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Return period

e First introduced by Fuller (1914) who pioneered statistical flood
frequency analysis in USA: it quantifies hydrologic events rareness
(e.g. floods, draughts, etc.)

e Hypotheses commonly assumed in hydrology as necessary conditions
for conventional frequency analysis

1. Events arise from a stationary distribution
2. Events are independent of one another

* Considerations

* Dependence has been recognized to be the rule rather than the exception
(e.g. Hurst, 1951; Mandelbrot, 1968)

e Non-stationarity may be confused with dependence in time (e.g.
Montanari and Koutsoyiannis, 2014)



Definitions and properties

e Traditional methods define return period as the mean of
Ty, = the mean of the waiting time to the next event
Ty = the mean of the interarrival time between successive events

e Independent events: both definitions lead to the same formula

e Dependent events (Volpi et al., 2015)

1. Mean waiting time: Ty, is affected by the autocorrelation structure of
the process

2. Mean interarrival time: Ty =T whatever the time-dependence
structure of the process Z; is

Volpi, E., A. Fiori, S. Grimaldi, F. Lombardo, and D. Koutsoyiannis (2015), One hundred years of return period:
Strengths and limitations, Water Resour. Res., 51, doi:10.1002/2015WR017820.



1. Mean waiting time, Ty,

Z:, two state Markov-dependent model, 2Mp
Pr(Z, Zev1) = N2(0,1;p)
p, lag-1 correlation coefficient of the parent process
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1. Mean waiting time, Ty,

Z:, two state Markov-dependent model, 2Mp
Pr(Zy, Zi+1) = G2(0,1; 6,)
p, lag-1 correlation coefficient of the parent process
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1. Mean waiting time, Ty,

Z;, fractionally integrated autoregressive process, FAR(1,H)
Pr(Z;,..Ze4o) = NT(OJ 1JPH(T))

ag-l correlation coefficient of the parent process
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Probability of failure

[ Ty = T whatever the time-dependence structure of the process Z; is]

e The probability function Fy(t) is affected by the autocorrelation

structure of the process

* Probability of failure R(L)
R(L) = Pr{N < L} = Fy(L)

* L, design life of the
structure/system

* Probability of failure in T, R(T)
R(T)~ 0.63

 forlarge T (indipendent case)

1.0

0.8+

0.4¢

0.2

0.0

Fy(7) - interarrival time AR(1) process
: Ry (Ty) ~0.63

0.6¢

]
]
]
]
' p =09 (T =10)
]
: — p:O p=0.75
: — =025 0=0.95
]
' p=05 — p=0.99
]
1 10 100 1000

T



1.07

0.8¢

0.6/

Equivalent Return Period (ERP)

« ERP: the period that would lead to the same probability of failure
pertaining to a given return period T in the framework of classical

statistics (independent case)
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Conclusions

 Return period properties are generally ruled by the joint probability
distribution in time and by the autocorrelation function of the parent process

* The return period based on the concept of waiting time, Ty, effectively
accounts for the correlation structure of the hydrological process

e The return period Ty (mean interarrival time) is not affected by the time-
dependence structure of the process

* The corresponding probability of failure, Ry(R7), can be larger than that
pertaining to the independent case

» We propose the Equivalent Return Period (ERP) for the time-dependent
context
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