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Typical obstacles to the global optimum 
1. Convergence to local optima 

 Generally, it is relatively easy to locate a local optimum, but very 
difficult or even impossible to get out of it. 

2. The curse of dimensionality 

 The theoretical time to solve a nonlinear optimization problem 
increases even exponentially vs. the number of control variables. 

3. Extremely large number of trials to locate the global optimum 

 To avoid getting trapped by local optima, a detailed exploration of 
the search space may be required. 

4. The practical aspect of real-world applications 

 In real-world problems, a highly accurate solution is neither 
possible, because of uncertainties and inaccuracies in the 
underlying model or data, nor feasible, due to the prohibitory high 
computational effort required to evaluate the objective function, 
which in turn requires running a simulation model. 
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Surrogate-based optimization (SBO) 
Basic concepts of SBO:  

 Replace most of the time-expensive simulations with surrogate models of 
practically negligible (or minor) computational burden (e.g., Kriging, Radial 
Basis Functions, polynomials). 

 Most evaluations are performed through the surrogate model, while the 
expensive model (i.e. the objective function) is called periodically to improve 
the accuracy of the results within the search procedure.  

 Comprehensive reviews are found in the literature (Forrester and Keane, 2009). 

Figure 1: Flowchart of a typical surrogate-based optimization procedure. 



The Evolutionary Annealing-Simplex method 
 Heuristic global optimization technique coupling the strength of simulated 

annealing in rough search spaces with the efficiency of the downhill simplex 

method (Nelder & Mead, 1965) in smoother spaces (Efstratiadis & 

Koutsoyiannis, 2002). 

Key features 

 an adaptive annealing cooling schedule determines the degree of 

randomness through the search procedure; 

 all transitions are probabilistic, since a stochastic term is added to the 

objective function, relative to temperature, thus g(x) = f(x) + u T; 

 new points are generated via simplex transformations or mutations; 

 all simplex configurations employ quasi-stochastic scale factors; 

 multiple expansions and uphill transitions are allowed, in order to 

accelerate the search and escape from local minima, respectively. 

EAS package is available in R: www.itia.ntua.gr/el/softinfo/29/  

http://www.itia.ntua.gr/el/softinfo/29/
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Key aspects of SEEAS 
 Surrogate-Enhanced Evolutionary Simplex-Annealing approach (SEEAS) is a 

novel global optimization algorithm for time-expensive functions.  

 The algorithm is a surrogate-enhanced extension of EAS incorporating 
Surrogate Modelling (SM) techniques to build, maintain and exploit 
approximations of real response surfaces, aiming to support transitions and 
accelerate search towards favorable areas of the response surface.  

 The role of SM in searching procedure is twofold: 

 Providing new promising points that are directly embedded in the current 
population (similarly to SBO); 

 Assisting specific transitions of the simplex-based evolutionary operator of EAS.  

 Balance between exploration (i.e., detailed sampling) and exploitation (i.e., 
blind use of predictions) is achieved through a dynamically adjusted 
weighted prediction-distance metric, termed acquisition function (AF). 

 An external archive of already evaluated points is updated per iteration thus 
ensuring systematically more accurate approximations of the region of interest 
(i.e., the area around the current best point).  

 



SEEAS conceptual flow chart 
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An illustrative example: Quasi-deterministic 
surrogate-based operators  

Optimal solution 
derived on the 

basis of current 
surrogate model  

Remarks: 
In the beginning of each iteration, an initial search (internal optimization) is performed using only 
the surrogate model, to locate potential sample points for evaluation with the expensive function.  



An illustrative example: Balancing exploration-
exploitation with acquisition function (AF) 

Remarks: 
The acquisition function (AF) is used to balance exploration-exploitation of surrogate model, i.e., 
balance between surrogate model prediction estimates and search space densification. 

Example 
f(x) =x sin(x) 
s.t. 0 ≤ x ≤ 4π 
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An illustrative example: Quasi-stochastic 
surrogate-enhanced simplex operators   

Remarks: 
Demonstration of a randomly selected simplex and the modified surrogate-enhanced reflection 
movement using candidate points on the line formed from the simplex centroid and the maximum 
reflection point; the simplex is reflected at the candidate point with the minimum function value.  



