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Many hydrological applications, such as flood studies, require the use of long rainfall 

data at fine time scales varying from daily down to 1 minute time step. However, in the real 

world there is limited availability of data at sub-hourly scales. To cope with this issue, 

stochastic disaggregation techniques are typically employed to produce possible, 

statistically consistent, rainfall events that aggregate up to the field data collected at 

coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time 

scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall 

events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so 

as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the 

aforementioned scheme, initially designed and tested for the disaggregation of daily 

rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of 

the recent developments in Poisson-cluster processes incorporating in the methodology a 
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Bartlett-Lewis model variant that introduces dependence between cell intensity and 

duration in order to capture the  variability of rainfall at sub-hourly time scales. The 

disaggregation scheme is implemented in an R package, named HyetosMinute, to support 

disaggregation from daily down to 1-minute time scale. The applicability of the 

methodology was assessed on a 5-minute rainfall records collected in Bochum, Germany, 

comparing the performance of the above mentioned model variant against the original 

Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the 

disaggregation process reproduces adequately the most important statistical 

characteristics of rainfall at wide range of time scales, while the introduction of the model 

with dependent intensity-duration results in a better performance in terms of skewness, 

rainfall extremes and dry proportions.         

Keywords: rainfall stochastic simulation; rainfall disaggregation; Poisson-cluster 

models; Bartlett-Lewis models; adjusting procedures; fine time-scales 
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1. Introduction 

Stochastic disaggregation is aimed at generating synthetic rainfall series which are 

fully consistent with the given data at a coarser scale and, at the same time, statistically 

consistent with the lower-level process. This approach enables the preservation of the 

stochastic structure of the process at multiple time scales, which could not be ensured via 

the inverse procedure, i.e., aggregation of the lower-level variables to derive the process at 

a coarser level (Koutsoyiannis, 2003a, 2001). 

Disaggregation is of high importance especially in the study of rainfall at fine time 

scales (i.e., sub-monthly) which is the temporal resolution of interest for challenging 

hydrological applications such as the simulation of the hydrologic response of urban 

catchments in flood modelling applications, the design and implementation of real time 

control systems or the design and operation of combined sewer overflows (Bennett et al., 

2013; Cowpertwait et al., 2006; Hingray et al., 2002; Koutsoyiannis and Foufoula-Georgiou, 

1993; Koutsoyiannis, 1994; Segond et al., 2007). In this context, disaggregation can be 

employed to enrich the, frequently limited or even unavailable, fine-scale measurements 

(e.g. hourly and sub-hourly) with possible realizations of rainfall events, taking advantage 

of the longer rainfall records that do exist at coarse time scales (e.g. daily and above). 

During the last decade, the problem of single-site disaggregation of rainfall at fine 

time scales has been studied systematically with the use of Poisson-cluster processes. The 

models of this category represent the physical precipitation mechanism through clustered 

rectangular pulses that occur in continuous time according to the Poisson point process. 

Clustering provides the flexibility of representing the complex phenomenon of rainfall at 

different time scales through a simplified and parsimonious approach. Rodriguez-Iturbe et 
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al. (1987) first introduced and studied two alternative types of clustering, the Bartlett-

Lewis process and Neyman-Scott process, after observing the inability of simple Poisson 

models to reproduce the statistical characteristics of rainfall at multiple time scales 

(Rodriguez-Iturbe et al., 1987, 1984). In general, the two models have the same structure, 

while their main difference lying in the way that pulse origins are distributed within a 

cluster. Since then, various extensions and modifications of the original models have been 

proposed aiming to remedy weaknesses in reproducing the proportion of dry intervals and 

the distribution of extremes (Entekhabi et al., 1989; Gyasi-Agyei and Willgoose, 1997; Kim 

et al., 2013a; Onof and Wheater, 1994a; Rodriguez-Iturbe et al., 1988). The literature 

reports numerous empirical investigations that examine the performance of the Poisson-

cluster models in a wide range of rainfall types and climatic conditions. The models have 

been successfully fitted to data of various fine time scales from England (Cameron et al., 

2000; Cowpertwait, 1991; Entekhabi et al., 1989; Onof and Wheater, 1994a, 1994b, 1993), 

Scotland (Glasbey et al., 1995), Belgium (Verhoest et al., 1997), Switzerland (Paschalis et 

al., 2014), Germany (Kaczmarska et al., 2014), Spain (Khaliq and Cunnane, 1996), Ireland 

(Khaliq and Cunnane, 1996), South Africa (Smithers et al., 2002), New Zealand 

(Cowpertwait et al., 2007), Australia (Gyasi-Agyei and Willgoose, 1997; Gyasi-Agyei, 1999; 

Wasko et al., 2015), Greece (Derzekos et al., 2005; Kossieris et al., 2015, 2013), Italy (Bo et 

al., 1994; Islam et al., 1990), United States (Bo et al., 1994; Kim et al., 2016, 2013b; 

Rodriguez-Iturbe et al., 1988, 1987; Velghe et al., 1994) and Korean Peninsula (Kim et al., 

2014). Further to the single-site case, Poisson-cluster models have been also developed for 

the simulation of rainfall in space and time (e.g. Burton et al., 2008; Cowpertwait, 2010, 

2002; Cox and Isham, 1988; Paschalis et al., 2013). Comprehensive reviews of the recent 
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developments on Poisson-cluster models have been conducted by Onof et al. (2000) and 

Wheater et al. (2005), while more details are provided in section 2.1.  

The aggregation and disaggregation properties of the Bartlett-Lewis model were first 

examined by Bo et al. (1994) who showed that the model can adequately reproduce the 

main statistics of hourly up to 12-hour time scale when 24- and 48-hour statistics are used 

to estimate the model parameters. On the contrary, a similar analysis for the Neyman-Scott 

model (Cowpertwait et al., 1996a) showed that the variability of hourly rainfall is not 

sufficiently reproduced when model fitting is based only on daily data. To improve model 

performance, the authors examine the use of neighbouring data to establish an empirical 

relationship between hourly and daily variance, and then the estimated variance is used to 

fit the model. 

