
2. Problem statement, study area and assumptions 
 Key objective of the study: Establishing flood hazard and flood risk maps to assess the potential adverse 

consequences to human health, the environment, cultural heritage and economic activities, for three 
characteristic return periods (T = 50, 100, 1000 years). 

1. Abstract 
We present a methodological framework for flood risk assessment at the regional scale, developed within the 
implementation of the EU Directive 2007/60 in Greece. This comprises three phases: (a) statistical analysis of 
extreme rainfall data, resulting to spatially-distributed parameters of intensity-duration-frequency (IDF) 
relationships and their confidence intervals, (b) hydrological simulations, using event-based semi-distributed 
rainfall-runoff approaches, and (c) hydraulic simulations, employing the propagation of flood hydrographs 
across the river network and the mapping of inundated areas. The flood risk assessment procedure is employed 
over the River Basin District of Thessaly, Greece, which requires schematization and modelling of hundreds of 
sub-catchments, each one examined for several risk scenarios. This is a challenging task, involving multiple 
computational issues to handle, such as the organization, control and processing of huge amount of hydro-
meteorological and geographical data, the configuration of model inputs and outputs, and the co-operation of 
several software tools. In this context, we have developed supporting applications allowing massive data 
processing and effective model coupling, thus drastically reducing the need for manual interventions and, 
consequently, the time of the study. Within flood risk computations we also account for three major sources of 
uncertainty, in an attempt to provide upper and lower confidence bounds of flood maps, i.e. (a) statistical 
uncertainty of IDF curves, (b) structural uncertainty of hydrological models, due to varying antecedent soil 
moisture conditions, and (c) parameter uncertainty of hydraulic models, with emphasis to roughness 
coefficients. Our investigations indicate that the combined effect of the above uncertainties (which are certainly 
not the unique ones) result to extremely large bounds of potential inundation, thus rising many questions 
about the interpretation and usefulness of current flood risk assessment practices. 

5. Hydrological model assumptions and representation of uncertainties 

3. Overview of flood modelling approach 

Flood risk assessment at the regional scale: Computational challenges and the monster of uncertainty (1) 
EGU General Assembly 2016, Vienna, Austria, 17-22 April 2016 

Session HS7.5/NH1.21: Hydroclimatic extremes under change: advancing the science and implementation in hazard prevention and control  

A. Efstratiadis(1), S.-M. Papalexiou(1), Y. Markonis(1), A. Koukouvinos(1), L. Vasiliades(2), G. Papaioannou(2), and A. Loukas(2) 

(1) Department of Water Resources and Environmental Engineering, National Technical University of Athens, Greece 

(2) Department of Civil Engineering, University of Thessaly, Volos, Greece 

Fig. 1: Study area and flood prone zones, as determined in the context of 
the preliminary flood risk assessment (EU Directive 2007/60, Article 4). 

 The study area has been divided into 22 river basins (Fig. 2, up), each one represented through conceptual semi-distributed modelling 
schemes, comprising sub-basins, reaches and junctions. 

 Two levels of analysis were employed: 

• Hydrological analysis across river basins (divided into 351 sub-basins, in total), using the HEC-HMS software; 

• Hydraulic analysis along selected reaches, specifically those crossing flood prone zones (also termed Areas of Potential Flood 
Risk, APFR), using alternative numerical schemes and associated modelling tools. 

 Input of the hydrological simulation of each sub-basin was the synthetic hyetograph of each return period of interest (using the 
alternative blocks method, for T = 50 and 100 years, and the worst profile method, for T = 1000 years), while input for the hydraulic 
simulation of each reach of interest was the simulated hydrograph of the corresponding upstream junction. 

 The method uses as overall input intensity-duration-frequency (IDF) relationships, referred to the sub-basin scale, which have been 
estimated through statistical analysis of the observed extreme rainfall data across the broader study area. 

 Extreme rainfall records of at least 15 years length over years 1950-2012 were collected from 71 stations, well-distributed over 
Thessaly (Fig. 2, down), which comprise two types of data: 

• Annual series of maximum intensities at 15 recording stations (pluviographs), most of which of 0.5 h time resolution, that were 
available for durations 0.5, 1, 2, 6, 12, 24 and 48 h; 

• Annual series of maximum daily and two-day rainfall depths for the above 15 stations as well as 55 non-recording rain gauges. 

