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Tὸ ἀντίξουν συμφέρον καὶ ἐκ τῶν διαφερόντων καλλίστην ἁρμονίαν καὶ πάντα 
κατ' ἔριν γίνεσθαι  

Opposition unites, the finest harmony springs from difference, and all comes 
about by strife 

Heraclitus; ca. 540-480 BC 

Part 1: On nonlinear dynamics and fractals 



  D. Koutsoyiannis et al.,  From fractals to stochastics   2 

30 Years of Nonlinear Dynamics? 

 
 

 

http://books.google.com/ngrams/ 
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30 Years of Nonlinear Dynamics? 
 

 

  

(von Kármán, 1940) 

  

 

 

Kármán Vortex Street caused by wind flowing around the 
Juan Fernández Islands off the Chilean coast (Wikipedia) 
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Why do we not prefer fractals (over stochastics)? 

 A lot of ambiguity 

 Confusion between local and global properties of processes 

 Use of the abstract mathematical processes as if they could apply 
to natural processes  

 Hasty use of stochastic concepts 

 Misspecification / misinterpretation of scaling laws 

 Neglect of statistical bias and variation  

 Confusion between different scaling behaviours 

 

Careful use of stochastics can deal with all problems involving fractals of  
non-deterministic type in a more rigorous manner and more effectively. 
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Ambiguity 
The terms fractal and multifractal remain without an agreed mathematical 
definition. Let me argue that this situation ought not create concern and steal 
time from useful work. Entire fields of mathematics thrive for centuries with a 
clear but evolving self-image, and nothing resembling a definition.  

(Mandelbrot, 1999, p. 14; Note: Mandelbrot coined the term fractal in 1975). 

[Mandelbrot, 1982] observes that "Ordinary words used in scientific discourse 
combine (a) diverse intuitive meanings, dependent on the user, and (b) formal 
definitions, each of which singles out one special meaning and enshrines it 
mathematically. The terms stationary and ergodic are fortunate in that 
mathematicians agree on them. However, experience indicates that many 
engineers, physicists, and practical statisticians pay lip service to the 
mathematical definition, but hold narrower views." That is, many 
mathematically stationary processes are not intuitively stationary. By and 
large, those processes exemplify wild randomness, a circumstance that provides 
genuine justification for distinguishing a narrower and a wider view of 
stationarity.  

(Mandelbrot, 1999, p.7) 
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Ambiguity (contd.) 
We are done now with explaining the peaceful coexistence of two values of D: 
the dimension D = 1/H = 2 applies to that three-dimensional curve, as well as to 
the trail obtained by projecting on the plane (X, Y). However, the projections of 
the three dimensional curve on the planes (t,X) and (t,Y) are of dimension  
D = 2 –H = 1.5.  
(Mandelbrot, 1999, p. 45) 

Definition. The term multifractal denotes the most general category of multibox 
cartoons. It allows the generator to combine axial boxes and diagonal boxes with 
non-identical values of Hi from Hmin > 0 to Hmax < ∞. 
(Mandelbrot, 1999, p. 45) 

Contrast 

Each definition is a piece of secret ripped from Nature by the human spirit. I insist 
on this: any complicated thing, being illumined by definitions, being laid out in them, 
being broken up into pieces, will be separated into pieces completely transparent even to 
a child, excluding foggy and dark parts that our intuition whispers to us while 
acting, separating into logical pieces, then only can we move further, towards new 
successes due to definitions . . . 

(Nikolai Luzin; from Graham and Kantor, 2009)  
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Attempts to remove ambiguity 
There is no “official” consensus on the definition of a fractal. However, what is 
generally agreed on is that the Hausdorff measure and Hausdorff dimension play 
a key role. One possible definition of a fractal is then for example that it is a set 
A ⊆ Rk whose Hausdorff dimension dimHaus A is not an integer. 
(Beran et al., 2013, p. 178) 

There are many definitions of fractal dimension. The most general and 
mathematically satisfactory one is the Hausdorff dimension DHaus. 
(Veneziano and Langousis, 2010, p. 4)  

However: 
In the context of time series analysis, fractal behaviour is often mentioned 
as synonym for long-range dependence. Though there are strong connections 
between the two notions, they are also in some sense completely different.  
(Beran et al., 2013, p. 178) 

Note: The Hausdorff dimension expresses a local property, as a radius δ for covering 
the set A tends to zero. This is more evident in the so-called box-counting dimension, 
which is an upper bound for DHaus (Beran et al., 2013, p. 181-182) and is defined as 
dimBox 𝐴 = lim𝛿→0 log𝑁𝛿/ log 𝛿 where Nδ is the minimal number of sets Ui needed for 
a δ-cover of A. 
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Confusion between local and global properties of processes 
 Most fractal literature confuses fractal behaviour with long-range dependence.  
 However, Mandelbrot (1999, p.3) referred to the difference of locality and 

globality but in a rather obscure way: 
The importance of the contrast between mildness and wildness is in part due to its 
links with a contrast between locality and globality.  