Despite the fact that the researchers mentioned above have studied the problem of 

simulating rainfall at fine time scales using only coarser-resolution data, their work cannot 

be considered “disaggregation” in the strict sense of the term, given that they do not 

establish consistency between higher- and lower-level variables. This problem was first 

examined by Glasbey et al. (1995) who employed the Bartlett-Lewis model to generate a 

large record of hourly and daily data (e.g. 1000 years). For each given sequence of wet days 

(the authors assumed as independent a sequence of wet days that is preceded and followed 

by at least one dry day), the algorithm searches in the record for a sequence of the same 

length that is in close agreement with the original one. For the chosen sequence, the 

synthetic hourly depths are rescaled to add up exactly to given daily values. However, this 

rescaling procedure causes an overestimation of the variance of hourly intensities. To 

remedy this weakness, the authors examined another ad-hoc model that searches for best 
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matching sequence on the basis of daily totals of 3 days. Despite the improvement in the 

statistics achieved, this method does not have the general character of the initial scheme, 

since a 3-day period cannot necessarily be considered as independent (Glasbey et al., 1995; 

Koutsoyiannis and Onof, 2001).  

More recently, Koutsoyiannis and Onof (2001) extended the general coupling 

methodology of Koutsoyiannis (2001) to disaggregate daily rainfall into hourly depths. 

Their scheme combines the Bartlett-Lewis model for the generation of synthetic rainfall 

depths along with an adjusting procedure (Koutsoyiannis and Manetas, 1996) to establish 

consistency with the given daily depths. Specifically, for a cluster of wet days, the rainfall 

model runs several times and the generated sequence that best matches the original one in 

terms of daily totals, is chosen. Then, the synthetic sequence of hourly rainfall depths is 

modified according to a proportional adjusting procedure to add up to the given daily 

depths. The methodology was implemented in the computer program Hyetos 

(Koutsoyiannis and Onof, 2000). As the authors pointed out, this method shares some 

similarities to the earlier disaggregation scheme of Glasbey et al. (1995), but its structure is 

different. Firstly, it is applied directly to each cluster of wet days without requiring the a 

priori construction of an auxiliary large series of daily data. Further to that, the model 

incorporates distinct levels of repetitions for the generation of temporal characteristics of 

sequences and the intensities of pulses, reducing significantly the required computational 

time. Successful application of Koutsoyiannis and Onof’s disaggregation scheme (2001) has 

been reported from Abdellatif et al. (2013), Debele et al. (2007), Engida and Esteves 

(2011), Pui et al. (2012) and Segond et al. (2007, 2006). The single-site model was 

generalized for the multivariate case by Koutsoyiannis et al. (2003), while the single-site 
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Hyetos model has been employed into different hybrid schemes for the spatio-temporal 

disaggregation of daily rainfall (Gyasi-Agyei and Mahbub, 2007; Gyasi-Agyei and Willgoose, 

1997; Gyasi-agyei, 2005; Gyasi-Agyei, 1999; Segond et al., 2006) . 

To date, the applications of the Poisson-cluster models in a disaggregation framework 

concern mainly the generation of consistent hourly rainfall depths from given daily values. 

Regarding the sub-hourly time scales, the literature is more restricted and concerns mainly 

ad hoc techniques rather generic methodologies. Cowpertwait et al. (1996b) developed a 

process for the single-site disaggregation of hourly rainfall depths into smaller time 

intervals using the Neyman-Scott rectangular pulse model. Some shortcomings of this 

model in reproducing the temporal structure and the extreme behaviour of the 

disaggregated 5-minute rainfall depths were noticed by Onof et al. (2005). Gyasi-Agyei and 

Mahbub (2007) extended the multi-site regional hybrid disaggregation model of Gyasi-

Agyei (2005) for sub-hourly time scales. It is also worth mentioning the hybrid scheme of 

Anis and Rode (2015) that uses the Hyetos software to generate hourly rainfall depths and 

then a micro-canonical cascade model (Onof et al., 2005; Sivakumar and Sharma, 2008) to 

disaggregate the hourly depths into 10-minute data. A similar approach was followed 

earlier by Laloy and Bielders (2009) who applied a symmetrical double-triangular 

hydrograph method to hourly data from Hyetos in order to generate 1-minute consistent 

rainfall depths.   

Recently, special focus has been given in the extension of the Poisson-cluster models 

to capture rainfall characteristics at sub-hourly time scales. The modifications concern 

mainly either the incorporation of a third level of process of instantaneous pulses to 

enhance model flexibility in reproducing different storm profiles (Cowpertwait et al., 2007; 
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Cowpertwait, 2004) or the introduction of a dependence between rainfall intensity and cell 

duration (Kaczmarska et al., 2014). A more comprehensive description of these models is 

given in section 2.1. 

In this paper we build upon the coupling disaggregation methodology of 

Koutsoyiannis and Onof (2001) and examine its extension and applicability to sub-hourly 

time scales. The new model extends the original one in two important ways:  

1. The disaggregation scheme, initially designed and tested for the disaggregation of 

daily rainfall into hourly depths, is now extended and verified for any sub-hourly 

time scale. 

2. The recently developed Bartlett-Lewis model that assumes dependence between 

cell intensity and duration (Kaczmarska et al., 2014) is introduced in the scheme to 

enable the adequate reproduction of the high variability that rainfall exhibits at 

super-fine time scales. 