 Raw data has been subject to several empirical, graphical and statistical tests and associated processing, in order to locate and 
remove erroneous or suspicious values associated with random as well as systematic errors. 

 At each station we assigned an IDF expression proposed by Koutsoyiannis et al. (1998), representing the average rainfall intensity i 
over a timescale (also referred to as duration) d, for a given return period T as the ratio of a Generalized Pareto distribution for rainfall 
intensity over some threshold at any timescale (Koutsoyiannis, 2004) to a duration function, i.e.:  

i(d, T) = λ΄ (Τκ – ψ΄) / (1  + d/θ)η 

     where λ΄, ψ΄, κ, θ and η are parameters that were estimated using a stepwise approach, which is briefly described in section 4. 

 The IDFs have been parameterized over Thessaly (Fig. 2, down, and Fig. 3), thus allowing the determination of spatially-distributed 
hyetographs (different rainfall inputs were assigned to each sub-basin). 

 Study area: Water District of Thessaly, Greece, with 
emphasis to flood prone zones, spanning over 4 200 
out of 13 500 km2 of the total area (Fig. 1). 

 Modelling framework: Event-based deterministic 
approach, comprising three modelling components: 
(a) synthetic storm generator; (b) hydrological 
simulation model; and (c) hydraulic simulation model. 

 Key assumption: Flood risk is determined in terms of 
return period of input rainfall. 

 Representation of uncertainties: Scenario-based 
approach, considering specific sources of uncertainty 
associated with the three modelling components. 

 Final outcome: Flood risk maps (three for each return 
period), corresponding to the “average” hydrological 
scenario and its uncertainty bounds (upper, lower). 

4. IDF parameters and confidence intervals estimation 

Fig. 2: Discretization of Thessaly into river basins 
(upper map), and formulation of climatic zones 
according to shape parameter k (lower map). 

 Parameters θ and η of the duration function were estimated by minimizing the Kruskal-Wallis statistic 
against the compound (unified) sample of finely-resolved data from the 15 recording stations. The optimal 
values were θ = 0.042 h and η = 0.639, which are considered constant over the study area. 

 At each of the 71 stations, the parameter κ (which is actually the 
shape parameter of a GEV-max distribution) has been initially 
estimated on the basis of maximum 24 h data, by employing the 
technique by Papalexiou and Koutsoyiannis (2013), in order to 
adjust the biased estimations provided by the standard L-
moments approach, thus accounting for the statistical uncertainty 
induced due to small samples. This approach prohibits obtaining 
too large shape parameter values, which are due to outliers, or 
negative κ values, which are statistically inconsistent (Fig. 4). 

 Based on their shape parameter value, all stations were grouped 
into three climatic zones (Fig. 2, down), where we assigned 
common values, i.e. κ1 = 0.04 (western zone located in the 
leeward part of Pindus), κ2 = 0.09 (NW and SE areas), and κ3 = 0.20 
(plain areas and areas located in the windward part of Olympus). 

 Point values of scale and location parameters λ΄ and ψ΄, 
respectively, were estimated by employing the L-moments 
method to the compound sample of each station assigned to a 
specific climatic zone, considering the given values of θ, η and κ. 

 We generated empirical 80% confidence intervals of point rainfall 
estimations for T = 50, 100 and 1000 years, by employing Monte 
Carlo simulations against scale and location parameters λ΄ and 
ψ΄ (wider ranges are obtained as the return period increases). 

Fig. 4: Fitting of GEV distribution to daily rainfall 
maxima of two stations, considering biased and 

unbiased estimations of shape parameter κ. 

Fig. 3: Interpolation maps of spatially distributed scale 
and location parameters λ΄ (up) and ψ΄ (down). 

 We used the SCS-CN method to estimate the effective rainfall at the sub-
basin scale, considering three hydrological scenarios per return period. 

 Scenarios were determined by combining three (i.e., dry, average, wet) 
antecedent soil moisture conditions (AMC), resulting to different CN 
values, with rainfall intensities provided by the IDF relationship and its 
80% confidence limits, which are measure of rainfall uncertainty. 