 Gneiting and Schlather (2004), using a Cauchy type autocovariance function* 
made it clear that the fractal and Hurst properties (long-range dependence) are 
two different things: 
o The fractal parameter determines the local properties of the process 

(as t → 0) 
o The Hurst parameter determines the global properties of the process  

(as t → ∞) 
 These issues were also elaborated in Beran et al. (2013). 
 Koutsoyiannis (2013a,b, 2016) introduced a Cauchy type climacogram which has 

better properties than the Cauchy type autocovariance function, allowing for 
negative autocorrelations (antipersistence) at large time lags while ensuring 
positive autocorrelations at small lags, as demanded for physical consistency.  

                                  
* It was first proposed by Yaglom (1987, p. 365) and also referred to by Wackernagel (1995, p. 219; 1998, 
p. 246), while a similar autocorrelation was used by Koutsoyiannis (2000) for discrete time processes. 
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Use of the abstract mathematical objects as if they could 
apply to natural processes  

 In mathematical processes the local and global properties can be the same 
(e.g. the Hurst-Kolmogorov process, described by a single scaling exponent 
applicable at all scales).  

 Scale independence or absence of characteristic scales in a process or a 
phenomenon is mathematically attractive.  

 However, in Nature these cannot be the case; for example: 
o If the set of points along a river’s bed had fractal dimension > 1 (meaning 

that number of sets of its δ-cover would be a power law of δ with exponent > 
1 for arbitrary low δ) then the geometrical length of the river would be 
infinite and any particle of water would take infinite time to reach the sea. 

o If a Hurst-Kolmogorov process were applicable for arbitrary low time scales, 
it would entail infinite variance of the instantaneous, continuous-time 
process which would imply infinite energy (infrared catastrophe). 

o If an antipersistent Hurst-Kolmogorov process (with Hurst exponent H < 
0.5) were applicable for arbitrary low time scales, it would entail negative 
autocovariance (anti-correlation) for arbitrary small lags which is absurd 
(in a natural process the autocorrelation should tend to 1 as lag tends to 0). 
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Hasty use of stochastic concepts 
 Use of formulations and tools of stationary stochastic processes while making 

claims of nonstationarity (e.g. in a nonstationary process, the autocovariance and 
the spectral density are functions of two variables, one being related to “absolute” 
time—see Dechant and Lutz—2015, but they have typically been presented as 
functions of one variable). 

 Use of statistical estimations from data while claiming nonstationarity; however, a 
nonstationary process is nonergodic and thus the estimates are meaningless.  

 A classical example: reporting logarithmic slopes in empirical power spectra 
𝑠# < −1 (e.g. 𝑠# = −1.5, etc.) for small frequencies w (tending to zero). Note that 
the superscript # denotes logarithmic derivative, i.e. 

𝑓#(𝑥) ≔
d(ln𝑓(𝑥))

d(ln𝑥)
=

𝑥𝑓′(𝑥)

𝑓(𝑥)
  (1) 

 A slope 𝑠#(𝑤) < −1 is mathematically and physically possible for large w but 
infeasible for w → 0 (see proof in Appendix). Reported values 𝑠# < −1 for small 
w are invalid and are due to inconsistent estimation algorithms (stemming from 
the fact that the periodogram constructed from empirical autocovariances is too 
rough and the estimation of slopes from this is too uncertain; cf. Koutsoyiannis, 
2013a,b; Koutsoyiannis et al., 2013; Dimitriadis and Koutsoyiannis, 2015).  



  D. Koutsoyiannis et al.,  From fractals to stochastics   11 

Hasty use of stochastic concepts (contd.) 

 It is not difficult to use inappropriate estimators and get inconsistent results, 
as exemplified in the graph of the power spectrum. 

 In the example, 1024 data points have been generated from a stochastic 
process which has the theoretical power spectrum with the indicated varying 
slope (specifically, an HHK process—see below—with parameters κ = 0.5, H = 
0.8, α = λ = 1—see Koutsoyiannis, 2014). 

 The standard empirical power 
spectrum is too rough to recover 
the underlying model and its 
parameters, and even by 
smoothing (here by averaging 
from 8 segments) relies in high 
bias and a misleading constant 
slope of –1.5.  

 The theoretically consistent 
asymptotic slopes (–0.6 and –2) 
can be recovered by other 
methods (CBS—see below).  
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Misspecification / misinterpretation of scaling laws  

 Experiment: A Google search with terms universal multifractal rainfall was 
performed (similar to the experiment in Koutsoyiannis, 2010). 

