Εθνικό Μετσωβιο Πολυτεχνείο
Σχολή Πολιτικών Μηχανικών
Τομέας Υδατικών Πορών & Περιβάλλοντος

Μεθόδολογια Βελτιστής Χωροθετήσης και Διαστασιολογήσης Φωτοβολταϊκών & Αιολικών Παρκών με Χρήση Συστήματων Γεωγραφικών Πληροφοριών (GIS)

Εφαρμογή στην Περιφέρεια Θεσσαλίας

Ολυμπία Δασκάλου

Επιβλέπων: Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ
Συνεπιβλέπων: Ανδρέας Ευστρατιάδης, ΕΔΙΠ

Ιούλιος 2016, Αθήνα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΜΕΘΟΔΟΛΟΓΙΑ ΒΕΛΤΙΣΤΗΣ ΧΩΡΟΘΕΤΗΣΗΣ ΚΑΙ
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΦΩΤΟΒΟΛΤΑΪΚΩΝ & ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ ΜΕ
ΧΡΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ (GIS)

ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

Ολυμπία Δασκάλου

Επιβλέπων: Δημήτρης Κουτσογιάννη, Καθηγητής ΕΜΠ
Συνεπιβλέπων: Ανδρέας Ευστρατιάδης, ΕΔΙΠ

Ιούλιος 2016, Αθήνα

Το περιεχόμενο της ανά χείρας διπλωματικής εργασίας αποτελεί προϊόν της δικής μου πνευματικής
προσπάθειας. Η ενσωμάτωση σε αυτήν υλικού τρίτων, δημοσιευμένου ή μη, γίνεται με δόκιμη
αναφορά στις πηγές, που δεν επιτρέπει ασάφειες ή παρερμηνεύει.
«...Το να πετάς είναι το αντίθετο του να ταξιδεύεις: διαπερνάς την ασυνέχεια του χώρου, εξαφανίζεσαι στο κενό, δέχεσαι συνειδητά να μην βρίσκεσαι σε κανέναν τόπο, για μια διάρκεια που είναι και αυτή είναι ένα είδος κενού στο χρόνο· υστέρα επανεμφανίζεσαι σε ένα μέρος και σε μια στιγμή που δεν έχουν καμία σχέση με τα που και τα πότε από τα οποία είχες εξαφανιστεί. Και εσύ τι κάνεις στο μεταξύ; πως απασχολείς αυτή την απουσία σου από τον κόσμο και την απουσία του κόσμου από σένα;...»

Italo Calvino, Αν μια νύχτα του χειμώνα ένας ταξιδιώτης
ΕΥΧΑΡΙΣΤΙΕΣ

Προλογίζοντας αυτή την προσπάθεια συστηματικής δουλειάς περίπου οχτώ μηνών, πρέπει να ευχαριστήσω πολλούς ανθρώπους, που βοήθησαν ο καθένας με τον τρόπο του στην εκπόνηση αυτής της εργασίας και το κλείσιμο των προπτυχιακών μου σπουδών στη Σχολή Πολιτικών Μηχανικών ΕΜΠ.

Στην αρχή αυτού του μακρύ καταλόγου, οφείλω να ευχαριστήσω τον επιβλέποντά μου, Δημήτρη Κουτσογιάννη, ο όποιος με τον ιδιαίτερο τρόπο σκέψης και την παρουσία του στις διδακτικές αίθουσες αποτέλεσε πρότυπο επιστήμονα, καθηγητή αλλά και ανθρώπου, επηρεάζοντας την επιλογή της παρούσας εργασίας και σίγουρα την ευρύτερη προσέγγισή μου σαν μαθητευόμενης μηχανικού.

Πρέπει να ευχαριστήσω επίσης, πολλά μέλη της επιστημονικής ομάδας Ιτίας που με την παρέα και τις συμβουλές τους αυτούς τους μήνες στον τομέα υδατικών πόρων διανύθηκαν το διάστημα εκπόνησης της διπλωματικής μου εργασίας.

Ειδικά, για τον ορισμό του πλαισίου της εργασίας, τις συμβουλές για την διαμόρφωση της διάρθρωσης και την επιμέλεια του κειμένου οφείλω ειδικευμένες ευχαριστίες στον Ανδρέα Ευστρατιάδη. Η συμβολή του ήταν καθοριστική όχι μόνο για την εφαρμογή της εργασίας, αλλά και την παρουσίαση μέρους της στο συνέδριο της European Geoscience Union τον Απρίλη και μετέπειτα τον Μάιο σε αυτό της Marathon Data Systems.

Για τις παραπάνω παρουσιάσεις, την αμέριστη βοήθεια στα πρώτα βήματα χρήσης του λογισμικού, αλλά και την παροχή δεδομένων για την εφαρμογή της μεθοδολογίας χωροθέτησης οφείλω να ευχαριστήσω τον Αντώνη Κουκουβίνο. Η βοήθεια του ήταν καθοριστική στην εκμάθηση και εξοικείωση με τα Συστήματα Γεωγραφικών Πληροφοριών.

Ευχαριστώ επίσης ιδιαίτερα, τον Νίκο Μαμάς, που με εισήγαγε ήδη από το 2ο έτος στον τομέα της ενεργειακής τεχνολογίας και έδωσε επίσης ειδικευμένες κατευθύνσεις κατά τη διάρκεια εκπόνησης της εργασίας. Δεν μπορούσα να παραλείψω και τον Αντώνη Χριστοφίδη, τόσο για την βοήθεια στην εισαγωγή της πρώτης μου χρονοσειράς στον Υδρογνώμονα, όσο και την παρέα τους πρώτους μήνες εκπόνησης της Διπλωματικής.

Ακόμη, ιδιαίτερες ευχαριστίες οφείλω στον υποψήφιο Διδάκτορα Παναγιώτη Δημητριάδη, που κατάφερε να μου μεταδώσει τον ερευνητικό του οίστρο και έδωσε ιδιαίτερα χρήσιμες κατευθύνσεις κατά τη διάρκεια εκπόνησης της εργασίας. Δεν μπορούσα να παραλείψω και τον Αντώνη Χριστοφίδη, τόσο για την βοήθεια στην εισαγωγή της πρώτης μου χρονοσειράς στον Υδρογνώμονα, όσο και την παρέα τους πρώτους μήνες εκπόνησης της Διπλωματικής.

Ακόμη, ιδιαίτερες ευχαριστίες οφείλω στον υποψήφιο Διδάκτορα Παναγιώτη Δημητριάδη, που κατάφερε να μου μεταδώσει τον ερευνητικό του οίστρο και έδωσε ιδιαίτερα χρήσιμες κατευθύνσεις κατά τη διάρκεια εκπόνησης της εργασίας. Ευχαριστώ επίσης, τον Διδάκτορα Παναγιώτη Δημητριάδη, που κατάφερε να μου μεταδώσει τον ερευνητικό του οίστρο και έδωσε ιδιαίτερα χρήσιμες κατευθύνσεις κατά τη διάρκεια εκπόνησης της εργασίας. Ευχαριστώ επίσης, τον Διδάκτορα Γιάννη Κατσίρη για την βοήθεια στην προσπάθεια εκτίμησης του ηλιακού δυναμικού, αλλά και την υποψήφια Διδάκτορα Άννα Χατζηγιάννη για την παρέα της στο «γραφείο» όλους αυτούς τους μήνες. Οφείλω ακόμη να ευχαριστήσω και τον Κώστα Ππαπαδημητόγλου για την εισαγωγή στην παρουσία των στοχαστικών μεθόδων.
Σε προσωπικό επίπεδο, θέλω να ευχαριστήσω την οικογένεια μου, που με τον τρόπο της συνέβαλε στην αριστεία μου σε αυτό τον κύκλο σπουδών αλλά και πολλούς άλλους μεγαλύτερης ίσως σημασίας. Τέλος, θέλω να ευχαριστήσω τους συμφοιτητές και φίλους με τους οποίους αλληλεπιδράσαμε κατά την διάρκεια των σπουδών, εντός και έκτος πολυτεχνείου, χωρίς τους οποίους η συνολική εμπειρία θα ήταν σίγουρα φτωχότερη σε αναμνήσεις και εμπειρίες.

Ολυμπία Δασκάλου,
16 Ιουλίου 2016
ΠΕΡΙΕΧΟΜΕΝΑ

ΕΥΧΑΡΙΣΤΙΕΣ ... vi
ΠΕΡΙΕΧΟΜΕΝΑ ... vii
ΕΥΡΕΤΗΡΙΟ ΕΙΚΟΝΩΝ .. xi
ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ .. xiv
ΕΥΡΕΤΗΡΙΟ ΔΙΑΓΡΑΜΜΑΤΩΝ ... xviii
ΠΙΝΑΚΑΣ ΣΥΝΤΟΜΟΓΡΑΦΙΩΝ .. xix
ΠΕΡΙΛΗΨΗ ΕΡΓΑΣΙΑΣ ... xxi
1 ΕΙΣΑΓΩΓΗ .. 1
 1.1 ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ ... 1
 1.2 ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΤΟΧΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ .. 2
 1.3 ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΕΡΓΑΣΙΑΣ ... 2
2 ΣΥΓΧΡΟΝΟ ΠΛΑΙΣΙΟ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΑΠΕ & ΙΔΙΑΙΤΕΡΟΤΗΤΕΣ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ 5
 2.1 Ο ΡΟΛΟΣ ΤΩΝ ΑΠΕ ΣΤΟΝ ΣΥΓΧΡΟΝΟ ΕΝΕΡΓΕΙΑΚΟ ΣΧΕΔΙΑΣΜΟ .. 5
 2.2 ΕΠΙΠΤΩΣΕΙΣ ΑΠΟ ΤΗ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ ... 6
 2.3 ΤΕΧΝΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ ΧΩΡΟΘΕΤΗΣΗΣ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ & ΕΠΙΔΡΑΣΗ ΟΜΟΡΟΥ 7
 2.4 ΙΔΙΑΙΤΕΡΟΤΗΤΕΣ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΑΝΑΠΤΥΞΗ ΑΠΕ 7
3 ΕΘΝΙΚΗ ΚΑΙ ΚΟΙΝΟΤΙΚΗ ΝΟΜΟΘΕΣΙΑ ΓΙΑ ΤΗΝ ΑΝΑΠΤΥΞΗ ΤΩΝ ΑΠΕ ... 9
 3.1 ΓΕΝΙΚΑ ΠΕΡΙ ΕΛΛΗΝΙΚΗΣ «ΕΝΕΡΓΕΙΑΚΗΣ ΝΟΜΟΘΕΣΙΑΣ» ... 9
 3.2 ΚΟΙΝΟΤΙΚΗ ΝΟΜΟΘΕΣΙΑ ... 10
 3.3 ΕΘΝΙΚΗ ΝΟΜΟΘΕΣΙΑ ... 12
 3.3.1 ΕΠΙΣΚΑΛ ΠΤΙΣ ΑΠΕ .. 16
 3.3.2 ΝΟΜΟΣ 3851/2010 .. 25
 3.4 ΑΔΕΙΟΔΟΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ .. 26
4 ΜΕΘΟΔΟΛΟΓΙΑ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠΕ ΚΑΙ ΣΧΕΤΙΚΑ ΕΡΓΑΛΕΙΑ .. 28
 4.1 ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΠΙΣΚΟΠΗ ΜΕΘΟΔΟΛΟΓΙΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠΕ .. 28
 4.2 ΤΑ ΣΓΠ ΩΣ ΕΡΓΑΛΕΙΟ ΑΝΑΠΤΥΞΗΣ ΜΟΝΤΕΛΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠΕ 31
4.3 ΜΕΘΟΔΟΛΟΓΙΚΟ ΣΧΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΑΠΕ ..33

5 ΑΝΑΛΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΤΑΣΗΣ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ ..36

5.1 ΔΕΔΟΜΕΝΑ ΚΑΙ ΠΑΡΑΔΟΧΕΣ ...36

5.2 ΓΕΩΜΟΡΦΟΛΟΓΙΑ & ΤΟΠΟΓΡΑΦΙΑ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ ..38

5.3 ΥΔΡΟΚΛΙΜΑΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ...40

5.4 ΠΕΡΙΟΧΕΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ..42

5.5 ΧΡΗΣΕΙΣ ΓΗΣ ..45

5.5.1 CORINE 2000 ..45

5.5.2 ΛΑΤΟΜΙΚΕΣ ΖΩΝΕΣ ΥΠΕΝ ...47

5.6 ΔΙΟΙΚΗΤΙΚΑ, ΠΛΗΘΥΣΜΙΑΚΑ ΣΤΟΙΧΕΙΑ & ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ48

5.7 ΠΕΡΙΟΧΕΣ ΠΟΛΙΤΙΣΤΙΚΟΥ & ΤΟΥΡΙΣΤΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ...52

5.8 ΥΠΟΔΟΜΕΣ ..53

5.8.1 ΟΔΙΚΟ ΚΑΙ ΣΙΔΗΡΟΔΡΟΜΙΚΟ ΔΙΚΤΥΟ ..53

5.8.2 ΑΕΡΟΔΡΟΜΙΑ & ΛΙΜΑΝΙΑ ...54

5.8.3 ΗΛΕΚΤΡΙΚΟ ΔΙΚΤΥΟ ΔΙΑΝΟΜΗΣ ΚΑΙ ΜΕΤΑΦΟΡΑΣ ΕΝΕΡΓΕΙΑΣ ..54

5.9 ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΕ ΣΤΗΝ ΘΕΣΣΑΛΙΑ ..57

6 ΑΙΟΛΙΚΟ & ΗΛΙΑΚΟ ΔΥΝΑΜΙΚΟ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ..61

6.1 ΑΙΟΛΙΚΟ ΔΥΝΑΜΙΚΟ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ..61

6.1.1 ΧΑΡΤΕΣ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ ΑΠΟ ΤΟ ΚΑΠΕ ΚΑΙ ΤΗ ΡΑΕ ..62

6.1.2 ΕΚΤΙΜΗΣΗ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ ΜΕ ΣΤΟΧΑΣΤΙΚΟ ΜΟΝΤΕΛΟ67

6.2 ΗΛΙΑΚΟ ΔΥΝΑΜΙΚΟ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ...70

6.2.1 ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗΣ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ..73

7 ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΔΥΝΗΤΙΚΩΝ ΠΕΡΙΟΧΩΝ ΑΝΑΠΤΥΞΗΣ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ....76

7.1 ΚΑΘΟΡΙΣΜΟΣ ΖΩΝΩΝ ΑΠΟΚΛΕΙΣΜΟΥ/ΑΣΥΜΒΑΤΟΤΗΤΑΣ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ76

7.2 ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΠΡΕΠΟΜΕΝΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ ..79

7.2.1 ΚΡΙΤΗΡΙΟ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ ..80

7.2.2 ΚΡΙΤΗΡΙΟ ΚΛΙΣΕΩΝ ΕΔΑΦΟΥΣ ..82

7.2.3 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΟΔΙΚΟ ΔΙΚΤΥΟ ...83

7.2.4 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΙΚΤΥΟ ΔΙΑΝΟΜΗΣ ΚΑΙ ΜΕΤΑΦΟΡΑΣ ...84
7.2.5 ΚΡΙΤΗΡΙΟ ΥΨΟΜΕΤΡΟΥ .. 85
7.2.6 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ ... 86
7.2.7 ΚΡΙΤΗΡΙΟ ΑΠΟΣτΑΣΗΣ ΑΠΟ ΤΗΝ ΑΚΤΟΓΡΑΜΜΗ ΚΑΙ ΤΑ ΥΔΑΤΙΝΑ ΣΩΜΑΤΑ 88
7.2.8 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΥΓΡΟΤΟΠΟΥΣ, ΛΙΜΝΕΣ & ΖΕΠ NATURA 2000 89
7.3 ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΤΑΛΛΗΛΟΤΗΤΑΣ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ .. 90
7.4 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΚΡΙΤΗΡΙΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ .. 93
7.5 ΕΠΙΛΟΓΗ ΒΙΩΣΙΜΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ ... 95
7.6 ΑΞΙΟΛΟΓΗΣΗ ΑΔΕΙΟΔΟΤΗΜΕΝΩΝ ΑΠ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ... 97
7.7 ΕΝΑΛΛΑΚΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΓΙΑ ΑΝΕΜΟΓΕΝΝΗΡΙΕΣ ΥΨΗΛΟΤΕΡΟΥ ΠΥΡΓΟΥ 98
8 ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΔΥΝΗΤΙΚΩΝ ΠΕΡΙΟΧΩΝ ΑΝΑΠΤΥΞΗΣ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΠΑΡΚΩΝ ... 101
 8.1 ΚΑΘΟΡΙΣΜΟΣ ΖΩΝΩΝ ΑΠΟΚΛΕΙΣΜΟΥ/ΑΣΥΜΒΑΤΟΤΗΤΑΣ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ ... 101
 8.2 ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΤΡΕΠΟΜΕΝΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ ... 104
 8.2.1 ΚΡΙΤΗΡΙΟ ΗΛΙΑΚΟΥ ΔΥΝΑΜΙΚΟΥ ... 105
 8.2.2 ΚΡΙΤΗΡΙΟ ΚΛΙΣΕΩΝ ΕΔΑΦΟΥΣ ... 106
 8.2.3 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΟΔΙΚΟ ΔΙΚΤΥΟ .. 108
 8.2.4 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΙΚΤΥΟ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΝΟΜΗΣ Error! Bookmark not defined.
 8.2.5 ΚΡΙΤΗΡΙΟ ΥΨΟΜΕΤΡΟΥ ... 110
 8.2.6 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ .. 111
 8.2.7 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΑΚΤΟΓΡΑΜΜΗ & ΥΔΑΤΙΝΑ ΣΩΜΑΤΑ 113
 8.2.8 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΛΙΜΝΕΣ & ΥΓΡΟΤΟΠΟΥΣ ... 114
8.3 ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΤΑΛΛΗΛΟΤΗΤΑΣ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ .. 115
8.4 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΚΡΙΤΗΡΙΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ .. 118
8.5 ΕΠΙΛΟΓΗ ΒΙΩΣΙΜΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ ... 119
8.6 ΑΞΙΟΛΟΓΗΣΗ ΑΔΕΙΟΔΟΤΗΜΕΝΩΝ ΦΠ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ... 121
9 ΑΝΑΠΤΥΞΗ ΣΥΝΔΥΑΣΜΕΝΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΑΠΕ .. 122
 9.1 ΥΒΡΙΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΠΕ & Ο ΡΟΛΟΣ ΤΟΥ ΝΕΡΟΥ .. 122
9.2 ΤΟ ΠΡΟΒΛΗΜΑ ΣΥΝΔΙΑΧΕΙΡΗΣΗΣ ΝΕΡΟΥ ΚΑΙ ΕΝΕΡΓΕΙΑΣ .. 123

9.3 ΠΡΟΟΠΤΙΚΕΣ ΣΥΝΧΩΡΟΘΕΤΗΣΗΣ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ... 125

10 ΣΥΜΠΕΡΑΣΜΑΤΑ, ΣΗΜΕΙΑ ΒΕΛΤΙΩΣΗΣ & ΜΕΛΛΟΝΤΙΚΟΙ ΤΟΜΕΙΣ ΠΡΟΣ ΔΙΕΡΕΥΝΗΣΗ 128

10.1 ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ... 128

10.2 ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΧΩΡΟΘΕΤΗΣΗΣ 128

10.3 ΣΗΜΕΙΑ ΒΕΛΤΙΩΣΗΣ & ΜΕΛΛΟΝΤΙΚΟΙ ΤΟΜΕΙΣ ΠΡΟΣ ΔΙΕΡΕΥΝΗΣΗ 130

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ .. 132

ΠΑΡΑΡΤΗΜΑ .. 135
ΕΥΡΕΤΗΡΙΟ ΕΙΚΟΝΩΝ

Εικόνα 3.1 Διάκριση της ελληνικής επικράτειας σε ΠΑΚ και ΠΑΠ βάσει του ΕΠΧΣΑΑ για τις ΑΠΕ (ΥΠΕΚΑ, 2008) .. 17
Εικόνα 3.2 Εφαρμογή κριτηρίου ένταξης στο τοπίο από το ΕΠΧΣΑΑ για τις ΑΠΕ (ΥΠΕΚΑ, 2008) ... 24
Εικόνα 4.1 Το περιβάλλον του ArcGIS 10 με το Workspace του ArcMap σε Layout View.............. 32
Εικόνα 4.2 Μεθοδολογικό σχήμα χωροθέτησης ΑΠΕ με χρήση GIS και MCA................................. 34
Εικόνα 5.1 Υψομετρικός χάρτης της Περιφέρειας Θεσσαλίας.. 39
Εικόνα 5.2 Κλίσεις εδάφους (%) της Περιφέρειας Θεσσαλίας..
Εικόνα 5.3 Υδρογραφικό δίκτυο, ταμιευτήρες και ακτές παρακολούθησης υδάτων του ΥΠΕΝ.................................
Εικόνα 5.4 Περιοχές περιβαλλοντικού ενδιαφέροντος (EEA, 2015)...
Εικόνα 5.5 Χρήσεις γης στην Περιφέρεια Θεσσαλίας κατά Corine 2000 (EEA,2015)...................
Εικόνα 5.6 Λατομικές ζώνες Περιφέρειας Θεσσαλίας (ΛΑΤΟΜΕΤ, 2016).................................
Εικόνα 5.7 Οικισμοί και διοικητικά όρια της Περιφέρειας Θεσσαλίας (ΕΛΣΤΑΤ, 2015).......... 49
Εικόνα 5.8 Οδικό, σιδηροδρομικό δίκτυο και αεροδρόμια Περιφέρειας Θεσσαλίας......................
Εικόνα 5.9 Δίκτυο διανομής και μεταφοράς ηλεκτρικής ενέργειας (ΑΔΜΗΕ, 2013)..................
Εικόνα 5.10 Εγκαταστάσεις φωτοβολταϊκών ανάλογα με το στάδιο αδειοδότησης (ΡΑΕ, 2016).......
Εικόνα 5.11 Αιολικές εγκαταστάσεις ανάλογα με το στάδιο αδειοδότησης (ΡΑΕ, 2016).........
Εικόνα 5.12 Κάλυψη της επιτρεπόμενης πυκνότητας χωροθέτησης αιολικών εγκαταστάσεων ανά ΔΕ της Περιφέρειας Θεσσαλίας (ΡΑΕ, 2016)... 59
Εικόνα 6.1 Χάρτης αιολικού δυναμικού στα 80 m υψόμετρο για την Ελλάδα (ΡΑΕ, 2016)......... 61
Εικόνα 6.2 Χάρτης εκμεταλλεύσιμου αιολικού δυναμικού για το Νομό Λάρισας (ΚΑΠΕ, 2001)..... 64
Εικόνα 6.3 Μέση ετήσια ταχύτητα ανέμου (m/s) στα 80 m υψόμετρο (ΡΑΕ, 2016)..................... 65
Εικόνα 6.4 Μέση ετήσια ταχύτητα ανέμου (m/s) στα 100 m υψόμετρο (ΡΑΕ, 2016)............... 66
Εικόνα 6.5 Μέση ετήσια ταχύτητα ανέμου (m/s) στα 120 m υψόμετρο (ΡΑΕ, 2016).............. 66
Εικόνα 6.6 Σταθμοί NOAA και ΕΑΑ, με κόκκινο και πράσινο χρώμα, αντίστοιχα (Dimitriadis et al., 2015)... 67
Εικόνα 6.7 Περιοχές που λαμβάνουν μηνιαίες τιμές δυνητικής ηλιακής ακτινοβολίας που βρίσκονται στο άνω (με κόκκινο) και στο κάτω 5% (με μπλε) του συνόλου των τιμών του δείγματος για τον Ιούλιο (Αποστολίδου, 2007) .. 71
Εικόνα 6.8 Χάρτης ηλιακού δυναμικού για την Ελλάδα (PVGIS © European Union, 2001-2012) 72
Εικόνα 6.9 Περιβάλλον του εργαλείου υπολογισμού ηλιακής ακτινοβολίας Area Solar Radiation 73
Εικόνα 6.10 Συνολική μηνιαία ηλιακή ακτινοβολία για τον Ιούλιο (αριστερά) και Δεκέμβριο (δεξιά) .. 74
Εικόνα 6.11 Ετήσια ηλιακή ακτινοβολία στην επιφάνεια του εδάφους για την Περιφέρεια Θεσσαλίας .. 75
Εικόνα 6.12 Προσανατολισμός εδάφους Περιφέρειας Θεσσαλίας .. 75
Εικόνα 7.1 Επιτρεπόμενες περιοχές χωροθέτησης ΑΠ Σεναρίου 1 ... 77
Εικόνα 7.2 Επιτρεπόμενες περιοχές χωροθέτησης ΑΠ Σενάριο 2 .. 79
Εικόνα 7.3 Κριτήριο αιολικού δυναμικού .. 81
Εικόνα 7.4 Κριτήριο κλίσης εδάφους για χωροθέτηση ΑΠ .. 82
Εικόνα 7.5 Κριτήριο απόστασης από το οδικό δίκτυο για χωροθέτηση ΑΠ 83
Εικόνα 7.6 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής ενέργειας 85
Εικόνα 7.7 Κριτήριο υψόμετρου για την χωροθέτηση ΑΠ .. 86
Εικόνα 7.8 Κριτήριο απόστασης από οικιστικές περιοχές για χωροθέτηση ΑΠ 87
Εικόνα 7.9 Κριτήριο απόστασης από ακτογραμμή και υδάτινα σώματα 88
Εικόνα 7.10 Κριτήριο απόστασης από περιοχές περιβαλλοντικής σημασίας 89
Εικόνα 7.11 Αξιολόγηση Περιφερειας Θεσσαλίας για χωροθέτηση ΑΠ με εφαρμογή 8 κριτηρίων 91
Εικόνα 7.12 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σεναρίου 1 92
Εικόνα 7.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σενάριο 2 93
Εικόνα 7.14 Αξιολόγηση επιτρεπόμενων περιοχών Σεναρίου 2 για τα τεχνικά κριτήρια 94
Εικόνα 7.15 Αξιολόγηση επιτρεπόμενων περιοχών Σεναρίου 2 για τα περιβαλλοντικά κριτήρια .94
Εικόνα 7.16 Βιώσιμες περιοχές χωροθέτησης ΑΠ στην Περιφέρεια Θεσσαλίας 96
Εικόνα 7.17 Περιοχές εκμεταλλεύσιμου αιολικού δυναμικού στα 80 m υψόμετρο................ 98
Εικόνα 7.18 Περιοχές εκμεταλλεύσιμου αιολικού δυναμικού στα 100 m υψόμετρο............ 99
Εικόνα 7.19 Περιοχές εκμεταλλεύσιμου αιολικού δυναμικού στα 120 m υψόμετρο............ 99
Εικόνα 8.1 Επιτρεπόμενες περιοχές χωροθέτησης ΦΠ Σεναρίου 1 .. 102
| Εικόνα 8.2 Επιτρεπόμενες περιοχές χωροθέτησης ΦΠ Σεναρίου 2 ... 103 |
| Εικόνα 8.3 Κριτήριο ηλιακού δυναμικού ... 106 |
| Εικόνα 8.4 Κριτήριο κλίσεων εδάφους .. 107 |
| Εικόνα 8.5 Κριτήριο απόστασης από το οδικό δίκτυο .. 108 |
| Εικόνα 8.6 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής ενέργειας .. 110 |
| Εικόνα 8.7 Κριτήριο υψομέτρου ... 111 |
| Εικόνα 8.8 Κριτήριο απόστασης από οικιστικές περιοχές .. 112 |
| Εικόνα 8.9 Κριτήριο απόστασης από ακτογραμμή και υδάτινα σώματα ... 113 |
| Εικόνα 8.10 Κριτήριο απόστασης από λίμνες και υγροτόπους ... 114 |
| Εικόνα 8.11 Αξιολόγηση Περιφερειας Θεσσαλίας για χωροθέτηση ΦΠ με εφαρμογή 8 κριτηρίων 115 |
| Εικόνα 8.12 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 1 116 |
| Εικόνα 8.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 2 117 |
| Εικόνα 8.14 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 2 βάσει τεχνικών κριτηρίων ... 118 |
| Εικόνα 8.15 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 2 βάσει περιβαλλοντικών κριτηρίων ... 119 |
| Εικόνα 8.16 Βιώσιμες περιοχές χωροθέτησης ΦΠ ... 120 |
| Εικόνα 9.1 Η σχέση νερού και ενέργειας στο υδροσύστημα Αχελώου-Πηνειού .. 123 |
| Εικόνα 9.2 Σχηματική απεικόνιση των συνιστωσών ενός υποθετικού συστήματος συνδυασμένης διαχείρισης υδατικών και ενεργειακών πόρων ... 124 |
| Εικόνα 9.3 Περιοχές Σεναρίου 2 για ανάπτυξη υβριδικών πάρκων ... 125 |
| Εικόνα 9.4 Βιώσιμες περιοχές χωροθέτησης υβριδικών πάρκων .. 126 |
ΕΥΡΕΤΗΡΙΟ ΠΙΝΑΚΩΝ