As a test case, we examined the performance of the methodology in the 

disaggregation of daily rainfall depths into 5-minute data, using a dataset from Bochum 

(Germany). The new aforementioned variant is compared against the original Bartlett-

Lewis model (Rodriguez-Iturbe et al., 1987) allowing us to reach conclusions on the 

performance of these models within a disaggregation framework. In our test case, we take 

advantage of the fact that 5-minute field data are actually available and hence can be used 

both for model fitting and validation. Subsequently, our application of the disaggregation 

model addresses the issue of enhancing daily data records when observed data at finer 

time scales are available at that gauge or at neighbouring gauges. The results of model 

application are presented in section 4. 
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Our primary motivation for this study arises from the need for a generic and 

parsimonious, as well as operational, model that is easily applicable for the simulation of 

rainfall at any fine time scale. The model was implemented in a computer program 

developed by the authors for this purpose, named HyetosMinute (see section 3), that 

allows both the sequential simulation and the disaggregation of rainfall at any scale from 

daily down to 1-minute scale. 
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2. Methodology and tools 

A general framework for the generation of synthetic series that is fully consistent 

with given data of a coarser timescale and, at the same time, statistically consistent with 

the process under study, was initially studied by Koutsoyiannis (1994) and Koutsoyiannis 

and Manetas (1996) and later generalized by Koutsoyiannis (2001). Unlike most 

disaggregation techniques that involve simultaneously both models of different time scales 

in one mathematical expression (Grygier and Stedinger, 1988; Stedinger and Vogel, 1984; 

Stedinger et al., 1985; Valencia R. and Schaake L., 1972; Valencia and Schaake, 1973), this 

scheme is based on the coupling of independent stochastic models, each applied separately 

to simulate the process at a specific time scale, through mathematical transformations. The 

coupling transformation (also termed ‘adjusting procedure’) modifies the lower-level 

variables in order to establish consistency with the higher-level time series, ensuring at the 

same time the exact preservation of certain statistics (i.e., marginal and joint second-order 

statistics) or even the complete distribution of the former. To improve the approximation 

of the statistics which are not explicitly preserved by the adjusting procedure (i.e., 

skewness coefficient), the methodology employs an iterative sampling procedure. 

Specifically, the lower-level model runs several times and the generated auxiliary series 

that is in closest agreement with that of the higher-level is chosen for adjusting 

(Koutsoyiannis and Manetas, 1996).  

The above coupling  framework, combined with the appropriate stochastic models (in 

their univariate or multivariate variant), has been successfully applied to reproduce the 

statistical behaviour and characteristic properties of hydrologic processes at a wide range 

of time scales (Efstratiadis et al., 2014; Koutsoyiannis and Manetas, 1996; Koutsoyiannis 
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and Onof, 2001; Koutsoyiannis, 2001; Koutsoyiannis et al., 2003). To disaggregate annual 

rainfall depths into monthly amounts, Koutsoyiannis (2001) coupled, through a linear 

transformation, a symmetric moving average model with long-term memory 

autocorrelation function (Koutsoyiannis, 2000), for the reproduction of Hurst-Kolmogorov 

dynamics (Koutsoyiannis, 2011, 2003b) at annual scale, with a periodic autoregressive 

gamma model, i.e. a PAR(1) model, for the simulation of monthly seasonality. For the 

disaggregation into daily amounts, a proportional adjusting procedure is applied to daily 

series which is generated by another PAR(1) model combined with ad hoc truncation 

techniques for the reproduction of the intermittent nature of daily process (Efstratiadis et 

al., 2014; Koutsoyiannis, 2001). The three-level stochastic disaggregation framework has 

been successfully applied in several hydrological applications (e.g., Efstratiadis et al., 2015; 

Nalbantis et al., 2011; Tsekouras and Koutsoyiannis, 2014; Tsoukalas and Makropoulos, 

2015; Tsoukalas et al., 2016).     

As indicated above, this coupling methodology was extended for the univariate 

(Koutsoyiannis and Onof, 2001) as well as multivariate (Koutsoyiannis et al., 2003) 

disaggregation of daily rainfall into hourly steps. In the univariate case, the Bartlett-Lewis 

rectangular pulse model is employed to generate hourly synthetic series. Then, the 

proportional adjusting procedure is applied to modify the hourly depths so as to be 

consistent with the given daily data. In the multivariate case, the generation of the lower-

level variables is conducted through a multivariate gamma autoregressive AR(1) model, 

combined with truncation techniques for the reproduction of dry intervals, while the 

generated hourly depths become consistent with the daily values via the general linear 

transformation.  
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Here, we focus on the extension of the univariate disaggregation methodology into 

sub-hourly time scales, taking advantage of the recently developed variants of the Bartlett-

Lewis process, oriented to capture the high variability that precipitation exhibits at super-

fine time scales. Next, we provide an overview of the Bartlett-Lewis process as the rainfall 

model used in the present work (section 2.1) and then we describe in detail the 

disaggregation methodology (section 2.2).    

2.1 The Bartlett-Lewis rectangular pulse models  

As discussed in section 1, the Bartlett-Lewis rectangular pulse model belongs to the 

general category of Poisson-cluster models that simulate rainfall events via clusters of 

rectangular pulses that occur in continuous time. The ability of this type of model to 

reproduce the characteristics of rainfall at multiple time scales, even in cases where some 

of these time scales are not preserved explicitly by a fitting procedure (Bo et al., 1994), 

makes the model appropriate for disaggregation frameworks in which different time scales 

are involved (Gyasi-Agyei, 1999). 

The basic assumptions of the Bartlett-Lewis clustering mechanism are (Fig. 1; 

Rodriguez-Iturbe et al., 1987):  

 Storm origins ti occur in a Poisson process with rate λ and each storm i is associated 

with a random number of cells.  

 Within each storm i, the origin tij of each cell j occurs following a second Poisson 

process with rate β, whereas the origin of first cell coincides with the storm origin. 

The time intervals of successive storm and cell origins are independent and 

identically distributed random variables that follow an exponential distribution.     
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 Within each storm, the generation of cells terminates after a time span vi following 

the exponential distribution with rate γ. This implies that the number of cells per 

storm has a geometric distribution of mean μc = 1+ β/γ.  

