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Premises  
 Most things are uncertain.  

 Stochastics is the language of uncertainty.  

 Entropy is the quantified measure of uncertainty. 

 The principle of maximum entropy, which reflects entropy maximization in nature, can help to 
construct parsimonious probabilistic representations of natural phenomena. 

 When time matters, the concept of maximum entropy production can help to construct 
parsimonious stochastic representations of natural processes. 

 Hydrological and, more generally,  geophysical processes, exhibit some peculiarities, such as: 

(a) their modelling relies very much on observational data (geophysical systems are too 
complex to be studied using deduction, and theories are often inadequate);  

(b) the distinction “signal vs. noise” is meaningless;  
(c) the samples are small;  
(d) the processes are often characterized by long term persistence, which makes classical 

statistics inappropriate. 

 Long term persistence is long term change; thus modelling change in a stochastic framework 
is about the same as modelling long-term persistence. 
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Things to avoid in stochastic modelling  

 Avoid stylized families of models like AR, ARMA, ARIMA, ARFIMA, etc., which (excepting their 
most elementary versions) are too artificial, not parsimonious and unnecessary.  

 Avoid formulating a stochastic model in discrete time; rather formulate it in continuous time 
and infer its discrete-time properties analytically. 

 In model identification and fitting, avoid the common practice of using the empirical 
autocorrelogram, as it is associated with high bias and uncertainty. 

 Avoid applying mathematical tools from the fractals literature whose statistical / stochastic 
properties have not been studied, are too complicated to study or are known to involve high 
bias and uncertainty. 

 In particular, avoid treating random variables as if they were deterministic and cursorily using 
uncontrollable quantities (e.g. high order moments) whose estimates are characterized by 
extraordinarily high bias and uncertainty. 

 More generally, avoid interpreting stochastics as recipes, algorithms and series of numerical 
calculations that are easily performed by popular computer programs. 
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Proposed framework 
Example of a stochastic process 𝑥𝑖  with maximal entropy production at times t→ 0 and ∞:  

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1

𝜅      [Hybrid Hurst-Kolmogorov process, HHK] 

γ: variance; Δ: Time scale; γ(Δ): climacogram; λ: state-scale parameter; α: time-scale 
parameter; H: Hurst (scaling) parameter (0 < H < 1); κ: fractal (scaling) parameter (0 < κ < 1) 

Model fitting: 

Minimize the error (e.g. MSE) between the empirical climacogram �̂�(𝛥) and the theoretical 

expectation E [�̂�(𝛥) ] (not 𝛾(𝛥) itself). 

Generalized simulation method (for the generation of the process 𝑥𝑖): 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙
𝑞
𝑙=−𝑞         [Symmetric Moving Average technique, SMA] 

where q is a large integer, vi is white noise and 𝑎𝑙 are coefficients calculated from  

𝑠d
𝑎(𝜔) = √2𝑠d(𝜔) 

whereas 𝑠d
𝑎(𝜔) is the Fourier transform of the 𝑎𝑙 series, 𝑠d(𝜔) is the power spectrum of the 

discrete time process, determined from the climacogram 𝛾(𝛥), and ω is frequency. 
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Further information 
Details about the methodology 

Koutsoyiannis, D., Generic and parsimonious stochastic modelling for hydrology and beyond, 
Hydrological Sciences Journal, doi:10.1080/02626667.2015.1016950, 2015. 

Software implementation 

Castalia: A computer system for stochastic simulation and forecasting of hydrologic 
processes, http://www.itia.ntua.gr/en/softinfo/2/ 

Efstratiadis, A., Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model 
for the generation of synthetic time series at multiple time scales reproducing long-term 
persistence, Environmental Modelling and Software, 62, 139–152, 
doi:10.1016/j.envsoft.2014.08.017, 2014. 
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the National Strategic Reference Framework (NSRF) – Research Funding Program: ARISTEIA: 
Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation. 
(research project “Combined REnewable Systems for Sustainable Energy DevelOpment”— 
CRESSENDO; grant number 5145). 
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Additional explanations 
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Definitions and notation 
Type Continuous time Discrete time, time 

scale Δ  
Stochastic 
processes 

x(t): instantaneous, 
stationary 

X(t) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
: 

cumulative, 
nonstationary 

𝑋𝑖
(𝛥)