 The first (highest PageRank) paper was chosen and its first figure is 
reproduced here. 
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Misinterpretation of scaling laws (contd.) 
 In the example illustrated in the graph, a time series with length N =213 = 8192 was 

generated from the Hurst-Kolmogorov process (see below) with Hurst coefficient H = 
0.8 and Gaussian distribution N(1,1). 

 Some scaling laws seam to appear at a range of time scales, which are spurious. One 
could be misled to assume a multifractal behaviour and specify a K(q) function, where 
K(q) is the log-log slope of the raw moment E[(x(Δ))q] vs. the inverse time scale λ = 1/Δ 
for specified q.  

 The truth is that there is no multifractal behaviour here. As shown theoretically by 
Lombardo et al. (2014), (a) there is 
no constant slope (e.g., as λ → 0, or 
Δ → ∞, K(q) = 0); also the slope 
empirically estimated for small Δ 
(large λ) is too low compared to its 
theoretical value. 

 This is a symptom of a more 
general tendency in the fractal 
literature to treat observations 
(time series) deterministically, 
confusing random variables with 
their realizations and ignoring 
statistical bias and variation. 
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Neglect of statistical bias and variation  
 The example illustrates 

that estimates of high-
order moments, which 
have been popular in 
multifractal studies, have 
no information content. 

 The graph presents 
results of Monte Carlo 
simulation for the fifth 
moment of a Pareto 
distribution with shape 
parameter 0.15 for 
sample size n = 100 (Papalexiou et al. 2010; see also Lombardo et al., 2014).  

 Here the theory guarantees that there is no estimation bias; however the 
distribution function is enormously skewed. 

 The mode is nearly two orders of magnitude less than the mean and the 
probability that a calculation, based on data, will reach the mean is two 
orders of magnitude lower than the probability of obtaining the mode. 
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Confusion between different scaling behaviours 

 Temporal scaling  
o It indicates dependence in time and is expressed as a power law of either: 
 autocorrelation vs. time lag and/or climacogram vs. time scale (Hurst); 
 structure function vs. time lag and/or differential climacogram vs. time 

scale (fractal/local behaviour). 
 Spatial scaling  
o It is similar to temporal scaling but indicating dependence in space. 

 State scaling 
o Totally irrelevant to temporal/spatial scaling; it is related to the marginal 

distribution of the process and indicates heavy-tailed distributions (power 
laws of probability of exceedence vs. state).  

 Scaling of high-order moments with time scale 
o Perhaps an artefact related to other types of scaling; usually spurious 

because high-order moments are not reliably estimated from data. 

 As already mentioned, scaling laws never extend to the entire range of scales. 
 Usually they are asymptotic laws, with different exponents at each edge.  
 Scaling laws, as asymptotic ones, abound because they are a mathematical necessity 

(Koutsoyiannis, 2014).  
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Part 2: Stochastics 
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The meaning of randomness and stochastics 
 
Deterministic world view Indeterministic world view 
Sharp exactness Uncertainty 
 Random = unpredictable, uncertain  
Regular variable x: it 
represents a number 

Random variable, x: an abstract mathematical 
entity whose realizations x belong to a set of 
possible numerical values. x is associated with a 
probability density (or mass) function f(x). 
Notice the different notation of random variables 
(underlined, Hemelrijk, 1966) from regular ones. 

Trajectory x(t): the 
sequence of a system’s 
states x as time t changes 

Stochastic process x(t): A collection of (usually 
infinitely many) random variables x indexed by t 
(typically representing time). It represents the 
evolution of some uncertain system over time. 
A realization (sample) x(t) of x(t) is a trajectory; if 
it is known at certain points ti it is a time series. 

 Stochastics: The mathematics of random variables 
and stochastic processes. 
Stochastics = probability theory + statistics + 
stochastic processes 
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From continuous time to discrete time processes 

  

t0 Δ 2Δ … (i – 1)Δ iΔ

xi := x(iΔ) 
(instantaneous process 
sampled at spacing Δ)

Xi:= 

(cumulative sampled at 
spacing Δ, nonstationary)

X(t) ≔

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

=

= X(iΔ)/Δ – Χ((i– 1)Δ)/Δ

(averaged at time scale Δ)
t0 Δ 2Δ … (i – 1)Δ iΔ

Important 
note: The 
graphs display a 
realization of 
the process 
while the 
notation is for 
the process per 
se. 

Most natural 
processes 
evolve in 
continuous time 
but they are 
observed in 
discrete time, 
instantaneously 
or by averaging 
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Second order properties of a stationary stochastic process 

 Autocovariance function, c(τ) := Cov[x(t), x(t + τ)], where τ is time lag. 