 Each cell has a duration wij following the exponential distribution with rate η. 

 Each cell has an intensity xij with a specific distribution. In the simplest version of 

the model, the exponential distribution with mean μX is assumed. 

 

Fig. 1. Schematic representation of the Bartlett-Lewis clustering mechanism. Filled circles 

denote storm origins while open circles denotes cell arrivals.  

 

Subsequently, the initially proposed model, hereinafter referred to as the Rectangular 

Pulse Bartlett-Lewis (RPBL) model, has 5 parameters: {λ, β, γ, η, μX}. The model allows both 

for storm and cell overlapping, while the total rainfall intensity, Y(t), at every instant t, is 

obtained by summing all active pulses at time t.      

Despite the successful reproduction of the basic statistics (first- and second-order 

moments of rainfall depths) from hourly up to daily scale, the RPBL model showed some 

difficulties in reproducing the temporal characteristics of rainfall as expressed via the 

overestimation of the proportion of dry periods (Onof and Wheater, 1994b; Rodriguez-

Iturbe et al., 1988; Rodríguez-Iturbe et al., 1987; Velghe et al., 1994). The discrepancies are 

t1  t11 t2 t21 t12 t13 t3  t31 

v1 v2 

x11 
x12 x21 

x31 
x13 

w11 

w12 w21 

w13 w31 

time 

t22 

w22 

x22 

v3 

time 



14 
 

attributed to the fact that parameters γ, β and η which control the temporal properties of 

the process remain constant between different storms and subsequently the model is not 

able to reproduce different types of rainfall as well as the variability within storm events. 

Extended analysis on the temporal properties of dry periods and storm events of the 

Bartlett-Lewis clustering process has been conducted by Onof and Wheater (1994b, 1993; 

1994a) and Onof et al. (1994). 

To enhance the model’s flexibility in generating a greater diversity of rainfalls, 

Rodriguez-Iturbe et al. (1988) modified the original model so that parameter η is randomly 

varied from storm to storm according to the gamma distribution with a shape parameter α 

and a rate parameter v. The parameterization of the Random Parameter Bartlett-Lewis 

(BLRPR) model entails also that the cell origin rate β and the storm duration rate γ are also 

varied so that the ratios     ⁄  and     ⁄  are kept constant. Subsequently, in BLRPR 

model, parameters β and γ are also random variables following gamma distribution with 

common shape parameter α and rate parameters ν/κ and v/φ, accordingly. The BLRPR 

model has 6 parameters: {λ, α, v, κ, φ, μX}.  

In its simplest version, the model assumes the exponential distribution for cell 

intensity. However, some discrepancies in the distribution of extreme values at different 

time scales, especially for lower time scales and high return periods, have been observed 

(Onof and Wheater, 1994b, 1993; Rodriguez-Iturbe et al., 1988, 1987; Velghe et al., 1994; 

Verhoest et al., 1997). The performance of the model can be improved by incorporating a 

longer-tailed distribution for cell intensity. The gamma distribution has been examined 

(Onof and Wheater, 1994a) and implemented in some cases (Verhoest et al., 1997, 2010), 

while Weibull and Pareto distributions are also potential candidates. Alternatively, the use 
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of third or higher order moments of rainfall depth in fitting procedure may result in the 

improvement of the extreme-values performance of the models (Cowpertwait, 1998; 

Verhoest et al., 2010; Wheater et al., 2005). Kim et al. (2013a) showed that the distribution 

of the maximum rainfall depths can be better reproduced by incorporating the inter-annual 

variability of monthly statistics in the estimation of the model parameters.    

The Bartlett-Lewis model has been further extended to allow the reproduction of high 

variability of rainfall profile at sub-hourly time scales. In this framework, Cowpertwait et al. 

(2007) modified the RPBL model so that the constant rectangular cell intensities are 

replaced by a cluster of instantaneous pulses that occur following a third Poisson process 

of rate ξ. Subsequently, the BLIP model incorporates 3 Poisson processes that control 

respectively, the arrival of storms with rate λ, the arrival of cells within storms with rate β 

and the arrivals of instantaneous pulses within cells with rate ξ. This model was further 

extended by Kaczmarska et al. (2014) in a way that cell duration parameter η is randomly 

varied between storms following the BLRPR model. The BLIPR model implies that the 

ratio,     ⁄ , of instantaneous pulse arrival rate to the cell duration parameter is kept 

constant in the process, giving a total of 7 parameters: {λ, α, v, κ, φ, ω, μX}.  

Greater variability in temporal storm characteristics can be also achieved by 

superposing multiple independent processes for different types of rainfall (Cowpertwait et 

al., 2007; Cowpertwait, 2004). Cowpertwait et al. (2007) examined a superposed model 

consisting of two independent BLIP processes in order to simulate rainfall from 5-minute 

up to daily scale at a site in Kelburn (New Zealand). Despite the good performance of the 

model, the large number of independent parameters poses extra difficulties in the fitting 

procedure. Kaczmarska et al. (2014) examined further Cowpertwait et al. (2007)’s model 
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along with a superposed model consisting of two RPBL model, in a 5-minute rainfall time 

series from a site in Bochum (Germany), showing that for both superposed models it was 

not possible to obtain a realistic and stable set of parameters. 

As an alternative to the above discussed approaches, Kaczmarska et al. (2014) re-

parameterize the BLRPR model so as to introduce dependence between cell intensity and 

duration. Specifically, the cell intensity parameter μX varies between storms (similarly to  , 

β and γ) so that the ratio      ⁄  remains constant. Subsequently, the new model, 

hereinafter referred to as the BLRPRX model, has 6 parameters: {λ, α, v, κ, φ, i}. The analysis 

showed that this model outperforms both the superposed models and those with a third 

layer of pulses in preserving the statistical characteristics of Bochum rainfall from 5-

minute up to daily.     