 ≔ X(iΔ) – X((i – 1)Δ): 
aggregated, stationary 
intervals of X(t) 

𝑥𝑖
(𝛥)

 ≔ 𝑋𝑖
(𝛥) / Δ: 

averaged 
Characteristic 
variances 

γ0 ≔ Var[x(t)] 

Γ(t) ≔ Var[X(t)] 
γ(t) ≔ Var[X(t)/t] = 

Γ(t)/t2 
Note: 
𝛤(0) = 0;  𝛾(0) = 𝛾0  

Var[𝑋𝑖
(𝛥)

] = Γ(Δ) 

Var[𝑥𝑖
(𝛥)

] = γ(Δ) 

Autocovariance 
function 

c(τ) ≔ Cov[x(t), x(t + τ)] 
Note: c(0) ≡ γ0 = γ(0)  

𝑐𝑗
(𝛥)

≔ Cov[𝑥𝑖
(𝛥)

, 𝑥𝑖+𝑗
(𝛥)

] 

Note: 𝑐0
(𝛥)

≡ 𝛾(𝛥) 

Power spectrum  
(spectral density) 

s(w) := 

2 ∫ 𝑐(𝜏) cos(2π𝑤𝜏) d𝜏
∞

−∞
 

𝑠d
(𝛥)(𝜔) ≔ 

2 ∑ 𝑐𝑗
(𝛥)∞

𝑗=−∞ cos(2π𝜔𝑗) 

𝑠(𝛥)(𝑤) = 𝛥𝑠d
(𝛥)(𝑤𝛥)  

Note: w = ω/Δ 

 

X(t) ≔

x(t)

t

t0 Δ 2Δ … (i – 1)Δ iΔ
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Properties of the Hybrid Hurst-Kolmogorov process (HHK) 
Climacogram:  

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1

𝜅   

Autocovariance in continuous time (for lag τ): 

𝑐(𝜏) = 𝛾(𝜏)
1+(3𝐻+2𝜅𝐻−2𝜅−1)(𝜏/𝑎)2𝜅+𝐻(2𝐻−1)(𝜏/𝑎)4𝜅

1+2(𝜏/𝑎)2𝜅+(𝜏/𝑎)4𝜅   

The expressions of other properties are complex, but can be easily be evaluated numerically. Furthermore, 
the asymptotic properties are easily derived analytically (mostly in terms of log-log derivatives, e.g. γ#(x)) 
and given below (see more details in Koutsoyiannis, 2013b, 2015): 

Property Global behaviour Local behaviour 
Climacogram  
(in terms of variance γ(Δ) or standard deviation σ(Δ)) 

γ#(∞) = 2𝜎#(∞) = 2H – 2 𝛾#(0) = 𝜎#(0) = 0 

Autocovariance c(τ) c#(∞) = 2H – 2 𝑐#(0) = 0 
Power spectrum s(w) s#(0) = 1–2H s#(∞) = –2κ – 1 

Climacogram-based spectrum, ψ(w) ≔
2 𝛾(1 𝑤⁄ )

𝑤
(1 −

𝛾(1 𝑤⁄ )

𝛾0
)  ψ#(0) = 1–2H ψ#(∞) = –2κ – 1 

Climacogram-based structure function, g(Δ) ≔ γ0 – γ(Δ) g#(∞) = 0 g#(0) = 2κ 
Entropy production in logarithmic time  
(unconditional φ(Δ), conditional φC(Δ)) 

φ(∞) = φC(∞)= H 
φ(0) = 1  

φC(0) = 1 + κ 
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Properties of the HHK process—an example 

  
Notes 

1. For large time scales HHK exhibits Hurst behaviour. The scaling behaviour at small time 
scales (small frequencies) is quite different. 