Πίνακας 3.1 Διαθέσιμες λίστες κοινοτικής και εθνικής νομοθεσίας από τους οργανισμούς αγοράς ενέργειας...9
Πίνακας 3.2 Λίστα κοινοτικής νομοθεσίας σχετικά με την ανάπτυξη των ΑΠΕ.........................11
Πίνακας 3.3 Λίστα εθνικών νόμων σχετικά με την ανάπτυξη των ΑΠΕ13
Πίνακας 3.4 Λίστα ΥΑ, Κανονισμών & ΠΔ σχετικά με την ανάπτυξη των ΑΠΕ14
Πίνακας 3.5 (Συνέχεια) Λίστα ΥΑ, Κανονισμών & ΠΔ σχετικά με την ανάπτυξη των ΑΠΕ...........15
Πίνακας 3.6 Χαρακτηριστικά τυπικής ανεμογεννήτριας βάσει του ΕΠΧΣΑΑ για τις ΑΠΕ (ΥΠΕΚΑ, 2008) ...18
Πίνακας 3.7 Αποστάσεις για τη διασφάλιση της λειτουργικότητας και απόδοσης των ΑΠ (ΥΠΕΚΑ, 2008) ..20
Πίνακας 3.8 Αποστάσεις ΑΠ από περιοχές περιβαλλοντικού και πολιτιστικού ενδιαφέροντος (ΥΠΕΚΑ, 2008) ..21
Πίνακας 3.9 Αποστάσεις ΑΠ από οικιστικές δραστηριότητες και δίκτυα τεχνικής υποδομής (ΥΠΕΚΑ,2008)..22
Πίνακας 3.10 Αποστάσεις ΑΠ από ζώνες ή εγκαταστάσεις παραγωγικών δραστηριοτήτων (ΥΠΕΚΑ, 2008) ...23
Πίνακας 5.1 Δεδομένα εισόδου της μεθοδολογίας χωροθέτησης ..37
Πίνακας 5.2 Περιοχές Natura 2000 της Περιφέρειας Θεσσαλίας (ΕΕΑ, 2016)44
Πίνακας 5.3 Υπόμνημα Corine 2000 και ποσοστά κάλυψης ανά χρήση γης στην Περιφέρεια Θεσσαλίας (ΕΕΑ, 2015) ..46
Πίνακας 5.4 (Συνέχεια) Υπόμνημα Corine 2000 και ποσοστά κάλυψης ανά χρήση γης στην Περιφέρεια Θεσσαλίας..47
Πίνακας 5.5 Πληθυσμιακά στοιχεία σε επίπεδο ΠΕ της ηπειρωτικής Θεσσαλίας (ΕΛΣΤΑΤ,2011)...49
Πίνακας 5.6 Αναλυτικά πληθυσμιακά στοιχεία για τους πολυπληθείς οικισμούς ανά ΠΕ (ΕΛΣΤΑΤ, 2011) ...50
Πίνακας 5.7 Πληθυσμός παραδοσιακών οικισμών ανά περιφέρεια (ΕΛΣΤΑΤ, 2011; Μεταλληνού, 2013) ..51
Πίνακας 5.8 Μήκη και πυκνότητες οδικού δικτύου ανά επίπεδο ..53
Πίνακας 5.9 Μήκη διασυνδεδεμένου συστήματος μεταφοράς ενέργειας (ΑΔΜΗΕ, 2013)55
Πίνακας 5.10 Τρόπος εισαγωγής στο δίκτυο ανάλογα με την ισχύ εξόδου του παραγωγού (Τσούτσος κ.ά., 2015) ... 56
Πίνακας 5.11 Αδειοδοτημένες εγκαταστάσεις ΑΠ στην Περιφέρεια Θεσσαλίας (ΑΔΜΗΕ, 2016; ΡΑΕ, 2016) .. 57
Πίνακας 5.12 Μέγιστη επιτρεπόμενη εγκατεστημένη ισχύς και ποσοστά κάλυψης ανά ΠΕ (ΡΑΕ, 2016) .. 59
Πίνακας 6.1 Σενάριο αξιοποίησης αιολικής ενέργειας για την Περιφέρεια Θεσσαλίας (ΚΑΠΕ, 2001) ... 63
Πίνακας 6.2 Σταθμοί μέτρησης ταχύτητας ανέμου και στατιστικά χαρακτηριστικά (Dimitriadis et al., 2015) ... 68
Πίνακας 7.1 Έκταση και ποσοστό κάλυψης των διαθέσιμων περιοχών των δύο σεναρίων για ΑΠ 79
Πίνακας 7.2 Κριτήρια αξιολόγησης για τη χωροθέτηση ΑΠ ... 80
Πίνακας 7.3 Κλίμακα αξιολόγησης της καταλληλότητας των θέσεων χωροθέτησης ΑΠ 80
Πίνακας 7.4 Κριτήριο αιολικού δυναμικού με βάση την μέση ετήσια ταχύτητα του ανέμου (m/s)81
Πίνακας 7.5 Κριτήριο κλίσεων εδάφους (%) για χωροθέτηση Αιολικών Πάρκων 82
Πίνακας 7.6 Κριτήριο απόστασης από το οδικό δίκτυο (m) για χωροθέτηση Αιολικών Πάρκων (ΥΠΕΚΑ, 2008) ... 84
Πίνακας 7.7 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής και μεταφοράς ενέργειας για την χωροθέτηση ΑΠ (ΥΠΕΚΑ, 2008) ... 84
Πίνακας 7.8 Κριτήριο υψομέτρου για χωροθέτηση ΑΠ .. 85
Πίνακας 7.9 Κριτήριο απόστασης από οικιστικές περιοχές .. 87
Πίνακας 7.10 Κριτήριο απόστασης (m) από την ακτογραμμή και τα ποτάμια για χωροθέτηση ΑΠ 88
Πίνακας 7.11 Κριτήριο απόστασης (m) από περιοχές περιβαλλοντικής σημασίας 90
Πίνακας 7.12 Αξιολόγηση του συνόλου της Περιφέρειας Θεσσαλίας για τα 8 κριτήρια χωροθέτησης ΑΠ .. 90
Πίνακας 7.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σενάριο 1 91
Πίνακας 7.14 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σενάριο 2 92
Πίνακας 7.15 Ποσοστά καταλληλόλητας τεχνικής & περιβαλλοντικής αξιολόγησης για τις περιοχές του Σεναρίου 2 .. 95
Πίνακας 7.16 Βιώσιμες περιοχές χωροθέτησης ΑΠ ... 97
Πίνακας 7.17 Αξιολόγηση αδειοδοτημένων ή υπό αδειοδότηση ΑΠ .. 97
Πίνακας 8.1 Έκταση και ποσοστό κάλυψης των διαθέσιμων περιοχών των δύο σεναρίων για ΦΠ ... 104
Πίνακας 8.2 Κριτήρια αξιολόγησης για τη χωροθέτηση ΦΠ ... 104
Πίνακας 8.3 Κλίμακα αξιολόγησης της καταλληλόλητας των θέσεων χωροθέτησης ΦΠ 105
Πίνακας 8.4 Κριτήριο ηλιακού δυναμικού .. 105
Πίνακας 8.5 Κριτήριο κλίσεων εδάφους (%) για χωροθέτηση ΦΠ ... 107
Πίνακας 8.6 Κριτήριο απόστασης από το οδικό δίκτυο για χωροθέτηση ΦΠ .. 108
Πίνακας 8.7 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής και μεταφοράς ενέργειας για τη χωροθέτηση ΦΠ (ΥΠΕΚΑ, 2008) .. 109
Πίνακας 8.8 Κριτήριο υψομέτρου (m) για τη χωροθέτηση φωτοβολταϊκών πάρκων 111
Πίνακας 8.9 Κριτήριο απόστασης από οικιστικές περιοχές ... 112
Πίνακας 8.10 Κριτήριο απόστασης (m) από την ακτογραμμή και υδάτινα σώματα για χωροθέτηση ΦΠ .. 114
Πίνακας 8.11 Κριτήριο απόστασης από λίμνες και υγροτόπους (m) για χωροθέτηση ΦΠ 115
Πίνακας 8.12 Αξιολόγηση του συνόλου της Περιφέρειας Θεσσαλίας για τα 8 κριτήρια χωροθέτησης ΦΠ .. 116
Πίνακας 8.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης Σεναρίου 1 117
Πίνακας 8.14 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης Σεναρίου 2 117
Πίνακας 8.15 Ποσοστά καταλληλόλητα τεχνικής & περιβαλλοντικής αξιολόγησης για τις περιοχές του Σεναρίου 2 .. 119
Πίνακας 8.16 Βιώσιμες περιοχές χωροθέτησης ΦΠ ... 121
Πίνακας 8.17 Αξιολόγηση αδειοδοτημένων και προς αδειοδότηση φωτοβολταϊκών εγκαταστάσεων .. 121
Πίνακας 9.1 Παρουσίαση δυνητικών περιοχών ανάπτυξης υβριδικών πάρκων για τις περιοχές του Σεναρίου 2 .. 125
Πίνακας 9.2 Βιώσιμη χωροθέτηση υβριδικών πάρκων και αντιστοιχείς βαθμολογίες για κάθε εγκατάσταση .. 126
Πίνακας 0.1 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Τρικάλων (PAE, 2013) .. 135
Πίνακας 0.2 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Καρδίτσας (PAE, 2013) .. 136
Πίνακας 0.3 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Μαγνησίας (PAE, 2013) .. 137

Πίνακας 0.4 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Λάρισας (PAE, 2013) .. 138
ΕΥΡΕΤΗΡΙΟ ΔΙΑΓΡΑΜΜΑΤΩΝ

Διάγραμμα 6.1 Ημερήσια κυκλοστασιμότητα για κάθε μήνα για το σταθμό της Θεσσαλίας (Dimitriadis et al., 2015)...69

Διάγραμμα 6.2 Εμπειρική και προσαρμοσμένη κατανομή για το σταθμό της Λάρισας (Dimitriadis et al., 2015) ..69
ΠΙΝΑΚΑΣ ΣΥΝΤΟΜΟΓΡΑΦΙΩΝ

<table>
<thead>
<tr>
<th>Συντομογραφία</th>
<th>Επεξήγηση</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRC</td>
<td>Joint Research Center</td>
</tr>
<tr>
<td>ΑΔΜΗΕ</td>
<td>Ανεξάρτητος Διαχειριστής Μεταφοράς Ηλεκτρικής Ενέργειας</td>
</tr>
<tr>
<td>ΑΠ</td>
<td>Αιολικά Πάρκα</td>
</tr>
<tr>
<td>ΑΠΕ</td>
<td>Ανανεώσιμες Πηγές Ενέργειας</td>
</tr>
<tr>
<td>ΔΕΔΔΗΕ</td>
<td>Διαχειριστής του Ελληνικού Δικτύου Διανομής Ηλεκτρικής Ενέργειας</td>
</tr>
<tr>
<td>ΔΕΣΜΗΕ</td>
<td>Διαχειριστής του Ελληνικού Συστήματος Μεταφοράς Ηλεκτρικής Ενέργειας</td>
</tr>
<tr>
<td>ΕΕ</td>
<td>Ευρωπαϊκή Ένωση</td>
</tr>
<tr>
<td>ΕΛΣΤΑΤ</td>
<td>Ελληνική Στατιστική Αρχή</td>
</tr>
<tr>
<td>ΕΠΟ</td>
<td>Έγκριση Περιβαλλοντικών Όρων</td>
</tr>
<tr>
<td>ΕΠΧΣΑΑ ΑΠΕ</td>
<td>Ειδικό Πλαίσιο Χωροταξιακού Σχεδιασμού και Αειφόρου Ανάπτυξης για τις ΑΠΕ</td>
</tr>
<tr>
<td>ΚΑΠ</td>
<td>Κέντρο Ανανεώσιμων Πηγών Ενέργειας</td>
</tr>
<tr>
<td>ΜΠΕ</td>
<td>Μελέτη Περιβαλλοντικών Επιπτώσεων</td>
</tr>
<tr>
<td>ΜΥΗΕ</td>
<td>Μικρά ΥδροΗλεκτρικά Έργα</td>
</tr>
<tr>
<td>ΠΑΚ</td>
<td>Περιοχές Αιολικής Καταλληλότητας</td>
</tr>
<tr>
<td>ΠΑΠ</td>
<td>Περιοχές Αιολικής Προτεραιότητας</td>
</tr>
<tr>
<td>ΠΔ</td>
<td>Προεδρικό Διάταγμα</td>
</tr>
<tr>
<td>ΠΕ</td>
<td>Περιφερειακή Ενότητα</td>
</tr>
<tr>
<td>ΡΑΕ</td>
<td>Ρυθμιστική Αρχή Ενέργειας</td>
</tr>
<tr>
<td>ΣΓΠ</td>
<td>Συστήματα Γεωγραφικών Πληροφοριών</td>
</tr>
<tr>
<td>ΣΗΘΥΑ</td>
<td>Συμπαραγωγή ηλεκτρισμού και Θερμότητας Υψηλής Απόδοσης</td>
</tr>
<tr>
<td>ΣΧΟΟΑΠ</td>
<td>Σχέδια Χωρικής και Οικιστικής Οργάνωσης Ανοικτών Πόλεων</td>
</tr>
<tr>
<td>ΥΑ</td>
<td>Υπουργική Απόφαση</td>
</tr>
<tr>
<td>ΥΠΕΚΑ</td>
<td>Υπουργείο Ενέργειας και Κλιματικής Αλλαγής</td>
</tr>
<tr>
<td>ΦΠ</td>
<td>Φωτοβολταϊκά Πάρκα</td>
</tr>
</tbody>
</table>

xix
ΠΕΡΙΛΗΨΗ ΕΡΓΑΣΙΑΣ

Ακολουθώντας τους ευρωπαϊκούς θεσμικούς στόχους για ανάπτυξη των ΑΠΕ σε βάρος των συμβατικών μορφών ενέργειας, η Ελλάδα μπορεί να αποκομίσει σημαντικά πλεονεκτήματα αξιοποιώντας το πλούσιο ηλιακό, αιολικό και υδροηλεκτρικό δυναμικό. Παρόλα αυτά, ένας εθνικός σχεδιασμός σε αυτή την κατεύθυνση, οφείλει να εφαρμόζει ένα ορθολογικό πλαίσιο χωροθέτησης των ΑΠΕ για την αντιμετώπιση των συγκρούσεων χρήσης, αλλά και των περιβαλλοντικών και κοινωνικών επιπτώσεων που ανακύπτουν.

Με αφετηρία την κρισιμότητα της χωρικής διάστασης των ΑΠΕ, παρουσιάζεται στην παρούσα εργασία μια μεθοδολογία βέλτιστης χωροθέτησης και διαστασιολόγησης των ΑΠΕ σε περιφερειακή κλίμακα, με περιοχή εφαρμογής το ηπειρωτικό τμήμα της Περιφέρειας Θεσσαλίας. Αποτελείται από δύο περιθωριακά κλίματα: ένα ισχυρότερο και περισσότερο ανθρωπογενές κλίμακα και ένα ελαχιστότερο και περισσότερο φυσικό κλίμακα. Η μεθοδολογία αξιολογεί τις ισχυρότερες δυναμικές σε όλην την περιοχή και τις μικρότερες δυναμικές σε κάθε αποκεντρωμένη περιοχή.

Η εφαρμογή της μεθοδολογίας για την αξιολόγηση των αιτήσεων αδειοδότησης, φανερώνει τους πολλαπλούς στόχους που μπορεί να επιτελέσει η μεθοδολογία τόσο ως εργαλείο μετα-αξιολόγησης για τα πραγματικά έργα υπό αδειοδότηση, όσο και για την εκτίμηση και καλύτερη οργάνωση της δυνητικής εγκατεστημένης εγκατάστασης. Σημαντική είναι και η δυνητική συμβολή της μεθοδολογίας σε μελέτες συνδιαχείρισης υδατικών πόρων και ενέργειας και στις προοπτικές ανάπτυξης υβριδικών συστημάτων, που αποτελούν το κλειδί της επιτυχούς ένταξης των ΑΠΕ στο ενεργειακό μίγμα.

ABSTRACT

Following the legislative EU targets and taking advantage of its high renewable energy potential, Greece can obtain significant benefits from developing its water, solar and wind energy resources.
However, a holistic spatial planning approach that accounts for the possible landuse conflicts and environmental impacts of RES (Renewable Energy Sources) is essential for their sustainable development.

In this context, we present a GIS-based methodology for the optimal sizing and siting of solar and wind energy systems at the regional scale, which is tested in the Prefecture of Thessaly. In order to apply the methodology, we assess the wind and solar potential of the area, taking into account the stochastic nature of the associated meteorological processes (i.e. wind speed and solar radiation, respectively), which is essential component for both planning (i.e., type selection and sizing of photovoltaic panels and wind turbines) and management purposes (i.e., real-time operation of the system). For the optimal siting methodology, we account for a number of constraints, associated with technical limitations (e.g., terrain slope, proximity to road and electricity grid network, etc.), the environmental legislation and other land use constraints. Based on this analysis, we investigate favorable alternatives using technical, environmental as well as aesthetic criteria. The final outcome is GIS maps that depict the available energy potential and the optimal layout for photovoltaic panels and wind turbines over the study area.

The present methology could serve several purposes, since it can be applied for both the assessment and planning of the possible installed RES power and as a post-evaluation tool for the already licensed RES installations. The results could also be of particular use, in order to assume the combined operation of the above renewables with major hydroelectric dams and pumped-storage facilities, and thus provide a unique hybrid renewable system, extended at the regional scale.
1 ΕΙΣΑΓΩΓΗ

1.1 ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ

Η πετρελαϊκή κρίση στις αρχές της δεκαετίας του '70 ήταν η πρώτη αφορμή για την συνειδητοποίηση της εξάρτησης από τα ορυκτά καύσιμα και την στροφή του ενεργειακού ενδιαφέροντος στις αειφόρες Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ). Έπειτα, οι φωνές για την κλιματική αλλαγή και την αύξηση της παγκόσμιας θερμοκρασίας, αποτέλεσαν σημαντικά κίνητρα για την εισαγωγή των ΑΠΕ στο ενεργειακό μίγμα. Ο χαρακτηρισμός τους ως «καθαρές μορφές» ενέργειας, με ελάχιστο περιβαλλοντικό αντίκτυπο κατά την λειτουργία, αλλά και μειωμένη παραγωγή απόβλητων σε σχέση με τις συμβατικές μορφές ενέργειας, συνέβαλαν στην ταύτισή τους με την βιωσιμότητα του ενεργειακού σχεδιασμού. Τα θεσμικά παγκόσμια και ευρωπαϊκά οργάνα έλαβαν αμέσως δράση για τον ορισμό πλαισίων, οδηγιών και πρωτοκόλλων με στόχο την μείωση της χρήσης συμβατικών καυσίμων και την αύξηση της παραγωγής ενέργειας από ΑΠΕ.

Το επενδυτικό ενδιαφέρον στην Ελλάδα επικεντρώθηκε στην αξιοποίηση της ηλιακής, αιολικής και υδροηλεκτρικής ενεργείας, οι οποίες παρουσιάζουν σημαντικό εκμεταλλεύσιμο δυναμικό στην χώρα μας. Συγκεκριμένα, στην ανάπτυξη της αιολικής ενέργειας σημαντικό ρόλο έπαιξε παρά την ύπαρξη δυναμικού η επιδότηση της τιμής πώλησης, η εμπορική ωριμότητα και η αποδοτικότητα της σχέσης με άλλες ΑΠΕ. Αντίστοιχα, οι φωτοβολταϊκές εγκαταστάσεις παρουσίασαν ταχεία ανάπτυξη στην χώρα λόγω αφενός της κρατικής επιδότησης (αυξημένη τιμή πώλησης σε σχέση με την ενέργεια από συμβατικά καύσιμα), και αφετέρου λόγω του υψηλού ηλιακού δυναμικού καθόλη την διάρκεια του έτους. Παρά την «φιλικότητα» τους και το μειωμένο αντίκτυπο σε σχέση με τις συμβατικές μορφές ενέργειας, ούτε οι ΑΠΕ στερούνται παντελώς επιπτώσεων. Σύντομα αναδείχθηκαν σημαντικές επιπτώσεις σε τοπικό επίπεδο (οπτική όχληση, παραγωγή θορύβου, επιπτώσεις στην άγρια ζωή, ηλεκτρομαγνητικές παρεμβολές κ.α.) και ευρύτερο επίπεδο (οικονομική επιβάρυνση καταναλωτών, μεταβλητότητα ενεργειακής παράγωγης και αναγκή επέκτασης ηλεκτρικού δικτύου, κατάληψη καλλιεργούμενων εκτάσεων από εγκαταστάσεις ΑΠΕ κ.α.). Η σημαντική τους εισροή στο ενεργειακό μίγμα δημιούργησε έντονη σύγκρουση συμφερόντων, και μια πρόκληση για τους φορείς λήψης αποφάσεων που καλούνται να ικανοποιήσουν από την μια την μεγιστοποίηση της απόδοσης των επενδύσεων σε ΑΠΕ και την άλλη την μείωση των περιβαλλοντικών τους επιπτώσεων και των αντιδράσεων των τοπικών κοινωνιών.

Αποτέλεσμα ήταν η ανάγκη ανάπτυξης στρατηγικών σχεδιασμών και μεθοδολογιών, που θα βελτιστοποιούν την χωρική εξέλιξη του προβλήματος ανάπτυξης των ΑΠΕ και θα αυξάνουν κατά το δυνατόν την αποδοτικότητα των επενδύσεων και την αποδοχή των εγκαταστάσεων από τις τοπικές κοινωνίες.
1.2 ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΤΟΧΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ

Αντικείμενο της παρούσας εργασίας αποτελεί η ανάπτυξη μιας μεθοδολογίας βέλτιστης χωροθέτησης και διαστασιολόγησης αιολικών και φωτοβολταϊκών πάρκων, που θα λαμβάνει υπόψιν τους τεχνικούς, περιβαλλοντικούς και άλλους περιορισμούς που εισάγει η νομοθεσία και η επιστημονική εμπειρία. Η αξιολόγηση των περιοχών χωροθέτησης γίνεται μέσω της εφαρμογής πολυκριτηριακής ανάλυσης σε μια σειρά κριτηρίων και χρήση Συστημάτων Γεωγραφικών Πληροφοριών (ΣΓΠ). Αποτέλεσμα είναι η απεικόνιση των επιτρεπόμενων περιοχών και της ιεράρχησης τους, με βάση τόσο περιβαλλοντικά, τεχνοοικονομικά όσο και αισθητικά κριτήρια.

Επίσης, στα πλαίσια της συνδιαχείρισης νερού και ενέργειας στην περιοχή μελέτης, αλλά και των επιτάχυνσης του ενεργειακού μίγματος, επιδιορθώνεται ο κινετικός και οι τεχνικοί περιορισμοί, οι δύο μεθοδολογίες αναπτύσσονται ανεξάρτητα για αιολικά και φωτοβολταϊκά πάρκα, αλλά εφαρμόζοντας το ίδιο μεθοδολογικό πλαίσιο.

1.3 ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΕΡΓΑΣΙΑΣ

Στο παρόν 1ο Κεφάλαιο, γίνεται μια εισαγωγή περιγραφή της στροφής του ενδιαφέροντος των φορέων για χωροθέτηση των ΑΠΕ, και στην κατά το δυνατόν βέλτιστη χωροθέτηση τους. Ακολουθεί η περιγραφή του αντικειμένου της εργασία και των στόχων που καλείται να εκπληρώσει η μεθοδολογία που αναπτύσσεται.
Στο Κεφάλαιο 2, γίνεται μια επισκόπηση του ρόλου των ΑΠΕ στον σύγχρονο ενεργειακό σχεδιασμό, αλλά και των βασικών επιπτώσεων που χαρακτηρίζουν την χωροθέτηση αιολικών και φωτοβολταϊκών πάρκων. Τέλος, γίνεται μια συνοπτική αναφορά στις ιδιαίτερες τροχιές της περιοχής μελέτης, στην επίδραση ομόρου και την επιρροή της στην χωροθέτηση αιολικών εγκαταστάσεων.

Στο Κεφάλαιο 3, παρουσιάζεται η κοινοτική και εθνική νομοθεσία που χαρακτηρίζει την ανάπτυξη των ΑΠΕ στην Ευρώπη και στην χώρα μας, με έμφαση στο ΕΠΧΣΑΑ για τις ΑΠΕ που αποτέλεσε το κατεξοχήν πλαίσιο χωροθέτησης ΑΠΕ, αλλά και στον Νόμο 3851/2010 που με άξονα την επιτάχυνση των ΑΠΕ κατήργησε κάποιους από τους περιορισμούς που έθεσε το ΕΠΧΣΑΑ-ΑΠΕ. Γίνεται επίσης, συνοπτική αναφορά στην αδειοδοτική διαδικασία και τα στάδια που απαιτούνται για την υλοποίηση και λειτουργία εγκαταστάσεων ΑΠΕ.

Ακολουθεί το Κεφάλαιο 4, στο οποίο γίνεται εκτενής βιβλιογραφική επισκόπηση μεθοδολογιών χωροθέτησης που εφαρμόζονταν από διαφορετικές ερευνητικές και αναδεικνύουν το ενδιαφέρον της επιστημονικής κοινότητας στο ζήτημα της χωροθέτησης ΑΠΕ. Επίσης, παρουσιάζονται οι ΣΓΠ ως εργαλείο κατάλληλο για την χωροθέτηση των ΑΠΕ με αναφορά στο λογισμικό GIS, το οποίο χρησιμοποιήθηκε για την υλοποίηση της μεθοδολογίας χωροθέτησης. Στην παράγραφο 4.3 περιγράφεται το μεθοδολογικό σχήμα που εφαρμόστηκε για την υλοποίηση των βέλτιστων θέσεων χωροθέτησης και διαστασιολόγησης τόσο των φωτοβολταϊκών όσο και των αιολικών εγκαταστάσεων.

Στο Κεφάλαιο 5, παρουσιάζεται εκτενώς η περιοχή εφαρμογής της μεθοδολογίας μέσω της υφιστάμενης κατάστασης του ανθρωπογενούς και φυσικού περιβάλλοντος για την Περιφέρεια Θεσσαλίας. Αναγνωρίζοντας την σημασία του δυναμικού ως καθοριστικό παράγοντα χωροθέτησης, γίνεται στο Κεφάλαιο 6, μια παρουσίαση του αιολικού και ηλιακού δυναμικού της Θεσσαλίας σε σχέση και με την υπόλοιπη Ελλάδα. Για το ηλιακό δυναμικό, παρουσιάζεται το εργαλείο εκτίμησης παραγόμενης ηλιακής ενέργειας και οι χάρτες ηλιακού δυναμικού του JRC, ενώ γίνεται και περιγραφή του μοντέλου που αναπτύχθηκε για τις ανάγκες της εργασίας, ώστε να παραχθεί ένας χάρτης ακτινοβολίας με ικανοποιητική ακρίβεια για τις απαιτήσεις της ανάλυσης.
αποτελέσματα που προέκυψαν γίνεται αξιολόγηση των υποψήφιων θέσεων χωροθέτησης των αδειοδοτημένων έργων ΑΠΕ.

Στο Κεφάλαιο 9, επιχειρείται ένας συνδυασμός των αποτελεσμάτων που προέκυψαν από τα Κεφάλαια 7 και 8, ώστε να εκτιμηθεί η πιθανή ύπαρξη χωροθέτησης των δύο εγκαταστάσεων για ανάπτυξη υβριδικών αιολικών και φωτοβολταϊκών πάρκων. Επίσης, στο πνεύμα της ολιστικής προσέγγισής της ανάπτυξης των ΑΠΕ και της κατά το δυνατόν μεγαλύτερης εκμετάλλευσης της παραγόμενης ενέργειας, γίνεται αναφορά στις προοπτικές αντληστημένης μέσω των υδροηλεκτρικών έργων για την αποθήκευση της περίσσεις παραγωγής από τις αιολικές και φωτοβολταϊκές εγκαταστάσεις.

Τέλος, στο Κεφάλαιο 10 γίνεται μια σύνοψη των συμπερασμάτων που προέκυψαν από την εφαρμογή της μεθοδολογίας χωροθέτησης αλλά και της διερεύνησης των προοπτικών συγχωροθέτησης αιολικών και φωτοβολταϊκών πάρκων. Αναφέρονται επίσης, σημεία βελτίωσης και μελλοντικοί τομείς προς διερεύνηση που αναδείχθηκαν από την παρούσα ανάλυση.
2 ΣΥΓΧΡΟΝΟ ΠΛΑΙΣΙΟ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΑΠΕ & ΙΔΙΑΙΤΕΡΟΤΗΤΕΣ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ

2.1 Ο ΡΟΛΟΣ ΤΩΝ ΑΠΕ ΣΤΟΝ ΣΥΓΧΡΟΝΟ ΕΝΕΡΓΕΙΑΚΟ ΣΧΕΔΙΑΣΜΟ

Καθώς ο ενεργειακός τομέας είναι ένας από τους βασικότερους πυλώνες της παγκόσμιας οικονομίας, εξάγεται άμεσα ότι ο σχεδιασμός και η διαχείριση των ενεργειακών συστημάτων αποτελούν προϋπόθεση για ένα αειφόρο μέλλον (Koutsoyiannis et al., 2009).

Ειδικότερα, έχει γίνει κοινά αποδεκτό εδώ και αρκετά χρόνια, ότι το υπόδειγμα που υιοθετήθηκε από τη βιομηχανική επανάσταση και έκτοτε, το οποίο βασίστηκε στην εντατική χρήση ορυκτών καυσίμων (όπως πετρέλαιο, άνθρακας, ουράνιο, κτλ.), είναι έντονα μη αειφόρο. Μάλιστα, ορισμένοι ερευνητές έχουν εκφράσει έντονη ανησυχία ότι έχει φτάσει η εποχή της αιχμής της παραγωγής πετρελαίου (peak oil hypothesis), που ορίζεται ως όταν τον τομέα της ενεργειακής χρήσης προσαρμόζεται στη δυνατότητα εκμετάλλευσης ορυκτών πόρων. Αυτό μεταφράζεται στο ότι, το όχι μακρινό μέλλον ενέχει το πραγματικό ρίσκο μιας σοβαρής κοινωνικοοικονομικής κρίσης, ως συνέπεια της αδυναμίας κάλυψης των ενεργειακών αναγκών, εκτός αν η εξοικονόμηση ενέργειας και η χρήση ανανεώσιμων πηγών γίνουν ο κανόνας. Σε συνδυασμό με τις ανησυχίες που προκαλεί η περιβαλλοντική υποβάθμιση, ως αποτέλεσμα της εντατικής χρήσης ορυκτών καυσίμων, αναγνωρίζεται ότι αναπτύσσεται μια δραστική αλλαγή σε όλο το ενεργειακό σκηνικό, στη συνέχεια, ο όρος ΑΠΕ θα χρησιμοποιείται κυρίως για τις μονάδες παραγωγής που χρησιμοποιούν την ηλιακή, αιολική και υδραυλική ενέργεια, που είναι των πλέον διαδεδομένων στην Ελλάδα και αντικείμενο της παρούσας εργασίας.

Σύμφωνα με την οδηγία 2009/28/ΕΚ του Ευρωπαϊκού Κοινοβουλίου, ως ενέργεια από ανανεώσιμες μη ορυκτές πηγές θεωρείται η αιολική, ηλιακή, ενέργεια από τους ωκεανούς, υδραυλική και ενέργεια των νερών, υδροκαύσιμο, από βιομάζα, από αέρια παραγωγής, από αέρια μονάδων επεξεργασίας και από παλίρροιες. Οι ΑΠΕ έχουν λάβει πολλούς χαρακτηρισμούς με διαφορετικές σημασίες. Αναφέρονται ως «ήπιες» μορφές ενέργειας, δεδομένου ότι για την εκμετάλλευσή τους δεν απαιτείται κατά προτού ενεργητική παρέμβαση, όπως εξόρυξη, άντληση ή καύση, όπως με τις μέχρι τώρα χρησιμοποιούμενες πηγές ενέργειας, αλλά απλώς η εκμετάλλευση της ήδη υπάρχουσας ροής ενέργειας στη φύση. Επιπρόσθετα, αναφέρονται και ως «καθαρές» μορφές ενέργειας, καθώς δεν αποδεσμεύουν υδρογονάνθρακες, διοξείδιο του άνθρακα ή τοξικά και ραδιενεργά απόβλητα, όπως οι υπόλοιπες συμβατικές πηγές ενέργειας που χρησιμοποιούνται σε μεγάλη κλίμακα.
Ο σημερινός ενεργειακός σχεδιασμός κυρίως στην Ευρώπη ευνοεί πολύ έντονα τη διείσδυση των ΑΠΕ, και κυρίως των μικρών υδροηλεκτρικών έργων (MYHE), των ανεμογεννητριών (Α/Γ) και των φωτοβολταϊκών έργων (Φ/Β). Ωστόσο, έχει αποτύχει στο να λάβει υπόψις τις σημαντικές διαφορές των παραπάνω πηγών σε σχέση με τις συμβατικές πηγές ενέργειας. Συγκεκριμένα, ενθαρρύνονται ή ακόμα και προωθούνται, μέσω οικονομικών αλλά και θεσμικών κινήτρων, οι μικρής κλίμακας μονάδες παραγωγής ανανεώσιμης ενέργειας, που έχουν ωστόσο περιορισμένη απόδοση, χαμηλή ευελιξία και υψηλό κόστος ανάπτυξης. Ειδικά στην Ελλάδα, η μονομερής θεώρηση και η απουσία ενός ολοκληρωμένου αναπτυξιακού σχεδίου εθνικής κλίμακας, έχει οδηγήσει σε εκρηκτική άνοδο των τιμών ενέργειας, έχοντας ταυτόχρονα θέσει σημαντικούς περιορισμούς στη διαχείριση της ενέργειας.

Το μείζον σε ποσοτικούς όρους μειονέκτημα της ανανεώσιμης ενέργειας αφορά στην ισχυρή εξάρτησή της από τις υδρομετεωρολογικές συνθήκες, που την καθιστά έντονα μεταβλητή και μη προβλέψιμη. Η εγγενής αβεβαιότητα των σχετικών φυσικών διεργασιών ανακλάται άμεσα στην ενεργειακή παραγωγή, η οποία δεν μπορεί να ακολουθήσει τη χρονική κατανομή της ζήτησης ηλεκτρικής ενέργειας (βλ. παράγραφο 9.1). Το μειονέκτημα αυτό οξύνεται εξαιτίας της έλλειψης ρυθμιστικής ικανότητας, που καθιστά αδύνατη την αποθήκευση της περίσσεις της παραγωγής, για την οποία πρέπει να προβλεφθεί ένας μηχανισμός καταστροφής, καθώς δεν μπορεί να απορροφηθεί από το δίκτυο μεταφοράς. Για τον λόγο αυτό, οι μικρής κλίμακας ΑΠΕ δεν μπορούν να αντικαταστήσουν παρά μικρό μόνο τμήμα της εγκατεστημένης ισχύος που προέρχεται από συμβατικές πηγές. Συνεπώς, επιβάλλεται ένα νέο υπόδειγμα ενεργειακής διαχείρισης που θα αναγνωρίζει και θα διαχειρίζεται την εγγενή αβεβαιότητα των υδρομετεωρολογικών διεργασιών, ως κυρίαρχο χαρακτηριστικό, εφαρμόζοντας βιώσιμες και οικονομικά αποδοτικές τεχνικές λύσεις.

2.2 ΕΠΙΠΤΩΣΕΙΣ ΑΠΟ ΤΗ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ

Όπως αναφέρθηκε ήδη στο Κεφάλαιο 1, οι ΑΠΕ πέραν των πολλών πλεονεκτημάτων τους συνδέονται και με αρκετές επιπτώσεις σε περιβαλλοντικό, τεχνικό και αισθητικό επίπεδο. Συγκεκριμένα οι αιολικές εγκαταστάσεις έχουν ταυτιστεί με αισθητικές επιπτώσεις (Visual Impact), με επιπτώσεις σε πληθυσμούς πτηνών (Bird collision), με παραγωγή θορύβου (Noise generation), με ηλεκτρομαγνητικές παρεμβολές (Electromagnetic interference) και με ζητήματα ασφάλειας (Safety issues). Μάλιστα μια αρνητική συγκύρια, είναι ότι πολλές φορές οι περιοχές υψηλού αιολικού δυναμικού συμπίπτουν με τις περιοχές ιδιαίτερου περιβαλλοντικού ενδιαφέροντος, αφού οι υψηλές τιμές του αιολικού δυναμικού αναπτύσσονται συνήθως σε περιοχές μεγάλου υψίμετρου. Μια θετική ιδιαιτερότητα των αιολικών εγκαταστάσεων σχετίζεται με το γεγονός ότι καταλαμβάνουν αμέλητο εμβαδό στην στάθμη του εδάφους, επιτρέποντας την απρόσκοπτη ανάπτυξη δραστηριοτήτων όπως η κτηνοτροφία κ.α.

Αντίθετα τα φωτοβολταϊκά συνδέονται με σημαντική κατάληψη χώρου και συνεπώς ενέχουν τον κίνδυνο της πιθανής μείωσης των καλλιεργούμενων περιοχών υψηλής παραγωγικότητας και
συνεπώς της παραγωγής τροφής και της όξυνσης του επιστημονικού προβλήματος. Άλλες σημαντικές επιπτώσεις των φωτοβολταϊκών πάρκων είναι οι αισθητικές επιπτώσεις, και τα φαινόμενα αντανακλάσεων (shinning effects) που εισάγουν απαιτήσεις ελάχιστων αποστάσεων για λόγους ασφάλειας από κάποιες εγκαταστάσεις όπως αεροπλοία κ.α.. Θετικό σημείο είναι ότι, οι φωτοβολταϊκές εγκαταστάσεις δεν παράγουν σημαντικό θόρυβο και χαρακτηρίζονται ως χαμηλής όχλησης εγκαταστάσεις.

