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Part 1: On names and definitions 
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Schools on names and definitions  
The poetic school 

What’s in a name? That which we call a rose, By any other name would smell as 
sweet. 
—William Shakespeare, “Romeo and Juliet” (Act 2, scene 2) 
 

The philosophico-epistemic school 

Ἀρχή σοφίας ὀνομάτων ἐπίσκεψις (The beginning of wisdom is the visiting 
(inspection) of names) 
―Attributed to Antisthenes of Athens, founder of Cynic philosophy 

Ἀρχὴ παιδεύσεως ἡ τῶν ὀνομάτων ἐπίσκεψις” (The beginning of education is the 
inspection of names)  
―Attributed to Socrates by Epictetus, Discourses, Ι.17,12, 

The beginning of wisdom is to call things by their proper name. 
―Chinese proverb paraphrasing Confucius’s quote “If names be not correct, 
language is not in accordance with the truth of things.” 



  D. Koutsoyiannis & P. Dimitriadis,  From time series to stochastics   3 

On names and definitions (contd.) 
The philosophico-epistemic school (contd.) 

When I name an object with a word, I thereby assert its existence.” 
—Andrei Bely, symbolist poet and former mathematics student of Dmitri 
Egorov, in his essay “The Magic of Words” 

“Nommer, c’est avoir individu” (to name is to have individuality). 
—Nikolai Luzin, leader of the Moscow School of Mathematics (also student of 
Dmitri Egorov and teacher of Aleksandr Khinchin and Andrey Kolmogorov) 

Each definition is a piece of secret ripped from Nature by the human spirit. I insist 
on this: any complicated thing, being illumined by definitions, being laid out in 
them, being broken up into pieces, will be separated into pieces completely 
transparent even to a child, excluding foggy and dark parts that our intuition 
whispers to us while acting, separating into logical pieces, then only can we move 
further, towards new successes due to definitions . . . 
—Nikolai Luzin 
 
Note: The last three quotes are found in a must-read book by Graham and Kantor (2009): 

“Naming infinity: A true story of religious mysticism and mathematical creativity” 
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Giants of the Moscow School of Mathematics 
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Definition of a time series (Wikipedia) 

 ?????? 
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Definition of a stochastic process (Wikipedia) 

 

?????? 
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Definition of a stationary process (Wikipedia) 

 
…. 

 
It seems that, by poetic licence, the terms stochastic 
process and time series are used interchangeably. 

?!?!?! 
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Related definitions in the celebrated book by Kendall and 
Stuart (1966) 
p. 342: Observations on a phenomenon which is moving through time generate 

an ordered set known as a time series. The values assumed by a variable 
at time t may or may not embody an element of random variation, but in 
the majority of cases with which we shall be concerned some such 
element is present, if only as an error of observation. 

p. 346: … consider an infinity of values x(t). It is customary and convenient 
(though not, perhaps, very exact) to speak of continuous time series, 
when we mean that t is continuous… 

p. 404: In the theory of stochastic processes, of which stationary time-series are a 
particular case, …  

 A definition of a stochastic process is missing. 

 A time series is recognized as a series of observations, i.e. numbers which 
could be a series of values not necessarily associated with a stochastic 
process.  

 However, occasionally the concept of a time series looks to be treated as 
identical to (or subcase of) that of a stochastic process. 
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Consistent definitions by the Moscow School of Mathematics 

 Kolmogorov (1931) introduced the term stochastic process although he cited 
Bachelier (1900) as having already used stochastic processes (without using 
that name). 

 Kolmogorov (1931) used the term stationary to describe a probability density 
function that is unchanged in time.  

 Kolmogorov (1933) introduced the definition of probability (based on the 
measure theory) in an axiomatic manner based on three fundamental 
concepts (a triplet called probability space) and four axioms (non-negativity: 
normalization, additivity and continuity at zero). 

 Khinchin (1934) gave a more formal definition of a stochastic process and 
stationarity.  