 Power spectrum (spectral density), s(w), where w is frequency (inverse 
time). 

 Structure function (semivariogram or variogram), ℎ(𝜏) ≔ 1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + 𝜏)]. 

 Climacogram, γ(Δ), where Δ denotes time scale, so that γ(Δ) := Var[𝑥𝑖
(𝛥)

].  

 All these properties are transformations of one another, i.e.: 

𝑠(𝑤) = 4∫ 𝑐(𝜏) cos(2π𝑤𝜏) d𝜏
∞

0
,      𝑐(𝜏) = ∫ 𝑠(𝑤) cos(2π𝑤𝜏) d𝑤

∞

0
 (2) 

ℎ(𝜏) = 𝑐(0) − 𝑐(𝜏),     𝑐(𝜏) = 𝑐(0) − ℎ(𝜏) (3) 

𝛾(𝛥) = 2∫ (1 − 𝜉)𝑐(𝜉𝛥)d𝜉
1

0
,      𝑐(𝜏) =

1

2

d2(𝜏2𝛾(𝜏))

d𝜏2
  (4) 

 In estimation from data, the climacogram behaves better than all other tools, 
which involve high bias and statistical variation (Dimitriadis and 
Koutsoyiannis, 2015 Koutsoyiannis, 2016). The climacogram involves bias 
too, but this can be determined analytically and included in the estimation.  
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Second order properties at discrete time 

 Once the continuous-time properties are determined, the discrete-time ones 
can be calculated. 

 For example, the autocovariance of the averaged process is: 

𝑐𝑗
(𝛥) = Cov [𝑥𝑖

(𝛥), 𝑥𝑖+𝑗
(𝛥)] =

1

𝛥2
(

𝛤(|𝑗+1|𝛥)+𝛤((|𝑗−1|𝛥)

2
− 𝛤(|𝑗|𝛥))  (5) 

 where Γ(Δ) ≔ Var[X(Δ)] = Δ2γ(Δ). 

 Also, the power spectrum of the averaged process can be calculated from: 

𝑠d
(𝛥)(𝜔) = 2𝑐0

(𝛥) + 4∑ 𝑐𝑗
(𝛥)∞

𝑗=1 cos(2π𝜔𝑗)  (6) 

where 𝜔 ≔ 𝑤𝛥, 𝑠d
(𝛥)(𝜔) = 𝑠(𝛥)(𝑤)/𝛥 (nondimensionalized frequency and 

spectral density, respectively). 

 More details and additional cases can be found in Koutsoyiannis (2013b, 
2016). 



  D. Koutsoyiannis et al.,  From fractals to stochastics   21 

Climacogram based metrics of stochastic processes 
 

Metric / Usefulness  Definition Comments 

Climacogram  
For the global asymptotic 
behaviour (Δ → ∞) 

γ(Δ) ≔ Var[xi(Δ)]  For an ergodic 
process for Δ → ∞ 
γ(Δ) → 0 necessarily  

Differential climacogram 
(DC) (or climacogram-based 
structure function, CBSF)  
For the local asymptotic 
behaviour (Δ → 0) 

g(Δ) ≔ γ0 – γ(Δ) 

where γ0 = γ(0) is the 
variance of the instantaneous 
process x(t) 

The definition 
presupposes that 
the variance γ0 is 
finite 

Climacogram-based 
spectrum (CBS) 

For both the global and 
local asymptotic behaviour 

𝜓(𝑤) ≔
2

𝑤𝛾0
𝛾(1 𝑤⁄ )𝑔(1 𝑤⁄ )  

=
2𝛾(1 𝑤⁄ )

𝑤
(1 −

𝛾(1 𝑤⁄ )

𝛾0
)   

where w ≡ 1/Δ is frequency 
(as in the power spectrum) 

It combines the 
climacogram and 
the CBSF; it is valid 
for both finite and 
infinite variance  

Note: The DC is related to the structure function h(τ) by the same way as the climacogram is related to the 
autocovariance function c(τ): 

𝑐(𝜏) =
1

2

d2(𝜏2𝛾(𝜏))

d𝜏2
, ℎ(𝜏) =

1

2

d2(𝜏2𝑔(𝜏))

d𝜏2
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Cautionary notes for model fitting 
 Direct estimation of any statistic of a process (except perhaps for the mean) 

is not possible merely from the data; we always need to assume a model. 
 Any statistical estimator �̂� of a true parameter s is biased either strictly 

(meaning: E[�̂�] ≠ 𝑠) or loosely (meaning: mode[�̂�] ≠ 𝑠). 

 Model fitting is necessarily based on discrete-time data and needs to consider 
the effects of (a) discretization and (b) bias. 

 The climacogram provides easy means to analytically estimate from its true 
expression (that in continuous time) both effects. 