2.2 The disaggregation scheme  

In the disaggregation scheme, the synthetic rainfall depths that have been generated 

via one of the above-described Bartlett-Lewis models are modified so as to be consistent 

with the given daily series. In more detail, the methodology is formed as follows: Provided 

that a daily series              is known, a lower-level auxiliary series  ̃            is 

generated via one of the above described Bartlett-Lewis models. Given that the auxiliary 

series has been produced independently to the higher-level variables,  ̃  do not sum up 

to   , but to some other quantities  ̃ . The error in the additive property, i.e., the departure 

of  ̃  quantities from the corresponding higher-level variables   , is allocated to the lower-

level time series, through an adjusting procedure, and thus a modified series       

       is obtained. Now, the latter satisfies the additive property ∑   
 
                .  
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The special characteristics of rainfall series at fine time scales, i.e., large proportion of 

zero values, strong autocorrelation structure and highly-skewed distribution, establish the 

proportional adjusting procedure (Eq. (2)) as more appropriate to modify the auxiliary 

synthetic series (Koutsoyiannis and Onof, 2001). This procedure does not transform zero 

values to negative, as linear procedures do, and explicitly preserves the complete 

distribution for independent variables that have the gamma distribution with common 

scale parameter (Koutsoyiannis and Manetas, 1996). Further to that, it enables 

preservation of the full distribution for independent gamma distributed variables and 

provides a good approximation for dependent variables with gamma distribution 

(Koutsoyiannis, 1994). However, at fine time scales, such as hourly and even more so at 

sub-hourly scales, the autocorrelation is high and, hence, the assumption of independence 

among successive variables is not valid.  

To improve the approximation of the statistics which are not explicitly preserved by 

the proportional adjusting procedure, an iterative process is employed. Specifically, the 

Bartlett-Lewis model runs several times and the sequence that is in closest agreement with 

the higher-level sequence (i.e., by means that a distance measure (Eq. (1)) is lower than an 

accepted limit   ) is chosen to be transformed. To investigate the efficiency of this 

repetition scheme along with the proportional adjusting procedure, Koutsoyiannis and 

Onof (2001) conducted a series of “toy” disaggregation experiments, using a hourly 

synthetic series, generated via an intermittent gamma autoregressive process. The analysis 

showed that the adjusting procedure, irrespective of the value of   , does not create any 

bias in variation and skewness as long as the probability dry of each specified period is 

explicitly preserved by the lower-level model (i.e., the number of zero values of the 
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generated series is kept constant and equal to that of the original sequence during 

repetitions). On the contrary, when the number of zero values is not known, a considerable 

increase in variation and skewness is observed. Despite the fact that this bias decreases by 

adopting low values for   , it can not be truly eliminated by increasing the number of 

repetitions. As a possible solution to this, a negative bias can be introduced to variation and 

skewness before model fitting (Koutsoyiannis, 2001). Regarding the approximation of 

autocorrelation, the bias is decreasing with the combined use of adjusting procedure and 

repetitions, for low limit   .   

From a technical point of view, the application of the repetition scheme directly in a 

long simulation period may lead to extremely high computational times due to the 

difficulty in finding a sequence that matches the higher-level time series, by means of a 

distance measure. To cope with this issue, different sequences (clusters) of wet days, 

preceded and followed by at least one dry day, can be assumed stochastically independent, 

hence treated as such. This is in full compliance with the Bartlett-Lewis mechanism that 

entails that the time intervals between successive storms are independent variables with 

exponential distribution and common rate parameter. On the other hand, we can not 

consider and treat as independent successive sequences of wet intervals at sub-daily time 

scales. Due to this, the disaggregation into sub-hourly intervals is conducted always with 

reference to the known daily values and not to those of finer scales.  

The high computational time may remain an issue for very long clusters of wet days. 

Due to this, the disaggregation scheme allows the random sub-division of very long 

sequences into sub-sequences in cases when the departure of the sum of generated lower-

level variables from the given daily depths remains higher than an acceptable limit after a 
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number of repetitions. In some cases, this process may lead to nested, successive 

subdivisions of the initially given cluster into many sub-clusters. 

Aiming to further reduce the computational time, two different levels of repetitions is 

implemented, taking advantage of the fact that in the Bartlett-Lewis mechanism the 

temporal characteristics of storm events are generated independently of the cell 

intensities. Subsequently, for each cluster of wet days, the Bartlett-Lewis model runs 

several times to establish, in the first phase, the appropriate wet/dry structure, and in a 

second phase the intensity profile of the event.             

For a cluster of L wet days, the disaggregation of daily rainfall into any sub-hourly 

depths (e.g., 5-minute) comprises the following steps (adapted from Koutsoyiannis and 

Onof (2001), see Fig. 2): 

Step 1: The Bartlett-Lewis model (i.e., RPBL, BLRPR or BLRPRX) generates sequences 

of storms and cells, at the specific sub-hourly time scale (e.g. 5-minute), until a cluster of 

exactly L wet days, followed by one or more dry days, is obtained.   

In the case that the cluster has been formed successfully within an allowed number of 

repetitions,   , the process continuous to Step 2. Otherwise, the cluster of L wet days is sub-

divided randomly into sub-clusters with smaller lengths. In this case, the disaggregation 

process applied to each cluster independently, starting from the current Step 1.        

Step 2: For the formed sequence of storms and cells, the cell intensities are generated 

and the synthetic daily depths are calculated. The synthetic daily depths are compared to 

the original ones according to the formula:  
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where    and  ̃ are the original and synthetic daily depth of day i of the wet cluster, and c (= 

0.1 mm) a small constant inserted to prevent domination by the very low depths. At the 

same time, the logarithm prevents the domination of very high values. If the departure d is 

smaller than an acceptable limit   , the algorithm moves to Step 3. Otherwise, a new 

sequence of cell intensities is generated for the same arrangement of storm and cells. The 

generation of new cell intensities continues for an allowed number of repetitions,   . If, 

however, the model cannot establish an appropriate sequence of intensities the temporal 

arrangement of storms and cells is discarded and replaced by a new one, thus returning at 

Step 1.  