2.3 ΤΕΧΝΙΚΕΣ ΑΠΑΙΤΗΣΕΙΣ ΧΩΡΟΘΕΤΗΣΗΣ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ & ΕΠΙΔΡΑΣΗ ΟΜΟΡΟΥ

Μια τεχνική απαίτηση των αιολικών εγκαταστάσεων καθοριστικής σημασίας, που προσδιορίζει την δυνητική εγκατεστημένη ισχύ των αιολικών πάρκων, η οποία προκύπτει από την διαθέσιμη έκταση, είναι η επίδραση ομόρου, η οποία ορίζει την ελάχιστη απόσταση μεταξύ των ανεμογεννητριών. Η επίδραση ομόρου λαμβάνεται υπόψιν όπως η κατάντη της πρώτης ανεμογεννήτριας εξαρτάται από την σχετική θέση ως προς την πρώτη ανεμογεννήτρια, οπότε η απόσταση αυτή ταχύτητας αντιστοιχεί στην κινητική ενέργεια που απορρόφησε η μηχανή (Ζερβός & Κάραλης, 2009). Πρόκειται για σημαντικό πρόβλημα με άμεση επίδραση στην απόδοση του αιολικού πάρκου, καθώς η ταχύτητα κατάντη της πρώτης ανεμογεννήτριας εξαρτάται από την σχετική της θέση ως προς την πρώτη ανεμογεννήτρια. Από την επίδραση ομόρου λαμβάνεται υπόψιν και από την επικρατούσα διεύθυνση του ανέμου, οπότε η απόσταση αυτή ταχύτητας αντιστοιχεί στην κινητική ενέργεια που απορρόφησε η μηχανή (Ζερβός & Κάραλης, 2009).

Συγκεκριμένα, ως ομόρου μιας ανεμογεννήτριας νοούμε την κατάντη της πρώτης ανεμογεννήτριας, όπου σε σχέση με την πρώτη ανεμογεννήτρια επικρατεί επίδραση ομόρου. Η κατάντη αυτή ταχύτητας αντιστοιχεί στην κινητική ενέργεια που απορρόφησε η μηχανή (Ζερβός & Κάραλης, 2009).

2.4 ΙΔΙΑΙΤΕΡΟΤΗΤΕΣ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΑΝΑΠΤΥΞΗ ΑΠΕ

Η υφιστάμενη κατάσταση με τα γενικά και ενεργειακά χαρακτηριστικά της περιφέρειας Θεσσαλίας θα αναλυθούν εκτενέστατα στα Κεφάλαια 5 και 6, που ακολουθούν. Κρίνεται όμως σκόπιμο να δικαιολογηθεί η επιλογή της περιφέρειας Θεσσαλίας για την εκάστοτε θέση χωροθέτησης διαφορετικών διατάξεων και συστοιχίων ανεμογεννητριών, με τήρηση μεγαλύτερων αποστάσεων για την κύρια διεύθυνση του ανέμου.
• Βρίσκεται στο κέντρο της ηπειρωτικής χώρας, πλεονεκτώντας ως προς την πρόσβασή στις γραμμές υψηλής τάσης (400kV) και την εγγύτητα στους Η/Υ ταμιευτήρες της δυτικής Ελλάδας.

• Αποτελεί κέντρο αγροτικής παραγωγής, γεγονός που οδηγεί σε αυξημένη ζήτηση νερού, άλλα και αυξημένη ζήτηση ενέργειας λόγω των γεωτρήσεων και αντλιοστασίων που βρίσκονται σε λειτουργία.

• Προσφέρεται από τεχνικής άποψης για σημαντική ανάπτυξη φωτοβολταϊκών έργων, λόγω του ευνοϊκού αναγλύφου (ήπιων κλίσεων) αλλά και λόγω του υψηλού ηλιακού δυναμικού.

• Αναπτύσσει αντίθετα, περιορισμένο εκμεταλλεύσιμο αιολικό δυναμικό, που αναμένεται να αποτελέσει περιοριστικό παράγοντα για την ευρεία ανάπτυξη αιολικών εγκαταστάσεων.

• Μπορεί να απορροφήσει την πλεονάζουσα ενέργεια των ΑΠΕ, μέσω των έργων αντλησιοταμίευσης που έχουν μελετηθεί στην περιοχή και μπορούν δυνητικά να αποθηκεύσουν την ενέργεια που παράγεται στις περιόδους χαμηλής ζήτησης.
3 ΕΘΝΙΚΗ ΚΑΙ ΚΟΙΝΟΤΙΚΗ ΝΟΜΟΘΕΣΙΑ ΓΙΑ ΤΗΝ ΑΝΑΠΤΥΞΗ ΤΩΝ ΑΠΕ

3.1 ΓΕΝΙΚΑ ΠΕΡΙ ΕΛΛΗΝΙΚΗΣ «ΕΝΕΡΓΕΙΑΚΗΣ ΝΟΜΟΘΕΣΙΑΣ»

Στο κεφάλαιο αυτό περιγράφεται το νομικό πλαίσιο που διέπει την ανάπτυξη των ΑΠΕ στην ευρωπαϊκή και, κατά συνέπεια, την ελληνική επικράτεια. Οι νομικοί περιορισμοί, μαζί με την επιστημονική εμπειρία, αποτέλεσαν τους οδηγούς για την συγκέντρωση των χωρικών και λοιπών δεδομένων της περιοχής μελέτης (βλ. Κεφάλαια 5 και 6), με σκοπό την ανάπτυξη μιας παρακάτων, παραγόμενα περιβαλλοντικής χωροθέτησης και διαστασιολόγησης των ΑΠΕ (βλ. Κεφάλαια 4, 7 και 8).

Αρχίζοντας κανείς την αποδελτίωση του νομικού πλαισίου, το οποίο θέτει τους κανόνες για την ανάπτυξη των ΑΠΕ στην Ελλάδα, θα βρεθεί αντιμέτωπός με ένα πλήθος Νόμων, Υπουργικών Αποφάσεων (ΥΑ), Προεδρικών Διαταγμάτων (ΠΔ), Κανονισμών και Κοινοτικών Οδηγιών. Τα παραπάνω τροποποιούν, αναιρούν, συμπληρώνουν και επικαιροποιούν τις πρωτεύουσες φορούσες διατάξεις σε διάφορα επίπεδα (π.χ. αδειών, λειτουργίας της αγοράς, τιμολόγησης της ενεργείας, επιτρεπόμενων περιοχών χωροθέτησης, περιβαλλοντικής αδειοδότησης, αρμόδιων φορέων διαχείρισης κ.ά.). Συνεπεία αυτού, είναι η δυσκολία αποτύπωσης της ισχύουσας νομοθεσίας για την ανάπτυξη των ΑΠΕ, μιας και ο ενδιαφερόμενος πρέπει να ανατρέξει σε πολύ παλαιότερο νομικό πλαίσιο, στο οποίο παραπέμπουν οι νεότεροι νόμοι. Στο σημείο αυτό, μερική βοήθεια παρέχεται από το ΥΠΕΚΑ και τους διάφορους οργανισμούς της αγοράς ενέργειας (ΔΕΣΜΗΕ, ΡΑΕ, ΚΑΠΕ, ΑΔΜΗΕ κτλ.), στις ιστοσελίδες των οποίων παρέχονται λίστες και συνδέσεις με το εθνικό και κοινοτικό νομικό πλαίσιο (βλ. Πίνακας 3.1).

<table>
<thead>
<tr>
<th>Οργαν.</th>
<th>Νομοθεσία σε εθνικό επίπεδο (συνδέσεις για ανάκτηση)</th>
<th>Νομοθεσία σε κοινοτικό επίπεδο (συνδέσεις για ανάκτηση)</th>
</tr>
</thead>
</table>
Μερικά από τα αίτια για την πολυπλοκότητα που χαρακτηρίζει την ενεργειακή νομοθεσία, μπορούν να αποδοθούν στο γεγονός ότι:

- Η κοινοτική νομοθεσία υιοθετήθηκε με σημαντική καθυστέρηση από το εθνικό δίκαιο και, πολλές φορές, η ασυμβατότητα με την ισχύουσα εθνική νομοθεσία είχε ως συνέπεια να απαιτείται, στη συνέχεια, πλήθος τροποποιήσεων για την ομαλή τους ένταξη.

- Η πώληση ενέργειας από τις ΑΠΕ συνεπάγεται, εκτός των περιβαλλοντικών και ενεργειακών οφελών, και σημαντικά οικονομικά οφέλη, οδηγώντας σε πολιτικές ευμένειας ή δυσμένειας των εμπλεκομένων φορέων μέσω του κάθε φορά ισχύοντος νομικού πλαισίου.

- Προέκυψε σταδιακά η ανάγκη για επικαιροποίηση του νομικού πλαισίου, δεδομένων των εμποδίων, των νέων τεχνολογιών προοπτικών και της εμπειρίας, που διαμορφώθηκαν από την επιτυχή ή ανεπιτυχή εφαρμογή προηγούμενων μέτρων για την προώθηση των ΑΠΕ.

Στις ακόλουθες παραγράφους γίνεται μια προσπάθεια καταγραφής του νομικού πλαισίου που χαρακτήρισε την ανάπτυξη των ΑΠΕ, αλλά και την έλλειψη της στην Ελλάδα. Και αυτό, διότι παρά τις πολλαπλές προσπάθειες απλοποίησης του, το δαιδαλώδες νομικό πλαίσιο συνεχίζει να αποτελεί έναν από τους κυρίους ανασταλτικούς παράγοντες της αύξησης της εγκατεστημένης ισχύος και της απορρόφησης της παραγομένης ενέργειας από ΑΠΕ.

3.2 ΚΟΙΝΟΤΙΚΗ ΝΟΜΟΘΕΣΙΑ

Στον Πίνακα 3.2 παρέχεται μια συνοπτική λίστα με τις κοινοτικές οδηγίες και κανονισμούς που έθεσαν τους κοινούς κανόνες για την ανάπτυξη των ΑΠΕ σε κοινοτικό επίπεδο, και συνετέλεσαν στην ραγδαία αύξηση εγκατεστημένης ισχύος την τελευταία δεκαετία στις χώρες της Ευρώπης. Διακρίνονται δύο κύριες ομάδες οδηγιών, αυτές που εστιάζουν στις μεταρρυθμίσεις της αγοράς ηλεκτρικής ενέργειας και αυτές που είχαν στόχο την προώθηση των ΑΠΕ, προτείνοντας σε εθνικό επίπεδο ποσοστά συμμετοχής των ΑΠΕ στους διαφόρους τομείς (για οικιακή & βιομηχανική χρήση, στις μεταφορές κτλ.), αλλά και διαφορές ρυθμίσεις στην κατεύθυνση του βιώσιμου ενεργειακού σχεδιασμού.

Η Οδηγία 2001/77/ΕΚ είναι η πρώτη που προδιαγράφει δεσμεύσεις από όλες τις χώρες της ΕΕ, με στόχο τον διπλασιασμό της χρήσης των ΑΠΕ σε επίπεδο ΕΕ στον τομέα της ηλεκτροπαραγωγής. Συγκεκριμένα για την Ελλάδα, προέβλεπε στόχο 20,1% ακαθάριστης κατανάλωσης ενέργειας μέχρι το 2010, συμπεριλαμβανομένης και της παραγωγής από μεγάλα υδροηλεκτρικά έργα. Πρόκειται για στόχο συμβατό με τις διεθνείς απαιτήσεις, που ακολούθησαν το Πρωτόκολλο του Κιότο, το οποίο υπογράφηκε το Δεκέμβριο του 1997 στην σύμβαση πλαίσιο των Ηνωμένων Εθνών για την αλλαγή
του κλίματος. Συμφωνά με την παραπάνω οδηγία, οι χώρες υποχρεούνται επίσης να καταβάλλουν εκθέσεις προόδου σε σχέση με την πορεία επίτευξης των στόχων ανά διετία.

Η Οδηγία 2003/54/ΕΚ καταργεί συναιστικά την πρώτη οδηγία 1996/92/ΕΚ και θεσπίζει κανόνες που αφορούν την παραγωγή, τη μεταφορά, τη διανομή και την προμήθεια ηλεκτρικής ενέργειας. Οι διατάξεις της αφορούν στην οργάνωση και λειτουργία του τομέα της ηλεκτρικής ενέργειας, την πρόσβαση στην αγορά, τα κριτήρια και τις διαδικασίες σε ισχύ για τις προσκλήσεις προς υποβολή προσφορών και τη χορήγηση αδειών, καθώς και για την εκμετάλλευση των δικτύων μεταφοράς ηλεκτρικής ενέργειας.

Πίνακας 3.2 Λίστα κοινοτικής νομοθεσίας σχετικά με την ανάπτυξη των ΑΠΕ

<table>
<thead>
<tr>
<th>Κοινοτική Οδηγία/ Κανονισμός</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οδηγία 2009/125/ΕΚ</td>
<td>Για τη θέσπιση πλαισίου για τον καθορισμό απαιτήσεων οικολογικού σχεδιασμού όσον αφορά τα συνδεδεμένα με την ενέργεια προϊόντα</td>
</tr>
<tr>
<td>Κανονισμός 713/2009/ΕΚ</td>
<td>Για την ίδρυση Οργανισμού Συνεργασίας των Ρυθμιστικών Αρχών Ενεργείας</td>
</tr>
<tr>
<td>Κανονισμός 714/2009/ΕΚ</td>
<td>Σχετικά με τους όρους πρόσβασης στο δίκτυο για τις διασυνοριακές ανταλλαγές ηλεκτρικής ενέργειας και την κατάργηση του κανονισμού (ΕΚ) αριθ. 1228/2003</td>
</tr>
<tr>
<td>Οδηγία 2009/72/ΕΚ</td>
<td>Σχετικά με τους κοινούς κανόνες για την εσωτερική αγορά ηλεκτρικής ενέργειας και για την κατάργηση της Οδηγίας 2003/54/ΕΚ</td>
</tr>
<tr>
<td>Οδηγία 2009/28/ΕΚ</td>
<td>Σχετικά με την προώθηση της χρήσης ενέργειας από ανανεώσιμες πηγές και την τροποποίηση και τη συνακόλουθη κατάργηση των Οδηγιών 2001/77/ΕΚ και 2003/30/ΕΚ</td>
</tr>
<tr>
<td>Οδηγία 2008/105/ΕΚ</td>
<td>Σχετικά με την προώθηση της συμπαραγωγής ενέργειας στην ηλεκτροπαραγωγή, καθώς και για το μερίδιο ενέργειας από ΑΠΕ στον τομέα των μεταφορών, τροποποιώντας τις παλαιότερες Οδηγίες 2001/77/ΕΚ και 2003/30/ΕΚ. Συγκεκριμένα για την χώρα μας, λαμβάνοντας υπόψη την υφιστάμενη πρόοδο στον τομέα των ΑΠΕ και το διαθέσιμο δυναμικό, ο στόχος τίθεται</td>
</tr>
<tr>
<td>Οδηγία 2004/8/ΕΚ</td>
<td>Για την προώθηση της συμπαραγωγής ενέργειας από ανανεώσιμες πηγές και για την κατάργηση της Οδηγίας 92/42/ΕΟΚ</td>
</tr>
<tr>
<td>Οδηγία 2003/54/ΕΚ</td>
<td>Σχετικά με τους κοινούς κανόνες για την εσωτερική αγορά ηλεκτρικής ενέργειας και την τροποποίηση της οδηγίας 2001/77/ΕΚ και 2003/30/ΕΚ</td>
</tr>
<tr>
<td>Οδηγία 2003/30/ΕΚ</td>
<td>Σχετικά με την προώθηση της χρήσης βιοκαυσίμων ή άλλων ανανεώσιμων καυσίμων για τις μεταφορές</td>
</tr>
<tr>
<td>Οδηγία 2001/77/ΕΚ</td>
<td>Για την προώθηση της ηλεκτρικής ενέργειας από ανανεώσιμες πηγές και για την κατάργηση της Οδηγίας 2001/77/ΕΚ και 2003/30/ΕΚ</td>
</tr>
<tr>
<td>Οδηγία 1996/92/ΕΚ</td>
<td>Σχετικά με τους κοινούς κανόνες για την εσωτερική αγορά ηλεκτρικής ενέργειας</td>
</tr>
</tbody>
</table>
στον 18% (μερίδιο ενεργείας στην ακαθάριστη κατανάλωση ενέργειας μέχρι το 2020). Σε κοινωτικό επίπεδο, το μερίδιο ακαθάριστης συνολικής κατανάλωσης ενέργειας από ΑΠΕ στις μεταφορές ορίζεται στο 10%. Επιπλέον, περιγράφονται οι κανόνες πρόσβασης στο ηλεκτρικό δίκτυο μεταφοράς για τις ΑΠΕ.

Τέλος, ο Οδηγός 2009/72/ΕΚ, εστιάζει στην απελευθέρωση της αγοράς ηλεκτρικής ενέργειας, τροποποιώντας την προηγούμενη (Οδηγία 2003/54/ΕΚ). Επιχειρώντας για μια ακόμη φορά την προώθηση του ανταγωνισμού, ανεξαρτητοποιεί τους φορείς που αποτελούν την αλυσίδα της αγοράς ηλεκτρικής ενέργειας (παραγωγή, μεταφορά, διανομή, προμήθεια) και θέτει ακόμα πιο ευνοϊκούς κανόνες για την δραστηριοποίηση περισσότερων ιδιωτικών κεφαλαίων στην αγορά ενέργειας.

3.3 ΕΘΝΙΚΗ ΝΟΜΟΘΕΣΙΑ

Πριν τις συντονισμένες ευρωπαϊκές προσπάθειες για τον έλεγχο της αγοράς ηλεκτρικής ενέργειας και την προώθηση των ΑΠΕ, η Ελλάδα έκανε κάποια βήματα, αν και όχι τόσο αποτελεσματικά, δεδομένης της μικρής προόδου σε εγκατεστημένη ισχύ, μέσω του νομικού πλαισίου στην κατεύθυνση της ανάπτυξης των ΑΠΕ.

Η «νομοθετική» έναρξη των ΑΠΕ έγινε το 1985, με τον Νόμο 1559, που αποτέλεσε μια προσπάθεια ρύθμισης των θεμάτων ηλεκτροπαραγωγής από εναλλακτικές, όπως τις χαρακτηρίζει, μορφές ενέργειας. Παρόλη την καλή πρόθεση, οι τεχνικές αδυναμίες και κάποιες κανονιστικές ρυθμίσεις, όπως τα τιμολόγια πώλησης προς την ΔΕΗ και ο περιορισμός ανάπτυξης δραστηριοτήτων από τον ιδιωτικό τομέα, ανέστειλαν την ουσιαστική πρόοδο στον τομέα των ΑΠΕ.

Η πιο ουσιαστική προσπάθεια γίνεται το 1994 με τον Νόμο 2244, ο οποίος εξασφαλίζει ευνοϊκές συνθήκες για τους υποψήφιους επενδυτές στον τομέα της αιολικής ενεργείας και των μικρών υδροηλεκτρικών έργων (ΜΥΗΕ), μέσω τιμολογίων και μακροχρόνιων συμβολαίων με την ΔΕΗ. Συγκεκριμένα, εισέρχονται στον επενδυτικό κύκλο, πέρα από την ΔΕΗ, η τοπική αυτοδιοίκηση και ιδιώτες, οι οποίοι μπορούν με ευνοϊκά τιμολόγια ηλεκτρικής ενέργειας (που λαμβάνουν υπόψη, ως αντισταθμιστικό περιβαλλοντικό όφελος, την μείωση των επενδύσεων σε συμβατικά καύσιμα), αλλά και συμβόλαια δεκαετούς διάρκειας να εξασφαλίζουν την βιωσιμότητα των επενδύσεων τους.

Ο Ν. 2773/1999 είναι επίσης ορόσημο, με πολλές από τις διατάξεις του να είναι ακόμα σε ισχύ. Έδωσε έμφαση στην προτεραιότητα σύνδεσης στο δίκτυο των ΑΠΕ και επέβαλλε ανταποδοτικό τέλος 2% επί των πωλήσεων ενεργείας από ΑΠΕ προς τους οικείους οργανισμούς τοπικής αυτοδιοίκησης. Επίσης, περιέλαβε διατάξεις για την απελευθέρωση της αγοράς ηλεκτρικής ενέργειας, μέσω των οποίων συστάθηκε η ΡΑΕ, καθώς και ο διαχειριστής του δικτύου διανομής και του συστήματος μεταφοράς.

Σημαντικός είναι και ο Ν. 2941/2001, ο οποίος κάνει δυνατή την ένταξη των ΑΠΕ στην κατηγορία μεγάλων έργων υποδομής δημοσίου συμφέροντος και καταργεί την απαίτηση έκδοσης οικοδομικής αδείας, με εξαίρεση τα έργα Πολιτικού Μηχανικού. Επιτρέπει δε την κατασκευή έργων
Πίνακας 3.3 Λίστα εθνικών νόμων σχετικά με την ανάπτυξη των ΑΠΕ

<table>
<thead>
<tr>
<th>Νόμος</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ν. 4203/2013</td>
<td>Ρυθμίσεις θεμάτων ανανεώσιμων πηγών ενέργειας</td>
</tr>
<tr>
<td>Ν. 4152/2013</td>
<td>Επείγοντα Μέτρα εφαρμογής των νόμων 4046/2012, 4093/2012 και 4127/2013.</td>
</tr>
<tr>
<td>Ν. 4062/2012</td>
<td>Για την αξιοποίηση του πρώην Αεροδρομίου Ελληνικού - Πρόγραμμα ΗΛΙΟΣ - Προώθηση της χρήσης ενέργειας από ανανεώσιμες πηγές (Ενσωμάτωση Οδηγίας 2009/28/ΕΚ) - Κριτήρια Αειφορίας Βιοκαυσίμων και Βιορευστών (Ενσωμάτωση Οδηγίας 2009/30/ΕΚ).</td>
</tr>
<tr>
<td>Ν. 4014/2011</td>
<td>Περιβαλλοντική αδειοδότηση έρωτων και διατάξεων σε συνάρτηση με δημιουργία περιβαλλοντικού ισοζυγίου</td>
</tr>
</tbody>
</table>
σύνδεσης σταθμών ηλεκτροπαραγωγής και από ιδιώτες επενδυτές, εφόσον τηρούν τις προδιαγραφές που παρέχονται από το διαχειριστή του συστήματος και των δικτύων. Ο νόμος δεν παραλείπει να τονίσει ότι τα έργα ηλεκτροπαραγωγής αποτελούν έργα δημοσίας ωφέλειας, ανεξαρτήτως του φορέα υλοποίησής τους.

Ο Ν. 3468/2006, ο οποίος εναρμόνισε την Οδηγία 2001/77/ΕΚ στο εθνικό δίκαιο, έθεσε το στόχο ακαθάριστης εγχωρίας κατανάλωσης ενέργειας από ΑΠΕ ύψους 20.1%, μέχρι το 2010. Προωθεί στην εσωτερική αγορά ηλεκτρικής ενεργείας, την ενέργεια από ΑΠΕ και μονάδες ΣΗΘΥΑ (Συμπαραγωγής ηλεκτρισμού και Θερμότητας Υψηλής Απόδοσης). Οι τιμές πώλησης καθορίζονται μέσω τιμολογίων και εξασφαλίζονται μακροπρόθεσμα (20ετίας) συμβόλαια πώλησης για τους ιδιωτικούς επενδυτές.

Πίνακας 3.4 Λίστα ΥΑ, Κανονισμών & ΠΔ σχετικά με την ανάπτυξη των ΑΠΕ

<table>
<thead>
<tr>
<th>Υ.Α/Κανονισμοί/Π.Δ.</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υ.Α.Π.Ε. /Φ1/2300/οικ.16932/2012</td>
<td>Αναστολή διαδικασίας αδειοδότησης και χορήγησης προσφορών σύνδεσης για φωτοβολταϊκούς σταθμούς, λόγω κάλυψης των στόχων που έχουν τεθεί με την απόφαση Α.Υ./Φ1/οικ.19598/01.10.2010 του Υπουργού Π.Ε.Κ.Α. (ΦΕΚ Β’ 2317/10.08.2012)</td>
</tr>
<tr>
<td>Υ.Α. Δ5/ΗΛ/Γ/Φ1/749/2012</td>
<td>Τροποποίηση και συμπλήρωση της απόφασης του Υπουργού Ανάπτυξης Δ5/ΗΛ/Γ/Φ1/οικ.15641 (ΦΕΚ Β’ 1420/15.7.2009) περί καθορισμού των λεπτομερειών της μεθόδου υπολογισμού της ηλεκτρικής ενέργειας από συμπαραγωγή και της αποδοτικότητας συμπαραγωγής και της συμμετοχής τους στην Αγορά Ηλεκτρικής Ενέργειας και το Σύστημα Γενικών Τιμών ΑΠΕ και ΣΗΘΥΑ καθώς και την αποζημίωση αυτών.</td>
</tr>
<tr>
<td>Υ.Α. Α.Υ. /Φ1/οικ.19598/2010</td>
<td>Απόφαση για την επιδιωκόμενη αναλογία εγκατεστημένης ισχύος και την κατανομή της στο χρόνο μεταξύ των διαφόρων τεχνολογιών Ανανεώσιμων Πηγών Ενέργειας (ΦΕΚ Β’ 1630/11.10.2010)</td>
</tr>
<tr>
<td>Κανονισμός ΥΑΠΕ/Φ1/14810/2011</td>
<td>Κανονισμός Αδειών Παραγωγής Ηλεκτρικής Ενέργειας με χρήση Ανανεώσιμων Πηγών Ενέργειας και μέσω Συμπαραγωγής Ηλεκτρισμού και Θερμότητας Υψηλής Απόδοσης (Σ.Η.Θ.Υ.Α.)</td>
</tr>
<tr>
<td>Υ.Α. Δ5/ΗΛ/Γ/Φ1/οικ.15641/2009</td>
<td>Καθορισμός λεπτομερειών της μεθόδου υπολογισμού της ηλεκτρικής ενέργειας από συμπαραγωγή και της αποδοτικότητας συμπαραγωγής (ΦΕΚ Β’ 1420/15.7.2009)</td>
</tr>
<tr>
<td>Υ.Α. 49828/2008</td>
<td>Έγκριση ειδικού πλαισίου χωροταξικού σχεδιασμού και αειφόρου ανάπτυξης για τις ανανεώσιμες πηγές ενέργειας και της στρατηγικής μελέτης περιβαλλοντικών επιπτώσεων αυτών. (ΦΕΚ Β’ 2464)</td>
</tr>
<tr>
<td>Κανονισμός Δ6/Φ1/οικ.5707/2007</td>
<td>Κανονισμός Αδειών Παραγωγής ηλεκτρικής ενέργειας με χρήση Ανανεώσιμων Πηγών Ενέργειας και μέσω Συμπαραγωγής Ηλεκτρισμού και Θερμότητας Υψηλής Απόδοσης</td>
</tr>
<tr>
<td>Υ.Α. 12160/1999</td>
<td>Διαδικασία επιλογής υποψηφίων ηλεκτροπαραγωγών για έκδοση αδειών εγκατάστασης μικρών υδροηλεκτρικών έργων με τη βέλτιστη αξιοποίηση του διαθέσιμου υδατικού δυναμικού της χώρας (ΦΕΚ Β 1552/3.8.99)</td>
</tr>
</tbody>
</table>
Πίνακας 3.5 (Συνέχεια) Λίστα ΥΑ, Κανονισμών & ΠΔ σχετικά με την ανάπτυξη των ΑΠΕ

<table>
<thead>
<tr>
<th>Υ.Α/Κανονισμοι/Π.Δ.</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υ.Α. Δ6/Φ1/ΟΙΚ12230/1999</td>
<td>Τροποποίηση διαδικασίας έκδοσης αδειών εγκατάστασης σταθμών ηλεκτροπαραγωγής με χρήση ΑΠΕ μη εγγυημένης ύψους στα ηλεκτρικά συστήματα Κρήτης, Ρόδου και Κω της ΔΕΗ και λοιπές ρυθμίσεις (ΦΕΚ Β' 1560/04-08-99)</td>
</tr>
<tr>
<td>Υ.Α. 8860/1998</td>
<td>Τροποποίηση διατάξεων της απόφασης του Υπουργού ΒΕΤ 8295/19.4.1995 (ΦΕΚ Β' 502(26/05/1998))</td>
</tr>
<tr>
<td>Π.Δ. 27/1996</td>
<td>Συγχώνευση των Υπουργείων Τουρισμού, Βιομηχανίας, Ενέργειας και Τεχνολογίας και Εμπορίου στο Υπουργείο Ανάπτυξης (ΦΕΚ 19/Α/1-2-1996)</td>
</tr>
<tr>
<td>Υ.Α. Δ6/Φ1/51298/1996</td>
<td>Τροποποίηση και αντικατάσταση διατάξεων καθώς και διόρθωση παραγράμματος της απόφασης του Υπουργού Βιομηχανίας, Ενέργειας και Τεχνολογίας με αριθ. πρωτ. Δ6/Φ1/ΟΙΚ.8295/19.4.1995. (ΦΕΚ Β' 766 (28-8-96))</td>
</tr>
<tr>
<td>Υ.Α. Δ6/Φ1/ΟΙΚ.8295/1995</td>
<td>Α. Διαδικασίες και δικαιολογητικά που απαιτούνται για την έκδοση των αδειών εγκατάστασης και λειτουργίας σταθμών ηλεκτροπαραγωγής, τα καταβλητέα παράδειγμα καθώς και κάθε άλλη αναγκαία λεπτομέρεια. Β. Καθορισμός γενικών τεχνικών και οικονομικών όρων των συμβάσεων μεταξύ παραγωγών και ΔΕΗ, λεπτομέρειες διαμόρφωσης των τιμολογιών καθώς και όροι διασύνδεσης (ΦΕΚ Β' 385/10.5.1995)</td>
</tr>
<tr>
<td>Π.Δ. 256/1989</td>
<td>Άδεια χρήσης νερού (ΦΕΚ Α 121/11.5.89)</td>
</tr>
<tr>
<td>Υ.Α. Φ16/5813/1989</td>
<td>Άδεια εκτέλεσης έργου αξιοποίησης υδατικών πόρων από νομικά πρόσωπα ιδιωτικού δικαίου (ΦΕΚ Β' 383/24.5.89)</td>
</tr>
<tr>
<td>Υ.Α. ΣΕ2708/1987</td>
<td>Δικαιολογητικά που απαιτούνται για την έκδοση αδειών ίδρυσης, εγκατάστασης και λειτουργίας των σταθμών ηλεκτροπαραγωγής (ΦΕΚ Β' 761(17.12.1987)</td>
</tr>
<tr>
<td>Π.Δ. 126/1986</td>
<td>Διαδικασία παραχώρησης της εκμετάλλευσης, συντήρησης και βελτίωσης των δασών που ανήκουν στο Δημόσιο και στα νομικά πρόσωπα του Δημοσίου τομέα στους δασικούς συνεταιρισμούς (ΦΕΚ Α' 44/17-04-86)</td>
</tr>
</tbody>
</table>

Ο Ν. 3734/2009 ουσιαστικά τροποποιεί τον Ν. 3468/2006 και προβλέπει νέες τιμές πώλησης της παραγόμενης από φωτοβολταϊκούς σταθμούς ενέργειας. Θέτει επίσης περιορισμούς για την μεταβίβαση της άδειας παραγωγής από επενδυτές σε επενδυτές, ενώ εισάγει ειδικό πρόγραμμα ανάπτυξης φωτοβολταϊκών συστημάτων σε στέγες και προσόψεις.

Ο Ν. 127/2012/4062 αφορά το Πρόγραμμα ΗΛΙΟΣ για την «Προώθηση της χρήσης ενέργειας από ανανεώσιμες πηγές» και στηρίζεται στην οδηγία 2009/28/ΕΚ, που εστιάζει στους μηχανισμούς συνεργασίας μεταξύ κρατών-μελών. Το πρόγραμμα ΗΛΙΟΣ είναι ένα καθαρό επενδυτικό πρόγραμμα για την εξαγωγή καθαρής ενέργειας προς τις χώρες της κεντρικής Ευρώπης.

Στη συνέχεια γίνεται ειδική αναφορά στο ΕΠΧΣΑΑ-ΑΠΕ (Ειδικό Πλαίσιο Χωροταξικού Σχεδιασμού και Αειφόρου Ανάπτυξης για τις Ανανεώσιμες Πηγές Ενέργειας) και στον Ν. 3851/2010, καθώς οι
διατάξεις τους περί περιορισμών χωροθέτησης ΑΠΕ σε συγκεκριμένες καλύψεις και χρήσεις γης
tόσο για τα αιολικά όσο και για τα φωτοβολταϊκά πάρκα, χρησιμοποιήθηκαν στην κατάρτιση της
μεθοδολογίας που εφαρμόστηκε.

3.3.1 ΕΠΧΣΑΑ ΓΙΑ ΤΙΣ ΑΠΕ

Γενικά
Το ΕΠΧΣΑΑ-ΑΠΕ (Υ.Α 49828/2008 ΦΕΚ Β’ 2464) αποτέλεσε την πρώτη συντονισμένη προσπάθεια
χωροταξικού σχεδιασμού για τις ΑΠΕ από το ελληνικό δίκαιο. Πριν τη θέσπισή του, ο χωροταξικός
σχεδιασμός των ΑΠΕ και η εκτίμηση των επιπτώσεων τους αποτελούσαν, κατά μεγάλο μέρος,
kομμάτι της περιβαλλοντικής μελέτης και αξιολόγησης των εγκαταστάσεων, η οποία, λόγω του
ειδικού της χαρακτήρα, σε καμία περίπτωση δεν κάλυπτε την ανάγκη καθιέρωσης γενικών
κριτηρίων χωροθέτησης.