2. The intermediate steep slope that appears in the power spectrum is artificial and does not 
indicate a scaling behaviour.  
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Comparison of the HHK process with Markov and HK processes 

 
For κ = 0.5 ≠ H and for small scales the HHK process behaves 
like Markov and for large scales behaves as Hurst-
Kolmogorov. (In the special case H = κ = 0.5, HHK is 
practically indistinguishable from a Markov process—even 
though not precisely identical).  As α → 0, the process tends to 
a pure HK process with the same Hurst coefficient H.  
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Statistical estimation—Model fitting 
We assume that the observation period T is an integer multiple of time scale Δ of the averaged process 

𝑥𝑖
(𝛥)

, i.e., n = 𝑇 𝛥⁄  is an integer. The (unbiased) estimator of the common mean μ of the instantaneous 

process x(t) as well as of the discrete process 𝑥𝑖
(𝛥)

 is  

�̅�(𝛥)  ≔
1

𝑛
∑ 𝑥𝑖

(𝛥)
 =

𝑋(𝑇)

𝑛𝛥
=

𝑋(𝑇)

𝛵
= 𝑥1

(𝛵)
 𝑛

𝑖=1    

The standard estimator �̂�(𝛥) of the variance 𝛾(𝛥) of the averaged process 𝑥𝑖
(𝛥)

 is  

�̂�(𝛥) ≔
1

𝑛−1
 ∑ (𝑥𝑖

(𝛥)
 − �̅�(𝛥))

2
𝑛
𝑖=1 =

1

𝑇 𝛥⁄ −1
 ∑ (𝑥𝑖

(𝛥)
 − �̅�(𝛥))

2
𝑇 𝛥⁄
𝑖=1    

This is biased (except for white noise) where the bias correction coefficient η is estimated as follows 
(Koutsoyiannis, 2011, 2013b, 2015): 

E [�̂�(𝛥) ] = 𝜂(𝛥, 𝛵)𝛾(𝛥) 

𝜂(𝛥, 𝛵) =
1−𝛾(𝑇) 𝛾(𝛥)⁄

1−𝛥 𝑇⁄
=

1−(𝛥 𝛵⁄ )2𝛤(𝛵) 𝛤(𝛥)⁄

1−𝛥 𝑇⁄
   

Important note: Direct estimation of the variance 𝛾(𝛥) (even more so, γ0) is not possible merely from the 
data: we should assume a stochastic model which evidently influences the estimation of 𝛾(𝛥).  
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Steps for the calculation of the coefficients of the SMA technique 
1. A model is assumed in terms of its climacogram γ(Δ) or Γ(Δ) = γ(Δ) Δ2. 
2. The model is fitted by minimizing the error (e.g. MSE) between the empirical climacogram 

�̂�(𝛥) and the theoretical expectation E [�̂�(𝛥) ], as the latter is determined in the previous page. 

3. The autocovariance function at scale Δ is determined from: 

𝑐𝑗
(𝛥)

=
1

2
 
δ𝛥

2 𝛤(𝑗𝛥)

𝛥2 =
1

𝛥2  (
𝛤((𝑗+1)𝛥)+𝛤((𝑗−1)𝛥)

2
− 𝛤(𝑗𝛥))  

4. The power spectrum of the discrete-time process is calculated from the Fourier transform: 

𝑠d
(𝛥)(𝜔) = 2𝑐0

(𝛥)
+ 4 ∑ 𝑐𝑗

(𝛥)∞
𝑗=1 cos(2π𝜔𝑗)  

5. The Fourier transform of the al series is calculated from: 

𝑠d
𝑎(𝜔) = √2𝑠d

(𝛥)(𝜔) 

6. The coefficients al are calculated from the inverse Fourier transform: 

𝑎𝑙 = ∫ 𝑠d
𝑎(𝜔) cos(2π𝜔𝑙) d𝜔

1 2⁄

0
  



  D. Koutsoyiannis,  Parsimonious entropy-based stochastic modelling   12 

Dealing with truncation errors  
The use of a finite number q of coefficients al in in the SMA technique (Koutsoyiannis, 2010) introduces a 
truncation error. To deal with this, the following methods have been proposed (Koutsoyiannis, 2015).  