 The 20% lower rainfall estimation limit was assigned to CN1 and the 80% 
upper to CN3, thus representing the joint uncertainty associated with 
rainfall parameters λ΄ and ψ΄, and the key hydrological parameter, CN, 
which is actually a random variable (Efstratiadis et al., 2014). 

 Inflows to the river network are the hydrographs generated across the 
river basin, which are estimated by propagating the effective rainfall by 
each sub-basin to its outlet junction, via the unit hydrograph theory.  

 We applied the dimensionless synthetic unit hydrograph (SUH) by SCS, 
that uses as sole input the time of concentration, tc, of each sub-basin.  

 In order to account for the dependence of flow velocity to discharge, tc 
was considered decreasing function of rainfall, using the empirical rule: 
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Fig. 5: Adjustment of unit hydrograph for 
different return periods (up) and different 
CN values, associated with average and 
80% confidence limits of rainfall (down). 

where tc is estimated by the Giandotti formula, assumed representative 
for flood events up to T = 5 years, i(5) is the 5-year rainfall intensity, and 
i(T) is the intensity corresponding to the return period of interest. 

tc(Τ) = tc i(5) / i(Τ) 

 The changing tc introduces further nonlinearity to rainfall-runoff processes, 
and provides more disadvantageous SUHs, which become more narrow as 
the rainfall associated with T and its uncertainty bounds increases (Fig. 5). 



6. Semi-distributed hydrological simulation of Xerias river basin 7. Hydraulic simulation of lower 
course of Xerias river basin 
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 The methodology is demonstrated to the case of Xerias 
river basin of (116.8 km2), which originates from Pelion 
and drains the southern part of the City of Volos, often 
causing severe floods (Fig. 6). 

 Within the semi-distributed configuration employed in 
the HEC-HMS environment (Fig. 7), the basin is divided 
into 10 sub-basins that exhibit significant heterogeneity, 
since their CN2 values (corresponding to AMC-II 
conditions) range from 50 to 82, while their 24-h rainfall 
depths for T = 100 years range from 198 to 253 mm. 

 The river network is represented by means of 7 junctions 
and 6 reaches, with average slopes ranging from 5.0% 
(upper course) to 0.3% (lower course). 

 In order to provide realistic estimations of the timing of 
hydrograph arrivals across the river network, which are 
inputs to the hydraulic simulation model, we employed 
simplified hydrological routing approaches, particularly 
the lag routing method, for relatively steep slopes (>1%), 
and the Muskingum method, for milder slopes. 

 The travel time along each reach j, which is parameter of 
both routing methods, was computed as the ratio of the 
channel length Lj to a characteristic velocity uj, given by: 

uj = k sj
1/2 

Fig. 6: Elevation map of Xerias river basin and geographical 
data (sub-basins, junctions, reaches). 

Fig. 7: Schematic representation of modeling components 
of Xerias river basin in the HEC-HMS environment. 

Fig. 8: Change of the time of concentration of Xerias basin 
against different return periods and hydrological scenarios, 

expressed in terms of 24-h rainfall intensity. 

where sj is the average slope of the reach and k is a global 
parameter of the river basin. 

 For each return period and each AMC scenario, parameter 
k was adjusted such as the travel time across the longest 
flow path (i.e., from the most upstream sub-basin to the 
outlet junction) equals the varying time of concentration 
of the river basin; the latter ranges from 5.1 h for T =5 years 
(reference value, provided via the Giandotti formula) to 2.6 
h, which corresponds to the upper 80% confidence limit of 
the 24-h rainfall over the basin for T = 1000 years (Fig. 8). 

 Synoptic results at the basin scale for the 3×3 = 9 scenarios, 
highlighting the astonishing uncertainty associated with 
rainfall-runoff modelling, are given in the following table. 