 Kolmogorov (1938) gave a concise presentation of the concepts: 

[…] a stationary stochastic process in the sense of Khinchin […] is a set of 
random variables xt depending on the parameter t, −∞ < t < +∞, such that 
the distributions of the systems  

(xt1, xt2, …, xtn) and (xt1 + τ, xt2 + τ, …, xtn + τ) (1) 

coincide for any n, t1, t2, … ,tn, and τ. 
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Time series models 
 Most of the popular knowledge in stochastics originates from so-called time-

series books.  
 These have given focus on stylized families of models like AR(p), ARMA(p,q), 

ARIMA(p,d,q), and so on,  

o introduced by Whittle (1951),  
o popularized in the book by Box and Jenkins (1971) 
o extended by Hosking (1981; ARFIMA(p,d,q)) 

 With the exception of AR(1) and ARMA(1,1) they have several problems: 

o They are too artificial because, being complicated discrete-time models, they do 
not correspond to a continuous time process, while natural processes typically 
evolve in continuous time.  

o Their stochastic structure is tightly associated with the number of parameters 
and usually they become over-parameterized and thus not parsimonious. 

o Their identification, typically based on the estimation of the autocorrelation 
function from data, usually neglects estimation bias and uncertainly, which in 
stochastic processes (as opposed to purely random processes) are high.  

o They are unnecessary because synthetic series from a process with any 
arbitrary autocorrelation structure can be easily generated otherwise.  
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Concluding remarks of part 1 

 Most books could be classified in the “poetic school”. 
 Nevertheless, there are books on stochastic processes characterized by 

perfect clarity (following the Khinchin-Kolmogorov conventions), of which 
Papoulis (1991; first edition 1965) is worth mentioning.  

 The term time series is ambiguous, sometimes denoting a realization of a 
stochastic process and other times denoting the stochastic process per se. 

 We can use Stochastics as a collective name for probability theory, statistics 
and stochastic processes. 

 Stochastics is much more than numerical calculations. Popular computer 
programs have made calculations easy and fast, but numerical results may 
mean nothing, because biases and uncertainties are often tremendous 
(Lombardo et al., 2014). 

 We should be aware that  
      real world processes ≠ models. 

 In real world processes we should avoid false dichotomies such as 
       deterministic vs. random  

and unjustified distinctions such as  
signal vs. noise. 
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Part 2: Important issues in stochastics 
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Fundamental concepts of stochastic processes  
 Fundamental to stochastics is the concept of a random variable which should 

be distinguished from its realizations.  

 A random variable is not a regular variable, while “random” means uncertain, 
unpredictable, unknown.  

 While a regular variable takes on one value at a time, a random variable is a 
more abstract mathematical object that takes on all its possible values at once, 
but not necessarily in a uniform manner; therefore a distribution function 
F(x) should always be associated with a random variable.  

 A random variable needs a special notation to distinguish it from a regular 
variable x; the best notation devised is the so-called Dutch convention 
(Hemelrijk, 1966), according to which random variables are underlined, i.e. x. 

 A stochastic process is a family of infinitely many random variables indexed by 
a (regular) variable. The index typically represents time and is either a real 
number, t, in a continuous-time stochastic process x(t), or an integer, i, in a 
discrete-time stochastic process xi.  

 Realizations, xi, of a stochastic process, xi or x(t), at a finite set of discrete time 
instances i (or ti) are called time series.  
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Stationarity and ergodicity in stochastic processes 
 Central to the notion of a stochastic process are the concepts of stationarity 

and nonstationarity, two widely misunderstood and misused concepts, whose 
definitions are only possible for (and applies only to) stochastic processes 
(thus, for example, a time series cannot be stationary, nor nonstationary).  

 A process is called (strict-sense) stationary if its statistical properties are 
invariant to a shift of time origin, i.e. the processes x(t) and x(t΄) have the 
same statistics for any t and t΄ (see also Koutsoyiannis and Montanari, 2015).  