Λαμβάνοντας υπόψη προηγούμενες προσπάθειες, όπως το Ν. 2742/1999 και το Γενικό Πλαίσιο
Χωροταξικού Σχεδιασμού και Αειφόρου Ανάπτυξης (ΦΕΚ 128 Α’), το ΕΠΧΣΑΑ αναγνωρίζει την
συμβολή των ΑΠΕ στην κατεύθυνση της αειφόρου ανάπτυξης, μέσω της καλύτερης χωρικής
αξιοποίηση των ενεργειακών πόρων, αλλά και στην ασφάλεια του εθνικού εφοδιασμού.
Συμβάλλουν δε, και στην μείωση των εκπομπών CO₂, εφόσον υποκαταστήσουν υπολογίσιμο μερίδιο
της παραγωγής ενέργειας από μονάδες συμβατικών καυσίμων.
Σε αυτή την κατεύθυνση προτείνει την απλοποίηση της αδειοδοτικής διαδικασίας και την
υιοθετήσεις ενός κανονιστικού χωροθετικού πλαισίου για τις επιτρεπόμενες χρήσεις γης. Τονίζει,
ότι, παρά τον χαρακτηρισμό τους ως φιλικές προς το περιβάλλον μορφές ενέργειας, οι ΑΠΕ δεν
στερούνται παντελώς επιπτώσεων, μιας και έχουν σημαντικό περιβαλλοντικό αντίκτυπο, μέσω της καλύτερης χωρικής
αξιοποίηση των ενεργειακών πόρων, αλλά και στην ασφάλεια του εθνικού εφοδιασμού.
Συμβάλλουν δε, και στην μείωση των εκπομπών CO₂, εφόσον υποκαταστήσουν υπολογίσιμο μερίδιο
της παραγωγής ενέργειας από μονάδες συμβατικών καυσίμων.

Χωροθέτηση αιολικών εγκαταστάσεων

Για την χωροθέτηση αιολικών εγκαταστάσεων το ΕΠΧΣΑΑ-ΑΠΕ εισάγει μια ζωνοποίηση της
ελληνικής επικράτειας σε Περιοχές Αιολικής Προτεραιότητας (ΠΑΠ) και Περιοχές Αιολικής
Καταλληλότητας (ΠΑΚ), όπως διακρίνονται στην Εικόνα 3.1. Οι περιοχές ορίζονται ως εξής:
α. Περιοχές Αιολικής Προτεραιότητας (ΠΑΠ), οπού ισχύουν ευνοϊκότερες διατάξεις Φέρουσας Ικανότητας (Φ.Ι.) ή αλλιώς Χωρητικότητας ανά Οργανισμό Τοπικής Αυτοδιοίκησης (ΟΤΑ) (π.χ. ανά Δημοτική Ενότητα), λόγω ύπαρξης υψηλότερου αιολικού δυναμικού ή ευνοϊκότερων συνθηκών επίτευξης των χωροταξικών στόχων.

β. Περιοχές Αιολικής Καταλληλότητας (ΠΑΚ), που χαρακτηρίζονται όλοι οι πρωτοβάθμιοι Οργανισμοί Τοπικής Αυτοδιοίκησης (Ο.Τ.Α.) της ηπειρωτικής χώρας, οι οποίοι δεν περιλαμβάνονται στις Περιοχές Αιολικής Προτεραιότητας, των οποίων περιοχές ή και μεμονωμένες θέσεις κρίνονται από την Ρυθμιστική Αρχή Ενέργειας κατά το άρθρο 3 παρ. 1.δ του Ν. 3468/06, ως ενεργειακά αποδοτικές.

Εικόνα 3.1 Διάκριση της ελληνικής επικράτειας σε ΠΑΚ και ΠΑΠ βάσει του ΕΠΧΣΑΑ για τις ΑΠΕ (ΥΠΕΚΑ, 2008)

Οι ΠΑΠ χωρίζονται ακολούθως σε τρεις περιοχές, ανάλογα με το διαμέρισμα στο όποιο εκτείνονται (βλ. Εικόνα 3.1). Συγκεκριμένα μέρος της Περιφέρεια Θεσσαλίας περιλαμβάνεται στην ΠΑΠ 2 της Κεντρικής Ελλάδας, όπου μόλις τέσσερις Δημοτικές Ενότητες (ΔΕ) της περιοχής μελέτης, στα όρια με την Στερεά Ελλάδα (Καλλίφωνο, Μενελαίδος, Ρεντίνης και Ιτάμου) ανήκουν στην ΠΕ Καρδίτσας.

Σημειώνεται ότι, σύμφωνα με την βιβλιογραφία (Baltas & Dervos, 2012), η ζωνοποίηση και η συγκέντρωση αιολικών εγκαταστάσεων σε συγκεκριμένες περιοχές (π.χ. σε περιφερειακή κλίμακα), θεωρείται δυσμενής για την απορρόφηση της μεταβλητής αιολικής παραγωγής. Παρόλα αυτά, το ΕΠΧΣΑΑ-ΑΠΕ αλλάζει ουσιαστικά μόνο την επιτρεπόμενη πυκνότητα (Φέρουσα Ικανότητα,
όπως αναφέρεται τον ΕΠΧΣΑΑ) των αιολικών εγκαταστάσεων, η οποία για την ηπειρωτική χώρα αλλάζει από 1.05 (αριθμός τυπικών ανεμογεννητριών, 10 000 m²) στις ΠΑΠ σε 0.66 στις ΠΑΚ. Ειδικότερα στις ΠΑΠ, σε επίπεδο δήμου, δεν επιτρέπεται οι αιολικές εγκαταστάσεις να καλύπτουν περισσότερο από 8% της επικράτειας. Το ποσοστό αυτό μπορεί να ανέλθει μέχρι 30% με την σύμφωνη γνώμη των δημοτικών αρχών, η οποία αποδίδεται για 25 έτη, όσο διαρκεί και η άδεια παραγωγής ενέργειας της εγκατάστασης. Αντίστοιχα στις ΠΑΚ, το ποσοστό κάλυψης μπορεί να φτάνει το 5%, ενώ μπορεί να ανέλθει σε 50% με την συγκατάθεση των δημοτικών αρχών.

Ιδιαίτερη σημασία για τις περιοχές αποκλεισμού και καταλληλόλητας έχουν τα άρθρα 6 και 7 του ΕΠΧΣΑΑ-ΑΠΕ, τα οποία καθορίζουν και τα δεδομένα που θα απαιτηθούν για την υλοποίηση του μοντέλου και το αξιολόγηση των επιτρεπόμενων θέσεων χωροθέτησης. Για τον καθορισμό των κριτηρίων χωροθέτησης των αιολικών εγκαταστάσεων, η ελληνική επικράτεια χωρίζεται με βάση το ΕΠΧΣΑΑ-ΑΠΕ σε τέσσερις χωρικές ενότητες:

α. Την ηπειρωτική χώρα, συμπεριλαμβανομένου και της Εύβοιας

β. Την Αττική, η οποία αποτελεί ειδική κατηγορία της ηπειρωτικής χώρας λόγω του μητροπολιτικού της χαρακτήρα

γ. Τα κατοικημένα νησιά και την Κρήτη

δ. Τις ακατοίκητες νησίδες και τις υπεράκτιες περιοχές

Στην εργασία αυτή επικεντρώνομαστε στην ηπειρωτική χώρα, όπου και ανήκει η Περιφέρεια Θεσσαλίας.

Σημαντικός ορισμός που εισάγεται από το ΕΠΧΣΑΑ για τις αιολικές εγκαταστάσεις (κεφαλαίο α’ γενικές διατάξεις), είναι αυτός της τυπικής ανεμογεννήτριας, η οποία όπως θα αναδειχθεί στη συνεχεία είναι μέγεθος αναφοράς για τις ελάχιστες επιτρεπόμενες αποστάσεις από τις ασύμβατες χρήσεις για χωροθέτηση ΑΠΕ χρήσεις γης.

Πίνακας 3.6 Χαρακτηριστικά τυπικής ανεμογεννήτριας βάσει του ΕΠΧΣΑΑ για τις ΑΠΕ (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Διάμετρος ρότορα (m)</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ύψος πύργου (m)</td>
<td>80</td>
</tr>
<tr>
<td>Ισχύς (MW)</td>
<td>2</td>
</tr>
<tr>
<td>Ταχύτητα λειτουργίας (m/s)</td>
<td>12</td>
</tr>
<tr>
<td>Εύρος λειτουργίας (m/s)</td>
<td>[3-22]</td>
</tr>
</tbody>
</table>

Με Βάση το άρθρο 4 του ΕΠΧΣΑΑ αποκλείεται η χωροθέτηση αιολικών εγκαταστάσεων εντός:

18
β. Των περιοχών απολύτου προστασίας της φύσης και προστασίας της φύσης που καθορίζονται κατά τις διατάξεις των άρθρων 19 παρ. 1 και 2 και 21 του Ν. 1650/1986.

γ. Των ορίων των Υγροτόπων Διεθνούς Σημασίας (Υγρότοποι Ραμσάρ).

δ. Των πυρήνων των εθνικών δρυμών και των κηρυγμένων μνημείων της φύσης και των αισθητικών δασών που δεν περιλαμβάνονται στις περιοχές της περιπτώσεως β’ του παρόντος άρθρου.

στ. Των εντός σχεδίων πόλεων και ορίων οικισμών προ του 1923 ή κάτω των 2.000 κατοίκων περιοχών.

ζ. Των Π.Ο.Τ.Α. του άρθρου 29 του Ν. 2545/97, των Περιοχών Οργανωμένης Ανάπτυξης Παραγωγικών Δραστηριοτήτων του τριτογενούς τομέα του άρθρου 10 του Ν. 2742/99, των θεματικών πάρκων κάτω των τουριστικών λιμένων.

η. Των ατύπως διαμορφωμένων, στο πλαίσιο της εκτός σχεδίου δόμησης, τουριστικών και οικιστικών περιοχών. Ως ατύπως διαμορφωμένες τουριστικές και οικιστικές περιοχές για την εφαρμογή του παρόντος νοσούνται οι περιοχές που περιλαμβάνουν 5 τουλάχιστον δομημένες ιδιοκτησίες με χρήση τουριστική ή κατοικία, οι οποίες ανά δύο βρίσκονται σε απόσταση μικρότερη των 100 μέτρων, και συνολική δυναμικότητα 150 κλίνες τουλάχιστον. Για τον υπολογισμό της δυναμικότητας κάθε δομημένη ιδιοκτησία με χρήση κατοικίας θεωρείται ισοδύναμη με 4 κλίνες, ανεξαρτήτως εμβαδού. Οι ανωτέρω περιοχές θα αναγνωρίζονται στο πλαίσιο της οικείας Π.Π.Ε.Α.

θ. Των ακτών κολύμβησης που περιλαμβάνονται στο πρόγραμμα παρακολούθησης της ποιότητας νερών κολύμβησης που συντονίζεται από το Υ.ΠΕ.ΧΩ.Δ.Ε.

ι. Των τμημάτων των λατομικών περιοχών και μεταλλευτικών και εξορυκτικών ζωνών που λειτουργούν επιφανειακά.

ια. Άλλων περιοχών ή ζωνών που υπάγονται σήμερα σε ειδικό καθεστώς χρήσεων υγρών, βάσει του οποίου δεν επιτρέπεται η χωροθέτηση αιολικών εγκαταστάσεων και για όσο χρόνο ισχύουν.

Οι παραπάνω περιορισμοί εφαρμόζονται και για τη χωροθέτηση των συνοδευτικών έργων Α.Π.Ε., (δίκτυα πρόσβασης και μεταφοράς ηλεκτρικής ενέργειας), ενώ σε περίπτωσης παρέκκλισης πρέπει αυτή να συμπληρώνεται από περιβαλλοντική τεκμηρίωση.

Για την κατά το δυνατόν μείωση των επιπτώσεων γίνονται οι ακόλουθες συστάσεις:

α. Ενδεικνύεται η αξιοποίηση-χρήση υφιστάμενων οδών για την εξυπηρέτηση των αιολικών πάρκων με τις απαραίτητες βελτιώσεις και επεκτάσεις. Η εσωτερική οδοποιία να είναι χωμάτινη με επίστρωση χαλικιού (3Α). Ο σχεδιασμός των έργων αυτών πρέπει να γίνεται κατά τρόπο ώστε να αποφεύγονται, κατά το δυνατόν, μεγάλου βάθους και εκτεταμένες
εκσκαφές το δε πλάτος των δρόμων πρόσβασης πρέπει να περιορίζεται στο αναγκαίο μέτρο.

β. Πρέπει να εκτελούνται όλα τα απαραίτητα αντιπλημμυρικά έργα και έργα ανάχωσης της διάβρωσης, ώστε να μην υπάρξει φόβος αλλοίωσης του τοπίου λόγω του έργου.

g. Η φθορά της βλάστησης πρέπει να περιορίζεται στο ελάχιστο δυνατόν (η εκχέρσωση θάμνων και δέντρων θα πρέπει να γίνεται σύμφωνα με τις υποδείξεις της τοπικής Δασικής Υπηρεσίας) και να αποκαθίσταται η αισθητική του τοπίου.

d. Ενδείκνυται η γραμμή μεταφοράς της ηλεκτρικής ενέργειας μέχρι το δίκτυο της ΔΕΗ να ακολουθεί, κατά το δυνατόν, τις υφιστάμενες οδούς προσπέλασης, ώστε να περιορίζεται στο ελάχιστο η εκχέρσωση εκτάσεων ή η γενικότερη υποβάθμιση του περιβάλλοντος.

Επιτρέπει δε την χωροθέτηση αιολικών εγκαταστάσεων με ιδιαίτερη μέριμνα για τον περιορισμό της βλάβης της δασικής βλάστησης εντός:

α. Των Ζωνών Ειδικής Προστασίας (Ζ.Ε.Π.) της ορνιθοπανίδας της Οδηγίας 79/409/ΕΟΚ, ύστερα από τη σύνταξη ειδικής ορθολογικής μελέτης και σύμφωνα με τις ειδικότερες προϋποθέσεις και περιορισμούς που θα καθορίζονται στην οικεία πράξη ΕΠΟ

β. Δασών, δασικών και αναδασωτέων εκτάσεων, σύμφωνα με τα άρθρα 45 και 58 του Ν. 998/1979 και άρθρου 13 του Ν. 1734/87, όπως ισχύουν.

Πέραν των περιορισμών που παρουσιάστηκαν, για τις αιολικές εγκαταστάσεις, στο Παράρτημα ΙΙ αναφέρονται επιπλέον ασύμβατες χρήσεις και ελάχιστες αποστάσεις από αυτές, οι οποίες παρουσιάζονται στους Πίνακες 3.7 έως 3.10. Για την διασφάλιση της λειτουργικότητας και απόδοσης των ΑΠ (ΥΠΕΚΑ, 2008)

Πίνακας 3.7 Αποστάσεις για τη διασφάλιση της λειτουργικότητας και απόδοσης των ΑΠ (ΥΠΕΚΑ, 2008)

| Μέγιστη απόσταση από υφιστάμενη οδό χερσαίας προσπέλασης οποιασδήποτε κατηγορίας | Για εγκατεστημένη ισχύ / μονάδα κάτω των 10 MWe: Σε Π.Α.Π. και Αττική: 20 χλμ. μήκους οδεύσης
| Σε άλλες περιοχές (Π.Α.Κ.): 15 χλμ. ανεξάρτητα από την εγκατεστημένη ισχύ / μονάδα
| Σε νησιά: 10 χλμ. ανεξάρτητα από την εγκατεστημένη ισχύ / μονάδα. |

| Μέγιστη απόσταση από το σύστημα μεταφοράς ηλεκτρικής ενέργειας Υψηλής Τάσης (Υ.Τ.) | Όπως ορίζει ο Δ.Ε.Σ.Μ.Η.Ε. στους όρους σύνδεσης της εγκατάστασης (ψηλή τάση) και η ΔΕΗ (μέση και χαμηλή τάση) |

| Ελάχιστη απόσταση (A) μεταξύ των ανεμογεννητριών. | 2,5 φορές τη διάμετρο (d) της φτερωτής της ανεμογεννήτριας (A=2,5d) |
Πίνακας 3.8 Αποστάσεις ΑΠ από περιοχές περιβαλλοντικού και πολιτιστικού ενδιαφέροντος (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Αποστάσεις από περιοχές περιβαλλοντικού ενδιαφέροντος</th>
<th>Ελάχιστη απόσταση εγκατάστασης από την ασύμβατη χρήση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Περιοχές απολύτου προστασίας της Φύσης και προστασίας της φύσης του άρθρου 19 παρ.1, 2 Ν.1650/86 (Α’160)</td>
<td>Σύμφωνα με την εγκεκριμένη Ε.Π.Μ. ή το σχετικό Π.Δ. (του άρθρου 21 του Ν. 1650/86) ή την σχετική Κ.Υ.Α. (Ν. 3044/02)</td>
</tr>
<tr>
<td>Πυρήνες των Εθνικών Δρυμών, κηρυγμένα μνημεία της φύσης, αιθουσική δάσος που δεν περιλαμβάνονται στις περιοχές απολύτου προστασίας της φύσης και προστασίας της φύσης των παρ. 1 και 2 του άρθρου 19 του Ν. 1650/1986 οι υγρότοποι RAMSAR, οι οικότοποι προτεραιότητας περιοχών της Επικράτειας που έχουν ενταχθεί στον κατάλογο των τόπων κοινοτικής σημασίας του δικτύου ΦΥΣΗ 2000 σύμφωνα με την απόφαση 2006/613/ΕΚ της Επιτροπής (ΕΕ L 259 της 21.9.2006, σ. 1).</td>
<td>Κρίνεται κατά περίπτωση στο πλαίσιο της ΕΠΟ</td>
</tr>
<tr>
<td>Ακτές κολύμβησης που περιλαμβάνονται στο πρόγραμμα παρακολούθησης της ποιότητας των νερών κολύμβησης που συντονίζεται από το Υ.ΠΕ.ΧΩ.Δ.Ε. 1500 μ. ²</td>
<td>Κρίνεται κατά περίπτωση στο πλαίσιο της ΕΠΟ, μετά από ειδική ορνιθολογική μελέτη</td>
</tr>
<tr>
<td>Περιοχές ΖΕΠ ορνιθοπανίδας (SPA)</td>
<td>Κρίνεται κατά περίπτωση στο πλαίσιο της ΕΠΟ, μετά από ειδική ορνιθολογική μελέτη</td>
</tr>
</tbody>
</table>

Αποστάσεις από περιοχές και στοιχεία πολιτιστικής κληρονομιάς

<table>
<thead>
<tr>
<th>Ασύμβατη χρήση</th>
<th>Ελάχιστη απόσταση εγκατάστασης από την ασύμβατη χρήση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εγγεγραμμένα στον Κατάλογο Παγκόσμιας Κληρονομιάς και τα άλλα μείζονα σημασίας μνημεία, αρχαιολογικοί χώροι και ιστορικοί τόποι της παρ. 5. εδάφιο β του άρθρου 50 του Ν. 3028/02</td>
<td>3.000 μ.</td>
</tr>
<tr>
<td>Ζώνη απολύτου προστασίας (Ζώνη Α) λοιπών αρχαιολογικών χώρων Ζώνη απολύτου προστασίας (Ζώνη Α) λοιπών αρχαιολογικών χώρων Α=7d, όπου (d) η διάμετρος της φτερωτής της ανεμογεννήτριας, τουλάχιστον 500 μ.</td>
<td>Α=7d, όπου (d) η διάμετρος της φτερωτής της ανεμογεννήτριας, τουλάχιστον 500 μ.</td>
</tr>
</tbody>
</table>

1. Η αναφερόμενη απόσταση δεν λαμβάνεται υπόψη στην περίπτωση που η άτρακτος μιας Α/Γ δεν είναι ορατή από την ασύμβατη χρήση.
Πίνακας 3.9 Αποστάσεις ΑΠ από οικιστικές δραστηριότητες και δίκτυα τεχνικής υποδομής (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Αποστάσεις από οικιστικές δραστηριότητες</th>
<th>Ελάχιστη απόσταση εγκατάστασης από την ασύμβαση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πόλεις και οικισμοί με πληθυσμό >2000 κατοίκων ή οικισμοί με πληθυσμό < 2000 κατοίκων που χαρακτηρίζονται ως δυναμικοί, τουριστικοί ή αξιόλογοι κατά την έννοια του άρθρου 2 του Π.Δ. 24.4/3.5.1985</td>
<td>1.000 μ. από το όριο2 του οικισμού ή του σχεδίου πόλης κατά περίπτωση</td>
</tr>
<tr>
<td>Παραδοσιακοί οικισμοί</td>
<td>1.500 μ. από το όριο3 του οικισμού3</td>
</tr>
<tr>
<td>Λοιποί οικισμοί</td>
<td>500 μ. από το όριο4 του οικισμού</td>
</tr>
<tr>
<td>Οργανωμένη δόμηση Α’ ή Β’ κατοικίας (Π.Ε.Ρ.ΠΟ., Συνεταιρισμοί κλπ.) ή/και διαμορφωμένες περιοχές Β’ κατοικίας, όπως αναγνωρίζονται στο πλαίσιο της Μ.Π.Ε. κάθε μεμονωμένης εγκατάστασης αιολικού πάρκου</td>
<td>1.000 μ. από τα όρια του σχεδίου ή της διαμορφωμένης περιοχής αντίστοιχα</td>
</tr>
<tr>
<td>Ιερές Μονές</td>
<td>500 μ. από τα όρια της Μονής</td>
</tr>
<tr>
<td>Μεμονωμένη κατοικία (νομίμως υφιστάμενη)</td>
<td>Εξασφάλιση ελάχιστου επιπέδου θορύβου μικρότερου των 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποστάσεις από δίκτυα τεχνικής υποδομής και ειδικές χρήσεις</th>
<th>Ελάχιστη απόσταση εγκατάστασης από την ασύμβαση χρήση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κύριοι οδικοί άξονες, οδικό δίκτυο αρμοδιότητας των Ο.Τ.Α. και σιδηροδρομικές γραμμές.</td>
<td>Απόσταση ασφαλείας 1,5d από τα όρια της ζώνης απαλλοτρίωσης της οδού ή του σιδηροδρομικού δικτύου αντίστοιχα</td>
</tr>
<tr>
<td>Γραμμές υψηλής τάσης</td>
<td>Απόσταση ασφαλείας 1,5d από τα όρια διέλευσης των γραμμών Υ.Τ.</td>
</tr>
<tr>
<td>Υποδομές τηλεπικοινωνιών (κεραίες), RADAR</td>
<td>Κατά περίπτωση μετά από γνωμοδότηση του αρμόδιου</td>
</tr>
<tr>
<td>Εγκαταστάσεις ή δραστηριότητες της αεροπλοΐας</td>
<td>Κατά περίπτωση μετά από γνωμοδότηση του αρμόδιου φορέα</td>
</tr>
</tbody>
</table>

2 Στις περιπτώσεις που δεν έχει οριοθετηθεί ο οικισμός η απόσταση υπολογίζεται από το κέντρο του οικισμού προσαυξημένη κατά 500 μέτρα και, σε κάθε περίπτωση, σε απόσταση μεγαλύτερη των 500 μ. από την τελευταία κατοικία του οικισμού.
3 Σε περίπτωση που υφίσταται ήδη εγκατάσταση αιολικού σταθμού, ή πάρκο κεραίες ή ραντάρ, σε απόσταση μικρότερη των 1500μ από τα όρια του, η ελάχιστη απόσταση κάθε νέας εγκατάστασης αιολικού πάρκου από αυτά, ορίζεται ως αντιστάθμισμα στα 2.500μ.
Πίνακας 3.10 Αποστάσεις ΑΠ από ζώνες ή εγκαταστάσεις παραγωγικών δραστηριοτήτων (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Απόστασης από ζώνες ή εγκαταστάσεις παραγωγικών δραστηριοτήτων</th>
<th>Ελάχιστη απόσταση εγκατάστασης από την ασύμβατη χρήση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αγροτική γη υψηλής παραγωγικότητας, ζώνες αναδασμού, αρδευόμενες εκτάσεις</td>
<td>Απόσταση ασφαλείας 1,5d</td>
</tr>
<tr>
<td>Ιχθυοκαλλιέργειες</td>
<td>Απόσταση ασφαλείας 1,5d</td>
</tr>
<tr>
<td>Μονάδες εσταιλισμένης κτηνοτροφίας:</td>
<td>Απόσταση ασφαλείας 1,5d</td>
</tr>
<tr>
<td>Λατομικές ζώνες και δραστηριότητες</td>
<td>Όπως ορίζεται στην κείμενη νομοθεσία</td>
</tr>
<tr>
<td>Λειτουργούσες επιφανειακά μεταλλευτικά-εξορυκτικές ζώνες και δραστηριότητες</td>
<td>500 μ.</td>
</tr>
</tbody>
</table>
| ΝΟΤΑ και άλλες Περιοχές Οργανωμένης Ανάπτυξης Παραγωγικών Δραστηριοτήτων του τριτογενούς τομέα, θεματικά πάρκα, τουριστικοί λιμένες και άλλες θεσμικοτομοποιημένες ή διαμορφωμένες τουριστικά περιοχές (όπως αναγνωρίζονται στο πλαίσιο της ΜΠΕ του αιολικού πάρκου για κάθε μεμονωμένη εγκατάσταση). | 1.000 μ από τα όρια της ζώνης / περιοχής
| Τουριστικά καταλύματα και ειδικές τουριστικές υποδομές. | Συμφωνά με τον ΕΠΧΣΑΑ, «γενικότερα, και παρόλο, που η συγκέντρωση αιολικών πάρκων σε περιοχές υψηλού αιολικού δυναμικού είναι επιθυμητή (περιοχές προτεραιότητας), τόσο από οικονομικής, όσο και από περιβαλλοντικής απόψεως, η πυκνότητα των ανεμογεννητριών γύρω από τυχόν υφιστάμενα σημεία ιδιαίτερου ενδιαφέροντος των περιοχών αυτών, θα πρέπει να
| Σημαντικό είναι και τα κριτήρια ένταξης στο τοπίο για την εκτίμηση της επίπτωσης μιας υπό αδειοδότηση αιολικής μονάδας, οι οποίες αναφέρονται στο Παράρτημα VI. Σύμφωνα και με την Εικόνα 3.2, λαμβάνεται υπόψη η οπτική παρεμβολή της ανεμογεννήτριας από τα σημεία ιδιαίτερου ενδιαφέροντος, τα οποία βρίσκονται εντός κύκλου που ορίζεται με κέντρο την μονάδα και ακτίνα που διαφοροποιείται ανάλογα με τη σημασία και την ποιότητα του εν λόγω σημείου και την κατηγορία χώρου που εντάσσεται. Είναι ευνόητο ότι οι ανεμογεννήτριες που χωροθετούνται εκτός του κύκλου ή που η άτρακτος τους δεν έχει οπτική επαφή με το σημείο, δεν λαμβάνονται υπόψη. Συμφωνά με τον ΕΠΧΣΑΑ, «γενικότερα, και παρόλο, που η συγκέντρωση αιολικών πάρκων σε περιοχές υψηλού αιολικού δυναμικού είναι επιθυμητή (περιοχές προτεραιότητας), τόσο από οικονομικής, όσο και από περιβαλλοντικής απόψεως, η πυκνότητα των ανεμογεννητριών γύρω από τυχόν υφιστάμενα σημεία ιδιαίτερου ενδιαφέροντος των περιοχών αυτών, θα πρέπει να

4 Η αναφερόμενη απόσταση δεν λαμβάνεται υπόψη στην περίπτωση που η άτρακτος μιας Α/Γ δεν είναι ορατή από την ασύμβατη χρήση.
5 Οι αποστάσεις αυτές μπορεί να μειώνονται με τη σύμφωνη γνώμη του φορέα της ασύμβατης χρήσης, η οποία παρέχεται για όλη τη διάρκεια κύκλου ζωής των σχετικών εγκαταστάσεων και πάντως για χρονικό διάστημα τουλάχιστον 25 έτη, για να επαληθεύσει στον χρόνο λιτότητας των σχετικών αδειών παραγωγής (25 έτη). Σε κάθε περίπτωση η απόσταση αυτή δεν μπορεί να είναι μικρότερη των 500 μέτρων από τα όρια των εγκαταστάσεων διανυκτέρευσης και 1.5 d από τα όρια των λοιπών εγκαταστάσεων.
περιορίζεται εντός προδιαγεγραμμένων ορίων. Σε περίπτωση που υπάρχει υπέρβαση αυτού του ορίου πυκνότητας, θα πρέπει να τίθεται περιορισμός στην κάλυψη του οπτικού ορίζοντα των σημείων ιδιαίτερου ενδιαφέροντος. Περαιτέρω, ο βαθμός επίδρασης της κάθε ανεμογεννήτριας στο τοπίο από το σημείο ιδιαίτερου ενδιαφέροντος, εξαρτάται από την πραγματική απόσταση της από το σημείο.»

Εικόνα 3.2 Εφαρμογή κριτήριου ένταξης στο τοπίο από το ΕΠΚΑΑ για τις ΑΠΕ (ΥΠΕΚΑ, 2008)

Χωροθέτηση εγκαταστάσεων εκμετάλλευσης ηλιακής ενέργειας

Στο κεφάλαιο Δ, άρθρο 17, διατυπώνονται οι περιοχές προτεραιότητας για τη χωροθέτηση εγκαταστάσεων εκμετάλλευσης της ηλιακής ενέργειας. Οι προτιμητέες περιοχές προσδιορίζονται από τη νομοθεσία ως οι μη πολυσύχναστες περιοχές, οι αγροτικές περιοχές χαμηλής παραγωγικότητας και οι άγονες εκτάσεις, ενώ σημαντικό είναι να υπάρχει εγγύτητα με το διασυνδεδεμένο δίκτυο.

Ως περιοχές αποκλεισμού για την χωροθέτηση ΦΠ ορίζονται:

β. Οι περιοχές απολύτου προστασίας της φύσης και του τοπίου που καθορίζονται κατά τις διατάξεις των άρθρων 19 παρ. 1 και 2 και 21 του Ν. 1650/1986.

γ. Οι πυρήνες των Εθνικών Δρυμών, τα κηρυγμένα μνημεία της φύσης και τα αισθητικά δάση που δεν περιλαμβάνονται στις περιοχές της προηγούμενης περιπτώσεως β’.

ε. Τα δάση και οι γεωργικές γαίες υψηλής παραγωγικότητας όπως προβλέπεται από τις διατάξεις του άρθρου 56 του Ν. 2637/98, όπως ισχύουν.

στ. Άλλες περιοχές ή ζώνες που υπάγονται σήμερα σε ειδικό καθεστώς χρήσεων γης, βάσει του οποίου δεν επιτρέπεται η χωροθέτηση εγκαταστάσεων εκμετάλλευσης της ηλιακής ενέργειας και για όσο χρόνο ισχύουν.

ζ. Ειδικά για την εγκατάσταση Φωτοβολταϊκών Σταθμών σε πολυσύχναστους χώρους πρέπει, στο πλαίσιο της σχετικής περιβαλλοντικής αδειοδότησης, να καθορίζονται τα κατά περίπτωση κατάλληλα μέτρα, ώστε να μην υπάρχει οπτική όχληση.

Τυχόν απαιτήσεις ελαχίστων αποστάσεων και ειδικές χωροταξικές απαιτήσεις για τα συνοδεύουν έργα τίθενται από την περιβαλλοντική αδειοδότηση των έργων, τα γενικά κριτήρια της νομοθεσίας και από τυχόν ειδικοί κανονισμούς και πρότυπα που έχουν θεσμοθετηθεί για ορισμένες κατηγορίες συνοδευτικών έργων (π.χ. γραμμές μεταφοράς υψηλής τάσης).

Τέλος, στο κεφαλαίο έ’, «Κατευθύνσεις για τον υποκείμενο χωροταξικό και πολεοδομικό σχεδιασμό», το ΕΠΧΣΑΑ καλεί τα υπάρχοντα Ειδικά, Ρυθμιστικά, Γενικά Πολεοδομικά Σχέδια (ΣΓΠ) και Σχέδια Χωρικής και Οικιστικής Οργάνωσης Ανοιχτών Πόλεων (ΣΧΟΑΠ) και τις Ζώνες Οικιστικού Ελέγχου (ΖΟΕ) να εναρμονιστούν με το ΕΠΧΣΑΑ-ΑΠΕ, καθώς και την σύνταξη επικείμενων σχεδίων στο ίδιο κλίμα, αποτρέποντας τυχόν περιορισμούς και αντιφατικές ως προς την εφαρμογή του ΕΠΧΣΑΑ-ΑΠΕ διατάξεις.

3.3.2 ΝΟΜΟΣ 3851/2010

Ιδιαίτερη μνεία γίνεται στο Ν. 3851/2010 ο οποίος μετέβαλλε κάποιες από τις χωροταξικές διατάξεις του ΕΠΧΣΑΑ. Ο νόμος έχει ως βασικό στόχο την επιτάχυνση της ανάπτυξης των ΑΠΕ για την αντιμετώπιση της κλιματικής αλλαγής, και προσπαθεί σε αυτή την κατεύθυνση να απλοποιήσει την αδειοδότηση. Ειδικότερα, επιχείρησε μια σημαντική μεταρρύθμιση στην κατεύθυνση της απλοποίησης της διαδικασίας αδειοδότησης με το άρθρο 2 «Άδεια παράγωγης ηλεκτρικής ενέργειας από ΑΠΕ και ΣΗΘΥΑ» και άρθρο 3 «Έγκριση Περιβαλλοντικών Επιπτώσεων (ΕΠΟ) και άδειες εγκατάστασης και λειτουργίας», τροποποιώντας το άρθρο 8 του Ν. 3468/2006 «Άδειες».