This process holds until the total repetitions, i.e. repetitions for established wet/dry 

sequences and cell intensities, exceeds an allowed number,   . After this number, the initial 

sequence is subdivided randomly into shorter sub-sequences and the process begins from 

Step 1 for each new sub-sequence independently. In some cases, this process may lead to 

nested, successive subdivisions of the initially given cluster into many sub-clusters. 

   Step 3: For the chosen sequence, the rainfall depths of the lower level    (e.g. 5-

minute) are obtained by modifying the generated depths  ̃  according to the proportional 

adjusting procedure: 

 
    ̃ (

∑   
 
   

∑  ̃ 
 
   

)                (2) 

where    and  ̃ are the original and generated daily depth of day i of the wet cluster and k is 

the number of lower-level variables within one higher-level period.            
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Fig. 2. Flow chart of the disaggregation scheme for a cluster of L wet days (after 

adjustment from Koutsoyiannis and Onof (2001)) 
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In the case of very long sequences and 
after a number of repetitions, the 
cluster is subdivided into sub-clusters, 
each disaggregated independently, 
according to this flowchart.  
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3. Software description – “HyetosMinute” 

Within this work, a new software program, named HyetosMinute1, was created to 

allow for the temporal stochastic simulation of rainfall at fine time scales. The software was 

coded in the programming language R (R Core Team, 2014), with some parts of code 

implemented in C. HyetosMinute incorporates various new functionalities that extend the 

stand-alone Hyetos software (Koutsoyiannis and Onof, 2000) in various ways: (1) 

generation of synthetic rainfall data, either via sequential simulation or disaggregation, at 

sub-hourly time scales, and specifically down to 1-minute time scale, (2) implementation 

and incorporation of the recently developed Bartlett-Lewis model with randomized 

intensity parameter (Kaczmarska et al., 2014) in the disaggregation scheme, further to the 

original (Rodriguez-Iturbe et al., 1987) and the random parameter η (Rodriguez-Iturbe et 

al., 1988) versions of the model, (3) implementation of an enhanced-version of the 

Evolutionary Annealing-Simplex (EAS2) optimization algorithm for the estimation of model 

parameters.    

Depending on data availability, the package operates either (i) in testing mode, in 

cases where historical rainfall depths are imported to enable comparisons (by means of 

various statistics), or (ii) in full operational mode if only daily data are available. For all 

modes, the generated rainfall series are delivered to the user either in R console or are 

exported in external files for further processing. The package also has several graphical 

capabilities that allow the direct representation and comparison of statistical 

characteristics of original and synthetic data (e.g. marginal statistics, conditional statistics, 

                                                        
1 HyetosMinute is free and available online at: http://www.itia.ntua.gr/en/softinfo/3/     
2 EAS and SEEAS (i.e., the surrogate-enhanced extension) are free and available online at: 

http://www.itia.ntua.gr/en/softinfo/29/ 

http://www.itia.ntua.gr/en/softinfo/3/
http://www.itia.ntua.gr/en/softinfo/29/
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temporal properties of rainfall, autocorrelation structure etc.). Further to that, the 

hyetographs of storm events are also plotted and exported for further analysis. 

The package also enables the estimation of the Bartlett-Lewis model parameters via 

an enhanced-version of the EAS optimization method (Kossieris et al., 2015), originally 

developed by Efstratiadis and Koutsoyiannis (2002; Tsoukalas et al., 2016). The method 

combines the strength of simulated annealing in locating regions of attraction in rough 

search spaces along with the efficiency of the downhill simplex method (Nelder and Mead, 

1965) in smoother spaces. The search procedure is based on the evaluation of a population 

either via quasi-stochastic geometric transformations, inspired by the downhill simplex 

method, or fully-probabilistic transitions (mutations). The degree of randomness is 

determined by an adaptive annealing cooling schedule that reduces system temperature so 

as all transitions become more deterministic as search proceeds. The major difference to 

the original EAS (Efstratiadis and Koutsoyiannis, 2002) involves the reflection step through 

weighted centroid (proxy of the gradient of search space) instead of the geometric one. 

This modification accelerates the search, enabling the faster convergence to region of 

optimum. The platform allows the user to fully configure the multiple arguments of the 

fitting problem, i.e., statistics to be included in the objective function, form of the objective 

function, parameter bounds, population size, etc. This is a major advancement with respect 

to earlier versions of the methodology, which did not implement parameter estimation. 

 

 



24 
 

4. Case study 

The disaggregation methodology was tested on a 69-year time series of 5-min rainfall 

data, collected from a single site in Bochum (Germany). This extensive dataset has been 

used in the past by Kaczmarska et al. (2014) to assess the applicability of different Bartlett-

Lewis models in the modeling of rainfall from 5-minute up to the daily scale. In the present 

work, taking advantage of the good fitting achieved for a series of model variants, we 

applied the disaggregation methodology to generate 5-minute synthetic data that sum up 

exactly to the historical daily values. The analysis was conducted on a monthly basis, due to 

the seasonality that rainfall characteristics exhibit, and for multiple time scales, i.e., from 5-

minute up to daily.  