 Conversely, a process is nonstationary if some of its statistics are changing 
through time and their change is described as a deterministic function of time. 

 A nonstationary process should be handled theoretically (on the basis of 
deduction) rather than empirically.  

 Another also misused concept is that of ergodicity (see definition in Papoulis, 
1991). If a process is non-ergodic, then its statistics cannot be estimated from 
time series.  

 For most applications, stationarity and ergodicity entail one another. 
 Ironically, numerous studies claiming nonstationarity based on data analyses, 

use stochastic tools that are meaningful only for stationary and ergodic 
processes.  

 Claiming, handling, or detecting nonstationarity needs to be based on 
deduction; doing those merely from data may be difficult, if not impossible. 
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From continuous time to discrete time processes 

  

t0 Δ 2Δ … (i – 1)Δ iΔ

xi := x(iΔ) 
(instantaneous process 
sampled at spacing Δ)

Xi:= 

(cumulative sampled at 
spacing Δ, nonstationary)

X(t) ≔

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

=

= X(iΔ)/Δ – Χ((i– 1)Δ)/Δ

(averaged at time scale Δ)
t0 Δ 2Δ … (i – 1)Δ iΔ

Important 
note: The 
graphs display a 
realization of 
the process 
while the 
notation is for 
the process per 
se. 

Most natural 
processes 
evolve in 
continuous time 
but they are 
observed in 
discrete time, 
instantaneously 
or by averaging 
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Second order properties of a stationary stochastic process 

 Autocovariance function, c(τ) := Cov[x(t), x(t + τ)], where τ is time lag. 

 Power spectrum (spectral density), s(w), where w is frequency (inverse 
time). 

 Structure function (semivariogram or variogram), ℎ(𝜏) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + 𝜏)]. 

 Climacogram, γ(Δ), where Δ denotes time scale, so that γ(Δ) := Var[𝑥𝑖
(𝛥)

].  

 All these properties are transformations of one another, i.e.: 

𝑠(𝑤) = 4 ∫ 𝑐(𝜏) cos(2π𝑤𝜏) d𝜏
∞

0
,      𝑐(𝜏) = ∫ 𝑠(𝑤) cos(2π𝑤𝜏) d𝑤

∞

0
 (2) 

ℎ(𝜏) = 𝑐(0) − 𝑐(𝜏),     𝑐(𝜏) = 𝑐(0) − ℎ(𝜏) (3) 

𝛾(𝛥) = 2 ∫ (1 − 𝜉)𝑐(𝜉𝛥)d𝜉
1

0
,      𝑐(𝜏) =

1

2
 
d2(𝜏2𝛾(𝜏))

d𝜏2   (4) 

 In estimation from data, the climacogram behaves better than all other tools, 
which involve high bias and uncertainty (Dimitriadis and Koutsoyiannis, 2015 
Koutsoyiannis, 2016). The climacogram involves bias too, but this can be 
determined analytically and included in the estimation.  
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Second order properties of discrete time 

 Once the continuous-time properties are determined, the discrete-time ones 
can be calculated. 

 For example, the autocovariance of the averaged process is: 

𝑐𝑗
(𝛥)

= Cov [𝑥𝑖
(𝛥)

, 𝑥𝑖+𝑗
(𝛥)

] =
1

𝛥2  (
𝛤(|𝑗+1|𝛥)+𝛤((|𝑗−1|𝛥)

2
− 𝛤(|𝑗|𝛥))  (5) 

 where Γ(Δ) ≔ Var[X(Δ)] = Δ2γ(Δ). 

 Also, the power spectrum of the averaged process can be calculated from: 

𝑠d
(𝛥)(𝜔) = 2𝑐0

(𝛥)
+ 4 ∑ 𝑐𝑗

(𝛥)∞
𝑗=1 cos(2π𝜔𝑗)  (6) 

where 𝜔 ≔ 𝑤𝛥,  𝑠d
(𝛥)(𝜔) = 𝑠(𝛥)(𝑤)/𝛥 (nondimensionalized frequency and 

spectral density, respectively). 