Όσον αφορά στα φωτοβολταϊκά, πέραν του θεσμικού πλαισίου, μεταβάλει και την τιμή πώλησης. Μεταξύ άλλων καταργεί την άδεια παράγωγης για φωτοβολταϊκά συστήματα μικρότερα του 1 MW,
ενώ για τα μεγαλύτερα του 1 MW θεσπίζει αρμόδιο φορέα έκδοσης της άδειας την ΡΑΕ (αντί για το ΥΠΕΚΑ). Καταργεί επίσης την ανάγκη περιβαλλοντικής αδειοδότησης για έργα μικρότερα των 500 KW χωροθετούνται σε γηπέδα (ουκόπεδα και αγροτεμάχια), υπό ορισμένες προϋποθέσεις. Περιβαλλοντική αδειοδότηση δεν απαιτείται πλέον και για συστήματα που εγκαθίστανται σε κτίρια και σε οργανωμένους φορείς βιομηχανικών δραστηριοτήτων.

Σχετικά με τις επιτρεπόμενες προς χωροθέτηση περιοχές, τροποποιεί ορισμένες διατάξεις του ΕΠΧΣΑΑ, επιτρέποντας την χωροθέτηση φωτοβολταϊκών συστημάτων σε δάση και γεωργικές εκτάσεις υψηλής παραγωγικότητας. Επίσης, η ζώνης αποκλεισμού, που πιθανώς έχουν θεσμοθετηθεί από ΣΓΠ και ΣΧΟΟΑΠ, τα οποία δεν έχουν εναρμονιστεί με τον ΕΠΧΣΑΑ χωριζόμενη υπόψη, εφόσον δεν τεκμηριώνουν επαρκώς ότι έχουν λάβει μέριμνα για την μέγιστη αξιοποίηση του δυναμικού της περιοχής.

3.4 ΑΔΕΙΟΔΟΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Το έντονο επενδυτικό ενδιαφέρον που ακολούθησε μετά την θεσμοθέτηση του νομικού πλαισίου, εκδηλώθηκε άμεσα με το πλήθος των αδειών παράγωγη του προς χωροθέτηση κατατεθέν και φθάνουν, με βάση την τελευταία ενημέρωση του μητρώου αδειών της υπηρεσίας ΑΠΕ στο ΥΠΕΚΑ (http://www.ypeka.gr/LinkClick.aspx?fileticket=nyH8ozHzeuU%3d&tabid=701&language=el-GR) περίπου τα 30 GW για το σύνολο των ΑΠΕ. Τα διάστημα μέχρι τις 31/06/201, σε στάδιο της λειτουργίας και σύνδεσης με το δίκτυο είναι μόλις 4721,2 MW. Αν λάβουμε την περίοδο ως ενδεικτική και θεωρήσουμε το ρυθμό υποβολής αιτήσεων σταθερό, μόλις το 15% έργων ΑΠΕ καταλήγουν σε υλοποίηση. Κάποιες αίτια μπορούν να αποδοθούν στον τρόπο εργασίας των αιτητών (αιτήσεις που αφορούν την ίδια θέση ή δεν τεκμηριώνουν την οικονομική τους αποδοτικότητα), στην ελλιπή ανάπτυξη και χωρητικότητα του δικτύου, αλλά και στην εξωτερική πολύπλοκη αδειοδοτική διαδικασία.

Συνοπτικά, για την αδειοδότηση μιας εγκατάστασης ΑΠΕ απαιτούνται, πέραν των άλλων τύπων αδειών (περιβαλλοντικών, οικοδομικών, δασικής υπηρεσίας κτλ.), οι παρακάτω ενεργειακές άδειες:

α. Άδεια παραγωγής, για την οποία γνωμοδοτεί η ΡΑΕ και εκδίδει το ΥΠΕΝ με εξαιρέσεις (όπως για φωτοβολταϊκά πάρκα <1MW, όπου η ΡΑΕ είναι βάσει του Ν. 3851/2010 και αρμόδια έκδοσης) και στη συνέχεια αναρτάται στο μητρώο της ανεξάρτητης υπηρεσίας ΑΠΕ. Πρόκειται για διαδικασία με διαπραγμάτευση και χωρητικότητα του δικτύου, αλλά και στην εξωτερική περιοχή αδειοδοτική διαδικασία.
απαιτούνται τεχνική περιγραφή του έργου, δυνατότητα εξασφάλισης της θέσης χωροθέτησης, ενεργειακή μελέτη με εγκατάστασης μετρητικού συγκροτήματος και ανεμολογικές μετρήσεις για την τεκμηρίωση της ενεργειακής απόδοσης του έργου, και οικονομοτεχνική μελέτη. Αν η ΡΑΕ γνωμοδοτήσει θετικά (εντός 4 μηνών), η άδεια εκδίδεται από το ΥΠΕΝ, εντός 15 ημερών. Ισχύει για 25 χρόνια, αλλά στα δύο χρόνια από την λήψη της πρέπει να υποβληθεί φάκελος για Άδεια Εγκατάστασης. Ανά διά πέντε χρόνια, η άδεια επικύρωσης εκδίδεται από το ΥΠΕΝ, εντός 15 ημερών. Ισχύει για 25 χρόνια, αλλά στα δύο χρόνια από την λήψη της πρέπει να υποβληθεί φάκελος για Άδεια Εγκατάστασης. Ανά διά πέντε χρόνια, η άδεια επικύρωσης εκδίδεται από το ΥΠΕΝ, εντός 15 ημερών. Ισχύει για 25 χρόνια, αλλά στα δύο χρόνια από την λήψη της πρέπει να υποβληθεί φάκελος για Άδεια Εγκατάστασης.

β. Άδεια εγκατάστασης, που αποτελεί την πλέον πολύπλοκη και χρονοβόρα διαδικασία, καθώς για την έκδοσή της απαιτούνται και πολλές ενδιάμεσες άδειες για την οποία γνωμοδοτούν πολλοί ανεξάρτητοι φορείς (π.χ. ΕΠΟ από περιφέρεια). Περιλαμβάνει την περιβαλλοντική αδειοδότηση, πλήρη μελέτη εφαρμογής για όλα τα έργα, μελέτη σύνδεσης με το δίκτυο κ.ά. Περιλαμβάνει την διαπίστωση ότι το έργο έχει κατασκευασθεί σύμφωνα με τις ισχύουσες προδιαγραφές και ότι πληροί τους κανόνες ασφαλείας. Εκδίδεται από τον Περιφερειάρχη της περιοχής όπου γίνεται το έργο εντός 15 ημερών από την υποβολή της, και ισχύει για 20 χρόνια.

γ. Άδεια λειτουργίας, η οποία είναι μια τυπική άδεια που εκδίδεται με την ολοκλήρωση του έργου και δεν είναι ιδιαίτερα χρονοβόρα. Περιλαμβάνει την διαπίστωση ότι το έργο έχει κατασκευασθεί σύμφωνα με τις ισχύουσες προδιαγραφές και ότι πληροί τους κανόνες ασφαλείας. Εκδίδεται από τον Περιφερειάρχη της περιοχής όπου γίνεται το έργο εντός 15 ημερών από την υποβολή της, και ισχύει για 20 χρόνια.

Ακολουθούν οι συμβάσεις σύνδεσης και πώλησης της ενεργείας προς ΑΔΜΗΕ και ΔΕΔΔΗΕ, και τέλος η θέση του έργου σε λειτουργία. Η τιμή πώλησης εξαρτάται από το ισχύον νομικό πλαίσιο και είναι διαφορετική για κάθε ΑΠΕ.

4 ΜΕΘΟΔΟΛΟΓΙΑ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠΕ ΚΑΙ ΣΧΕΤΙΚΑ ΕΡΓΑΛΕΙΑ

4.1 ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΠΙΣΚΟΠΗ ΜΕΘΟΔΟΛΟΓΙΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠΕ

Ενδιαφέρον παρουσιάζει το πλήθος των δημοσιευμένων εργασιών και ερευνών που εκπονούνται στην κατεύθυνση της βέλτιστης χωροθέτησης ΑΠΕ, γεγονός που αναδεικνύει την σημασία του στρατηγικού χωροταξικού σχεδιασμού για την επιτυχή ενταξιακή και ανάπτυξη. Οι περιοχές μελέτης παρουσιάζουν ποικιλία κλιμάκων παγκοσμίως, ενώ, όσον αφορά στην Ελλάδα, έχουν γίνει αρκετές έρευνες τόσο στον νησιωτικό όσο και στον ηπειρωτικό χώρο (π.χ. Περιφέρεια Κρήτης, Περιφέρεια Δυτικής Μακεδονίας, Νήσος Κυθήρων κ.α.). Ευρεία είναι, επίσης, η χρήση ΣΓΠ, ως εργαλείου χωροθέτησης, σε συνδυασμό με την εφαρμογή τεχνικών πολυκριτηριακής ανάλυσης (multicriteria analysis, MCA) για την εύρεση των βέλτιστων θέσεων, το οποίο τεκμηριώνει την καταλληλότητά τους για τέτοιας φύσης έρευνες. Στο κεφάλαιο αυτό επιχειρείται μια συνοπτική παρουσίαση των μεθοδολογιών που εφαρμόστηκαν σε επιλεγμένες δημοσιευμένες εργασίες, και των κύριων συμπερασμάτων τους, τα οποία αποδείχθηκαν ιδιαίτερα χρήσιμα για την μεθοδολογία που τελικά επιλέχθηκε.

Οι Mentis et al. (2015) ασχολήθηκαν με το αιολικό δυναμικό και την ενεργειακή του εκμετάλλευση για το σύνολο της ηπείρου της Αφρικής. Στις ιδιαιτερότητες της περιοχής μελέτης αναφέρουν την αδυναμία κάλυψης της ενεργειακής ζήτησης από τις υπάρχουσες εγκαταστάσεις, αλλά και το ενδεχόμενο πρόβλημα απορρόφησης της μεταβλητής αιολικής παραγωγής, λόγω της ελλιπούς ανάπτυξης του ηλεκτρικού δικτύου μεταφοράς. Οι παράγοντες αυτοί ενισχύουν την ανάγκη ανάπτυξης ενός αξιόπιστου εργαλείου που θα υπολογίζει τοθεωρητικό, τεχνικό και γεωγραφικό (χαρακτηρίζεται ο προσδιορισμός των γεωγραφικών εκτάσεων, οπού επιτρέπεται η χωροθέτηση αιολικών πάρκων) δυναμικό. Αρχικά για την εκτίμηση του θεωρητικού δυναμικού αξιοποιούνται μετρημένες τιμές της ταχύτητας ανέμου από σταθμούς της NASA με μήκος ενός έτους, στις οποίες προσαρμόζεται η κατανομή Weibull. Για την εκτίμηση του τεχνικού δυναμικού υπολογίζεται η κλίση και η απόδοση της ανεμογεννήτριας. Τέλος, για το γεωγραφικό δυναμικό εξετάστηκαν διάφορα κριτήρια χωροθέτησης, με χρήση ΣΓΠ. Από τη διερεύνηση αναδείχθηκε η μεγαλύτερη καταλληλότητα του βόρειου τμήματος της Αφρικανικής Ηπείρου, όπου εκτιμάται ότι μπορούν να αναπτυχθούν 11 963 TWh.

Ιδιαίτερο ενδιαφέρον παρουσιάζει η εργασία των Aydin et al. (2013), για τη χωροθέτηση υβριδικών συστημάτων ΑΠΕ (με συνδυασμό αιολικών και φωτοβολταϊκών πάρκων). Η περιοχή εφαρμογής είναι η Δυτική Τουρκία, η οποία διαθέτει σημαντικό αιολικό αλλά και ηλιακό δυναμικό. Ως κίνητρο της έρευνας προβάλλεται το πρόβλημα της μη συνεχούς παραγωγής ενεργείας των διασυνδεδεμένων με το σύστημα ΑΠΕ, γεγονός το οποίο αυξάνει την εξάρτηση από τα ορυκτά καύσιμα και την ανάγκη αποθήκευσης. Για τον λόγο αυτό, αναπτύχθηκε μια μεθοδολογία επιλογής.
των βέλτιστων θέσεων ανεξάρτητα, καταρχήν, χωροθέτησης των διασυνδεδεμένων αιολικών και φωτοβολταϊκών πάρκων, βασισμένη σε διαφορετικούς οικονομικούς και περιβαλλοντικούς δείκτες για κάθε μορφή εγκατάστασης. Η επιλογή των βέλτιστων θέσεων συχνωροθέτησης αιολικών και ηλιακών εγκαταστάσεων έγινε με χρήση εργαλείων ΣΓΠ και εφαρμογή τεχνικών πολυκριτηριακής λήψης αποφάσεων (Multi Criteria Decision Making, MCDM), στην οποία εφαρμόστηκαν διαφορά κριτηρία, εκφρασμένα σε fuzzy sets. Τέλος, αφού προσδιορίστηκαν οι κατάλληλες θέσεις ανεξάρτητα για κάθε μορφή εγκαταστάσεως, εντοπίστηκαν πιθανές περιοχές συγχωροθέτησης των δύο μορφών εγκαταστάσεων, συνδυάζοντας τα πλεονεκτήματα των δυο εγκαταστάσεων στην ίδια θέση.

Οι Watson et al. (2015) εφάρμοσαν μια μεθοδολογία χωροθέτησης για να αποφασίσουν για την καταλληλότητα της αιολικών ή φωτοβολταϊκών εγκαταστάσεων, με μελέτη εφαρμογής στην Νότια Αγγλία, όπου είναι ήδη σε λειτουργία 24 MW αιολικής και 94 MW φωτοβολταϊκής ισχύος. Η Αγγλία, ακολουθώντας την Οδηγία 2009/28/ΕΚ, έθεσε στόχο 15% συμμετοχή των ΑΠΕ στον ενεργειακό μίγμα μέχρι το 2020, ενώ οι υψηλές κρατικές επιδοτήσεις για φωτοβολταϊκά πάρκα έχουν εγείρει αντιδράσεις για την κατάληψη σημαντικού μέρους της αγροτικής γης, αναδεικνύοντας την κρισιμότητα της χωρική παραμέτρου στην ανάπτυξη των ΑΠΕ. Για την υλοποίηση της μεθοδολογίας συνδυάστηκαν τα ΣΓΠ με τεχνικές MCDM, χρησιμοποιώντας την αναλυτική ιεραρχική διαδικασία για τον προσδιορισμό των βαρών, ενώ πραγματοποιήθηκε και ανάλυση ευαισθησίας για την επιλογή των βαρών. Αφού έλαβαν υπόψη τους περιορισμούς, οι ερευνητές διαπίστωσαν την καταλληλότητα του 19% της περιοχής μελέτης για φωτοβολταϊκά πάρκα και του 38% για αιολικά. Ακολούθως, εφαρμόζοντας τα κριτήρια αξιολόγησης (τεχνικά, οικολογικά, αισθητικά, οικονομικά), προέκυψε μεγαλύτερη καταλληλότητα των φωτοβολταϊκών εγκαταστάσεων. Σημαντικό μέρος της εργασίας αποτέλεσε η συνεργασία με επενδυτές της αγοράς ΑΠΕ στην διαδικασία αξιολόγησης, που κάνει το εργαλείο ιδιαίτερα χρήσιμο για τους φορείς λήψης αποφάσεων και την επίτευξη μεγαλύτερης εγκατεστημένης ισχύος ΑΠΕ. Οι Watson et al. (2015) υποστηρίζουν, τέλος, την επιλογή ανάπτυξης υβριδικών πάρκων για τη μείωση της αβεβαιότητας της παραγωγής.

Οι Siyal et al. (2015) ανέπτυξαν μια μεθοδολογία χωροθέτησης αιολικών πάρκων στη Σουηδία, στο πνεύμα της επίπεδης των ευρωπαϊκών στόχων για τις ΑΠΕ και των υψηλών απαιτήσεων (20 ΤW εγκατεστημένης ισχύος) για αιολικά πάρκα. Στην περιοχή η ανεξάρτητη αποφάσιση για αιολικά πάρκα, ενώ πραγματοποιήθηκε και συνεργασία με επενδυτές της αγοράς, στο πεδίο της επιλογής των βαρών. Ακολούθως, εφαρμόζοντας τα κριτήρια αξιολόγησης (τεχνικά, οικολογικά, αισθητικά, οικονομικά), προέκυψαν δύο σενάρια, ένα με τους νομοθετικούς και ένα με επιπλέον περιβαλλοντικούς περιορισμούς εξαιτίας της έκθεσης Weibull. Οι ερευνητές συμπεράνουν την καταλληλότητα του 65% για το 1ο σενάριο και του 31% για το 2ο σενάριο του συνόλου της χώρας για τη χωροθέτηση αιολικών πάρκων. Σημαντικό περιορισμό αποτελούν οι οικισμοί οι οποίοι παρουσιάζουν σημαντική διασπορά, καθώς
και οι προστατευόμενες περιοχές. Συγκεκριμένα, για το 2ο σενάριο η παραγόμενη από αιολικά ενέργεια προκύπτει 490 TWh, δείχνοντας ότι ο στόχος των 20 TW μπορεί να υπερκαλυφθεί.

Η εργασία των Baltas & Dervos (2012) είχε ως βασικό στόχο την παρουσίαση του ΕΠΧΣΑΑ για τις ΑΠ, με έμφαση στις διατάξεις του για τα αιολικά και φωτοβολταϊκά πάρκα, καθώς και για μικρά υδροελεκτρικά έργα (ΜΥΗΕ). Μεταξύ άλλων, στην εργασία τονίζεται η ιδιαίτερη σημασία της χωρικής διασποράς των ΑΠ, με σκοπό την μείωση των διακυμάνσεων που χαρακτηρίζουν την παραγωγή αιολικής ενέργειας. Με άλλα λόγια, ΑΠ παράγουν 490 TWh, δείχνοντας ότι ο στόχος των 20 TW μπορεί να υπερκαλυφθεί.

Η εργασία των Baltas & Dervos (2012) είχε ως βασικό στόχο την παρουσίαση του ΕΠΧΣΑΑ για τις ΑΠΕ, με έμφαση στις διατάξεις του για τα αιολικά και φωτοβολταϊκά πάρκα, καθώς και για μικρά υδροηλεκτρικά έργα (ΜΥΗΕ). Μεταξύ άλλων, στην εργασία τονίζεται η ιδιαίτερη σημασία της χωρικής διασποράς των ΑΠ, με σκοπό την μείωση των διακυμάνσεων που χαρακτηρίζουν την παραγωγή αιολικής ενέργειας. Με άλλα λόγια, ΑΠ τοποθετημένα σε διαφορετικές περιοχές έχουν σημαντικά μειωμένη πιθανότητα να βρεθούν «σε φάση» όσον αφορά την παραγωγή ενέργειας (ως συνέπεια της χωρικής εξάρτησης της διεργασίας του ανέμου), που αποτελεί και το σημαντικότερο μειονέκτημα για την απορρόφηση και τη μεταφορά της αιολικής ενέργειας από το δίκτυο. Για τον ίδιο λόγο, που αφορά στην ποιότητα της παραγόμενης ενέργειας, πλεονεκτούν τα αιολικά πάρκα με περισσότερες ανεμογεννήτριες μικρής ισχύος, σε σχέση με αυτά λιγότερων ανεμογεννητριών με μεγάλη ισχύ. Ακολούθησε περιγραφή των περιορισμών και προτάσεων που θέτει ο ΕΠΧΣΑΑ-ΑΠΕ για τη βέλτιστη χωροθέτηση και την εναρμόνιση με το περιβάλλον. Ειδικά για τις αιολικές εγκαταστάσεις, τονίστηκε η εισαγωγή από τον ΕΠΧΣΑΑ κανόνων ένταξης στο τοπίο για τις ηπειρωτικές, νησιωτικές και υπεράκτιες περιοχές. Για τα ΜΥΗΕ, επισημάνθηκε η ενδεχόμενη οικονομική ενίσχυση των τοπικών κοινωνιών από την εκμετάλλευση των πλούσιων υδροηλεκτρικού δυναμικού περιοχών όπως η Ήπειρος, διατηρώντας ωστόσο περιορισμούς οικολογικής παροχής για την αποφυγή υπερεκμεταλλεύσεως του εν λόγω δυναμικού. Επίσης, αναφέρθηκαν οι ιδιαίτεροι οικονομικοί προοπτικές εκμετάλλευσης της ηλιακής ενέργειας λόγω του πλούσιου ηλιακού δυναμικού της χώρας, αλλά και της γεωθερμικής ενέργειας, που αναπτύσσεται κατά μήκος του ηφαιστειακού τόξου στην περιοχή του Αιγαίου. Η εργασία κατέληξε στην αφθονία του δυνητικού δυναμικού ΑΠΕ της Ελλάδας, το οποίο σε συνδυασμό με ένα στρατηγικό πλαίσιο χωροθέτησης ΑΠΕ αυξάνει τα οικονομικά οφέλη και μειώνει το ρίσκο των επενδύσεων.
της παρουσίασης της υφιστάμενης κατάστασης, επισημάνθηκε ότι παρά την προτεραιότητα που έχει δοθεί για την ανάπτυξη ΑΠΕ από τον περιφερειακό σχεδιασμό, καθώς και το γεγονός ότι η ΡΑΕ έχει δώσει άδειες παραγωγής ενέργειας που φθάνουν 1204 MW, έχουν τεθεί σε λειτουργία μόλις δύο αιολικά πάρκα, με εγκατεστημένη ισχύ 38 MW, γεγονός που αναδεικνύει την ανωριμότητα των επενδύσεων και την πολυπλοκότητα που χαρακτηρίζει το νομικό πλαίσιο αδειοδότησης των εν λόγω ΑΠΕ. Για την πολυκριτηριακή ανάλυση εξετάστηκαν τρία σενάρια, ένα με ίσα βάρη για όλα τα κριτήρια, και δύο με εφαρμογή αναλυτικής ιεραρχικής διαδικασίας, με βάση τα οποία εκτιμήθηκαν οι συντελεστές βαρύτητας. Από την εφαρμογή της μεθοδολογίας προέκυψε ότι το 12% της Περιφέρειας Δυτικής Μακεδονίας παρουσιάζει δείκτη καταλληλότητας άνω του 0.5, αναδεικνύοντας την περαιτέρω δυναμική ανάπτυξης αιολικών πάρκων στην περιοχή.

Οι Tegou et al. (2010) ασχολήθηκαν με την χωροθέτηση αιολικών πάρκων στο μη διασυνδεδεμένο με το ηπειρωτικό δίκτυο νησί της Λέσβου, χρησιμοποιώντας μια μέθοδο συνδυασμού ΣΓΠ και πολυκριτηριακής ανάλυσης. Οι ερευνητές αναφέρονται, μεταξύ άλλων, στον ΕΠΧΣΑΑ, και την πρόκληση που έθεσε για την εύρεση βιώσιμων περιοχών χωροθέτησης σε εκτάσεις που αποτελούν εξολοκλήρου περιοχές του δικτύου Natura 2000, όπως η νήσος της Λέσβου. Αφού δικαιολόγησαν την επιλογή χρήσης ΣΓΠ για την μεθοδολογία χωροθέτησης και της Αναλυτικής Ιεραρχικής Διαδικασίας (Analytic Hierarchy Process, AHP) για τον καθορισμό των συντελεστών βαρύτητας και την εφαρμογή πολυκριτηριακής ανάλυσης, παρουσίασαν βασικά στοιχεία της Λέσβου. Επίσης, αναφέρθηκαν στους περιορισμούς που θέτει ο ΕΠΧΣΑΑ και τα κριτήρια αξιολόγησης που επέλεξαν. Από την εφαρμογή της μεθόδου, και τη συνακόλουθη ανάλυση ευαισθησίας, κατέληξαν στο συμπέρασμα ότι όλοι οι επιλεγμένοι παράγοντες είναι σημαντικοί για την αξιολόγηση, και συνεπώς η σωστή επιλογή τους είναι καθοριστική για το αποτέλεσμα της ανάλυσης. Από τις αναλύσεις προέκυψε η ακαταλληλότητα μεγαλύτερου του 50% της έκτασης της νήσου για χωροθέτηση ΑΠ, ενώ μόλις το 1,4% της έκτασης συγκεντρώνει την υψηλότερη τιμή του δείκτη καταλληλότητας που τέθηκε (>0.9). Τελικά, προτάθηκε στους υποψήφιους επενδυτές η χρήση της παραπάνω μεθοδολογίας, σε συνδυασμό με επιπλέον έρευνα καταλληλότητας για κάθε υποψήφια θέση, καθώς μονό η μελέτη πεδίου μπορεί να αξιολογήσει με ασφάλεια την σημαντικότητα των χωρικών κριτηρίων.

Αξιόλογες είναι επίσης και οι εργασίες με τίτλο «Βιώσιμη χωροθέτηση αιολικών πάρκων - Μελέτη περίπτωσης στην Περιφέρεια Κρήτης» (Τσίτουρα, 2010), και «Έρευνα χωροθέτησης για τη βιώσιμη εγκατάσταση μεγάλων μονάδων Φ/Β & ηλιοθερμικών ισχύς στην Περιφέρεια Κρήτης» (Τσούτσος κ.ά, 2014), οι οποίες ανατέθηκαν από την Περιφέρεια Κρήτης, για τη διερεύνηση της προοπτικής βιώσιμης χωροθέτησης ΑΠΕ στην Κρήτη.

4.2 ΤΑ ΣΓΠ ΩΣ ΕΡΓΑΛΕΙΟ ΑΝΑΠΤΥΞΗΣ ΜΟΝΤΕΛΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠΕ

Τα ΣΓΠ είναι ευρέως χρησιμοποιούμενο εργαλείο επιλογής κατάλληλων θέσεων χωροθέτησης, για ένα πολύ μεγάλο εύρος εφορμογών, σε διάφορες χωρικές κλίμακες (χωροθέτηση πάρκων, κάδων ανακύκλωσης, σουπερμάρκετ, τραπεζών κτλ.). Οι ενδιαφερόμενοι μπορούν, μέσα από την χωρική
απεικόνιση, να ποσοτικοποιήσουν την επίδραση των διαφορών παραγόντων που επιδρούν στο εκάστοτε πρόβλημα χωροθέτησης. Τα τελευταία χρόνια η χρήση των ΣΓΠ στην χωροθέτηση ΑΠΕ έχει γίνει ιδιαίτερα δημοφιλής, και μάλιστα η καταλληλότητα τους τεκμηριώνεται στη βιβλιογραφία (Baban & Parry, 2001), αλλά και αναδεικνύεται από την πληθώρα των επιστημονικών και τεχνικών εργασιών που πραγματεύονται το ζήτημα της χωροθέτησης ΑΠΕ. Όπως αναδείχθηκε και από τη βιβλιογραφική επισκόπηση, ιδιαίτερα δημοφιλής είναι και ο συνδυασμός των ΣΓΠ με τεχνικές πολυκριτηριακής ανάλυσης, λόγω της συμβατότητάς τους και της ευκολίας απεικόνισης των αποτελεσμάτων.

Συγκεκριμένα, τα ΣΓΠ δεν αποτελούν μόνο υπολογιστικά συστήματα για την παραγωγή χαρτών, αλλά περιλαμβάνουν και ισχυρά εργαλεία εξειδικευμένων γεωγραφικών αναλύσεων. Για τον σκοπό αυτό, περιλαμβάνουν συστήματα hardware, software και ενσωματωμένων υπολογιστικών διαδικασιών (procedures), οι οποίες διευκολύνουν την συγκέντρωση, διαχείριση, ανάλυση, μοντελοποίηση, αναπαράσταση, έλεγχο και εξαγωγή γεωανάφερμένων δεδομένων, ώστε να λύσουν σύνθετα προβλήματα σχεδιασμού και διαχείρισης.

Στην παρούσα εργασία χρησιμοποιείται η πρόσφατη έκδοση του ArcGIS 10, το οποίο είναι ιδιαίτερα διαδεδομένο στον ιδιωτικό και δημόσιο τομέα, αλλά και στην επιστημονική κοινότητα. Ως αποτέλεσμα, διευκολύνεται η εύρεση τόσο χωρικών δεδομένων συμβατών με το πρόγραμμα, όσο και μεθοδολογιών και tutorials, το οποίο αποτελεί σημαντικό πλεονέκτημα για έναν νέο χρηστή. Προτέρημα του προγράμματος αποτελεί η δυνατότητα οπτικοποίησης των αποτελεσμάτων, που κάνει τις παραμέτρους και τα αποτελέσματα που προκύπτουν εύληπτα σε ενδιαφερόμενους που δεν εξειδικεύονται στην χρήση ΣΓΠ, όπως είναι, πολλές φορές, οι φορείς λήψης αποφάσεων του ενεργειακού τομέα (π.χ. ΡΑΕ, ΑΔΜΗΕ).

Εικόνα 4.1 Το περιβάλλον του ArcGIS 10 με το Workspace του ArcMap σε Layout View
Το ArcGIS παρέχει δυνατότητα εισαγωγής, παράγωγης και εξαγωγής δεδομένων σε μορφή raster (πλεγματικά) ή vector (Διανυσματικά), με δυνατότητα επιλογής της επιθυμητής ποιότητας εξαγωγής χαρτών μέσω ρύθμιση της κλίμακας ανάλυσης (dpi), άλλα και του τύπου αρχείου (JPEG, PDF, TIFF, κτλ.), ώστε να διευκολύνεται η δυνατότητα παρουσίασης και αποθήκευσης δεδομένων και αποτελεσμάτων. Ακόμη, δίνει τη δυνατότητα ανάλυσης χωρικών δεδομένων και παραγωγής δυναμικών χαρτών, μέσω κατάλληλης εργαλειοθήκης, η οποία περιλαμβάνει αλγόριθμους επεξεργασίας, γεωαναφοράς, μετατροπής δεδομένων, παραγωγής στατιστικών δεδομένων, κτλ. Διαθέτει επίσης διαδικτυακή βιβλιοθήκη χωρικών δεδομένων ανοιχτή σε όλους τους εγγεγραμμένους χρήστες, μέσω της εφαρμογής ArcGIS Online, στην οποία μπορεί να γίνει πρόσβαση απευθείας από το περιβάλλον του Arc Map για αναζήτηση και εισαγωγή δεδομένων.

Το λογισμικό χρησιμοποιεί γλώσσα Python για την εκτέλεση εντολών που του υπαγορεύει ο ίδιος ο χρήστης, ενώ υποστηρίζει την εξαγωγή του μοντέλου που έχει αναπτύξει ο χρήστης σε μορφή Python Script. Έχει διάφορες επέκτασης ανάλογα με την εφαρμογή της εφαρμογής για τον χρήστη και με την παρουσία εργασιάς χρησιμοποιήθηκε εκτενέστατα η επέκταση Spatial Analyst, η οποία πέρα από τα βασικά εργαλεία γεωεπεξεργασίας raster που παρέχει (Extract by Mask, Euclidean Distance κτλ.), διευκολύνει και την χωρική βελτιστοποίηση και την διαδικασία λήψης αποφάσεων για την χωροθέτηση ΑΠΕ, μέσω των συναρτήσεων πολυκριτηριακής ανάλυσης που παρέχει (Reclassify, Weighted Sum, κτλ.).

4.3 ΜΕΘΟΔΟΛΟΓΙΚΟ ΣΧΗΜΑ ΧΩΡΟΘΕΤΗΣΗΣ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΑΠΕ

Η μεθοδολογία που αναπτύχθηκε για την χωροθέτηση των αιολικών και φωτοβολταϊκών πάρκων βασίστηκε στην εφαρμογή του ελληνικού θεσμικού πλαισίου, στη διεθνή επιστημονική εμπειρία, σε επιτυχημένες πρακτικές εφαρμογής από άλλες χώρες, αλλά και περιορισμούς και ιδιαιτερότητες της Περιφέρειας Θεσσαλίας (σχετικά χαμηλό αιολικό δυναμικό, σημαντικός αριθμός περιοχών περιβαλλοντικού ενδιαφέροντος κ.ά.). Θεωρήθηκε ότι μια τέτοια προσέγγιση μπορεί να εξασφαλίσει την βιωσιμότητα και αειφορία των εγκαταστάσεων ΑΠΕ, σε συμφωνία, όσο είναι δυνατό, με το ανθρωπογενές και φυσικό περιβάλλον.

Σημειώνεται η διπλή χρησιμότητα της μεθοδολογίας:

α. Για την προκαταρκτική εκτίμηση του τεχνικού δυναμικού, ώστε να είναι δυνατός ένας στρατηγικός σχεδιασμός των ΑΠΕ, που θα εξασφαλίζει την επιτυχή τους ένταξη στο περιβάλλον και στο ενεργειακό σύστημα.

β. Για την εκ των υστέρων αξιολόγηση των αιτήσεων αδειοδότησης, η οποία μπορεί να είναι ιδιαίτερα χρήσιμη σε φορείς λήψης αποφάσεων, όπως η RAΕ.

Η ανάπτυξη της μεθοδολογίας γίνεται σε τρία βασικά στάδια, όπως αποτυπώνονται και στο διάγραμμα ροής της Εικόνας 4.2, και αναπτύσσονται ακολούθως:

• Στο 1ο στάδιο, αφού αποτυπώνεται με χωρικά και άλλα δεδομένα η υφιστάμενη κατάσταση της Περιφέρειας, επιλέγονται οι επιτρεπόμενες περιοχές χωροθέτησης για τα
φωτοβολταϊκά και αιολικά πάρκα σε δύο επιμέρους σενάρια για κάθε τύπο ΑΠΕ, όπως αναλύεται στις παραγράφους 7.1 και 8.1, αντίστοιχα. Το 1ο αποτελεί το θεσμικό σενάριο, ενώ το 2ο σενάριο εισάγει επιπλέον περιβαλλοντικούς και τεχνικούς περιορισμούς χωροθέτησης. Με τον τρόπο αυτό, προκύπτουν οι επιτρεπόμενες περιοχές χωροθέτησης, για τις οποίες θα εφαρμοστούν, ακολούθως, τα κριτήρια της πολυκριτηριακής ανάλυσης.