In the present case study, two variants of the Bartlett-Lewis model, with 

exponentially distributed cell intensities, were used, i.e., the original, 5-parameter, RPBL 

model (Rodriguez-Iturbe et al., 1987) as well as the 6-parameter, BLRPRX, random model 

with randomized intensity parameter (Kaczmarska et al., 2014). The selection of these two 

models was based on a comparative analysis, on Bochum’s data, which showed that the 

BLRPRX model outperforms the two instantaneous pulse models, i.e., BLIP and BLIPR 

models, intended for the reproduction of variability of sub-hourly rainfall (Kaczmarska et 

al., 2014). In addition, the same analysis revealed that the 6-parameter randomized BLRPR 

model achieves an equally good fitting with the RPBL model, and hence the most 

parsimonious model is selected for further analysis. The performance of the two models 

was assessed in terms of preserving the main statistical characteristics of observed data, 

both in the sequential simulation and disaggregation framework. 
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The parameter sets used in the present study were based on the findings of 

Kaczmarska et al. (2014) who achieved a good fit of the RPBL and BLRPRX model onn the 

Bochum dataset, for a wide range of time scales and properties. Following the Wheater et 

al. (2005) approach, the afore-mentioned authors employed a two-step approach that 

handles model fitting as optimization problem where the objective is the minimization of 

the departure between the theoretical expressions of the moments and the corresponding 

observed values. Initially, a number of optimizations are performed via the downhill 

simplex algorithm (Nelder and Mead, 1965), using different starting values for the 

parameters. Then, a gradient-based method runs several times in order to refine further 

the optimum solution obtained from the first step (Chandler et al., 2010). 

The optimization problem was formulated according to the generalized method of 

moments, with the number of properties inserted in the objective function exceeding the 

number of model parameters (Jesus and Chandler, 2011). In this framework, the properties 

included in the fitting procedure were the mean of hourly rainfall as well as the coefficient 

of variation, lag-1 auto-correlation, and skewness at time scales of 5-minutes, 1 hour, 6 

hours and 24 hours. Despite the fact that the proportion dry could also be included in the 

fitting as an important property of the process, it is kept as validation criterion for 

assessing the models’ performance. 

All simulations were performed using HyetosMinute package. Regarding the 

parameters of the disaggregation scheme, a preliminary analysis showed that the optimum 

value for the maximum allowed distance    is 0.1 and for the maximum number of total 

repetitions    is 5000. Despite the fact that smaller values for    lead to better results for 

some statistics (e.g. skewness) and for some months, the computational time becomes 
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extremely high without any noticeable improvement in the overall performance, i.e. 

different time scales and months. At the same time, higher values of    parameter (e.g. 

10000) do not result in bias reduction. 

As it has already mentioned above, the evaluation of the disaggregation scheme as 

well as of the Bartlett-Lewis model suites was conducted on the basis of certain statistical 

properties of rainfall at 5-minute, 1-, 6- and 24-hour time scales. Graphical representations 

of the results are given in Fig. 3 through Fig. 11. Each graph displays a specific property for 

all months, deriving from: historical data, simulated data without disaggregation via the 

RPBL and BLRPRX model, and finally disaggregated data using the two models. Having the 

5-minute rainfall depths generated by the model, the data at coarser temporal scales were 

obtained via aggregation. Given that the disaggregation scheme establishes full consistency 

between 5-min and daily scale, in the plots of the 24-hour statistics, the disaggregated data 

match the observed exactly.  

The statistical properties that are explicitly preserved by the Bartlett-Lewis models, 

i.e., mean, variance, lag-1 correlation and skewness coefficient, are displayed in Fig. 3 to Fig. 

6. Regarding the mean and variance of rainfall depth, a very good agreement between the 

historical and disaggregated series was achieved for all months and time scales. The small 

overestimation that is noticed in the variance of summer months is mainly attributed to the 

large proportion of zero values and the high skewness coefficients that data exhibit in these 

months (see section 2.2 for more details on possible sources of bias). In terms of the 

coefficient of skewness (Fig. 5), the disaggregation model follows in general the 

performance of the rainfall models. It is clear that both RPBL and BLRPRX models tend to 

underestimate the skewness, especially in summer months and at the 5-min time scale, 
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while a better approximation is achieved with the BLRPRX model. As in the case of variance, 

the disaggregation process introduces a slight positive bias at the 5-min and 1-hour 

theoretical skewness of RPBL model, which in this case leads to a better approximation of 

historical values. As we can see this bias is significantly smaller than the departure between 

the historical and the theoretical values, and, hence, a better fit of the rainfall models 

regarding skewness coefficient can lead to the better performance of the disaggregation 

model. Regarding the lag-1 autocorrelation coefficient (Fig. 6), the rainfall models achieve a 

very good fitting to the historical values, while an underestimation is noticed at 24-hour 

time scale. As it is obvious, the disaggregation model with both rainfall models also 

preserves exactly the coefficients at 5-min and 1-hour scales, introducing a small negative 

bias in the values of the 6-hour scale.    

Fig. 7 displays the proportion of dry intervals in the entire period. As previously 

discussed, this property has not been introduced in the fitting procedure of the rainfall 

models, and, hence, it is a validation criterion both for Bartlett-Lewis models and 

disaggregation scheme. We observe that, for all time scales and months, the BLRPRX model 

achieves a better approximation of the historical values compared to the RPBL model, 

while some higher discrepancies are noticed in summer months. In the disaggregation 

framework, the two rainfall models exhibit different behaviours. The repetitions schemes 

and adjusting procedures do not introduce any bias in the case of RPBL model, while in the 

case of BLRPRX model, the disaggregated series have higher values of proportion dry 

compared to the theoretical property of the model. However, in the disaggregation, the 

model BLRPRX remains superior to the original RPBL model. To further improve model 
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performance, the proportion dry can be inserted in the fitting procedure, enabling the 

better preservation of this property.  
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Fig. 3. Comparison of mean of the historical and synthetic data, by month. 

 

Fig. 4. Comparison of variance of the historical and synthetic data, by month. 
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Fig. 5. Comparison of coefficient of skewness of the historical and synthetic data, by month. 
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Fig. 6. Comparison of Lag-1 autocorrelation coefficient of the historical and synthetic data, by 
month.  