 More details and additional cases can be found in Koutsoyiannis (2013, 2016). 
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Cautionary notes for model fitting 
 Direct estimation of any statistic of a process (except perhaps for the mean) 

is not possible merely from the data; we always need to assume a model. 
 Any statistical estimator �̂� of a true parameter s is biased either strictly 

(meaning: E [�̂� ] ≠ 𝑠) or loosely (meaning: mode [�̂� ] ≠ 𝑠). 

 Model fitting is necessarily based on discrete-time data and needs to consider 
the effects of (a) discretization and (b) bias. 

 The climacogram provides easy means to analytically estimate from its true 
expression (that in continuous time) both effects. 

 As an example, we consider a process with climacogram 𝛾(𝛥), from which we 
have a time series for an observation period T (multiple of Δ), each one giving 

the averaged process 𝑥𝑖
(𝛥)

at a time step Δ, so that the sample size is n = 𝑇 𝛥⁄ . 

 The standard estimator �̂�(𝛥) of the variance 𝛾(𝛥) of the averaged process is  

�̂�(𝛥) ≔
1

𝑛−1
 ∑ (𝑥𝑖

(𝛥)
− 𝑥1

(𝛵)
)

2
𝑛
𝑖=1 =

1

𝑇 𝛥⁄ −1
 ∑ (𝑥𝑖

(𝛥)
− 𝑥1

(𝛵)
)

2
𝑇 𝛥⁄
𝑖=1   (7) 

 As shown in Koutsoyiannis (2011, 2016) the bias can be calculated from 

E [�̂�(𝛥) ] = 𝜂(𝛥, 𝛵)𝛾(𝛥),    𝜂(𝛥, 𝛵) =
1−𝛾(𝑇) 𝛾(𝛥)⁄

1−𝛥 𝑇⁄
=

1−(𝛥 𝛵⁄ )2𝛤(𝛵) 𝛤(𝛥)⁄

1−𝛥 𝑇⁄
  (8) 
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Entropy and entropy production 

 The Boltzmann-Gibbs-Shannon entropy of a cumulative process X(t) with 
probability density function f(X; t) is a dimensionless quantity defined as:  

 Φ[𝑋(𝑡)] ≔ Ε [– ln
𝑓(𝑋;𝑡)

ℎ(𝑋)
] = − ∫ ln

𝑓(𝑋; 𝑡)

ℎ(𝑋)
𝑓(𝑋;  𝑡) 𝑑𝑋

∞

−∞
  (9) 

where h(Χ) is the density of a background measure (typically Lebesgue).  

 The entropy production in logarithmic time (EPLT) is a dimensionless 
quantity, the derivative of entropy in logarithmic time (Koutsoyiannis, 2011): 

φ(t) ≡ φ[X(t)] ≔ Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (10) 

 For a Gaussian process, the entropy depends on its variance Γ(t) only and is: 

Φ[X(t)] = (1/2) ln(2πe Γ(t)/h2),  φ(t) = Γ΄(t) t / 2Γ(t) (11) 

 When the past (t < 0) and the present (t = 0) are observed, instead of the 
unconditional variance Γ(t) we should use a variance ΓC(t) conditional on the 
past and present:  

ΓC(t) ≈ 2Γ(t) – Γ(2t)/2,    𝜑C(𝑡) =
𝛤C

′(𝑡)𝑡

2𝛤C(𝑡)
≈

(2𝛤′(𝑡)−𝛤′(2𝑡))𝑡

4𝛤(𝑡)−𝛤(2𝑡)
 (12) 
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Resulting processes from maximizing entropy production  

 A Markov process: 

𝑐(𝜏) = 𝜆e−𝜏/𝛼 ,  

𝛾(𝛥) =
2𝜆

𝛥 𝛼⁄
(1 −

1−e−𝛥 𝛼⁄

𝛥 𝛼⁄
)  

(13) 

maximizes entropy production for 
small times but minimizes it for 
large times.  