- Στο 2ο στάδιο γίνεται η επιλογή των κριτηρίων της αξιολόγησης για κάθε τύπο ΑΠΕ, τα οποία αποτελούνται από τεχνοοικονομικούς, περιβαλλοντικούς και αισθητικούς παράγοντες και παρουσιάζονται αναλυτικά στις παραγράφους 7.2 και 8.2, αντίστοιχα. Αφού γίνει ο διαχωρισμός σε κλάσεις των επιμέρους τιμών, για κάθε κριτήριο εφαρμόζεται μια κλίμακα αξιολόγησης, ώστε να προκύψει η τελική βαθμολογία.

- Στο 3ο στάδιο της μεθοδολογίας γίνεται η εφαρμογή της πολυκριτηριακής ανάλυσης, στην οποία συνδυάζονται τα αποτελέσματα των δύο προηγούμενων σταδίων προκειμένου να αξιολογηθεί ο βαθμός καταλληλότητας των περιοχών που προέκυψαν από το 1ο στάδιο ως επιτρεπόμενες για την χωροθέτηση ΑΠ ή ΦΠ. Η μέθοδος ανάλυσης που επιλέχθηκε είναι μια απλή ισοβαρής στάθμιση των κριτήρων. Θεωρήθηκε, ότι η εφαρμογή πιο συνθέτων μεθόδων ανάλυσης (π.χ. Αναλυτική Ιεραρχική Μέθοδος), πέραν της δυσκολίας κατανόησης από το ευρύ κοινό, αυξάνει την δυσκολία ελέγχου των αποτελεσμάτων και την επιρροή των διαφορετικών κριτηρίων. Τα αποτελέσματα ανά σενάριο και τύπο ΑΠΕ παρουσιάζονται σε χάρτες και πίνακες, με χωρισμό τους σε τέσσερις κλάσεις καταλληλότητας [0-25%, 25-50%, 50-75%, 75-100%].

Εικόνα 4.2 Μεθοδολογικό σχήμα χωροθέτησης ΑΠΕ με χρήση GIS και MCA

Η μέθοδος πολυκριτηριακής ανάλυσης που επιλέχθηκε είναι μια απλή ισοβαρής στάθμιση των κριτηρίων. Θεωρήθηκε, ότι η εφαρμογή πιο συνθέτων μεθόδων ανάλυσης (π.χ. Αναλυτική Ιεραρχική Μέθοδος), πέραν της δυσκολίας κατανόησης από το ευρύ κοινό, αυξάνει την δυσκολία ελέγχου των αποτελεσμάτων και την επιρροή των διαφορετικών κριτηρίων. Επιπλέον, με την εφαρμογή ίσων βαρών, δίνεται η δυνατότητα στους φορείς λήψης αποφάσεων ανάλογα με την
υποψήφια θέση και επιλεχθείσα τεχνολογία εγκατάστασης, να καθορίσουν το βαθμό επιρροής κάθε κριτηρίου ανάλογα με την μελέτη περίπτωσης, μιας και η παρούσα διερεύνηση έχει πιο γενικό χαρακτήρα. Ειδικότερα, η διερεύνηση αφορά στην προοπτική χωροθέτησης μεγάλων μονάδων σε περιφερειακή κλίμακα (macro-siting), οπότε η ανισοκατανομή των κριτηρίων σε μια τόσο μεγάλη και ανομοιόμορφη χωρικά περιοχή δεν κρίνεται αντιπροσωπευτική. Μια τέτοια αντιμετώπιση πιθανώς να έχει νόημα σε παρόμοιες μελέτες με μικρότερη κλίμακα εφαρμογής (micro-siting) για την επιλογή ανάμεσα σε συγκεκριμένες υποψήφιες θέσεις. Παρόλα αυτά, για να αναδειχθεί η επιρροή των κριτηρίων και η κρισιμότητα της επιλογής τεχνικών ή περιβαλλοντικών περιορισμών, γίνεται σύγκριση των περιοχών καταλληλότητας που προκύπτουν από την εφαρμογή πολυκριτηριακής ανάλυσης για τα περιβαλλοντικά και τα τεχνικά κριτήρια ξεχωριστά. Τα αποτελέσματα της ανάλυσης ευαισθησίας για τις δύο ΑΠΕ παρουσιάζονται στις παραγράφους 7.4 και 8.4, αντίστοιχα.
5 ΑΝΑΛΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΤΑΣΗΣ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ

5.1 ΔΕΔΟΜΕΝΑ ΚΑΙ ΠΑΡΑΔΟΧΕΣ

Η μεθοδολογία χωροθέτησης εξαρτάται σε σημαντικό βαθμό από την υφιστάμενη κατάσταση στην Περιφέρεια Θεσσαλίας και τα δεδομένα που την αποτυπώνουν. Ειδικά, η διαθεσιμότητα των δεδομένων σε μορφή συμβατή με ΣΓΠ ήταν κρίσιμη για την ολοκλήρωση της εργασίας, καθώς τόσο οι περιοχές αποκλεισμού όσο και τα κριτήρια αξιολόγησης απαιτούσαν χωρικά δεδομένα με ικανοποιητική ακρίβεια. Τα στοιχεία αυτά συλλέχθηκαν στο σύνολο τους από ανοιχτές ελληνικές και διεθνείς βάσεις δεδομένων. Δυστυχώς, ορισμένα δεδομένα δεν ήταν διαθέσιμα, οπότε σε κάποιες περιπτώσεις έγινε ψηφιοποίηση τους. Καθώς δεν την εφικτό να γίνει το ίδιο για όλα τα δεδομένα, αυτά είτε παραλήφθηκαν είτε τροποποιήθηκε η χρήση των κριτηρίων του μοντέλου, ώστε κατά το δυνατόν να ανταποκρίνονται στους περιορισμούς της νομοθεσίας και των κριτηρίων της διεθνούς επιστημονικής εμπειρίας.

Πιο συγκεκριμένα, σχετικά με τα πολιτιστικά κριτήρια που θέτει η νομοθεσία, ιδιαίτερη δυσκολία συναντήθηκε στην εύρεση των ζωνών απολύτου προστασίας (ζώνη Α), των λοιπών αρχαιολογικών χώρων και των κηρυγμένων πολιτιστικών μνημείων και ιστορικών τόπων, σε μορφή shapefile. Αυτές οι περιοχές απαιτούσαν προσεκτική τεχνική διαδικασία για την ενσωμάτωσή τους στη φυσική έκταση της περιοχής. Αυτό οδηγούσε σε υποβαθμίσεις και περιορισμούς της μοντέλου αξιολόγησης, που απαιτούσαν χωρικά δεδομένα με ικανοποιητική ακρίβεια.

Ευπρόσδεκτα, σχετικά με τα οικιστικά κριτήρια, καθώς τα σχέδια πόλεων και οικισμών δεν είναι διαθέσιμα ώστε να διακρίνονται σε περιοχές με προκλητική ακρίβεια, απαιτούσε η χρήση ακριβών δεδομένων χρήσεως γης του Corine, στα οποία οι οικισμοί κατατάσσονται σε κατηγορίες περιοχών αποκλεισμού με ακτίνες 1000 m. Σχετικά με τα οικιστικά κριτήρια, καθώς τα σχέδια πόλεων και οικισμών δεν είναι διαθέσιμα ώστε να διακρίνονται σε περιοχές με προκλητική ακρίβεια, απαιτούσε η χρήση ακριβών δεδομένων χρήσεως γης του Corine, στα οποία οι οικισμοί κατατάσσονται σε κατηγορίες περιοχών αποκλεισμού με ακτίνες 1000 m. Στο πλαίσιο αυτό, θεωρείται ότι οι σχετικοί περιορισμοί
καλυφθήκαν εν μέρει με την εφαρμογή ελάχιστης απόστασης 1000 m, που εφαρμόστηκε στην ασυνεχή δόμηση των περιοχών του Corine 2000.

Πίνακας 5.1 Δεδομένα εισόδου της μεθοδολογίας χωροθέτησης

<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>Δεδομένα</th>
<th>Τύπος</th>
<th>Πηγή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διοικητικά όρια</td>
<td>Περιφέρειες</td>
<td>Polygon</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td></td>
<td>Περιφερειακές Ενότητες</td>
<td>Polygon/ Linear</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td></td>
<td>Καλλικρατικό Δήμοι</td>
<td>Polygon/ Linear</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td>Οικισμοί με πληθυσμιακά στοιχεία</td>
<td>Πόλεις</td>
<td>Points</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td></td>
<td>Οικισμοί</td>
<td>Points</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td></td>
<td>Παραδοσιακοί οικισμοί</td>
<td>Points</td>
<td>Μεταλληνού Α., ΕΛΣΤΑΤ, ιδία επεξεργασία</td>
</tr>
<tr>
<td>Υποδομές</td>
<td>Οδικό δίκτυο [κύριο, δευτερεύον, τριτεύον]</td>
<td>Linear</td>
<td>http://cressendo.org/</td>
</tr>
<tr>
<td></td>
<td>Σιδηροδρομικό δίκτυο</td>
<td>Linear</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td></td>
<td>Ηλεκτρικό δίκτυο μεταφοράς και διανομής</td>
<td>Linear</td>
<td>ΑΔΜΗΕ, ιδία επεξεργασία</td>
</tr>
<tr>
<td>Αρχαιολογικοί χώροι μνημεία</td>
<td>Αρχαιολογικές περιοχές</td>
<td>Points</td>
<td>http://cressendo.org/</td>
</tr>
<tr>
<td></td>
<td>UNESCO</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Εθνικοί δρυμοί</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Καταφύγια αγρίας ζωής</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Περιοχές απολουτο προστασίας της φύσης</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Περιοχές προστασίας της φύσης</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Εθνικά Πάρκα</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Αισθητικά Δάση</td>
<td>Polygon</td>
<td>http://www.eea.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>Ακτές παρακολούθησης του ΥΠΕΝ</td>
<td>Points</td>
<td>http://geodata.gov.gr/</td>
</tr>
<tr>
<td>Υδάτινα σώματα</td>
<td>Υδρογραφικό δίκτυο</td>
<td>Linear</td>
<td>http://cressendo.org/</td>
</tr>
<tr>
<td></td>
<td>Ταμειωτήρες</td>
<td>Polygon</td>
<td>http://cressendo.org/</td>
</tr>
<tr>
<td></td>
<td>Λατομικές περιοχές</td>
<td>Polygon</td>
<td>http://www.latomet.gr/geot/</td>
</tr>
<tr>
<td>Αιολικό δυναμικό</td>
<td>Μέση ετήσια ταχύτητα ανέμου (m/s) [80,100,120 m υψόμετρο]</td>
<td>Points/Raster [150]</td>
<td>http://www.rae.gr/geo/</td>
</tr>
<tr>
<td>Αδειοδοτημένες Εγκαταστάσεις ΑΠΕ</td>
<td>Φυτοβολταϊκές</td>
<td>Polygon</td>
<td>http://www.rae.gr/geo/</td>
</tr>
<tr>
<td></td>
<td>Αιολικές</td>
<td>Polygon</td>
<td>http://www.rae.gr/geo/</td>
</tr>
<tr>
<td></td>
<td>Υβριδικές</td>
<td>Polygon</td>
<td>http://www.rae.gr/geo/</td>
</tr>
</tbody>
</table>

Όσον αφορά τα χωρικά δεδομένα που απαιτήθηκαν για της περιοχές περιβαλλοντικού ενδιαφέροντος, βρέθηκαν με επιτυχία όλα τα δεόμενα που απαιτούνταν για την εφαρμογή της νομοθεσίας και του προσθέτου βιώσιμου σεναρίου, όπως παρατίθενται στον Πίνακα 5.1.
Επίσης, στην κατηγορία των δικτύων τεχνικής υποδομής και ειδικών χρήσεων, δεν βρέθηκαν χωρικά δεδομένα τηλεπικοινωνιών (κεραίες) RADAR, τα οποία αποτελούν ασυμβατή χρήση για τις αιολικές εγκαταστάσεις, ενώ για τις γραμμές υψηλής και μέσης τάσης λήφθηκε το ελληνικό διασυνδεδεμένο ηλεκτρικό δίκτυο σε μορφή PDF από την ιστοσελίδα του ΑΔΜΗΕ, και ψηφιοποιήθηκε, τόσο για την εφαρμογή της ζώνης αποκλεισμού για λογούς ασφαλείας των ΑΠ, όσο και για το κριτήριο εγγύτητας στο δίκτυο διανομής μέσης και υψηλής τάσης για τη βεσικτική της χωροθέτησης.

Τέλος, σχετικά με τις ζώνες ή εγκαταστάσεις παραγωγικών δραστηριοτήτων, δεν βρέθηκαν οι ζώνες αναδασμού, οι ιχθυοκαλλιέργειες, οι μονάδες εσταυρισμένης κτηνοτροφίας, οι ΠΟΤΑ και άλλες περιοχές οργανωμένης ανάπτυξης παραγωγικών δραστηριοτήτων του τριτογενούς τομέα, θεματικά πάρκα, τουριστικοί λιμένες και άλλες θεσμοθετημένες ή διαμορφωμένες τουριστικές περιοχές, τα τουριστικά καταλύματα και άλλες τουριστικές υποδομές, τα οποία απαιτούν ζώνη ελάχιστης απόστασης 1000 m. Για τις λατομικές δραστηριότητες έγινε χρήση του Corine 2000, αλλά και των γεωδεδομένων του ΥΠΕΝ με τις εξαιρεμένες λατομικές ζώνες υπέρ του δημοσίου, και τα λατομεία αδρανών. Σε κάθε περίπτωση, εφόσον στην πλειονότητα των περιπτώσεων πρόκειται για λατομεία αδρανών που λειτουργούν επιφανειακά, εφαρμόστηκε ελάχιστη απόσταση 500 m για την χωροθέτηση ΑΠ, όπως απαιτείται από τον ΕΠΧΣΑΑ.

Αξίζει να σημειωθεί ότι παρά τις αρκετές ελλείψεις, λόγω της μακροσκοπικής κλίμακας της μελέτης (macro-sitting) δεν επηρεάζεται σημαντικά η ακρίβεια των αποτελεσμάτων, αφού στην χωροθέτηση υπεισέρχεται πληθώρα περιορισμών και κριτηρίων, που είναι πολλές φόρες επικαλυπτόμενα. Στις επόμενες παραγράφους επιχειρείται μια παρουσίαση των γενικών χαρακτηριστικών της Περιφέρειας συνολικά, χωρίς εν γενεί να γίνεται διάκριση σε ΠΕ, με χάρτες και πίνακες, τα οποία επιλέχτηκαν με ιδιαίτερη προσοχή για την εκπόνηση της εργασίας από αξιόπιστες ευρωπαϊκές και εθνικές πηγές δεδομένων. Ο Πίνακας 5.1 αποτελεί συνοπτική λίστα των χωρικών δεδομένων που χρησιμοποιήθηκαν στην εργασία.

5.2 ΓΕΩΜΟΡΦΟΛΟΓΙΑ & ΤΟΠΟΓΡΑΦΙΑ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ
Η Περιφέρεια Θεσσαλίας είναι μια ιδιαίτερη μορφολογικά περιφέρεια της Ελλάδας, που καταλαμβάνει το ανατολικό τμήμα του ηπειρωτικού κορμού και έχει έκταση 14 049 km² (μόνο το ηπειρωτικό τμήμα), που αντιστοιχεί στο 10.7% της έκτασης του συνόλου της χώρας. Γειτνιάζει βόρεια με το ΓΔ Δυτικής και Κεντρικής Μακεδονίας, δυτικά με το ΓΔ Ηπείρου, νότια με το ΓΔ Στερεάς Ελλάδας, και ανατολικά με τον Κόλπο του Αιγαίου. Διοικητικά το ΓΔ Θεσσαλίας ανήκει στην Περιφερειακή Ενότητα Μεσογείου, και αποτελείται από τις Περιφερειακές Ενότητες (ΠΕ) Καρδίτας, Λάρισας, Μαγνησίας και Τρικάλων. Στη Θεσσαλία υπάγονται επίσης και τα νησιά των Βόρειων Σποράδων, τα οποία όμως δεν λαμβάνονται υπόψη στην παρούσα ανάλυση, καθώς εστιάζουμε στο διασυνδεδεμένο ενεργειακά τμήμα της Περιφέρειας.
Στην Περιφέρεια Θεσσαλίας αναπτύσσεται η μεγαλύτερη πεδινή έκταση της χώρας, ο Θεσσαλικός κάμπος, ο οποίος περικλείεται από μεγάλους ορεινούς όγκους. Υψηλότερη κορυφή είναι ο Όλυμπος στα σύνορα Θεσσαλίας - Μακεδονίας με υψόμετρο 2918 m, που αποτελεί το φυσικό όριο των νομών Λαρίσης (Θεσσαλία) και Πιερίας (Μακεδονία). Οι υπόλοιπες κορυφές είναι ο Τίταρος στα βόρεια, το Αυγό και τα Θεσσαλικά Άγραφα στα δυτικά, η Όθρυς στα νότια, η Όσσα (Κίσσαβο), το Μαυροβούνι και το Πήλιο στα ανατολικά.

Η μορφολογία της περιοχής, όπως διακρίνεται στον χάρτη της Εικόνας 5.1 με τις περιοχές χαμηλού υψομέτρου να βρίσκονται στο εσωτερικό της Περιφέρειας και στο παραθαλάσσιο τμήμα και τους ορεινούς όγκους να αναπτύσσονται περιμετρικά, είναι καθοριστική για το αιολικό αλλά και το ηλιακό δυναμικό, όπως θα αναλυθεί στο Κεφάλαιο 6.

Αναφορικά με την γεωλογία της περιοχής μελέτης, η Θεσσαλίας ανήκει σε τέσσερις ζώνες (Πελαγονική, Αξιού, Περιροδοπική, Σερβομακεδονική). Τα κυρίτερα πετρώματα της είναι ασβεστόλιθοι, δολομίτες, γρανίτες, οφιόλιθοι, αμφιβολίτες, γνεύσιοι, οφθαλμογνεύσιοι και σχιστόλιθοι με ενστρώσεις μαρμάρων (μεταμορφωμένα πετρώματα), αλλά και άργιλοι, αργιλοπηλοί, άμμοι, κροκαλοπαγή και κοκκινοχώματα.
Οι κλίσεις του αναγλύφου, που αποτελούν καθοριστικό παράγοντα επιρροής για το ηλιακό και αιολικό δυναμικό, αλλά και τεχνικό περιορισμό για την χωροθέτηση ΑΠΕ, είναι σε μεγάλο τμήμα της Θεσσαλίας αρκετά ήπιες. Όπως είναι αναμενόμενο, υπάρχει αναλογία με τον υψομετρικό χάρτη, καθώς οι τιμές της κλίσης αυξάνονται υπερβολικά όπου έχουμε έντονη μεταβολή του υψομέτρου. Η μέση κλίση της περιοχής είναι 13%, ενώ η μέγιστη φτάνει μέχρι το 337%, όπως διακρίνεται στον χάρτη της Εικόνας 5.2. Χαρακτηριστικό είναι ότι κλίσεις πάνω από 30% είναι απαγορευτικές για την χωροθέτηση ΑΠ, ενώ όσο για ΦΠ το μέγιστο επιτρεπόμενο ποσοστό κλίσεων μειώνεται στο 15%. Ο χάρτης κλίσεων εδάφους παράχθηκε με βάση το DEM (Digital Elevation Model) της Θεσσαλίας, με χρήση του εργαλείου Slope της επέκτασης Spatial Analyst, με μέγεθος ψηφίδας 250 m.

5.3 ΥΔΡΟΚΛΙΜΑΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

Η μορφολογία της Περιφέρειας έχει άμεση επίδραση στο κλίμα (WWF ΕΛΛΑΣ, 2007) με το ανατολικό παράκτιο και ορεινό τμήμα της Θεσσαλίας να χαρακτηρίζεται ως μεσογειακό (θερμό και ξηρό καλοκαίρι και ήπιο χειμώνα), και τον κάμπο της Θεσσαλίας, εξαιτίας των αποκλεισμών της από τους ορεινούς όγκους, που εμποδίζουν την άμεση επίδρασή της θάλασσας να έχει ηπειρωτικό κλίμα (θερμό καλοκαίρι και ψυχρό χειμώνα). Τέλος, το κλίμα των δυτικών ορεινών περιοχών του ΓΔ χαρακτηρίζεται ως ορεινό, το οποίο και εξηγεί την αφθονία των χιονοπτώσεων και το σημαντικό
ύψος βροχής που σημειώνεται στην περιοχή. Η μέση ετήσια θερμοκρασία κυμαίνεται από 16 έως 17°C με το ετήσιο θερμοκρασιακό εύρος να είναι περίπου 20°C στις παραθαλάσσιες περιοχές, ενώ στις ηπειρωτικές αυξάνει (περίπου 23°C στη Λάρισα). Τα ετήσια ποσά βροχόπτωσης παρουσιάζουν μεγάλη χωρική μεταβλητότητα, ανάλογα με το υψόμετρο και άλλους παράγοντες που σχετίζονται με την ορογραφία, και κυμαίνονται από 445.2 mm (Βόλος) μέχρι 1 069.2 mm (Ασπροπόταμος, στα 1 200 m υψόμετρο).

Συνέπεια του κλίματος και της γεωμορφολογίας της περιοχής είναι το σημαντικό υδρογραφικό δίκτυο που αναπτύσσεται επιφανειακά (βλ. Εικόνα 5.3), και συνοδεύτηκε από την κατασκευή σημαντικών αρδευτικών έργων. Ο μεγαλύτερος ποταμός της Θεσσαλίας είναι ο Πηνειός, ο οποίος τροφοδοτείται από ένα δίκτυο παραποτάμων, οι κυριότεροι από τους οποίους είναι προς τα νότια ο Ενιπέας, ο Φαρσαλιώτης, ο Καλέντζης, προς τα δυτικά-νοτιοδυτικά ο Πάμισος, ο Πορταϊκός και το Μουργκάνι, και στο βόρειο μέρος ο Ληθαίος, ο Νεοχωρίτης και ο Τιταρής. Όλο αυτό το δίκτυο των ποταμών συμβάλλει στον Πηνειό, ο οποίος ακολούθως εκβάλλει στο Αιγαίο μέσω της κοιλάδας των Τεμπών. Μέχρι το 1962, τα πλημμυρικά νερά του Πηνειού τροφοδοτούσαν επίσης τη λίμνη Κάρλα, σχέση που διακόπηκε με την αποξήρανση της λίμνης και την κατασκευή αναχωμάτων στην κοίτη του ποταμού. Η Κάρλα ήταν η μεγαλύτερη φυσική λίμνη της Θεσσαλίας, αλλά και της Ελλάδας και η αποξήρανση είχε σημαντικές συνέπειες στο φυσικό και κοινωνικό περιβάλλον της περιοχής, με αποτέλεσμα την προσπάθεια ανασύστασης της Κάρλας με την

Εικόνα 5.3 Υδρογραφικό δίκτυο, ταμιευτήρες και ακτές παρακολούθησης ποιότητας υδάτων του ΥΠΕΝ
κατασκευή ταμιευτήρα 42 km² στο χαμηλότερο τμήμα της πρώην λίμνης, κοντά στο χωριό Κανάλια. Στο ΓΔ ανήκουν επίσης οι τεχνητές λίμνες Ταυρωπού (Πλαστήρα), η οποία δημιουργήθηκε στην κοίτη του Ταυρωπού, παραπόταμου του Αχελώου, και η πιο πρόσφατη λίμνη Σμόκοβου. Στον χάρτη της Εικόνα 5.3 διακρίνονται, επίσης, οι μικρότερες χωρητικότητας ταμιευτήρες Πύλης, Μουζακίου και Μαυροματίου, που ανήκουν στο συγκρότημα των έργων εκτροπής του Αχελώου. Τα έργα αυτά μελετήθηκαν πριν από αρκετά χρόνια, χωρίς ωστόσο να υλοποιηθούν.

5.4 ΠΕΡΙΟΧΕΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Η Περιφέρεια Θεσσαλίας καλύπτεται κατά 35% από περιοχές του δικτύου Natura 2000, όπως και εθνικά πάρκα, περιοχές προστασίας της φύσης, καταφύγια άγριας ζωής και αισθητικά δάση. Ορισμένες από αυτές είναι πολύ εκτεταμένες, όπως το νοτιοανατολικό τμήμα του Ολύμπου, το όρος Πήλιο, τα Μετέωρα, η Αγράφα και η Κοιλάδα των Τεμπών. Ενδεικτικά στον Όλυμπο, βουνό με μεγάλη οικολογική, ιστορική και πολιτισμική αξία, απαντώνται επιδημιητικά αρπακτικά είδη πουλιών, δασικά είδη και είδη των ανακάλυτων αλπικών περιοχών.

Αναφορικά με την χλωρίδα της περιοχής (WWF ΕΛΛΑΣ, 2008), κινούμενοι από τα υψόμετρα στα χαμηλότερα υψόμετρα της Θεσσαλίας αρχικά συναντάμε υποαλπικά ή ψευδοαλπικά λιβάδια (σε υψόμετρο μεγαλύτερο των 1 600 m) και, στη συνέχεια, δάση οξιάς, τα οποία αναπτύσσονται θαμνώδεις διαπλάσεις σκληροφυλλών με αριές ή καλλιέργειες με οπωροφόρα, ελιές και αμπέλια (ιδιαίτερα στο νομό Μαγνησίας). Κατά μήκος των ποταμών κυριαρχούν δάση με πλατάνια, λεύκες, ιτιές και σπανιότερα σκλήρα. Ιδιαίτερο βοτανικό ενδιαφέρον εμφανίζει η συνύπαρξη δύο ειδών ελάτης, της κεφαλληνιακής και της υβριδογενούς, τα οποία συναντώνται στην Καρδίτσα. Μερικές από τις διάφορες ταξινομικές ομάδες που απαντώνται στη χώρα μας, όπως η βιόλα και το αγριογαρίφαλο.

Σχετικά με την πανίδα της περιοχής (WWF ΕΛΛΑΣ, 2008), υπάρχει επαρκής αριθμός από τις διάφορες ταξινομικές ομάδες που απαντώνται στη χώρα μας. Τελευταία έχουν καταγραφεί επίσης σποραδικές εμφανίσεις αρκούδας (στην Όσσα). Στο Θεσσαλικό κόμπο βρίσκονται οι δεκάδες είδη που διαβιούν σε λίμνες και ποτάμια, όπως ο αλπικός τρίτωνας. Οι ιζηματογενούς προέλευσης
και ύψους έως και 600 m βράχοι των Μετεώρων αποτελούν ιδανικό βιότοπο για αρκετά είδη σπάνιων αρπακτικών και άλλων πουλιών, αλλά και για σημαντικούς πληθυσμούς νυχτεριδών που φωλιάζουν στις σπηλιές της περιοχής.

Ενδεικτική της οικολογικής αξίας της περιοχής είναι η ύπαρξη 35 περιοχών του δικτύου Natura 2000 εντός του ηπειρωτικού τμήματος της Θεσσαλίας (βλ. Πίνακα 5.2), και των ακόλουθων προστατευόμενων περιοχών (βλ. και Εικόνα 5.4), οι οποίες αποτελούν περιοχές ασύμβατες είτε θεσμικά είτε περιβαλλοντικά με την χωροθέτηση εγκαταστάσεων ΑΠΕ:

α. Τμήμα του Εθνικού Πάρκου - Εθνικού Δρυμού Ολύμπου και του Εθνικού Πάρκου Τζουμέρκων - Περιστερίου και Χαράδρας Αράχθου (Ζώνη ΙΙΙ)

β. Δύο περιοχές προστασίας της φύσης χαρακτηρισμένες το 2009 εντός του Εθνικού Πάρκου Τζουμέρκων-Περιστερίου και της χαράδρας Αράχθου (Τσούμε Πλαστάρι Κούτσουρο (Ζώνη ΙΔ), Παχτουρίου Αθαμανίας (Ζώνη ΙΓ))

γ. Έξι Αισθητικά Δάση (Κοιλάδα Τεμπών Λάρισας, Δάσος Καραϊσκάκη Καρδίτσας, Δάσος Φαρσάλων Λάρισας, Δασικό σύμπλεγμα Όσσας Λάρισας, Δάσος Λόφων Κάστρου Αηλία Τρικάλων, Δρυοδάσος Κουρί Αλμυρού Μαγνησίας)

δ. 62 Καταφύγια Άγριας Ζωής

e. Μια περιοχή UNESCO (Μετέωρα)

Εικόνα 5.4 Περιοχές περιβαλλοντικού ενδιαφέροντος (EEA, 2015)
Πίνακας 5.2 Περιοχές Natura 2000 της Περιφέρειας Θεσσαλίας (ΕΕΑ, 2016)

<table>
<thead>
<tr>
<th>Κωδικός</th>
<th>Εμβαδόν (ha)</th>
<th>Τύπος</th>
<th>Ονομάσια (λατινική)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR1250001</td>
<td>5960,82</td>
<td>SPA</td>
<td>Ορος Ολυμπός</td>
</tr>
<tr>
<td>GR2130007</td>
<td>5536,84</td>
<td>SPASCI</td>
<td>Ορος Αλκμάνι (Περίστερι)</td>
</tr>
<tr>
<td>GR1420005</td>
<td>1335,87</td>
<td>SPASCI</td>
<td>Αισθητικό Δασος Κοιλαδάς Τεμπόν</td>
</tr>
<tr>
<td>GR1420013</td>
<td>9476,99</td>
<td>SPA</td>
<td>Περιοχή Τύρνανου</td>
</tr>
<tr>
<td>GR1440006</td>
<td>19726,47</td>
<td>SPA</td>
<td>Κόρυφες Ορος Κοζιάκα</td>
</tr>
<tr>
<td>GR1420011</td>
<td>95596,12</td>
<td>SPA</td>
<td>Περιοχή Θεσσαλικού Καμπού</td>
</tr>
<tr>
<td>GR1420009</td>
<td>4169,49</td>
<td>SPA</td>
<td>Στένα Καλαμάκιου Και Ορι Ζαρκού</td>
</tr>
<tr>
<td>GR1420012</td>
<td>4928,54</td>
<td>SPA</td>
<td>Περιοχή Φαρσαλόν</td>
</tr>
<tr>
<td>GR1430006</td>
<td>20793,42</td>
<td>SPA</td>
<td>Ορος Οθρύς, Βουνά Γκοράς Και Φαράγγι Παλαιοκερασίας</td>
</tr>
<tr>
<td>GR1420008</td>
<td>22046,79</td>
<td>SPA</td>
<td>Κατο Ολυμπός, Ορος Γοδαμάνι Και Κοιλάδα Ροδίας</td>
</tr>
<tr>
<td>GR1420007</td>
<td>24125,70</td>
<td>SPA</td>
<td>Ορος Οσσά</td>
</tr>
<tr>
<td>GR1420006</td>
<td>37125,28</td>
<td>SPA</td>
<td>Ορος Μανροβούνι</td>
</tr>
<tr>
<td>GR2430002</td>
<td>8223,42</td>
<td>SPA</td>
<td>Ορι Αγράφα</td>
</tr>
<tr>
<td>GR1430008</td>
<td>36190,25</td>
<td>SPA</td>
<td>Ορος Πιλίο</td>
</tr>
<tr>
<td>GR1420015</td>
<td>3031,90</td>
<td>SPA</td>
<td>Δελτα Πινείου</td>
</tr>
<tr>
<td>GR1420014</td>
<td>7369,38</td>
<td>SPA</td>
<td>Περιοχή Ελασσώνα</td>
</tr>
<tr>
<td>GR1430007</td>
<td>12416,33</td>
<td>SPA</td>
<td>Περιοχή Ταμιεφτρόν Προίνος Λίμνης Καρλάς</td>
</tr>
<tr>
<td>GR2130013</td>
<td>21565,91</td>
<td>SPA</td>
<td>Εβρυτέρι Περιοχή Αθαμανικον Ορέων</td>
</tr>
<tr>
<td>GR2110006</td>
<td>6191,77</td>
<td>SPA</td>
<td>Κοιλάδα Αχελοού Και Ορι Βαλτού</td>
</tr>
<tr>
<td>GR1440005</td>
<td>71950,12</td>
<td>SPA</td>
<td>Αντιχασία Ορί Και Μετεώρα</td>
</tr>
<tr>
<td>GR1250002</td>
<td>23,28</td>
<td>SCI</td>
<td>Πιερία Ορί</td>
</tr>
<tr>
<td>GR1250003</td>
<td>4093,63</td>
<td>SCI</td>
<td>Ορος Τιτάρος</td>
</tr>
<tr>
<td>GR1410001</td>
<td>2982,05</td>
<td>SCI</td>
<td>Περιοχή Λίμνης Ταβροπού</td>
</tr>
<tr>
<td>GR1410002</td>
<td>4621,42</td>
<td>SCI</td>
<td>Αγράφα</td>
</tr>
<tr>
<td>GR1420001</td>
<td>9912,50</td>
<td>SCI</td>
<td>Κατο Ολυμπός - Καλλιπέφκι</td>
</tr>
<tr>
<td>GR1420003</td>
<td>19579,91</td>
<td>SCI</td>
<td>Αισθητικό Δασος Οσσάς</td>
</tr>
<tr>
<td>GR1420004</td>
<td>40233,98</td>
<td>SCI</td>
<td>Καρλα - Μανροβούνι - Κεφαλοβρύσο Βελεστίνου - Νεοχόρι</td>
</tr>
<tr>
<td>GR1420010</td>
<td>474,19</td>
<td>SCI</td>
<td>Στένα Καλαμάκιου</td>
</tr>
<tr>
<td>GR1430001</td>
<td>28905,03</td>
<td>SCI</td>
<td>Ορος Πιλίο Και Παράκτια Θαλασσία Ζονή</td>
</tr>
<tr>
<td>GR1430002</td>
<td>100,23</td>
<td>SCI</td>
<td>Κούρι Άλμπρου - Αγίος Σέραφειμ</td>
</tr>
<tr>
<td>GR1440001</td>
<td>20091,56</td>
<td>SCI</td>
<td>Ασπροποτάμος</td>
</tr>
<tr>
<td>GR1440002</td>
<td>50431,17</td>
<td>SCI</td>
<td>Κερκετίο Ορος (Κοζιάκας)</td>
</tr>
<tr>
<td>GR1440003</td>
<td>60550,46</td>
<td>SCI</td>
<td>Αντιχασία Ορί - Μετεώρα</td>
</tr>
<tr>
<td>GR2110002</td>
<td>4322,00</td>
<td>SCI</td>
<td>Ορι Αθαμανον (Νεράιδα)</td>
</tr>
<tr>
<td>GR2130006</td>
<td>1331,47</td>
<td>SCI</td>
<td>Περιοχή Μετσόβου (Ανίλιο - Κατάρα)</td>
</tr>
</tbody>
</table>
5.5 ΧΡΗΣΕΙΣ ΓΗΣ

Όπως είναι αναμενόμενο, η ευνοϊκή γεωμορφολογία, υδρογραφία και οι κλιματικές συνθήκες στην Θεσσαλία έχουν οδηγήσει σε σημαντική κάλυψη της γης με αγροτικές δραστηριότητες. Ωστόσο, έχουμε ακόμη σημαντική κάλυψη με δασικές εκτάσεις. Στην επόμενη παράγραφο, γίνεται μια αποτύπωση των χρήσεων γης στην Περιφέρεια Θεσσαλίας μέσω του Corine 2000 και ενδεχομένων μεταβολών που σημειώθηκαν. Γίνεται επίσης, μια αναφορά στις λατομικές ζώνες, μέσω χωρικών δεδομένων που παρέχει το ΥΠΕΝ.

