complete period P0 0.016 0.299 -0.028 0.050 -0.028 0.069 
Sub-period P1 0.015 0.251 -0.031 0.036 -0.029 0.077 
Sub-period P2 0.122 0.174 0.069 0.163 0.047 0.282 
Sub-period P3 0.006 0.309 -0.035 0.058 -0.034 0.038 
Sub-period P4 0.042 0.281 0.004 0.123 0.000 0.079 
Sub-period P4 -0.029 -0.058 -0.068 -0.046 -0.066 0.005 
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Table 5: NSELF values across different data periods, for modelling scheme DM1. 
 P0 P1 P2 P3 P4 P5 
Complete period P0 -0.006 0.207 -0.047 0.028 -0.045 0.031 
Sub-period P1 0.018 0.242 -0.034 0.037 -0.023 0.091 
Sub-period P2 0.020 -15.480 0.025 0.139 0.014 0.195 
Sub-period P3 0.027 0.366 -0.017 0.083 -0.017 0.077 
Sub-period P4 -0.971 -289.764 0.042 -0.076 0.037 0.037 
Sub-period P4 -0.047 -4.790 -0.070 -0.050 -0.067 0.005 
 
Table 6: NSELF values across different data periods, for modelling scheme DM2. 
 P0 P1 P2 P3 P4 P5 
Complete period P0 0.145 0.543 0.038 0.124 0.189 0.186 
Sub-period P1 0.014 0.312 -0.031 0.033 -0.011 0.035 
Sub-period P2 0.210 0.633 0.392 0.169 0.076 -0.048 
Sub-period P3 0.073 0.494 0.001 0.112 0.073 0.105 
Sub-period P4 0.132 -11.201 0.050 0.131 0.158 0.390 
Sub-period P4 0.253 -0.097 0.339 0.166 0.124 0.242 
 
Table 7: Optimized parameter values for model DM2 across different periods. 
 P0 P1 P2 P3 P4 P5 
Snow processes       
Degree-day factor, DDF (mm/oC/d) 6.00 6.00 3.83 3.85 6.00 5.96 
Max. temp. for snowfall, T0 (oC) -1.77 0.00 -0.89 -0.65 -1.84 -3.21 
Min. temp. for melting, Tm (oC) -0.15 0.41 -0.16 -0.22 -0.09 0.06 
Surface processes – Rural HRU       
Direct runoff fraction, c 0.030 0.010 0.011 0.020 0.028 0.029
Soil capacity, K (mm) 573.1 557.7 392.4 587.5 483.1 433.7
Interflow threshold, H1 (mm) 499.3 506.3 336.6 530.5 430.7 225.7
Recession rate for interflow, µ (d-1) 0.056 0.088 0.022 0.054 0.037 0.058
Recession rate for percolation, ν (d-1) 0.001 0.002 0.002 0.002 0.001 0.001
Surface processes – Urban HRU       
Direct runoff coefficient, c  0.030 0.030 0.041 0.105 0.023 0.033
Soil capacity, K (mm) 171.1 204.7 293.0 92.2 319.6 399.5
Interflow threshold, H1 (mm) 138.9 93.7 179.9 92.1 238.3 329.9
Recession rate for interflow, µ (d-1) 0.407 0.529 0.333 0.534 0.375 0.457
Recession rate for percolation, ν (d-1) 0.005 0.009 0.004 0.008 0.003 0.003
Groundwater processes       
Baseflow threshold, Υ1 (mm) 20.1 20.6 27.4 23.6 24.3 30.0 
Recession rate for baseflow, ξ (d-1) 0.486 0.500 0.475 0.653 0.218 0.500
Recession rate for losses, φ (d-1) 0.013 0.011 0.013 0.013 0.010 0.008
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Table 8: Non-dimensional evaluation criteria for model version DM2_P0 across all 
periods (for their definitions, please refer to Thirel et al. 2014). 
Criterion P0 P1 P2 P3 P4 P5 
NSE 0.746 0.697 0.582 0.769 0.777 0.757 
NSELF 0.145 0.543 0.038 0.124 0.189 0.186 
Bias (or βKGE) 0.971 0.902 1.110 0.951 1.076 0.897 
FreqLF (sim.) 0.003 0.000 0.000 0.000 0.012 0.012 
FreqLF (obs.) 0.021 0.000 0.044 0.002 0.038 0.018 
r 0.864 0.840 0.802 0.884 0.887 0.873 
aNSE 0.877 0.774 1.037 0.778 0.980 0.904 
bNSE -0.016 -0.065 0.076 -0.027 0.041 -0.054 
KGE 0.831 0.765 0.764 0.779 0.837 0.836 
γKGE 0.904 0.859 0.934 0.819 0.910 1.007 
 
Table 9: Statistical characteristics of model residuals et, transformed, through eq. 
(18), residuals wt, and simulated errors. 
 Residuals et Transformed residuals wt Synthetic errors wt

Mean (mm) 0.026 0.099 0.099 
St. deviation (mm) 0.807 0.637 0.638 
Skewness coefficient 5.595 1.170 1.178 
Lag-1 autocorrelation 0.487 0.782 0.779 
Cross-correlations with Q 0.480 -0.235 0.000 
 
Table 10: Comparison of annual statistical characteristics for simulated variables 
through Castalia stochastic generator; the historical values are given in the first row 
while the simulated ones are found in the second row. Hurst coefficients cannot be 
estimated for historical samples, due to the limited length of the latter. 