 A Hurst-Kolmogorov (HK) process:  

𝛾(𝛥) = 𝜆(𝛼/𝛥)2−2𝛨 (14) 

maximizes entropy production for 
large times but minimizes it for 
small times 

 A Hybrid Hurst Kolmogorov process 

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1

𝜅  
(15) 

maximizes entropy production both 
at small and large time scales. 
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Part 3: Simulation of stochastic processes  
(at discrete time) 
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The symmetric moving average scheme 

 The so-called symmetric moving average (SMA) method (Koutsoyiannis 
2000) can directly generate time series with any arbitrary autocorrelation 
function provided that it is mathematically feasible: 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙
∞
𝑙=−∞   (16) 

where aj are coefficients calculated from the autocovariance function and vi is 
white noise averaged in discrete-time.  

 Assuming that we work for the averaged discrete-time process with power 

spectrum 𝑠d
(𝛥)(𝜔), it has been shown (Koutsoyiannis 2000) that the Fourier 

transform 𝑠d
𝑎(𝜔) of the al series of coefficients is related to the power 

spectrum of the discrete time process as  

𝑠d
𝑎(𝜔) = √2𝑠d

(𝛥)(𝜔)  (17) 

 Thus, to calculate al we first determine 𝑠d
𝑎(𝜔) from the power spectrum of the 

process and then we inverse the Fourier transform to estimate all al.  
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Handling of truncation error 

 It is expected that the coefficients al will decrease with increasing l and will be 
negligible beyond some q (l > q), so that we can truncate (16) to read  

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙
𝑞
𝑙=−𝑞   (18) 

 This would introduce some truncation error in the resulting autocovariance 
function. To adjust for this on the variance, we the calculate the al from 

𝑎𝑙 =  𝑎𝑙
′ +  𝑎   ′′ (19) 

where the coefficients 𝑎𝑙
′ are calculated from inversing the Fourier transform 

of either 𝑠d
𝑎(𝜔) or 𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞))(two options; Koutsoyiannis, 2016).  

 The constant 𝑎  ′′ is determined so that the variance is exactly preserved: 

𝛾(𝛥) = ∑ 𝑎|𝑙|
2𝑞

𝑙=−𝑞 = ∑ (𝑎|𝑙|
′   +  𝑎    ′′)

2𝑞
𝑙=−𝑞   (20) 

 Solving for 𝑎  ′′, this yields: 

𝑎′′ = √𝛾(𝛥)−Σ𝛼′2

2𝑞+1
+ (

Σ𝛼′

2𝑞+1
)

2
 −

Σ𝑎′

2𝑞+1
  (21) 

where Σ𝛼′≔∑ 𝑎|𝑙|
′𝑞

𝑙=−𝑞  and Σ𝛼′2≔∑ 𝑎′|𝑙|
2𝑞

𝑙=−𝑞 . 



  D. Koutsoyiannis & P. Dimitriadis,  From time series to stochastics   24 

Handling of moments higher than second 

 In addition to being general for any second order properties (autocovariance 
function), the SMA method can explicitly preserve higher marginal moments.  

 Specifically, to produce a discrete-time process xi with coefficient of skewness 
𝐶s,𝑥 we need to use a white-noise process vi with coefficient of skewness: 

𝐶s,𝑣 =  𝐶s,𝑥

(∑ 𝑎|𝑙|
2𝑞

𝑙=−𝑞 )
3/2

∑ 𝑎|𝑙|
3𝑞

𝑙=−𝑞

  (22) 

 Likewise, to produce a process xi with coefficient of kurtosis 𝐶k,𝑥 the process vi 

should have coefficient of kurtosis: 

𝐶k,𝑣 =  
𝐶k,𝑥(∑ 𝑎|𝑙|

2𝑞
𝑙=−𝑞 )

2
−6 ∑ ∑ 𝑎|𝑙|

2𝑞
𝑘=−𝑞 𝑎|𝑘|

2𝑞
𝑙=−𝑞

∑ 𝑎|𝑙|
4𝑞

𝑙=−𝑞

  (23) 

 See details in Dimitriadis and Koutsoyiannis (2016). 