5.5.1 CORINE 2000

Στην Περιφέρεια Θεσσαλίας συναντάται ποικιλία χρήσεων γης, όπως φαίνεται και στους Πίνακες 5.3 και 5.4. Ειδικότερα, η μη αρδευόμενη αρόσιμη γη καταλαμβάνει το 17% και οι μόνιμα αρδευόμενες εκτάσεις, που αναπτύσσονται στις κεντρικές περιοχές, καταλαμβάνουν περίπου το 15% της Θεσσαλίας. Επίσης, οι ετερογενείς αγροτικές περιοχές εκτείνονται στο 9%, ενώ τα δάση στο 17% της έκτασης, στους περιμετρικούς ορεινούς όγκους. Σημαντική κάλυψη της περιφέρειας αποτελούν και οι φυσικοί βοσκότοποι, με ποσοστό περίπου 9%, και η σκληροφυλική βλάστηση με 8%. Οι μόνιμες καλλιέργειες αποτελούνται από ελαϊώνες, αμπέλια και οπωροφόρα δέντρα και φυτείες με σαρκώδεις καρπούς, τα οποία καταλαμβάνουν μόλις το 2% της περιφέρειας. Τέλος, οι οικιακές περιοχές καλύπτουν μόλις το 1.4% της έκτασης, παρουσιάζοντας σημαντική διασπορά.

Εικόνα 5.5 Χρήσεις γης στην Περιφέρεια Θεσσαλίας κατά Corine 2000 (EEA,2015)
Τάξης 5.3 Υπόμνημα Corine 2000 και ποσοστά κάλυψης ανά χρήση γης στην Περιφέρεια Θεσσαλίας (ΕΕΑ, 2015)

<table>
<thead>
<tr>
<th>Κωδ</th>
<th>Επίπεδο 1</th>
<th>Επίπεδο 2</th>
<th>Επίπεδο 3</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Artificial surfaces</td>
<td>Urban fabric</td>
<td>Continuous urban fabric</td>
<td>0,04%</td>
</tr>
<tr>
<td>112</td>
<td>Artificial surfaces</td>
<td>Urban fabric</td>
<td>Discontinuous urban fabric</td>
<td>1,37%</td>
</tr>
<tr>
<td>121</td>
<td>Artificial surfaces</td>
<td>Industrial, commercial and transport units</td>
<td>Industrial or commercial units</td>
<td>0,28%</td>
</tr>
<tr>
<td>122</td>
<td>Artificial surfaces</td>
<td>Industrial, commercial and transport units</td>
<td>Road and rail networks and associated land</td>
<td>0,10%</td>
</tr>
<tr>
<td>123</td>
<td>Artificial surfaces</td>
<td>Industrial, commercial and transport units</td>
<td>Port areas</td>
<td>0,00%</td>
</tr>
<tr>
<td>124</td>
<td>Artificial surfaces</td>
<td>Industrial, commercial and transport units</td>
<td>Airports</td>
<td>0,10%</td>
</tr>
<tr>
<td>131</td>
<td>Artificial surfaces</td>
<td>Mine, dump and construction sites</td>
<td>Mineral extraction sites</td>
<td>0,04%</td>
</tr>
<tr>
<td>132</td>
<td>Artificial surfaces</td>
<td>Mine, dump and construction sites</td>
<td>Dump sites</td>
<td>0,00%</td>
</tr>
<tr>
<td>133</td>
<td>Artificial surfaces</td>
<td>Mine, dump and construction sites</td>
<td>Construction sites</td>
<td>0,05%</td>
</tr>
<tr>
<td>141</td>
<td>Artificial surfaces</td>
<td>Artificial, non-agricultural vegetated areas</td>
<td>Green urban areas</td>
<td>0,00%</td>
</tr>
<tr>
<td>142</td>
<td>Artificial surfaces</td>
<td>Artificial, non-agricultural vegetated areas</td>
<td>Sport and leisure facilities</td>
<td>0,04%</td>
</tr>
<tr>
<td>211</td>
<td>Agricultural areas</td>
<td>Arable land</td>
<td>Non-irrigated arable land</td>
<td>17,28%</td>
</tr>
<tr>
<td>212</td>
<td>Agricultural areas</td>
<td>Arable land</td>
<td>Permanently irrigated land</td>
<td>14,71%</td>
</tr>
<tr>
<td>213</td>
<td>Agricultural areas</td>
<td>Arable land</td>
<td>Rice fields</td>
<td>0,01%</td>
</tr>
<tr>
<td>221</td>
<td>Agricultural areas</td>
<td>Permanent crops</td>
<td>Vineyards</td>
<td>0,16%</td>
</tr>
<tr>
<td>222</td>
<td>Agricultural areas</td>
<td>Permanent crops</td>
<td>Fruit trees and berry plantations</td>
<td>0,74%</td>
</tr>
<tr>
<td>223</td>
<td>Agricultural areas</td>
<td>Permanent crops</td>
<td>Olive groves</td>
<td>1,00%</td>
</tr>
<tr>
<td>231</td>
<td>Agricultural areas</td>
<td>Pastures</td>
<td>Pastures</td>
<td>1,19%</td>
</tr>
<tr>
<td>242</td>
<td>Agricultural areas</td>
<td>Heterogeneous agricultural areas</td>
<td>Complex cultivation patterns</td>
<td>2,70%</td>
</tr>
<tr>
<td>243</td>
<td>Agricultural areas</td>
<td>Heterogeneous agricultural areas</td>
<td>Land principally occupied by agriculture, with significant areas of natural vegetation</td>
<td>6,39%</td>
</tr>
<tr>
<td>311</td>
<td>Forest and semi natural areas</td>
<td>Forests</td>
<td>Broad-leaved forest</td>
<td>8,76%</td>
</tr>
<tr>
<td>312</td>
<td>Forest and semi natural areas</td>
<td>Forests</td>
<td>Coniferous forest</td>
<td>4,98%</td>
</tr>
<tr>
<td>313</td>
<td>Forest and semi natural areas</td>
<td>Forests</td>
<td>Mixed forest</td>
<td>3,14%</td>
</tr>
<tr>
<td>321</td>
<td>Forest and semi natural areas</td>
<td>Scrub and/or herbaceous vegetation associations</td>
<td>Natural grasslands</td>
<td>8,87%</td>
</tr>
</tbody>
</table>
Πίνακας 5.4 (Συνέχεια) Υπόμνημα Corine 2000 και ποσοστά κάλυψης ανά χρήση γης στην Περιφέρεια Θεσσαλίας

<table>
<thead>
<tr>
<th>Κωδ</th>
<th>Επίπεδο 1</th>
<th>Επίπεδο 2</th>
<th>Επίπεδο 3</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>Forest and semi natural areas</td>
<td>Scrub and/or herbaceous vegetation associations</td>
<td>Moors and heathland</td>
<td>0,98%</td>
</tr>
<tr>
<td>324</td>
<td>Forest and semi natural areas</td>
<td>Scrub and/or herbaceous vegetation associations</td>
<td>Transitional woodland-shrub</td>
<td>8,26%</td>
</tr>
<tr>
<td>331</td>
<td>Forest and semi natural areas</td>
<td>Open spaces with little or no vegetation</td>
<td>Beaches, dunes, sands</td>
<td>0,29%</td>
</tr>
<tr>
<td>332</td>
<td>Forest and semi natural areas</td>
<td>Open spaces with little or no vegetation</td>
<td>Bare rocks</td>
<td>0,03%</td>
</tr>
<tr>
<td>333</td>
<td>Forest and semi natural areas</td>
<td>Open spaces with little or no vegetation</td>
<td>Sparsely vegetated areas</td>
<td>1,30%</td>
</tr>
<tr>
<td>334</td>
<td>Forest and semi natural areas</td>
<td>Open spaces with little or no vegetation</td>
<td>Burnt areas</td>
<td>0,05%</td>
</tr>
<tr>
<td>411</td>
<td>Wetlands</td>
<td>Inland wetlands</td>
<td>Inland marshes</td>
<td>0,06%</td>
</tr>
<tr>
<td>421</td>
<td>Wetlands</td>
<td>Maritime wetlands</td>
<td>Salt marshes</td>
<td>0,04%</td>
</tr>
<tr>
<td>511</td>
<td>Water bodies</td>
<td>Inland waters</td>
<td>Water courses</td>
<td>0,18%</td>
</tr>
<tr>
<td>512</td>
<td>Water bodies</td>
<td>Inland waters</td>
<td>Water bodies</td>
<td>0,15%</td>
</tr>
<tr>
<td>523</td>
<td>Water bodies</td>
<td>Marine waters</td>
<td>Sea and ocean</td>
<td>0,40%</td>
</tr>
</tbody>
</table>

Σύμφωνα με την χαρτογράφηση του WWF ΕΛΛΑΣ για την μεταβολή των χρήσεων γης το διάστημα 1987-2007, το 2007 το 46,2% της Θεσσαλίας καλυπτόταν από γεωργική γη, ποσοστό μεγαλύτερο από το αντίστοιχο του 1987 (41%). Με 22% ακολουθούν οι εκτάσεις χαμηλής βλάστησης (25% το 1987) και με ποσοστά 10% και 8% αντίστοιχα τα δάση πλατύφυλλων και οι θαμνότοποι, καλύψεις που παρουσιάζουν σχετική σταθερότητα για το διάστημα 1987-2007. Συνολικά, η εικόνα της Θεσσαλίας κατά την περίοδο μελέτης παρουσιάζει υποχώρηση σχεδόν όλων των φυσικών καλύψεων (κυρίως των εκτάσεων χαμηλής βλάστησης και των δασών κωνοφόρων), προς όφελος μιας σημαντικής επέκτασης της γεωργικής γης. Η μείωση κατά περίπου 10% των υδάτινων επιφανειών που παρατηρήθηκε πιθανότατα σχετίζεται με συγκυριακές αυξομειώσεις στις ετήσιες βροχοπτώσεις, τις αρδευτικές ανάγκες και την εποχή λήψης της δορυφορικής εικόνας.

5.5.2 ΛΑΤΟΜΙΚΕΣ ΖΩΝΕΣ ΥΠΕΝ

Για τις λατομικές ζώνες, πέραν των δεδομένων που παρέχονται από το Corine 2000, είναι διαθέσιμη και η πύλη ΛΑΤΟΜΕΤ της Γενικής Διεύθυνσης Φυσικού Πλούτου του ΥΠΕΝ, από την οποία παρέχονται ανοιχτά δεδομένα σχετικά με τις θέσεις των μεταλλείων και λατομείων της Ελλάδας ανά κατηγορία δραστηριότητας (μεταλλείο, λατομείο αδρανών, μαρμάρων, βιομηχανικών ορυκτών, κλπ.).

Οι λατομικές ζώνες αποτελούν περιοχές ιδιαίτερου ενδιαφέροντος για την χωροθέτηση ΑΠΕ, καθώς οι ανενεργοί χώροι των λατομείων λόγω του βιομηχανικού τους χαρακτήρα, μπορούν να
αποτελέσουν ιδανικές περιοχές για τη χωροθέτησή τους. Σημαντικά πλεονεκτήματα που συγκεντρώνουν είναι ότι για την προηγούμενη μεταφορά των εξορυκτικών υλών έχει ήδη διαμορφωθεί οδικό δίκτυο, αλλά και η περιοχή εξόρυξης έχει υποστεί εκχέρσωση και εξομάλυνση κλίσεων. Παρόλα αυτά, ο ΕΠΧΣΑΑ για τις ΑΠΕ στο Παράρτημα ΙΙ για την χωροθέτηση αιολικών εγκαταστάσεων ορίζει τις λατομικές ζώνες ως ασύμβατες χρήσεις για την χωροθέτηση ΑΠ, ενώ για τις λειτουργούσες επιφανειακά επιβάλει ελάχιστη απόσταση 500 m.

Από την πύλη ΛΑΤΟΜΕΤ χρησιμοποιήθηκαν δυο αρχεία shapefile, ένα με τις εξαιρεμένες υπέρ του Δημοσίου λατομικές περιοχές, όπως αυτές έχουν προκύψει σύμφωνα με τις διατάξεις του Ν.Δ. 4433/1964 (ΦΕΚ 219/Α/12.11.1964, διορθ. ημαρτημένων ΦΕΚ 31/Α/25.02.1965), και ένα με τα λατομεία αδρανών υλικών, τα οποία φέρουν κατηγοριοποίηση με βάση την παρούσα κατάστασή τους (αποχαρακτηρισμένα, ενεργοποιημένα, κλπ.).

Εικόνα 5.6 Λατομικές ζώνες Περιφέρειας Θεσσαλίας (ΛΑΤΟΜΕΤ, 2016)

5.6 ΔΙΟΙΚΗΤΙΚΑ, ΠΛΗΘΥΣΜΙΑΚΑ ΣΤΟΙΧΕΙΑ & ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Η Περιφέρεια Θεσσαλίας συγκεντρώνει, χωρίς τα νησία των Σποράδων, το 6,65% του μόνιμου πληθυσμού της χώρας, με την Περιφερειακή Ενότητα Λάρισας να συγκεντρώνει το μεγαλύτερό ποσοστό του πληθυσμού της περιφέρειας, με περίπου 40% των μόνιμων να ζουν στα όρια της. Ακολουθούν οι Περιφέρειες Μαγνησίας με 26% και οι Περιφέρειες Τρικάλων και Καρδίτσας, με 18% και 16%, αντίστοιχα.
Πίνακας 5.5 Πληθυσμιακά στοιχεία σε επίπεδό ΠΕ της ηπειρωτικής Θεσσαλίας (ΕΛΣΤΑΤ,2011)

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Μόνιμος Πληθυσμός</th>
<th>Ποσοστά</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣΥΝΟΛΟ ΧΩΡΑΣ</td>
<td>10,816,286</td>
<td>-</td>
</tr>
<tr>
<td>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΛΑΡΙΣΑΣ</td>
<td>284,325</td>
<td>39.55%</td>
</tr>
<tr>
<td>(επί της περιφερείας Θεσσαλίας)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΚΑΡΔΙΤΣΑΣ</td>
<td>113,544</td>
<td>15.79%</td>
</tr>
<tr>
<td>(επί της περιφερείας Θεσσαλίας)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΜΑΓΝΗΣΙΑΣ</td>
<td>190,010</td>
<td>26.43%</td>
</tr>
<tr>
<td>(επί της περιφερείας Θεσσαλίας)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΤΡΙΚΑΛΩΝ</td>
<td>131,085</td>
<td>18.23%</td>
</tr>
<tr>
<td>(επί της περιφερείας Θεσσαλίας)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ</td>
<td>718,964</td>
<td>6.65%</td>
</tr>
<tr>
<td>(επί του συνόλου χώρας)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Εικόνα 5.7 Οικισμοί και διοικητικά όρια της Περιφέρειας Θεσσαλίας (ΕΛΣΤΑΤ, 2015)

Στον Πίνακα 5.5 παρουσιάζονται αναλυτικά στοιχεία για του μεγάλους πληθυσμιακά οικισμούς. Παρατηρούμε ότι στις ΠΕ Τρικάλων και Καρδίτσας, η οικιστική δραστηριότητα παρουσιάζει μεγαλύτερη διασπορά, καθώς περίπου το 50% ζει σε οικισμούς με πάνω από 2000 μονίμους κατοίκους, με αποτέλεσμα μεγαλύτερο αριθμό μικρών οικισμών. Το αντίθετο συμβαίνει στις ΠΕ Μαγνησίας και Λάρισας, όπου το 75% περίπου του πληθυσμού ζει σε μεγάλες πληθυσμιακά περιοχές, με αποτέλεσμα μικρότερο αριθμό μικρών οικισμών (255 στην ΠΕ Λάρισας και 181 στην ΠΕ Μαγνησίας). Η διασπορά αυτή αναδεικνύεται από του χάρτη Corine 2000 (βλ. παράγραφο 5.5.1), όσο και από τον χάρτη της Εικόνας 5.7, όπου διακρίνεται η σημαντική συγκέντρωση μικρών πληθυσμιακά οικισμών στα σύνορα των ΠΕ Τρικάλων και Καρδίτσας.
<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Μόνιμος πληθυσμός</th>
<th>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΛΑΡΙΣΑΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αγιά</td>
<td>3,169</td>
<td>Ποσοστό πληθυσμού σε οικισμούς με περισσότερους από 2000 κατοίκους 72.67%</td>
</tr>
<tr>
<td>Κρανέα Ελασσόνος</td>
<td>2,691</td>
<td></td>
</tr>
<tr>
<td>Ελασσών</td>
<td>7,338</td>
<td></td>
</tr>
<tr>
<td>Λιβάδι</td>
<td>2,244</td>
<td></td>
</tr>
<tr>
<td>Τσαρίτσανη</td>
<td>2,040</td>
<td></td>
</tr>
<tr>
<td>Νίκαια</td>
<td>3,876</td>
<td></td>
</tr>
<tr>
<td>Γιάννουλη</td>
<td>7,847</td>
<td></td>
</tr>
<tr>
<td>Φάλαννα</td>
<td>3,987</td>
<td></td>
</tr>
<tr>
<td>Λάρισα</td>
<td>144,651</td>
<td></td>
</tr>
<tr>
<td>Συκούριον</td>
<td>2,316</td>
<td></td>
</tr>
<tr>
<td>Αμπελών</td>
<td>6,083</td>
<td></td>
</tr>
<tr>
<td>Τύρναβος</td>
<td>11,069</td>
<td></td>
</tr>
<tr>
<td>Φάρσαλα</td>
<td>9,298</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΚΑΡΔΙΤΣΑΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Καρδίτσα</td>
</tr>
<tr>
<td>Καρδίτσασμαγούλα</td>
</tr>
<tr>
<td>Παλαμάς</td>
</tr>
<tr>
<td>Σοφάδες</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΜΑΓΝΗΣΙΑΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αλμυρός</td>
</tr>
<tr>
<td>Ευξεινούπολις</td>
</tr>
<tr>
<td>Αγριά</td>
</tr>
<tr>
<td>Διμήνι</td>
</tr>
<tr>
<td>Βόλος</td>
</tr>
<tr>
<td>Νέα Αγχίαλος</td>
</tr>
<tr>
<td>Νέα Ιωνία</td>
</tr>
<tr>
<td>Ζαγορά</td>
</tr>
<tr>
<td>Βελεστίνον</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΤΡΙΚΑΛΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Καλαμπάκα</td>
</tr>
<tr>
<td>Τρίκαλα</td>
</tr>
<tr>
<td>Οιχαλία</td>
</tr>
<tr>
<td>Φαρκαδών</td>
</tr>
</tbody>
</table>

Πίνακας 5.6 Αναλυτικά πληθυσμιακά στοιχεία για τους πολυπληθείς οικισμούς ανά ΠΕ (ΕΛΣΤΑΤ, 2011)
Πίνακας 5.7 Πληθυσμός παραδοσιακών οικισμών ανά περιφέρεια (ΕΛΣΤΑΤ, 2011; Μεταλληνού, 2013)

<table>
<thead>
<tr>
<th>Ονομασία</th>
<th>Μόνιμοι κάτοικοι</th>
<th>Ονομασία</th>
<th>Μόνιμοι κάτοικοι</th>
</tr>
</thead>
<tbody>
<tr>
<td>Περιφερειακή ενότητα Μαγνησίας</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Αγία Κυριακή</td>
<td>199</td>
<td>Μακρινίτσα</td>
<td>694</td>
</tr>
<tr>
<td>Αγία Παρασκευή</td>
<td>9</td>
<td>Μακυροτάχη</td>
<td>609</td>
</tr>
<tr>
<td>Άγιος Βλάσιος</td>
<td>322</td>
<td>Μετόχιον</td>
<td>78</td>
</tr>
<tr>
<td>Άγιος Γεώργιος Νηλείας</td>
<td>142</td>
<td>Μηλιές</td>
<td>640</td>
</tr>
<tr>
<td>Άγιος Δημήτριος</td>
<td>243</td>
<td>Μηλίνα</td>
<td>700</td>
</tr>
<tr>
<td>Άγιος Ιωάννης</td>
<td>179</td>
<td>Μουρέσιον</td>
<td>485</td>
</tr>
<tr>
<td>Άγιος Λαυρέντιος</td>
<td>273</td>
<td>Νεοχώριον</td>
<td>356</td>
</tr>
<tr>
<td>Άγιος Ονούφριος</td>
<td>475</td>
<td>Νταμούχαρη</td>
<td>33</td>
</tr>
<tr>
<td>Αγριά</td>
<td>5191</td>
<td>Ξερόχτιον</td>
<td>219</td>
</tr>
<tr>
<td>Αλλή Μεριά</td>
<td>770</td>
<td>Ξινόβρυση</td>
<td>164</td>
</tr>
<tr>
<td>Ανακαισία</td>
<td>1012</td>
<td>Παλαιόν Τρικέριον</td>
<td>59</td>
</tr>
<tr>
<td>Ανηλίκον</td>
<td>355</td>
<td>Πινακάτεσι</td>
<td>211</td>
</tr>
<tr>
<td>Ανω Βόλος</td>
<td>539</td>
<td>Πλατανιά</td>
<td>141</td>
</tr>
<tr>
<td>Ανω Γατζέα</td>
<td>297</td>
<td>Πλατανίδια</td>
<td>361</td>
</tr>
<tr>
<td>Ανω Λεχώνια</td>
<td>1068</td>
<td>Πορταρία</td>
<td>552</td>
</tr>
<tr>
<td>Αργαλαστή</td>
<td>1321</td>
<td>Πουρίον</td>
<td>402</td>
</tr>
<tr>
<td>Αφέται</td>
<td>339</td>
<td>Προμύριον</td>
<td>358</td>
</tr>
<tr>
<td>Αφυσός</td>
<td>272</td>
<td>Σταγιάτα</td>
<td>121</td>
</tr>
<tr>
<td>Βενέτον</td>
<td>67</td>
<td>Συκή</td>
<td>477</td>
</tr>
<tr>
<td>Βυζίτσα</td>
<td>255</td>
<td>Τρικέριον</td>
<td>1022</td>
</tr>
<tr>
<td>Γλαφυρά</td>
<td>237</td>
<td>Τσαγκαράδα</td>
<td>525</td>
</tr>
<tr>
<td>Δράκεια</td>
<td>381</td>
<td>Χορευτόν</td>
<td>131</td>
</tr>
<tr>
<td>Ζαγορά</td>
<td>2074</td>
<td>Χόρτον</td>
<td>147</td>
</tr>
<tr>
<td>Καλά Νερά</td>
<td>594</td>
<td>Περιφερειακή ενότητα Τρικάλων</td>
<td></td>
</tr>
<tr>
<td>Καλαμάκιον</td>
<td>169</td>
<td>Ανθούσα</td>
<td>61</td>
</tr>
<tr>
<td>Κάλαμος</td>
<td>60</td>
<td>Τρίκαλα</td>
<td>61653</td>
</tr>
<tr>
<td>Κανάλια</td>
<td>1015</td>
<td>Χαλίκιοντα</td>
<td>31</td>
</tr>
<tr>
<td>Κατωχώριον</td>
<td>362</td>
<td>Περιφερειακή ενότητα Λάρισας</td>
<td></td>
</tr>
<tr>
<td>Κάτω Γατζέα</td>
<td>360</td>
<td>Μεταξοχώριον</td>
<td>478</td>
</tr>
<tr>
<td>Κάτω Λεχώνια</td>
<td>1487</td>
<td>Αμπελάκια</td>
<td>388</td>
</tr>
<tr>
<td>Κεραμίδιον</td>
<td>338</td>
<td>Ανατολή</td>
<td>265</td>
</tr>
<tr>
<td>Κερασέα</td>
<td>280</td>
<td>Κρανέα</td>
<td>107</td>
</tr>
<tr>
<td>Κισσός</td>
<td>332</td>
<td>Μεγαλόβρυσον</td>
<td>199</td>
</tr>
<tr>
<td>Κορόπη</td>
<td>246</td>
<td>Τέμπη</td>
<td>63</td>
</tr>
<tr>
<td>Λαμπινού</td>
<td>24</td>
<td>Περιφερειακή ενότητα Καρδίτσας</td>
<td></td>
</tr>
<tr>
<td>Λαύκος</td>
<td>511</td>
<td>Ελληνόπυργος</td>
<td>280</td>
</tr>
<tr>
<td>Λεφόκαστρον</td>
<td>67</td>
<td>Ρεντίνα</td>
<td>288</td>
</tr>
<tr>
<td>Λύρη</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Οι παραδοσιακοί οικισμοί, ο χαρακτηρισμός των οποίων άρχισε το 1978, ως είχε ως στόχο την κατά το δυνατόν μικρότερη αλλοίωση του χαρακτήρα τους, λόγω των αξιόλογων αρχιτεκτονικών και πολεοδομικών τους χαρακτηριστικών. Σε αυτό το πνεύμα ο ΕΠΧΣΑΑ επιβάλλει ελάχιστη απόσταση από τα όρια τους 1500 m για την εγκατάσταση αιολικών εγκαταστάσεων, ανεξαρτήτως του πληθυσμού τους (αν και στην πλειονότητά τους αποτελούν μικρού μεγέθους οικισμούς, με το 96% από αυτούς να έχουν πληθυσμό κάτω των 2000 κατοίκων).

Στην Θεσσαλία ανήκουν 72 ηπειρωτικοί παραδοσιακοί οικισμοί και 2 νησιωτικοί. Πρόκειται για σημαντική συγκέντρωση (8,2% ποσοστό παραδοσιακών οικισμών επί του συνολικού αριθμού της χώρας), η οποία την κατατάσσει στην τρίτη θέση, μετά την Πελοπόννησο, που διατηρεί το 18,7% των παραδοσιακών οικισμών (173), και την’Ηπειρο, που υπερέχει ελάχιστα, με ποσοστό 8,9%. Από την χωρική απεικόνιση των παραδοσιακών οικισμών εξαιρέθηκε ο Κατηγιώργης, για τον οποίο δεν βρέθηκαν χωρικά και πληθυσμιακά δεδομένα, οπότε ο τελικός τους αριθμός ανήλθε σε 71.

Σημειώνεται ότι η Περιφερειακή Ενότητα Μαγνησίας κατατάσσεται στους νομούς με την μεγαλύτερη συγκέντρωση παραδοσιακών οικισμών στην Ελλάδα, κάτι που δημιουργεί ιδιαίτερο πρόβλημα, καθώς η χερσόνησος του Πηλίου αποτελεί από τις λίγες ζώνες επαρκούς αιολικού δυναμικού στην Περιφέρεια Θεσσαλίας (Πίνακας 5.7).

5.7 ΠΕΡΙΟΧΕΣ ΠΟΛΙΤΙΣΤΙΚΟΥ & ΤΟΥΡΙΣΤΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Στην Περιφέρεια Θεσσαλίας βρίσκεται πλήθος αρχαιολογικών χωρών και ιστορικών τόπων, αλλά και πολλές ιερές μονές, που συγκεντρώνουν σημαντικό αριθμό επισκεπτών. Μια από τις δύο περιοχές UNESCO της Ελλάδας, τα Μετέωρα, βρίσκονται στην ΠΕ Τρικάλων και καταλαμβάνει περί τα 3 km². Πρόκειται για ιδιαίτερα τουριστικό νομό που συγκεντρώνει σημαντικό αριθμό επισκεπτών λόγω του ιδιαίτερης γεωμορφολογίας, του μεγάλου αριθμού παραδοσιακών οικισμών και των υδάτινων σωμάτων, όπως η λίμνη Πλαστήρα, που συγκεντρώνει σημαντικό αριθμό τουριστικών επισκεπτών. Μιας καταλύματα, τις ακτές και τις λοιπές περιοχές συγκέντρωση τουριστικού ενδιαφέροντος, για τις ανάγκες της εργασίας λαμβάνονται όλες οι περιοχές που βρίσκονται πλησίον των ακτών και των ποταμών της Περιφέρειας Θεσσαλίας.

Στην τουριστική πύλη του νομού Θεσσαλίας (http://gothessaly.gr/places.html), δίνονται πολλές πληροφορίες μέσω διαδραστικού χάρτη για της περιοχής τουριστικού και πολιτιστικού ενδιαφέροντος. Συγκεκριμένα δίνονται στοιχεία για 54 Ιερές Μονές, 14 αρχαιολογικούς χώρους , 15 μνημεία και 21 μουσεία. Ενδιαφέρον παρουσιάζει η συγκέντρωση αρχαιολογικών χώρων στην ΠΕ Λάρισας με τους αρχαιολογικούς χώρους Δολιχής, Πυθίου και Αζώρου στα βόρεια της ΠΕ και Α΄ Αρχαία Θέατρα Λάρισας, πλησίον της Λάρισας. Αυτά παρουσιάζονται στην ΠΕ Μαγνησίας κοντά στην πόλη του Βόλου, ο αρχαιολογικός χώρος Κραννών υπάρχει κοντά στη Λάρισα και βυζαντινή πόλη των Φαρσάλων και νοτιοδυτικά της Λάρισας ο αρχαιολογικός χώρος Κραννών που βρίσκονται πλησίον των Αρχαίας και των υδάτινων σωμάτων, όπως η λίμνη Πλαστήρα, που συγκεντρώνει σημαντικό αριθμό τουριστικών επισκεπτών. Μιας καταλύματα, τις ακτές και τις λοιπές περιοχές συγκέντρωση τουριστικού ενδιαφέροντος, για τις ανάγκες της εργασίας λαμβάνονται όλες οι περιοχές που βρίσκονται πλησίον των κατωτέρω της Περιφέρειας Θεσσαλίας.
λίμνης Κάρλας, συναντάται ακόμη και ο προϊστορικός οικισμός στη θέση Παλιοσκάλα, και πιο βόρεια η Ελληνιστική αγροικία στην Αμυγδαλή.

Και οι τέσσερις νομοί παρουσιάζουν ιδιαίτερα έντονη τουριστική κίνηση, η οποία υποστηρίζεται από ιστοτόπους με τις περιοχές τουριστικού ενδιαφέροντος για κάθε ΠΕ για την ενημέρωση του επισκέπτη (http://www.thessaly.gov.gr/main.aspx?catid=301). Ενδεικτικά, ο Ν. Καρδίτσας αποτελεί πόλο έλξης για την ιδιαίτερη ομορφιά λίμνη Πλαστήρα, ο Ν. Τρικάλων για τα Μετέωρα, ο Ν. Μαγνησίας για το συνδυασμό βουνού και θάλασσας, την περιοχή του Πηλίου και τα γραφικά χώρια, προσελκύοντας τουρισμό όλο το χρόνο, και, τέλος, ο Ν. Λάρισας μεταξύ άλλων για της ευκαιρίες ορειβασίας, κολύμβησης και αρχαιολογικών περιηγήσεων που προσφέρει.

Σύμφωνα με τους Πολύζο & Σαρατσή (2013), η ΠΕ Μαγνησίας παρουσιάζει την πλέον εντυπωσιακή τουριστική εξέλιξη της Περιφέρειας, συγκεκριμένα, το 65% του τουριστικού πληθυσμού της. Συγκεκριμένα, ενώ η πληρότητα των ξενοδοχειακών μονάδων σε επίπεδο Περιφέρειας είναι 38-42%, σε σχέση με το 55% που είναι ο εθνικός Μ.Ο, η ΠΕ Μαγνησίας τριπλασίασε τον ετήσιο αριθμό διανυκτερεύσεων στην περίοδο 1983-2010, φθάνοντας το 2010 περί της 1,200,000. Είναι επίσης μαζί με τον Ν. Τρικάλων από τους πιο εξωστρεφής νομούς, με 400,000 από τους επισκέπτες της να είναι αλλοδαποί.

5.8 ΥΠΟΔΟΜΕΣ

Στην παράγραφο αύτη αναλύονται οι υποδομές της Περιφέρειας Θεσσαλίας, οι οποίες αποτελούν σημαντικό περιορισμό, αλλά και οικονομοτεχνικό παράγοντα για τις εγκαταστάσεις ΑΠΕ. Ακολουθεί συνοπτική περιγραφή του οδικού, σιδηροδρομικού δίκτυο και ηλεκτρικού δικτύου διανομής και μεταφοράς ενέργειας, αλλά και κάποια στοιχεία για τις εγκαταστάσεις αεροπλοίας.