Method 1 (best): Replace 𝑠d
𝑎(𝜔) with 𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞)) in the previous equation and calculate 
coefficients 𝑎𝑙

′ as 

 𝑎𝑙
′ = ∫ 𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞)) cos(2π𝜔𝑙) d𝜔
1 2⁄

0
  

Then calculate the constant 

𝑎′′ = √𝛾(𝛥)−Σ𝛼′2

2𝑞+1
+ (

Σ𝛼′

2𝑞+1
)

2

 −
Σ𝑎′

2𝑞+1
  

where Σ𝛼′≔𝑎0
′ + 2(𝑎1

′ + ⋯ + 𝑎𝑞
′ ) and Σ𝛼′2≔𝑎0

′2 + 2(𝑎1
′2 + ⋯ + 𝑎𝑞

′2). The final coefficients al to be applied 
for SMA are 

𝑎𝑙 =  𝑎𝑙
′ +  𝑎   ′′ 

Method 2 (easier): As Method 1 but without replacing 𝑠d
𝑎(𝜔) with 𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞)). 

Method 3 (good when, due to numerical imperfections, it happens that 𝛾(𝛥) − Σ𝛼′2
< 0): As Method 2 but 

with proportional adjustment, i.e.,  

𝑎𝑙 =  𝑎𝑙
′ √�̌�0/Σ𝛼′2 
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Appendix: Definition and importance of entropy 
Historically, entropy was introduced in thermodynamics but later it was given a rigorous definition within 
probability theory (owing to Boltzmann, Gibbs and Shannon). Thermodynamic and probabilistic entropy 
are essentially the same thing (Koutsoyiannis, 2013b, 2014a; but others have different opinion). 
Entropy is a dimensionless measure of uncertainty defined as follows: 

For a discrete random variable z with probability mass function Pj ≔ P{z = zj} 

Φ[z] := E[–ln P(z)] = – ∑ P
j
ln P

j

w
j = 1  

For a continuous random variable z with probability density function f(z):  

Φ[z] := E [– ln
f(z)

h(z)
]  = – ∫ ln

f(z)

h(z)
f(z)dz

∞

-∞
 

where h(z) is the density of a background measure (usually h(z) = 1[z–1]). 

Entropy acquires its importance from the principle of maximum entropy (Jaynes, 1957), which postulates 
that the entropy of a random variable should be at maximum, under some conditions, formulated as 
constraints, which incorporate the information that is given about this variable.  

Its physical counterpart, the tendency of entropy to become maximal (2nd Law of thermodynamics) is the 
driving force of natural change. 
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Appendix (contd.): Entropy production in stochastic processes 
In a stochastic process the change of uncertainty in time can be quantified by the entropy production, i.e. 
the time derivative (Koutsoyiannis, 2011): 

Φ΄[X(t)] := dΦ[X(t)]/dt 

A more convenient (and dimensionless) measure is the entropy production (i.e. the derivative) in 
logarithmic time (EPLT): 

φ(t) ≡ φ[X(t)] := Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) 

For a Gaussian process, the entropy depends on its variance Γ(t) only and is given as (Papoulis, 1991): 

Φ[X(t)] = (1/2) ln(2πe Γ(t)) 

The EPLT of a Gaussian process is thus easily shown to be: 

φ(t) = Γ΄(t) t / 2Γ(t) = 1 + ½ γ#(t) 

When the past and the present are observed, instead of the unconditional variance Γ(t) we should use a 
variance ΓC(t) conditional on the known past and present. This turns out to be:  

ΓC(t) ≈ 2Γ(t) – Γ(2t)/2 

Extremization of EPLT for asymptotic times (t → 0 and ∞) with relevant constraints results in Markov, HK 
or HHK process (Koutsoyiannis, 2011, 2014a, b, 2015; for other uses of the principle of maximum entropy 
for parsimonious stochastic modelling see Koutsoyiannis et al. 2008).  
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