 Note that the method can also be used in multivariate processes, represented 
by vectors (Koutsoyiannis, 2000). 
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Simple marginal distributions for generation of non-
Gaussian white noise  

 Four-parameter distributions are needed to preserve skewness and kurtosis. 

 For light-tailed distributions of v we can use an extended and standardized 
version of the Kumaraswamy distribution (ESK) with distribution function: 

𝐹(𝑣) = 1 − (1 − (
𝑣−𝑐

𝑑
)

𝑎
)

𝑏

  (24) 

 For heavy-tailed distributions we can use the Normal-Inverse Gaussian (NIG) 
with probability density: 

𝑓(𝑣) =
√𝑎2+𝑏2e𝑏+𝑎(𝑣−𝑐)/𝑑

π𝑑√1+((𝑣−𝑐)/𝑑)2
K1(√𝑎2 + 𝑏2√1 + ((𝑣 − 𝑐)/𝑑)2)  (25) 

with K1 denoting a modified Bessel function of the third kind. Even though its 
mathematical form is involved, its moments are calculated analytically and 
the generation from the distribution is easy. 

 In both cases v is the value of the random variable, a and b are dimensionless 
shape parameters, c is location parameter and d scale parameter; c and d have 
same dimensions as v (see details in Dimitriadis and Koutsoyiannis, 2016). 
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Range of skewness and kurtosis covered by the two 
distributions  

 

Isopleths of parameters 𝑎 or 𝑏 of the ESK and the NIG distribution for the indicated 
skewness and kurtosis. 
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Performance in the generation of non-Gaussian white noise 

 
Four two-parameter probability density functions, their approximations by maximum 
entropy distributions using four moments, i.e., 𝑓(𝑥) = 𝜆0exp (− ∑ (𝑥/𝜆𝑖)

𝑖)4
𝑖=1 , and by the 

empirical density from a single synthetic time series with n = 105. 
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Part 4: Applications 
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Application 1: Μicroscale (turbulence) 

 Estimation of high moments involves large uncertainty and cannot be reliable 
in the typically short time series of geophysical processes.  

 On the contrary, high moments can be reliably estimated from large samples 
recorded in laboratory experiments at sampling intervals of μs.  

 Here we use grid-turbulence data provided by the Johns Hopkins University 
(http://www.me.jhu.edu/meneveau/datasets/datamap.html). 

 This dataset consists of 40 time series with n = 36×106 data points of 
longitudinal wind velocity along the flow direction, all measured at a sampling 
time interval of 25 μs by X-wire probes placed downstream of the grid (Kang 
et al., 2003). 

 By standardizing all series we formed a sample of 40 × 36 ×106 = 1.44 ×109 
values to estimate the marginal distribution, and an ensemble of 40 series, 
each with 36 ×106 values to estimate the dependence structure through the 
climacogram. 

 We also performed simulation using the SMA framework with n =106 values.  
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Marginal distribution 

 The time series are nearly-Gaussian but not exactly Gaussian (skewness = 
0.23; kurtosis = 3.08). This divergence of fully developed turbulent processes 
from normality has been also derived theoretically (Wilczek et al., 2011).  

 Interestingly, these small differences from normality result in highly non-
normal distribution of the white noise of the SMA model (skewness = 3.26; 
kurtosis = 12.30!) 