 As an example, we consider a process with climacogram 𝛾(𝛥), from which we 
have a time series for an observation period T (multiple of Δ), each one giving 

the averaged process 𝑥𝑖
(𝛥)

at a time step Δ, so that the sample size is n = 𝑇 𝛥⁄ . 

 The standard estimator �̂�(𝛥) of the variance 𝛾(𝛥) of the averaged process is  

�̂�(𝛥) ≔
1

𝑛−1
∑ (𝑥𝑖

(𝛥)
− 𝑥1

(𝛵)
)
2

𝑛
𝑖=1 =

1

𝑇 𝛥⁄ −1
∑ (𝑥𝑖

(𝛥)
− 𝑥1

(𝛵)
)
2

𝑇 𝛥⁄
𝑖=1   (7) 

 As shown in Koutsoyiannis (2011, 2016) the bias can be calculated from 

E[�̂�(𝛥)] = 𝜂(𝛥, 𝛵)𝛾(𝛥),𝜂(𝛥, 𝛵) =
1−𝛾(𝑇) 𝛾(𝛥)⁄

1−𝛥 𝑇⁄
=

1−(𝛥 𝛵⁄ )2𝛤(𝛵) 𝛤(𝛥)⁄

1−𝛥 𝑇⁄
  (8) 
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Entropy and entropy production 

 The Boltzmann-Gibbs-Shannon entropy of a cumulative process X(t) with 
probability density function f(X; t) is a dimensionless quantity defined as:  

Φ[𝑋(𝑡)] ≔ Ε [– ln
𝑓(𝑋;𝑡)

ℎ(𝑋)
] = −∫ ln

𝑓(𝑋;𝑡)

ℎ(𝑋)
𝑓(𝑋; 𝑡)𝑑𝑋

∞

−∞
  (9) 

where h(Χ) is the density of a background measure (typically Lebesgue).  

 The entropy production in logarithmic time (EPLT) is a dimensionless 
quantity, the derivative of entropy in logarithmic time (Koutsoyiannis, 2011): 

φ(t) ≡ φ[X(t)] ≔ Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (10) 

 For a Gaussian process, the entropy depends on its variance Γ(t) only and is: 

Φ[X(t)] = (1/2) ln(2πe Γ(t)/h2),  φ(t) = Γ΄(t) t / 2Γ(t) (11) 

 When the past (t < 0) and the present (t = 0) are observed, instead of the 
unconditional variance Γ(t) we should use a variance ΓC(t) conditional on the 
past and present:  

ΓC(t) ≈ 2Γ(t) – Γ(2t)/2,𝜑C(𝑡) =
𝛤C
′(𝑡)𝑡

2𝛤C(𝑡)
≈

(2𝛤′(𝑡)−𝛤′(2𝑡))𝑡

4𝛤(𝑡)−𝛤(2𝑡)
 (12) 
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Resulting processes from maximizing entropy production  

 A Markov process: 

𝑐(𝜏) = 𝜆e−𝜏/𝛼 ,  

𝛾(𝛥) =
2𝜆

𝛥 𝛼⁄
(1 −

1−e−𝛥 𝛼⁄

𝛥 𝛼⁄
)  

(13) 

maximizes entropy production for 
small times but minimizes it for 
large times.  

 A Hurst-Kolmogorov (HK) process:  

𝛾(𝛥) = 𝜆(𝛼/𝛥)2−2𝛨 (14) 

maximizes entropy production for 
large times but minimizes it for 
small times 

 A Hybrid Hurst Kolmogorov process 

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1
𝜅  

(15) 

maximizes entropy production both 
at small and large time scales. 
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Part 3: Simulation of stochastic processes  
(at discrete time) 
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The symmetric moving average scheme 

 The so-called symmetric moving average (SMA) method (Koutsoyiannis 
2000) can directly generate time series with any arbitrary autocorrelation 
function provided that it is mathematically feasible: 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙
∞
𝑙=−∞   (16) 

where aj are coefficients calculated from the autocovariance function and vi is 
white noise averaged in discrete-time.  

 Assuming that we work for the averaged discrete-time process with power 

spectrum 𝑠d
(𝛥)(𝜔), it has been shown (Koutsoyiannis 2000) that the Fourier 

transform 𝑠d
𝑎(𝜔) of the al series of coefficients is related to the power 

spectrum of the discrete time process as  

𝑠d
𝑎(𝜔) = √2𝑠d

(𝛥)(𝜔)  (17) 

 Thus, to calculate al we first determine 𝑠d
𝑎(𝜔) from the power spectrum of the 

process and then we inverse the Fourier transform to estimate all al.  
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Handling of truncation error 

 It is expected that the coefficients al will decrease with increasing l and will be 
negligible beyond some q (l > q), so that we can truncate (16) to read  

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙
𝑞
𝑙=−𝑞   (18) 

 This would introduce some truncation error in the resulting autocovariance 
function. To adjust for this on the variance, we the calculate the al from 

𝑎𝑙 =𝑎𝑙
′ + 𝑎′′ (19) 

where the coefficients 𝑎𝑙
′ are calculated from inversing the Fourier transform 

of either 𝑠d
𝑎(𝜔)or𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞))(two options; Koutsoyiannis, 2016).  