Return 
period 
(years) 

Lower rainfall 
scenario & dry AMC 

(CN1) 

Normal rainfall 
scenario & average 

AMC (CN2) 

Upper rainfall 
scenario & wet 

AMC (CN3) 

Total rainfall depth (mm) 

T = 50 162.6 189.3 213.1 
T = 100 177.9 215.5 251.7 
T = 1000 222.9 315.2 431.3 

  Total flood depth (mm) 

T = 50 20.7 79.7 146.9 
T = 100 26.3 99.4 182.9 
T = 1000 45.9 181.0 355.8 

  Runoff coefficient of flood event 

T = 50 0.127 0.421 0.689 
T = 100 0.148 0.461 0.727 
T = 1000 0.206 0.574 0.825 

  Peak discharge (m3/s) 

T = 50 81.8 414.2 820.4 
T = 100 108.4 543.1 1063.6 
T = 1000 357.4 1265.9 2287.9 

  Flood runoff volume (hm3) 

T = 50 3.859 10.744 18.602 
T = 100 4.663 13.199 22.958 
T = 1000 7.479 23.270 43.681 
 

 The model domain extends downstream of 
junction J4 and involves three reaches (R42, 
R32, R21), crossing urban areas of Volos. 

 Historical flood inundation data was used for 
validation of the methodology and evaluation 
of alternative models, configurations and 
assumptions (Papaioannou et al., 2015, 2016). 

 We used the HEC-RAS 2D model with:  

• flexible mesh size (average 14 m); 

• 2D diffusion wave solution; 

• computation interval 2.0 s. 

 The input DEM was created by employing 
aerial imagery techniques with 5 m cell size, 
while buildings over urban areas were 
represented via the elevation rise method. 

8. Flood engineers vs. uncertainty: is it possible to beat the monster? 

 Flood mitigation works have been merged with DEM, and the rest technical infrastructures (bridges, etc.) 
have been processed through specific modules that are available in the HEC-RAS platform. 

 Inputs of hydraulic modeling were hydrographs provided by “average” hydrological simulation scenarios, by 
assigning “average” roughness coefficients that were estimated according to CORINE 2000 land use classes. 

 For all return periods, apart from the hydrographs provided by the lower and upper scenarios, we also 
perturbed the roughness values by -50% and +50%, respectively, to obtain overall uncertainty bounds of 
inundated areas (Fig. 9) and associated hydraulic quantities, i.e. water depths and velocities (Fig. 10). 

Fig. 9: Flood extent for all return periods of interest (T = 50, 100 & 1000 years), 
by employing the “average” hydrological scenario with “average” roughness 
coefficients (left), and overall uncertainty bounds of flood extent for T = 100 
years, considering the most favorable and unfavorable combinations of input 
rainfall, antecedent soil moisture conditions and roughness coefficients (right).  

Fig. 10: Simulated water depths (up) and velocities (down) considering the combined scenarios for T = 100 years; in the middle maps are 
shown the average scenarios, in the left maps the lower bound scenarios, and in the right maps the upper bound scenarios. 
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 In the context of flood simulations, we attempted quantifying three major sources of uncertainty: 

• Statistical uncertainty associated with two (out of five) parameters of IDF relationships (i.e., scale and 
location parameters), originating from small samples of observed extreme rainfall data; 

• Uncertainty associated with initial soil moisture conditions of the hydrological model, resulting to a 
wide range of the key input parameter of the SCS-CN method, i.e. the potential maximum retention; 

• Parametric uncertainty associated with the Manning’s roughness coefficient, which is typical input of 
hydraulic and hydrodynamic simulation models. 

 Results are rather disappointing, since the uncertainty bounds of all major flood quantities (peak flows, 
flood volumes, inundated areas, etc.) strongly overlap the risk expressed in terms of return period of 
rainfall, while for large return periods, the lower and upper estimations may differ one order of magnitude. 

 There are numerous additional sources of uncertainty that have been ignored in this study, involving the 
rest three IDF parameters (particularly the shape parameter κ, which is very sensitive), the spatiotemporal 
distribution of the design rainfall, hydrological parameters such as the time of concentration, the initial 
abstraction, the time to peak and base time of the SUH, as well as several assumptions associated with the 
geometrical properties and the numerical scheme of hydraulic simulation (cf. Dimitriadis et al., 2016). 

 In order to beat the monster, a key step is recognizing that uncertainty is intrinsic, and the unique means to 
reduce it is the use of data, which may ensure better estimations of model parameters through calibration. 