  

Probability density 
function of the mean 
standardized time series 
of turbulent velocity 
compared to that of a 
single simulation using 
the SMA scheme 
preserving the first four 
moments; the standard 
normal distribution 
N(0,1) is also shown. 
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Stochastic dependence of the turbulent velocity process 
Sum of two equally weighted processes, an HHK and a Markov: 

𝛾(𝛥) =
𝜆

2
(1 + (𝛥 𝛼1⁄ )2𝜅)

𝐻−1
𝜅 +

𝜆

𝛥 𝛼2⁄
(1 −

1 − e−𝛥 𝛼⁄ 2

𝛥 𝛼2⁄
)  (26) 

 

 
 

Climacogram of the 
turbulent velocity 
process (observed 
is the average from 
the 40 time series); 
the five parameters 
of the model are 
estimated as:  
𝜆 = 1.017, 𝛼1 = 10 
ms, 𝛼2 = 15 ms, 
𝜅 = 0.4, 𝐻 = 0.85. 
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Kurtosis of velocity increments 
The change of kurtosis of the velocity increments (differences) with increased 
time distance, τ (lag), is related to the intermittent behaviour of turbulence 
(Batchelor and Townsend, 1949). Therefore it is important to preserve this 
variation.  

 

Empirical and 
simulated kurtosis vs. 
lag. 
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Application 2: Medium scale (wind) 

 We can estimate high moments in geophysical processes accurately only after 
analyzing thousands of short time series. 

 Here we use hourly wind speed data by NOAA (www.ncdc.noaa.gov). 

 This dataset consists of 15 000 time series around the globe with 10 min 
average measurements every one hour. After several quality and quantity 
tests we ended up with approximately 3500 stations. 

 By standardizing all series we formed a sample of ~109 values to estimate the 
marginal distribution, and an 
ensemble of 3500 series, each 
with 3 × 105 values on the 
average, to estimate the 
dependence structure through 
the climacogram. 

 We also performed multiple 
simulations using the SMA 
framework with n =3 ×105 
values.  
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Marginal distribution 

 

Wind speed distribution (from ~109 
values):  

𝐹(𝑣) = 1 − (1 + (𝑣 𝛼𝑣s⁄ )2)−𝛽/2 (27) 

where α = 2 and β = 3. 

 

Sample skewness and kurtosis coefficients 
of 1000 hourly wind stations as well as of 
the corresponding white noise process of 
the SMA model. 
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Stochastic dependence of the wind process 

 

Climacogram of the wind speed process (observed is the average from the 3500 time 
series); the four parameters of the model are estimated as: α = 1 h, κ = 0.5, λ = 1.3 and 
H = 0.82.  
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Application 3: Μegascale (temperature) 

 

1
 m

o
n
th

2
8
 m

o
n
th

s

0.01

0.1

1

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

V
a
ri
a
n
c
e
 r

a
ti
o
, 

γ
(Δ

) 
/ 
γ
(1

 m
o
n
th

)

Scale, Δ (years)

NSSTC CRU

Lohle Moberg

Taylor GRIP

EPICA Huybers

Zachos Veizer

The actual climatic  
variability at the scale of  
100 million years equals  
that of  28 months  of a  
purely  random climate! 

Common 
perception:  Purely  random change 

Orbital 
forcing, 
10-100 
kyears 

The HK behaviour 
extends over all 
time scales 

Climacograms constructed from the indicated instrumental and proxy 
data series (Markonis and Koutsoyiannis, 2013)  
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Epilogue 

 Natural processes evolve in continuous time but can be observed in discrete 
time. 

 Observations cannot be handled unless we construct a model of the process. 
 Stochastic processes in continuous time offer a strong basis for modelling 

and interpretation of natural behaviours. 
 Calculating values of sample statistics without considering their statistical 

properties (bias and uncertainty) can yield misleading results.  
 A general methodology for construction of synthetic time series is possible 

provided that we have a good understanding of stochastics. 
 Thanks to Andrey Kolmogorov, we have a well-founded mathematical theory 

of stochastics. 
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