 The constant 𝑎′′ is determined so that the variance is exactly preserved: 

𝛾(𝛥) = ∑ 𝑎|𝑙|
2𝑞

𝑙=−𝑞 = ∑ (𝑎|𝑙|
′ + 𝑎′′)

2𝑞
𝑙=−𝑞   (20) 

 Solving for 𝑎′′, this yields: 

𝑎′′ = √𝛾(𝛥)−Σ𝛼′2

2𝑞+1
+ (

Σ𝛼′

2𝑞+1
)
2
 −

Σ𝑎′

2𝑞+1
  (21) 

where Σ𝛼′ ≔ ∑ 𝑎|𝑙|
′𝑞

𝑙=−𝑞 andΣ𝛼′2 ≔ ∑ 𝑎′|𝑙|
2𝑞

𝑙=−𝑞 . 
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Handling of moments higher than second 

 In addition to being general for any second order properties (autocovariance 
function), the SMA method can explicitly preserve higher marginal moments.  

 Specifically, to produce a discrete-time process xi with coefficient of skewness 
𝐶s,𝑥 we need to use a white-noise process vi with coefficient of skewness: 

𝐶s,𝑣 =𝐶s,𝑥
(∑ 𝑎|𝑙|

2𝑞
𝑙=−𝑞 )

3/2

∑ 𝑎|𝑙|
3𝑞

𝑙=−𝑞

  (22) 

 Likewise, to produce a process xi with coefficient of kurtosis 𝐶k,𝑥 the process vi 

should have coefficient of kurtosis: 

𝐶k,𝑣 =
𝐶k,𝑥(∑ 𝑎|𝑙|

2𝑞
𝑙=−𝑞 )

2
−6∑ ∑ 𝑎|𝑙|

2𝑞
𝑘=−𝑞 𝑎|𝑘|

2𝑞
𝑙=−𝑞

∑ 𝑎|𝑙|
4𝑞

𝑙=−𝑞

  (23) 

 See details in Dimitriadis and Koutsoyiannis (2016). 

 Note that the method can also be used in multivariate processes, represented 
by vectors (Koutsoyiannis, 2000). 
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Simple marginal distributions for generation of non-
Gaussian white noise  

 Four-parameter distributions are needed to preserve skewness and kurtosis. 

 For light-tailed distributions of v we can use an extended and standardized 
version of the Kumaraswamy distribution (ESK) with distribution function: 

𝐹(𝑣) = 1 − (1 − (
𝑣−𝑐

𝑑
)
𝑎
)
𝑏

  (24) 

 For heavy-tailed distributions we can use the Normal-Inverse Gaussian (NIG) 
with probability density: 

𝑓(𝑣) =
√𝑎2+𝑏2e𝑏+𝑎(𝑣−𝑐)/𝑑

π𝑑√1+((𝑣−𝑐)/𝑑)2
K1(√𝑎

2 + 𝑏2√1 + ((𝑣 − 𝑐)/𝑑)2)  (25) 

with K1 denoting a modified Bessel function of the third kind. Even though its 
mathematical form is involved, its moments are calculated analytically and 
the generation from the distribution is easy. 

 In both cases v is the value of the random variable, a and b are dimensionless 
shape parameters, c is location parameter and d scale parameter; c and d have 
same dimensions as v (see details in Dimitriadis and Koutsoyiannis, 2016). 
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Range of skewness and kurtosis covered by the two 
distributions  

 

Isopleths of parameters 𝑎or𝑏 of the ESK and the NIG distribution for the indicated 
skewness and kurtosis. 
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Performance in the generation of non-Gaussian white noise 

 
Four two-parameter probability density functions, their approximations by maximum 
entropy distributions using four moments, i.e., 𝑓(𝑥) = 𝜆0exp(−∑ (𝑥/𝜆𝑖)

𝑖)4
𝑖=1 , and by the 

empirical density from a single synthetic time series with n = 105. 
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Part 4: Applications 
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Application 1: Microscale (turbulence) 

 Estimation of high moments involves large uncertainty and cannot be reliable 
in the typically short time series of geophysical processes.  

 On the contrary, high moments can be reliably estimated from large samples 
recorded in laboratory experiments at sampling intervals of μs.  