 
Fig. 7. Comparison of proportion of dry intervals of the historical and synthetic data, by month. 
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Additionally, a series of rainfall depth conditional statistics are examined to assess the 

performance of the rainfall models as well as the disaggregation scheme. Specifically, the 

mean, variance and skewness coefficient of non-zero rainfall depths of simulated, 

disaggregated and historical data were obtained and depicted in Fig. 8 to Fig. 10. It should 

be mentioned that none of these properties were included in the fitting procedure and 

subsequently, their explicit preservation is not ensured by the models. As we observe both 

models tend to overestimate the mean of non-zero depths of summer months at all time 

scales of interest, while it is clear that the BLRPRX model performs better. The 

disaggregated series are in close agreement with the simulated without disaggregation, and 

hence we can say that no bias is introduced in that property. In terms of variance of non-

zero values, simulated series from both models agree well with the historical series, while 

the BLRPRX model outperforms the original model. As in the variance of full series, the 

disaggregation creates a slight positive bias, especially in the 5-min time scale of summer 

months for which the variance is considerable high. Finally, Fig. 10 displays the skewness 

coefficient of non-zero values. As it is shown, both rainfall models considerably 

underestimate the conditional skewness at fine time scales (i.e., 5-minute and 1-hour), 

while significant improvement is achieved after applying the disaggregation model’s 

adjustment procedure to the data generated by the BLRPRX model. 
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Fig. 8. Comparison of mean of non-zero depths of the historical and synthetic data, by month. 
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Fig. 9. Comparison of variance of non-zero depths of the historical and synthetic data, by month. 
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Fig. 10. Comparison of coefficient of skewness of non-zero depths of the historical and synthetic 

data, by month.  

 

Finally, the performance of the disaggregation scheme in reproducing the distribution 

of maximum rainfall depths is examined. Specifically, data records from July were chosen 

due to the fact that this is the month with the highest variability and coefficient of 

skewness. The annual maximum rainfall depths of the historical, simulated and 

disaggregated series were plotted on Gumbel probability plots which are presented in Fig. 

11. As it is shown, the synthetic data, generated via sequential simulation from RPBL and 

BLRPRX models, underestimate the extremes of the historical series, despite the fact that 

the latter model shows a better performance. In this type of simulation, the performance of 

the two models may be improved by incorporating a longer-tail distribution, such as 

gamma or Weibull, for cell intensities. On the contrary, the rainfall maxima obtained by 
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disaggregation are in close agreement with the historical ones, while the new model with 

dependent cell intensity-duration outperforms the original one, for all time scales. 

Subsequently, the information contained in the daily totals and the positive bias introduced 

by the adjusting procedure account for the improvement brought about by disaggregation 

as opposed to mere simulation.  

 
Fig. 11. Comparison of empirical distribution of maximum rainfall depths of the historical and 

synthetic data for July.   
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5. Conclusions and future directions 

Long rainfall time series at fine scales are required for many applications within the 

field of water resources and environmental management. However, such data are often 

limited in the real world. In order to cope with this problem, disaggregation techniques can 

be deployed to enhance the available data records with possible, statistically consistent, 

realizations of rainfall events that aggregate up to the field data collected at coarser scales. 

This study extends a well-established disaggregation scheme, initially developed for 

the generation of hourly rainfall depths, to generate sub-hourly data down to the 1-minute 

time scale. Further to that and in order to enable the adequate reproduction of the high 

variability that rainfall exhibits at super-fine time scales, the recently developed Bartlett-

Lewis model that assumes dependence between cell intensity and duration was introduced 

in the scheme. This model is combined with proven transformations in order to adjust the 

generated rainfall depths so as to be consistent with the given daily data. To improve model 

performance and reduce the bias in the statistics that are not explicitly preserved by the 

process, a repetition scheme is incorporated in the process. In the framework of the 

present work, an R package, named HyetosMinute, which implements the extended 

disaggregation scheme as well as the rainfall model was developed. 

As a test case of the proposed extension, the disaggregation of a daily rainfall series 

(from Bochum, Germany) into 5-minute depths was studied. Further to the new model with 

dependent intensity and duration (random with 6 parameters), as rainfall generator we 

also use the original Bartlett-Lewis model (non-random with 5 parameters) to enable 

comparisons. The results indicate that the statistical characteristics of disaggregated data, 

from both models, are in close agreement with those of observed data, while the model 
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with randomised intensity parameter achieves a better performance with respect to 

skewness, proportion dry and rainfall extremes. 

As a continuation of this work, our research will now focus on a series of challenging 

issues. Firstly, further assessment and validation of the proposed disaggregation 

methodology using rainfall datasets from different climatic conditions. The application of 

the disaggregation methodology without reference to data of the lower time scale should 

also be examined. This case corresponds to a fully operational scenario where the 

statistical properties of the target time scale are not introduced in the fitting procedure of 

the Bartlett-Lewis model. In the same framework, preliminary analysis showed that the 

performance of our disaggregation methodology is closely associated with the adequacy of 

the fit of the rainfall model to the observed statistics as well as with the properties that are 

included in the fitting procedure. This motivates a detailed sensitivity analysis of the 

disaggregation model to capture the stochastic structure implied by the rainfall model. 

Furthermore, the use of other types of distributions for cell intensities, e.g. gamma, Weibull 

and Pareto distribution, should also be considered in order to reveal the potential 

improvement in statistical characteristics such as skewness and extreme value 

performance. The comparison of the proposed methodology against other sub-hourly 

disaggregation methods with different theoretical backgrounds, such as multifractal 

modelling, cascade and micro-cascade techniques, is of particular importance to further 

investigate the advantages and disadvantages of the method. Finally, various extensions of 

the HyetosMinute package are already under development. These concern the 

incorporation of the new variants of the Bartlett-Lewis clustering mechanism, including the 
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variants that imply a third level of temporal structure, as well as greater flexibility in the 

choice of distribution for cell intensities.  
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