 
Mean 

(mm or oC) 
St. deviation 
(mm or oC) 

Skewness 
coefficient 

Lag-1 auto- 
correlation 

Hurst 
coeff. 

1002.1 138.1 -0.415 0.041 - 
Precipitation 1004.9 137.4 -0.486 0.101 0.621 

9.17 0.77 0.206 0.173 - 
Temperature 9.15 0.78 0.051 0.208 0.645 

320.1 115.5 1.038 0.398 - 
Runoff 322.9 118.5 0.936 0.415 0.796 
 
Table 11: Comparison of annual statistical characteristics of observed and simulated 
runoff. Runoff is generated by running deterministic model DM2_P0 with synthetic 
precipitation and temperature. 

 
Mean 
(mm) 

St. deviation 
(mm) 

Skewness 
coefficient 

Lag-1 auto- 
correlation 

Hurst 
coeff. 

Observed 320.1 115.5 1.038 0.398 - 
Simulated S66 305.9 98.0 0.297 0.252 0.667 
Simulated S40 286.9 92.4 0.304 0.303 0.681 
Simulated S80 316.2 101.6 0.293 0.220 0.657 
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Table 12: Comparison of annual statistical characteristics of observed and simulated 
runoff. Runoff is generated by running deterministic model DM2_P0 with synthetic 
precipitation and temperature, and then adding a stochastic error term. 

 
Mean 
(mm) 

St. deviation 
(mm) 

Skewness 
coefficient 

Lag-1 auto- 
correlation 

Hurst 
coeff. 

Observed 320.1 115.5 1.038 0.398 - 
Simulated S66 328.8 115.2 0.567 0.242 0.664 
Simulated S40 307.5 106.2 0.461 0.246 0.672 
Simulated S80 338.6 114.9 0.446 0.167 0.629 
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Figure 1: Sketch of the conceptual model DM0, which illustrates the modelled processes and 

associated parameters. 
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Figure 2: Outline of the nonlinear stochastic framework for hydrological modelling. 
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Figure 3: Plots of historical series: annual runoff and precipitation (left), and PET and 

temperature (right). 
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Sub-period P5 (1/9/05-31/12/11); NSE = 0.757 
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Figure 4: Comparison of simulated and observed runoff for sub-periods P1 (left) and P5 

(right), for modelling scheme DM2_P0. 
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Figure 5: Comparison of monthly statistical characteristics of observed and simulated, 

through the Castalia stochastic generator, precipitation. 
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Figure 6: Comparison of monthly statistical characteristics of observed and simulated, 

through the Castalia stochastic generator, temperature. 
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Figure 7: Comparison of monthly statistical characteristics of observed and simulated, 

through the Castalia stochastic generator, runoff. 
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Figure 8: Monthly and annual cross-correlations between observed precipitation (P) and 

runoff (Q), synthetic precipitation and synthetic runoff, generated through Castalia (model 
LSM), and synthetic precipitation and simulated runoff generated through model DM2_P0, 

for 66% urbanization fraction. 
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Figure 9: Plots of daily synthetic precipitation, runoff and PET for the first two out of 1000 

years of simulation. Precipitation and runoff are generated through Castalia, as well as 
temperature data, which were next used for calculating PET.  
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Figure 10: Plots of 1000 years of annual and 20-year moving average data for synthetic 
precipitation (upper left); mean temperature (upper right); synthetically generated runoff 

(lower left); and final runoff (lower right), generated through the combined use of 
deterministic and stochastic models, for the 66% urbanization scenario. 
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Figure 11: Comparison of daily synthetic runoff data for the first two years of simulation 

obtained through model DM2_P0 fed with synthetic inputs, by considering or not the error 
term. Simulations refer to the 66% urbanization scenario. 
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Figure 12: Comparison of monthly statistical characteristics of simulated runoff, with and 

without considering the error term, assuming 40% urbanization fraction. 
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Figure 13: Comparison of monthly statistical characteristics of simulated runoff, with and 

without considering the error term, assuming 66% urbanization fraction. 
 

0.0

10.0

20.0

30.0

40.0

50.0

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug Se

p

O
ct

N
ov D
ec

M
ea

n 
va

lu
e 

(m
m

)

DM2_P0 & EM

DM2_P0

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug Se

p

O
ct

N
ov D
ec

St
an

da
rd

 d
ev

ia
tio

n 
(m

m
)

DM2_P0 & EM

DM2_P0

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug Se

p

O
ct

N
ov D
ec

Sk
ew

ne
ss

 c
oe

ffi
ci

en
t DM2_P0 & EM

DM2_P0

0.0

0.1

0.2

0.3

0.4

0.5

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug Se

p

O
ct

N
ov D
ec

La
g-

1 
au

to
co

rr
el

at
io

n

DM2_P0 & EM

DM2_P0

 
Figure 14: Comparison of monthly statistical characteristics of simulated runoff, with and 

without considering the error term, assuming 80% urbanization fraction. 
 
 
 