 Here we use grid-turbulence data provided by the Johns Hopkins University 
(http://www.me.jhu.edu/meneveau/datasets/datamap.html). 

 This dataset consists of 40 time series with n = 36×106 data points of 
longitudinal wind velocity along the flow direction, all measured at a sampling 
time interval of 25 μs by X-wire probes placed downstream of the grid (Kang 
et al., 2003). 

 By standardizing all series we formed a sample of 40 × 36 ×106 = 1.44 ×109 
values to estimate the marginal distribution, and an ensemble of 40 series, 
each with 36 ×106 values to estimate the dependence structure through the 
climacogram. 

 We also performed simulation using the SMA framework with n =106 values.  
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Marginal distribution 

 The time series are nearly-Gaussian but not exactly Gaussian (skewness = 
0.23; kurtosis = 3.08). This divergence of fully developed turbulent processes 
from normality has been also derived theoretically (Wilczek et al., 2011).  

 Interestingly, these small differences from normality result in highly non-
normal distribution of the white noise of the SMA model (skewness = 3.26; 
kurtosis = 12.30!) 

 

  

Probability density function of 
the mean standardized time 
series of turbulent velocity 
compared to that of a single 
simulation using the SMA 
scheme preserving the first 
four moments; the standard 
normal distribution N(0,1) is 
also shown. 
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Stochastic dependence of the turbulent velocity process 
Sum of two equally weighted processes, an HHK and a Markov: 

𝛾(𝛥) =
𝜆

2
(1 + (𝛥 𝛼⁄ )2𝜅)

𝐻−1
𝜅 +

𝜆

𝛥 𝛼⁄
(1 −

1 − e−𝛥 𝛼⁄

𝛥 𝛼⁄
) (26) 

 

 
 

Climacogram of the 
turbulent velocity 
process (observed 
is the average from 
the 40 time series); 
the five parameters 
of the model are 
estimated as:  
𝜆 = 1.016, 𝛼 = 14 
ms, 𝜅 = 0.375, 
𝐻 = 0.84. 
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Other second-order properties of the model compared to data 
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Kurtosis of velocity increments 
The change of kurtosis of the velocity increments (differences) with increased 
time distance, τ (lag), is related to the intermittent behaviour of turbulence 
(Batchelor and Townsend, 1949). Therefore it is important to preserve this 
variation.  

 

Empirical and 
simulated kurtosis vs. 
lag. 
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Even higher moments 

𝑆𝑝 ≔ E[|𝑥𝑖 − 𝑥𝑖+𝑟|
𝑝
] ≈ 𝑟𝜁𝑝   

Not a mystery that 
empirical values 
depart from the 
straight line 
(regarded as 
manifestation of 
intermittency). No 
provision is needed 
to reproduce it;  a 
good parsimonious  
model (with Hurst 
behaviour and 
slightly non-
Gaussian 
distribution)  
suffices.  
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Application 2: Medium scale (wind) 

 We can estimate high moments in geophysical processes accurately only after 
analyzing thousands of short time series. 

 Here we use hourly wind speed data by NOAA (www.ncdc.noaa.gov). 

 This dataset consists of 15 000 time series around the globe with 10 min 
average measurements every one hour. After several quality and quantity 
tests we ended up with approximately 3500 stations. 

 By standardizing all series we formed a sample of ~109 values to estimate the 
marginal distribution, and an 
ensemble of 3500 series, each 
with 3 × 105 values on the 
average, to estimate the 
dependence structure through 
the climacogram. 

 We also performed multiple 
simulations using the SMA 
framework with n =3 ×105 
values.  
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Marginal distribution 

 

Wind speed distribution (from ~109 
values):  

𝐹(𝑣) = 1 − (1 + (𝑣 𝛼𝑣s⁄ )2)−𝛽/2 (27) 

where α = 2 and β = 3. 

 

Sample skewness and kurtosis coefficients 
of 1000 hourly wind stations as well as of 
the corresponding white noise process of 
the SMA model. 

 

 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

f(
x

)

v/vs

observed

modified Pareto IV

0

5

10

15

0 1 2 3 4 5

C
k

Cs

min global

min ESK

max ESK

min NIG

wind (data)

wind (Vsma for H=0.9)



  D. Koutsoyiannis et al.,  From fractals to stochastics   41 

Stochastic dependence of the wind process 

 

Climacogram of the wind speed process (observed is the average from the 3500 time 
series); the four parameters of the model are estimated as: α = 1 h, κ = 0.5, λ = 1.3 and 
H = 0.82.  
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Application 3: Megascale (temperature) 
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Epilogue 
 Stochastic processes in continuous time offer a strong basis for modelling and 

interpretation of natural behaviours. 
 We owe the well-founded and rigorous mathematical theory of stochastics to 

Kolmogorov (1931, 1933, 1938), including the foundation of scaling processes 
(Kolmogorov, 1940). This theory has often be distorted but there exist textbooks 
consistent with it (e.g. Papoulis, 1991).  