An illustrative example: Fully-stochastic 
operators (mutation) 

Remarks: 
Demonstration of a global scale mutation by generating a random point out of the range (μ-σ, μ+σ) 
of the current population (where μ and σ are the average and standard deviation of the coordinates 
of all population members). 
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Benchmarking methodology 
 The performance of SEEAS was compared against five state-of-the-art methods: 

 DYCORS (Regis and Shoemaker, 2013) and MLMSRBF (Regis and Shoemaker, 2007), 
which are surrogate-enabled; 

 EAS and DDS (Tolson and Shoemaker, 2007) that do not employ surrogate models 
through search. 

 A variety of test problems were examined, theoretical as well as real-world, 
considering two alternative computational budgets, which are quantified in 
terms of function evaluations (FE; 500 and 1000). 

 six mathematical test functions, formulated with 30 control variables;  

 a hydrological calibration problem with real and synthetic runoff data; 

 a time-expensive multi-reservoir management problem. 

 In all problems we employed multiple independent runs, considering: 

 the same population size; 

 the same random generation technique for the initial population (LHS).  

 The three surrogate-assisted algorithms (SEEAS, DYCORS, MLMSRBF) use the 
same metamodel, i.e. RBF with cubic basis functions and linear polynomial tail. 



Mathematical applications: Test functions 
The mathematical benchmark suite includes: 

• Six mathematical problems (test functions) with 30 control variables; 

• Two alternative computational budget (500 and 1000 FE); 

• 30 independent optimization trials (i.e. with different initial populations that 
are randomly generated). 

Problem Test function Response surface properties 

OF1 Sphere Unimodal and convex 

OF2 Ackley Multimodal with many local minima 

OF3 Griewank Multimodal with many regularly distributed local minima 

OF4 Zakharov Unimodal with a plate-shaped valley 

OF5 Rastrigin Multimodal with many local minima 

OF6 Levy Multimodal with many local minima and parabolic valleys 
Remarks: 
In all cases, the location and thus the value of the global optimum are known. 



Mathematical applications: Results 

FE 
Test 

function 

EAS DDS SEEAS  DYCORS MLMSRBF 

Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 

500 

  

OF1 4.3053 1.1633 9.5161 2.7373 0.0185 0.0058 0.0832 0.0337 0.7393 0.7078 

OF2 9.9234 1.1601 12.8723 1.3289 1.8775 0.3012 4.2965 3.7206 6.1931 4.3622 

OF3 17.8661 3.4553 38.3984 12.0501 0.7823 0.1177 1.2647 0.0785 3.4586 1.9269 

OF4 117.821 28.7568 562.1452 113.2297 173.240 44.1854 472.8149 90.8972 575.4238 174.0726 

OF5 228.6932 18.4416 132.1485 24.5665 122.657 19.4271 112.046 23.0760 165.4371 46.8463 

OF6 6.3378 2.6523 15.8232 5.4805 0.6587 0.1843 3.4072 2.5399 7.3257 10.9444 

1000 

OF1 2.5294 0.9330 2.1121 0.7910 0.0058 0.0036 0.0105 0.0042 0.3577 0.1771 

OF2 6.5163 0.8448 7.6695 0.9239 1.2064 0.2965 1.0846 0.1682 3.6428 1.1026 

OF3 8.8362 2.6165 8.2729 2.6788 0.5492 0.0930 1.0200 0.0264 2.4197 0.7127 

OF4 94.5982 20.3174 412.2383 118.5726 151.471 54.0970 403.8120 93.0812 491.4248 146.0970 

OF5 198.3349 16.5873 71.5980 15.0283 98.370 19.5046 85.2669 22.9556 134.8636 39.1934 

OF6 2.6831 0.7357 3.9213 2.2148 0.4426 0.1263 4.2130 5.4396 2.8652 4.5828 

Wins 2/12 1/12 7/12 2/12 0/12 

Table: Mean and standard deviation of best function values for 30-D obtained from all algorithms.  



Hydrological model calibration 
• Study area and data: Boeticos Kephisos basin, Eastern Greece (1850 km2) 

▫ The basin extends over a heavily-modified karst system with multiple peculiarities, 
as result of complex interactions between surface and groundwater processes as well 
as human interventions, by means of surface and groundwater abstractions; 

▫ Monthly  time series of precipitation, PET, groundwater abstractions and runoff are 
available for a 77-year period (1907-1984; 924 months). 