 Calculating values of sample statistics without considering their statistical 
properties (bias and statistical variation) can yield misleading results. 

 Without proper attention to the underlying stochastics, we can even “identify” 
phenomena that do not exist and take statistical sampling effects as natural 
behaviours.  

 A general methodology for data analysis and construction of synthetic time series 
is possible provided that we have a good understanding of stochastics. 

 

Data analysis Inductive inference  

Prediction with 
quantified uncertainty 

Logical world view  

Stochastics 
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Appendix: Proof of infeasibility of too steep slopes in 
power spectrum for low frequencies  
 This proof is summarized here from Koutsoyiannis (2013b) and Koutsoyiannis et al. (2013).  
 Let us assume the contrary, i.e., that for frequency range 0 ≤ w ≤ ε (with ε however small) the log-

log derivative is 𝑠#(𝑤) = −𝛽, or else s(w) = α w–β where α and β are constants, with 𝛽 > 1.  
 As a result of (2) and (4) the climacogram is related to power spectrum by: 

𝛾(𝛥) = ∫ 𝑠(𝑤)sinc2(π𝑤𝛥) d𝑤
∞

0
  (28) 

 The sinc2 function within the integral takes significant values only for w < 1/Δ (cf. Papoulis, 1991, 
p. 433). Hence, assuming a scale Δ ≫ 1/ε, and with reference to (28) we may write: 

𝛾(𝛥) = ∫ 𝑠(𝑤) sinc2(π𝑤𝛥) d𝑤
∞

0
≈ ∫ 𝛼𝑤−𝛽 sinc2(π𝑤𝛥) d𝑤

𝜀

0
  (29) 

 On the other hand, it is easy to verify that, for 0 < w < 1/Δ, 

sinc(π𝑤𝛥) ≥ 1 − 𝑤𝛥 ≥ 0 (30) 

 Since ε ≫ 1/Δ, while the function in the integral (29) is nonnegative, 

𝛾(𝛥) ≈ ∫ 𝛼𝑤−𝛽 sinc2(π𝑤𝛥) d𝑤
𝜀

0
≥ ∫ 𝛼𝑤−𝛽 sinc2(π𝑤𝛥) d𝑤

1/𝛥

0
≥ ∫ 𝛼𝑤−𝛽(1 − 𝑤𝛥)2d𝑤

1/𝛥

0
  (31) 

 Substituing ξ = wΔ in (31), we find: 

 𝛾(𝛥) ≥ 𝑎𝛥𝛽−1 ∫ 𝜉−𝛽(1 − 𝜉)2d𝜉
1

0
 (32) 
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Appendix (contd.)  
 To evaluate the integral in (32) we take the limit for q → 0 of the integral: 

𝐵(𝑞) ≔ ∫ 𝜉−𝛽(1 − 𝜉)2d𝜉
1

𝑞
=

𝑞1−𝛽−1

𝛽−1
− 2

𝑞2−𝛽−1

𝛽−2
+

𝑞3−𝛽−1

𝛽−3
  (33) 

 Clearly, for β > 1 the first term of the latter integral diverges for q → 0, i.e., B(0) = ∞ and thus, by 
virtue of the inequality (32), γ(Δ)= ∞. For a (mean) ergodic processes γ(Δ) should necessary tend 
to 0 for Δ → ∞ (Papoulis, 1991, p. 429). Therefore, the process is non-ergodic.† This analysis 
generalizes a result by Papoulis (1991, p. 434) who shows that an impulse at w = 0 corresponds 
to a non-ergodic process.  

 In a non-ergodic process there is no possibility to infer statistical properties from the samples, so 
the statistical analyses are in vain and hence the reported results not meaningful.  

 Sometimes reported slopes 𝑠# < −1 are interpreted as indications of nonstationarity. Such 
interpretations are equally invalid because even the definition of the power spectrum as a 
function of frequency only (as well as those of autocorrelation and climacogram as functions of 
lag and scale, respectively) assumes stationarity.  

                                  
† It is interesting to note that, if |β| < 1, the integral in (29) can be evaluated to give: 

𝛾(𝛥) ≈ 𝛼∫ 𝑤−𝛽 sinc2(π𝑤𝛥)d𝑤

∞

0

=
sin(π𝛽 2⁄ )

(π𝛽 2⁄ )

(2π)𝛽𝛼Γ(1 − 𝛽)

2(𝛽 + 1)𝛥1−𝛽
  

Clearly, for Δ → ∞, the last expression gives γ(Δ) → 0 and thus for |β| < 1 the process is mean ergodic. 
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