• Model: Lumped version of Hydrogeios (Efstratiadis et al., 2008) 

▫ The basin is vertically subdivided into three storage elements that represent 
interception, soil moisture and groundwater accounting processes; 

▫ The model estimates the main responses of the basin, i.e. actual evapotranspiration, 
surface and groundwater runoff and underground losses, using nine parameters; 

▫ Initial conditions are the water levels of soil and groundwater tanks at the beginning 
of simulation. 

• Formulation of calibration problem:  

▫ Two problems were formulated, one with real (measured) and one with artificially 
generated runoff data, considering arbitrary parameter values (toy model); 

▫ Objective function = Nash-Sutcliffe efficiency (NSE). 



Results for model calibration with actual runoff 
data (unknown parameter values) 

Figure: Convergence curves for FE = 500 (left) and FE = 1000 (right). 

Figure: Empirical CDFs of best NSE values for FE= 500 (left) and FE = 1000 (right).  

Remarks: 
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 SEEAS achieves 
NSE > 0.70 in 28 
out of 30 trials. 



Results for toy model calibration 
(a priori known parameter values) 

Figure: Convergence curves for FE = 500 (left) and FE = 1000 (right). 

Figure: Empirical CDFs of best NSE values for FE= 500 (left) and FE = 1000 (right).  

Remarks: 
 SEEAS clearly 

outperforms the 
other algorithms 
for both 500 and 
1000 FE. 

 EAS and DDS are 
the more suitable 
alternatives for 
500 FE. 

 EAS is the best 
alternative for 
1000 FE. 

Remarks: 
 SEEAS achieves 

NSE>0.80 in 20 
out of 30 trials. 

 SEEAS achieves 
NSE>0.95 in 27 
out of 30 trials. 



Multi-reservoir management problem 
 Case study: Nestos hydrosystem, NE Greece 

 Four reservoirs, serially connected.  

 The first three are hydropower reservoirs, with the first two of them 
reversible (pumped storage).  

 The forth (lowest) reservoir is small irrigation reservoir. 

 Problem statement: Development of uncertainty-aware operational rules of 
the multi-reservoir management model deployed in WEAP21 (Yates et al, 2005) 
and coupled with MATLAB mathematical environment (initially introduced by 
Tsoukalas and Makropoulos, 2014).  

 Control Variables: Expressed in terms of seasonally (considering 4 seasons per 
year) varying energy targets, which are assigned to the associated system 
components; (3 + 2) × 4 = 20 control variables in total.  

 Objective: Maximization of mean annual benefit from hydropower production 
under hydrological uncertainty, inherited by long stochastically generated time-
series using CASTALIA stochastic model (Efstratiadis et al., 2014). 



Results for multi-reservoir optimization 

Figure: Convergence curves (left) and empirical CDFs (right) for FE = 500.  

 SEEAS outperforms both DYCORS and MLMSRBF, considering the budget of 500 FE. 

 Algorithms seem performing equally until ~300 FE, but then SEEAS evolves faster. 

 In terms of CDFs, SEEAS stochastically dominates MLMSRBF, which dominates DYCORS. 

Remark: The two figures reveal the key peculiarity of reservoir optimization problems, which 
is the formulation of flat response surfaces, due to the existence of numerous constraints, 
physical and operational, which significantly restrict the flexibility of decisions, thus resulting 
to low sensitivity of the system performance against the associated parameters. 



Conclusive remarks 
 The novel Surrogate-Enhanced Evolutionary Annealing Simplex algorithm 

(SEEAS) is introduced. 

 The surrogate model is employed efficiently (in terms of balancing exploration 
and exploitation) and it is used for global search and also identifies the most 
promising positions to perform the simplex movements using trial samples 
(i.e., candidate locations). 

 SEEAS outperforms alternative algorithms (DDS, DYCORS*, MLMSRBF*) in 
9/12 mathematical problems (i.e. six test functions with 30 control variables) 
for two computational budgets (500 and 1000 MFE). 

 SEEAS outperforms all alternative algorithms in the examined real-world 
problems, including two hydrological model calibration (11 parameters) and a 
multi-reservoir management problem (20 decision variables). 

*Surrogate-assisted algorithm 



Thank you! 
SEEAS was recently submitted to 

Environmental Modelling & Software 
under the title: 

Tsoukalas I., Kossieris P., Efstratiadis A. and Makropoulos C., Surrogate-
enhanced evolutionary annealing simplex algorithm for effective 
and efficient optimization of water resources problems on a budget, 
Environmental Modelling & Software, 2015. 
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