5.8.1 ΟΔΙΚΟ ΚΑΙ ΣΙΔΗΡΟΔΡΟΜΙΚΟ ΔΙΚΤΥΟ

Η Θεσσαλία έχει ικανοποιητική πυκνότητα οδικού δικτύου, με περίπου 4000 km συνολικό μήκος οδικών αξόνων, το οποίο κρίνεται επαρκής για την έκταση και τον πληθυσμό της Περιφέρειας (Εγνατία Α.Ε., 2009). Στον Πίνακα 5.8 φαίνονται αναλυτικά στοιχεία. Το οδικό δίκτυο αποτελεί σημαντική οικονομοτεχνική παράμετρο για τις επενδύσεις σε ΑΠΕ, κυρίως αιολικών εγκαταστάσεων, καθώς για την εκμετάλλευση του αιολικού δυναμικού δυσπρόσιτων περιοχών απαιτούνται σημαντικές δαπάνες για την κατασκευή κατάλληλου οδικού δικτύου για την μεταφορά των αιολικών μηχανών, που μπορεί να καταστήσουν την επένδυση ασύμφορη. Για λόγους ασφαλείας, για τις αιολικές εγκαταστάσεις επιβάλλεται μια ελάχιστη απόσταση από το οδικό δίκτυο ίση με 1,5D. Ευνοϊκή για τη χωροθέτηση είναι και η ύπαρξη σιδηροδρομικού δικτύου.

<table>
<thead>
<tr>
<th>Πίνακας 5.8 Μήκη και πυκνότητες οδικού δικτύου ανά επίπεδο</th>
<th>Μήκος (km)</th>
<th>Κυρίως οδικό δίκτυο</th>
<th>Δευτερεύον οδικό δίκτυο</th>
<th>Τριτεύον οδικό δίκτυο</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μήκος (km)</td>
<td>648</td>
<td>153</td>
<td>2570</td>
<td>3371</td>
<td></td>
</tr>
<tr>
<td>Πυκνότητα (km/km²)</td>
<td>4.61%</td>
<td>1.09%</td>
<td>18.29%</td>
<td>23.99%</td>
<td></td>
</tr>
</tbody>
</table>
5.8.2 ΑΕΡΟΔΡΟΜΙΑ & ΛΙΜΑΝΙΑ

Στην Περιφέρεια Θεσσαλίας λειτουργούν τρία αεροδρόμια, ένα επιβατικό (Κρατικός Αερολιμένας Νέας Αγχίαλου, που άρχισε την λειτουργία του το 1993) και δύο στρατιωτικά. Κυριότερο είναι το Αεροδρόμιο Λάρισας (Κρατικός Αερολιμένας Λάρισας «Θεσσαλία») ή Αεροπορική Βάση Λάρισας, το οποίο είναι το αρχαιότερο Ελληνικό αεροδρόμιο. Αποτελούσε το εμπορικό αεροδρόμιο της Λάρισας μέχρι το 1997, όταν μετατράπηκε από πολιτικό σε στρατιωτικό αεροδρόμιο. Μέχρι και σήμερα χρησιμοποιείται αποκλειστικά από στρατιωτικά αεροσκάφη. Τέλος, το στρατιωτικό αεροδρόμιο Στεφανοβικείου βρίσκεται πλησίον του χωριού Στεφανοβίκειο του νομού Μαγνησίας, και απέχει 20 km από την πόλη του Βόλου.

Σημαντικό λιμάνι της Περιφέρειας είναι αυτό της πόλης του Βόλου, το οποίο αποτελεί εμπορικό και επιβατικό λιμένα και λειτουργεί από το 1893. Στο Νομό Λάρισας υπάρχουν δύο μικροί λιμένες, του Αγιόκαμπου και του Στομίου, το οποίο χρησιμεύει ως αλιευτικό καταφύγιο.

5.8.3 ΗΛΕΚΤΡΙΚΟ ΔΙΚΤΥΟ ΔΙΑΝΟΜΗΣ ΚΑΙ ΜΕΤΑΦΟΡΑΣ ΕΝΕΡΓΕΙΑΣ

Ο Ανεξάρτητος Διαχειριστής Μεταφοράς Ηλεκτρικής Ενέργειας (ΑΔΜΗΕ), ο οποίος συστάθηκε με βάση τον Ν. 4001/2011 σχετικά με το νομικό και λειτουργικό διαχωρισμό των μονοπωλιακών
δραστηριοτήτων μεταφοράς και διανομής των καθετοποιημένων επιχειρήσεων που δραστηριοποιούνται στον κλάδο της ενέργειας, παρέχει χρήσιμα στοιχεία για το διασυνδεδεμένο σύστημα μεταφοράς ενέργειας.

Η έκκεντρη θέση μεταξύ ενεργειακής παραγωγής και κατανάλωσης στην χώρα μας, με περίπου το 70% της συνολικής ηλεκτροπαραγωγής της χώρας να παράγεται στις λιγνιτικές μονάδες της Δυτικής Μακεδονίας, αυξάνει της απαιτήσεις για εκτενές και αξιόπιστο σύστημα μεταφοράς στα μεγάλα κέντρα κατανάλωσης της Κεντρικής και Νότιας Ελλάδας, όπου καταναλώνεται περίπου το 65% της ηλεκτρικής ενέργειας.

Το ελληνικό διασυνδεδεμένο σύστημα μεταφοράς αποτελείται, όπως αποτυπώνεται στον Πίνακα 5.9, από τρεις γραμμές διπλού κυκλώματος υψηλής τάσης 400 kV, που κυρίως μεταφέρουν ηλεκτρικό ρεύμα από το σπουδαιότερο για την χώρα μας ενεργειακό κέντρο παραγωγής της Δυτικής Μακεδονίας. Διαθέτει επιπλέον γραμμές υψηλής τάσης των 400 kV, καθώς επίσης εναέριες, υποβρύχιες και υποβρύχιες μεταφορές τους 150 kV που συνδέουν την Ανδρο και τα νησιά της Δυτικής Ελλάδας, Κέρκυρα, Λευκάδα, Κεφαλονιά και Ζάκυνθο με το διασυνδεδεμένο σύστημα μεταφοράς, καθώς και μία υποβρύχια διασύνδεση της Κέρκυρας με την Ηγουμενίτσα, στα 66 kV. Την 31η Δεκεμβρίου 2013, το διασυνδεδεμένο σύστημα μεταφοράς αποτελούνταν από 11.23 km γραμμών μεταφοράς.

Πίνακας 5.9 Μήκη διασυνδεδεμένου συστήματος μεταφοράς ενέργειας (ΑΔΜΗΕ, 2013)

<table>
<thead>
<tr>
<th></th>
<th>400kV</th>
<th>Σ.Ρ. (D.C.) 400kV</th>
<th>150 kV</th>
<th>66 kV</th>
<th>ΣΥΝΟΛΟ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΕΝΑΕΡΙΕΣ (km)</td>
<td>2.65</td>
<td>107</td>
<td>8.15</td>
<td>39</td>
<td>10.95</td>
</tr>
<tr>
<td>ΥΠΟΒΡΥΧΙΕΣ (km)</td>
<td>0.58</td>
<td></td>
<td>140</td>
<td>15</td>
<td>155</td>
</tr>
<tr>
<td>ΥΠΟΓΕΙΕΣ (km)</td>
<td>30</td>
<td></td>
<td>101</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td>2.67</td>
<td>107</td>
<td>8.39</td>
<td>54</td>
<td>11.23</td>
</tr>
</tbody>
</table>

Ο χάρτης του ηλεκτρικού δικτύου μεταφοράς ενέργειας παρέχεται από των ΑΔΜΗΕ σε μορφή pdf. Για την ανάγκη της εργασίας, ο χάρτης ψηφιοποιήθηκε με χρήση του Editor του ArcGIS. Η ψηφιοποίηση έγινε για τις γραμμές μέσης και υψηλής τάσης, όπως διακρίνεται στον χάρτη της Εικόνας 5.9, μη λαμβάνοντας υπόψη την διάκριση μεταξύ διπλού ή απλού κυκλώματος. Σχεδόν όλες οι γραμμές διασχίζουν την Θεσσαλία από βορρά προς νότο, οδεύοντας προς την Αττική. Στον χάρτη του ΑΔΜΗΕ που διατίθεται στο παράρτημα διακρίνονται πολλοί Υποσταθμοί (Y/Σ) υποβιβασμού 150/20kV, ενώ διακρίνεται και Y/Σ υποβιβασμού 150kV/ΜΤ στην περιοχή του Αλμυρού, για την σύνδεση των ΑΠΕ της περιοχής. Ένας δεύτερος διακρίνεται στα σύνορα Καρδίτσας-Ευρυτανίας στην περιοχή Αυλάκη, ενώ στην περιοχή του Ταυρωπού λειτουργεί και υδροηλεκτρικός σταθμός παραγωγής, με Y/Σ ανύψωσης τάσης. Τέλος, υπάρχουν και δύο Κέντρα Υπερύψηλης Τάσης (ΚΥΤ) 400/150kV για τον υποβιβασμό της υψηλής σε μέση τάση.
Ευκόνα 5.9 Δίκτυο διανομής και μεταφοράς ηλεκτρικής ενέργειας (ΑΔΜΗΕ, 2013)

Στην παρούσα εργασία ασχολούμαστε με τους ανεξάρτητους παραγωγούς, των οποίων όλη η παραγόμενη ενέργεια εγχέεται στο δίκτυο ΔΕΗ. Το μέγεθος των παραγωγών ΑΠΕ μπορεί να κυμαίνεται από μερικά kW έως αρκετά MW και η σύνδεσή τους στο ηλεκτρικό δίκτυο εξαρτάται κυρίως από την ισχύ εξόδου τους, οπότε συνδέονται είτε στο δίκτυο διανομής μέσης και χαμηλής τάσης (για μικρή ισχύ εξόδου) είτε στο σύστημα μεταφοράς υψηλής τάσης. Στον Πίνακα 5.10 παρατίθεται ο πιθανός τρόπος διασύνδεσης στο δίκτυο βάσει της συμφωνημένης ισχύος ενός παραγωγού.

Πίνακας 5.10 Τρόπος εισαγωγής στο δίκτυο ανάλογα με την ισχύ εξόδου του παραγωγού (Τσούτσος κ.ά., 2015)

<table>
<thead>
<tr>
<th>Εγκατεστημένη Ισχύς (MW)</th>
<th>Τάση και είδος κυκλώματος δικτύου σύνδεσης</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1</td>
<td>Χαμηλής Τάσης</td>
</tr>
<tr>
<td>4</td>
<td>Μέσης τάσης σε υφιστάμενη γραμμή με πιθανή ενίσχυση</td>
</tr>
<tr>
<td>6</td>
<td>Μέσης τάσης με αποκλειστική γραμμή απλού κυκλώματος</td>
</tr>
<tr>
<td>20</td>
<td>Μέσης τάσης με αποκλειστική γραμμή διπλού κυκλώματος</td>
</tr>
<tr>
<td>>20</td>
<td>Υψηλής τάσης με κατασκευή ιδιαίτερου Y/Σ ανύψωσης YT/MT</td>
</tr>
</tbody>
</table>

Συγκεκριμένα, η σύνδεση φωτοβολταϊκών σταθμών ισχύος άνω των 100 kW γίνεται με το δίκτυο μέσης τάσης της ΔΕΗ, με απαραίτητη την ύπαρξη Y/Σ μέσης τάσης. Στην περίπτωση αυτή, ο παραγωγός ηλεκτρικής ενέργειας πρέπει να εγκαταστήσει υποσταθμό για σύνδεση του σταθμού απευθείας στο δίκτυο μέσης τάσης. Για τη διασύνδεση των φωτοβολταϊκών συστημάτων γενικά
μπορεί να ακολουθεί ο ακόλουθος διαχωρισμός, ο οποίος γίνεται με βάση την ισχύ του φωτοβολταϊκού σταθμού και είναι σύμφωνος με τις τεχνικές οδηγίες του ΔΕΔΔΗΕ και της ΔΕΗ.

α. Σύνδεση φωτοβολταϊκών σταθμών ισχύος μέχρι και 100 kW με το δίκτυο χαμηλής τάσης

β. Σύνδεση φωτοβολταϊκών σταθμών ισχύος πάνω από 100 kW με το δίκτυο μέσης τάσης

Στην περίπτωση ενός μικρού παραγωγού αιολικής ενέργειας (εγκατεστημένης ισχύος έως 20 MW), η μεταφορά της παραγόμενης ενέργειας γίνεται συνήθως με γραμμές μέσης τάσης, οι οποίες αποτελούνται από τους κοινούς ξύλινους στύλους που χρησιμοποιεί η ΔΕΗ ή από υπόγεια καλώδια. Στις περισσότερες περιπτώσεις, οι ξύλινοι στύλοι των γραμμών μέσης τάσης αποτελούν από το τοπίο και δε δημιουργούν απαγορευτική θέα στους κατοίκους της περιοχής από την οποία διέρχεται η γραμμή. Ακόμη, συνήθως μηδενική οπτική όχληση προκύπτει από τη χρησιμοποίηση υπογείων καλωδίων. Όσον αφορά στους πιο μεγάλους παραγωγούς (εγκατεστημένης ισχύος μεγαλύτερης των 20 MW), τα έργα ηλεκτρικής διασύνδεσης περιλαμβάνουν την κατασκευή Υποσταθμού Ανύψωσης (Υ/Σ) τάσης και την κατασκευή γραμμής μεταφοράς υψηλής τάσης.

5.9 ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΕ ΣΤΗΝ ΘΕΣΣΑΛΙΑ

Στην Περιφέρεια Θεσσαλίας δεν υπάρχει σημαντικός αριθμός εγκαταστάσεων ΑΠΕ σε λειτουργία, καθώς όπως φαίνεται στον Πίνακα 5.11 και στους χάρτες των Εικόνων 5.10 και 5.11 λειτουργεί μόνο ένα αιολικό πάρκο (10 Α/Γ) στην ΠΕ Μαγνησίας (όριο με Στερεά Ελλάδα) με εγκατεστημένη ισχύ 17 MW, 33 φωτοβολταϊκά πάρκα με συνολική εγκατεστημένη ισχύ 74 MW, και εφτά υβριδικά έργα με ισχύ 10 MW. Παρόλα αυτά, ο σημαντικός αριθμός αιτήσεων για αδειοδότησεις δημιουργεί ελπίδες για την μελλοντική εκμετάλλευση μεγαλύτερου μέρους του δυναμικού της περιοχής. Πίνακας 5.11 Αδειοδοτημένες εγκαταστάσεις ΑΠΕ στην Περιφέρεια Θεσσαλίας (ΑΔΜΗΕ, 2016; ΡΑΕ, 2016)

<table>
<thead>
<tr>
<th>Σε λειτ.</th>
<th>Με προσφ. Συνδ.</th>
<th>Άδεια λειτ.</th>
<th>Άδεια παρ.</th>
<th>Άδεια εγκατ.</th>
<th>Σε αξιολ.</th>
<th>Απορ. αποφ.</th>
<th>Μέγιστη επίπτ. Εγκατ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ/Β (MW)</td>
<td>73,85</td>
<td>452,07</td>
<td>75,05</td>
<td>685,22</td>
<td>2,00</td>
<td>93,46</td>
<td>963,70</td>
</tr>
<tr>
<td>Α/Γ (MW)</td>
<td>17,00</td>
<td>1337,80</td>
<td>17,00</td>
<td>1288.96</td>
<td>206,85</td>
<td>144,00</td>
<td>682,00</td>
</tr>
<tr>
<td>Υβριδικά (MW)</td>
<td>9,77</td>
<td>6,55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ανεξαρτήτως του σταδίου αδειοδότησης, συγκρίνοντας τους χάρτες των Εικόνων 5.10 και 5.11 είναι εμφανής η συγκέντρωση αιτήσεων για φωτοβολταϊκές εγκαταστάσεις στο πεδινό τμήμα της Θεσσαλίας, ενώ των αιτήσεων αιολικών εγκαταστάσεων στα όρια της Θεσσαλίας, οπού αναπτύσσονται οι ορεινοί όγκοι και το αιολικό δυναμικό είναι ευνοϊκότερο. Ως προς την επιτυχία των αιτήσεων, παρατηρείται μια καλύτερη πορεία των φωτοβολταϊκών εγκαταστάσεων αναπτύσσεται από την διαφορά μεταξύ των εγκαταστάσεων που έχουν λάβει άδεια παραγωγής και αυτών που είναι σε λειτουργία, αλλά του σημαντικού αριθμού απορριπτών αποφάσεων για αιολικά πάρκα. Αν λάβουμε δε υπόψη ότι τα φωτοβολταϊκά έργα σε λειτουργία έχουν τέσσερις φορές μεγαλύτερη εγκατεστημένη ισχύ από τα αιολικά εξάγεται ως συμπέρασμα η μεγαλύτερη καταλληλότητα των εγκαταστάσεων αυτών.
Εικόνα 5.10 Εγκαταστάσεις φωτοβολταϊκών ανάλογα με το στάδιο αδειοδότησης (PAE, 2016)

Εικόνα 5.11 Αιολικές εγκαταστάσεις ανάλογα με το στάδιο αδειοδότησης (PAE, 2016)
Πίνακας 5.12 Μέγιστη επιτρεπόμενη εγκατεστημένη ισχύς και ποσοστά κάλυψης ανά ΠΕ (PAE, 2016)

<table>
<thead>
<tr>
<th>Περιφερειακή ενότητα</th>
<th>Μέγιστος επίτρ. αριθμός τυπικών Α/Γ</th>
<th>% Κάλυψη της εικόνα</th>
<th>Μεγίστη επίτρ. εγκατεστημένη ισχύς (MW)</th>
<th>Ισχύς Εγκαταστάσεων με άδεια παραγωγής (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΠΕ ΜΑΓΝΗΣΙΑΣ</td>
<td>738.54</td>
<td>16%</td>
<td>1477.08</td>
<td>236.14</td>
</tr>
<tr>
<td>ΠΕ ΚΑΡΔΙΤΣΑΣ</td>
<td>852.81</td>
<td>25%</td>
<td>1705.62</td>
<td>421.8</td>
</tr>
<tr>
<td>ΠΕ ΤΡΙΚΑΛΩΝ</td>
<td>919.04</td>
<td>18%</td>
<td>1838.08</td>
<td>333.8</td>
</tr>
<tr>
<td>ΠΕ ΛΑΡΙΣΑΣ</td>
<td>1017.92</td>
<td>15%</td>
<td>2035.84</td>
<td>297.22</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td>3528.31</td>
<td>18%</td>
<td>7056.62</td>
<td>1288.96</td>
</tr>
</tbody>
</table>

Εικόνα 5.12 Κάλυψη της επιτρεπόμενης πυκνότητας χωροθέτησης αιολικών εγκαταστάσεων ανά ΔΕ της Περιφέρειας Θεσσαλίας (PAE, 2016)

Μια πιο προσεκτική ματιά στην κάλυψη της Φέρουσας Ικανότητας αιολικών εγκαταστάσεων βάση των στοιχείων της PAE για την περιφέρεια Θεσσαλίας δείχνει ότι η μέγιστη επιτρεπόμενη εγκατεστημένη ισχύς υπολογίζεται σε 7057 MW, εκ των οποίων μόλις για τα 1289MW έχει δοθεί άδεια παραγωγής. Η εικόνα είναι σχετικά ομοιογενής, με την ΠΕ Καρδίτσας να έχει τα πρωτεία με 25% εκμετάλλευση της Φ.Ι της και την ΠΕ Τρικάλων να ακολουθεί με 18%. Οι ΠΕ Μαγνησίας και Λάρισας παρουσιάζουν παράλληλη πορεία με 16% και 15% αντίστοιχα κάλυψη της Φ.Ι τους. Σε επίπεδο Δημοτικής Ενότητας, σημαντικός αριθμός αδειών παραγωγής που προσεγγίζει την Φ.Ι έχει δοθεί για την ΠΕ Μαγνησίας, στην περιοχή της χερσονήσου του Πηλίου με την ΔΕ Σηπιάδος να
καλύπτει το 40% της ΦΙ της και την ΔΕ Αργαλάστης το 32% και στην περιοχή του Αλμυρού στην ΔΕ Ανάβρας (28% κάλυψης της ΦΙ). Στην ΠΕ Λάρισας σημαντική κάλυψη παρουσιάζει η ΔΕ Λακερείας με 37%, η ΔΕ Γόννων με 26% και η ΔΕ Αργιθέας με 33%. Επίσης στην ΠΕ Τρικάλων η ΔΕ Πυνδαίων με 42%, ενώ στην ΠΕ Καρδίτσας η ΔΕ Αργιθέας με 88% κάλυψη και η ΔΕ Κ. Αθαμανών με 86% κάλυψη. Τα ποσοστά αυτά εξήγησαν τα χαμηλά ποσοστά κάλυψης σε επίπεδο περιφέρειας αφού μόλις δύο ΔΕ της ΠΕ Καρδίτσας παρουσιάζουν σημαντική κάλυψη της ΦΙ τους, και συνολικά 9 ΔΕ έχουν πάνω από 20% κάλυψη της ΦΙ τους σε άδειες Παράγωγης.

Η ΡΑΕ δημοσιοποιεί τα στοιχεία αυτά υπό τον ν. 3852/2010, βάσει των διαθέσιμων στοιχείων και δεδομένων αναφορικά με τα όρια των Ο.Τ.Α. και τις συνταγματικές των ανεμογεννητριών των αιολικών σταθμών με άδεια παραγωγής ηλεκτρικής ενέργειας. Τα σχετικά αποτελέσματα παρουσιάζονται σε πίνακες για την Θεσσαλία στο ΠΑΡΑΡΤΗΜΑ, στους οποίους αναφέρονται: α) ο Νομός, β) ο Δήμος, γ) η Δημοτική Ενότητα, δ) η έκταση της Δημοτικής Ενότητας, ε) ο μέγιστος επιτρεπόμενος αριθμός των τυπικών ανεμογεννητριών ανά 1000 στέμματα ανά δημοτική ένωση, όπως αυτός καθορίζεται στο ΕΠΧΣΑΑ, και στ) η τρέχουσα πυκνότητα των αιολικών εγκαταστάσεων, ανά δημοτική ένωση, δηλαδή ο αριθμός των ισοδύναμων τυπικών ανεμογεννητριών των αιολικών σταθμών για τους οποίους έχει εκδοθεί άδεια παραγωγής, όπως αυτή ισχύει. Επισημαίνεται ότι για τους Ο.Τ.Α. ή Δημοτικές Ενότητες εντός των οποίων δεν χωροθετούνται ανεμογεννήτριες βάσει του ΕΠΧΣΑΑ, δεν δίνονται τέτοια στοιχεία στους πίνακες.
6 ΑΙΟΛΙΚΟ & ΗΛΙΑΚΟ ΔΥΝΑΜΙΚΟ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

6.1 ΑΙΟΛΙΚΟ ΔΥΝΑΜΙΚΟ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

Η Ελλάδα διαθέτει στο σύνολό της πολύ καλό αιολικό δυναμικό, με την επικρατούσα διεύθυνση για το σύνολο της χώρας να είναι η βόρεια, και δευτερεύουσα η νότια. Για τα επιμέρους γεωγραφικά διαμερίσματα έχουμε μια μικρή διαφοροποίηση με την κύρια διεύθυνση στην Βόρεια Ελλάδα να είναι η βορειοανατολική, στην Κεντρική η βόρεια και στην Νότια Ελλάδα η βορειοδυτική. Παρατηρείται συνεπώς μια σταδιακή αλλαγή διεύθυνσης, ενώ ιδιαίτερης σημασίας είναι τα τοπικά φαινόμενα, λόγω της συνθετής τοπογραφίας.

Εικόνα 6.1 Χάρτης αιολικού δυναμικού στα 80 m υψόμετρο για την Ελλάδα (PAE, 2016)

Η Θεσσαλία, με θέση στο κεντρικό κομμάτι της ηπειρωτικής χώρας και μεγάλους ορεινούς όγκους στα όρια της να μπλοκάρουν το επιταχυνόμενο μέτωπο του ανέμου, δεν έχει ιδιαίτερα υψηλή επίδοση αιολικού δυναμικού, σε σχέση με την υπόλοιπη ελληνική επικράτεια. Σημειώνεται ότι το
ΚΑΠΕ θέτει ως όριο βιωσιμότητάς των αιολικών εγκαταστάσεων τα 4 m/s μέση ετήσια ταχύτητα ανέμου. Συγκρίτικα με τις νήσους του Αιγαίου πελάγους, η δυσμενής θέση της Θεσσαλίας είναι αναμενόμενη, καθώς το πολυσχιδές ανάγλυφο του Αιγαίου, οι κλιματικές επιρροές και η ύπαρξη «ανοιχτού μετώπου» ευνοούν την ανάπτυξη υψηλών ταχυτήτων ανέμου στην περιοχή. Η Περιφέρεια Θεσσαλίας όμως, παρουσιάζει και ιδιαίτερα κακή επίδοση ως μέρος του ηπειρώτικου κορμού, καθώς όπως φαίνεται στην Εικόνα 6.1, υστερεί σε σχέση με την νοτιοανατολική Πελοπόννησο, την ανατολική στερεά Ελλάδα και τα παράλια της Θράκης, οι οποίες παρουσιάζουν σε μεγάλο μέρος τους αξιόλογες μέσες ετήσιες τιμές ταχύτητας ανέμου. Χαρακτηριστικά είναι η συγκέντρωση των επενδύσεων στην περιοχή της Θράκης, της Εύβοιας, των Κυκλάδων και στην Λακωνία με αποτέλεσμα τον κορεσμό των δικτύων μεταφοράς ενέργειας της περιοχής.

Οι παρατηρήσεις από το χάρτη του ΚΑΠΕ, επιβεβαιώνονται και από πρόσφατες ερευνητικές εργασίες (Παππά, 2013), οπού η Θεσσαλία φαίνεται να εμφανίζει ως μέρος της ηπειρωτικής χώρας ταχύτητας στην στάθμη του εδάφους 0.5 με 4.5 m/sec, χωρίς μεγάλες τυπικές αποκλίσεις και εποχικές μεταβολές σε σχέση με άλλες περιοχές της Ελλάδας. Μοναδική εξαίρεση ένα μέρος της ΠΕ Τρικάλων κοντά στην ΠΕ Άρτας οπού εμφανίζονται αυξημένες ταχύτητες. Το εποχικό μέγιστο εμφανίζεται το καλοκαίρι.

Δεδομένη της κρισιμότητας του δυναμικού και της στοχαστικής φύσης για την χωροθέτηση και διαστασιολόγηση αιολικών πάρκων, κρίνεται καταγεγραμμένο, ότι η θεσσαλική έκταση μεταφοράς ενέργειας, η ύπαρξη του ηπειρώτικου κορμού και την είδος των εργασιών που εκτελείται από συγκεκριμένες αστικές παρατηρήσεις, θα αναφέρονται και στην περιοχή της Θεσσαλίας.

6.1.1 ΧΑΡΤΕΣ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ ΑΠΟ ΤΟ ΚΑΠΕ ΚΑΙ ΤΗ ΡΑΕ

Η δομή των αναπτυσσόμενων συνθηκών της ανέμου απαιτεί την πρόβλεψη της παραγωγής ενέργειας, την επιλογή της θέσης παραγωγής, την αναμετρήσιμη καρποποίηση, καθώς και την εποχική της μεταβολής. Η πρώτη προσπάθεια αποτύπωσης του αιολικού δυναμικού της χώρας έγινε από το Εργαστήριο Ανεμολογίας της Σχολής Μηχανολόγων Μηχανικών. Ακολούθησαν το ΚΑΠΕ, οπού η θέση της περιοχής θεωρείται ως ιδιαίτερα κακή επίδοση της περιοχής της Θεσσαλίας, καθώς και την παρουσία αποτελεσμάτων των έργων που επέλεξε το ΚΑΠΕ, έξω από την Θράκη και την Πελοπόννησο. Η πρώτη προσπάθεια αποτύπωσης του αιολικού δυναμικού της χώρας έγινε από το ΚΑΠΕ, έξω από την Θράκη και την Πελοπόννησο. Η πρώτη προσπάθεια αποτύπωσης του αιολικού δυναμικού της χώρας έγινε από το Εργαστήριο Ανεμολογίας της Σχολής Μηχανολόγων Μηχανικών. Ακολούθησαν το ΚΑΠΕ, οπού η θέση της περιοχής θεωρείται ως ιδιαίτερα κακή επίδοση της περιοχής της Θεσσαλίας, καθώς και την παρουσία αποτελεσμάτων των έργων που επέλεξε το ΚΑΠΕ, έξω από την Θράκη και την Πελοπόννησο.
Προγράμματος για την ενέργεια (1998-2001). Ο χάρτης απεικονίζει το αιολικό δυναμικό του Ελληνικού χώρου (πλην Κρήτης) όπως αυτό υπολογίστηκε από το ΚΑΠΕ με βάση ένα ευρύ πρόγραμμα επι τόπου μετρήσεων και εφαρμογή μαθηματικών μοντέλων. Το αιολικό δυναμικό εκφράζεται με βάση την μέση ετήσια ταχύτητα του αέρα σε m/s, σε υπολογισμένο ύψος 40 m.

Στους διαθέσιμους χάρτες λαμβάνονται υπόψη διάφοροι χωροταξικοί περιορισμοί, όπως αρχαιολογικοί χώροι, ΖΟΕ, περιοχές δικτύου Natura 2000, αεροδρόμια, στρατιωτικοί χώροι κ.ά. Υπολογίζεται, επίσης, η αντίστοιχη έκταση για κάθε Νομό, όπου πνέει, σε μέση ετήσια βάση, άνεμο μεγαλύτερο των 6, 7, 8, 9 και 10 m/s, η συνολική ισχύς που μπορεί να εγκατασταθεί, ο συντελεστής εκμεταλλευσιμότητας, το κόστος παραγωγής ενέργειας κ.ά. Παράδειγμα τέτοιου χάρτη αποτελεί η Εικόνα 6.2 για την ΠΕ Λάρισας, όπου με κόκκινο χρώμα αναπαρίστανται οι γραμμές μεταφοράς υψηλής τάσης (400 kV) και με πράσινο οι γραμμές μέσης τάσης (150 kV).

Οι χάρτες αυτοί παράχθηκαν από το εργαστήριο δοκιμών ανεμογεννητριών του ΚΑΠΕ, το οποίο εγκατέστησε και παρακολούθησε 100 σταθμούς στην ηπειρωτική και νησιωτική Ελλάδα για έναν χρόνο. Τα αποτελέσματα των μετρήσεων αυτών αξιοποιήθηκαν για την προσαρμογή και βελτιστοποίηση των θεωρητικών αποτελεσμάτων που προήλθαν από τη χρήση ενός αριθμητικού κώδικα επίλυσης ροών πάνω από σύνθετη τοπογραφία, ο οποίος έχει αναπτυχθεί από τον Τομέα Αιολικών του ΚΑΠΕ.

<table>
<thead>
<tr>
<th>Έκταση (km²)</th>
<th>>6</th>
<th>>7</th>
<th>>8</th>
<th>>9</th>
<th>>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση ταχύτητα (m/s)</td>
<td>6.8</td>
<td>7.7</td>
<td>8.8</td>
<td>10.6</td>
<td>11.8</td>
</tr>
<tr>
<td>MW</td>
<td>904.8</td>
<td>612.8</td>
<td>141.6</td>
<td>26.4</td>
<td>12.0</td>
</tr>
<tr>
<td>CF %</td>
<td>24.6</td>
<td>31.9</td>
<td>38.5</td>
<td>46.9</td>
<td>51.5</td>
</tr>
</tbody>
</table>

Οι χάρτες αυτοί παράχθηκαν από το εργαστήριο δοκιμών ανεμογεννητριών του ΚΑΠΕ, το οποίο εγκατέστησε και παρακολούθησε 100 σταθμούς στην ηπειρωτική και νησιωτική Ελλάδα για έναν χρόνο. Τα αποτελέσματα των μετρήσεων αυτών αξιοποιήθηκαν για την προσαρμογή και βελτιστοποίηση των θεωρητικών αποτελεσμάτων που προήλθαν από τη χρήση ενός αριθμητικού κώδικα επίλυσης ροών πάνω από σύνθετη τοπογραφία, ο οποίος έχει αναπτυχθεί από τον Τομέα Αιολικών του ΚΑΠΕ.
παραγωγή των χαρτών των Εικόνων 6.3, 6.4 και 6.5, έγινε αρχικά εισαγωγή του αιολικού δυναμικού σε μορφή shapefile με σημειακά δεδομένα σε πλέγμα 150 m να περιέχουν την τιμή της μέσης ετήσιας ταχύτητας του άνεμου. Στην συνέχεια, για την καλύτερη παρουσίαση αλλά και για τις ανάγκες της ανάλυσης, έγινε μετατροπή του αρχείου σε μορφή raster.

Εικόνα 6.2 Χάρτης εκμεταλλεύσιμου αιολικού δυναμικού για το Νομό Λάρισας (ΚΑΠΕ, 2001)

Παρατηρώντας το χάρτη της Εικόνας 6.3, επιβεβαιώνεται η χαμηλή επίδοση της Περιφέρειας Θεσσαλίας σε τεχνικά εκμεταλλεύσιμο αιολικό δυναμικό και η άμεση σχέση με την τοπογραφία. Η επίδραση είναι αισθητή στην περιοχή των ορίων της περιφέρειας, οπου εμφανίζονται οι ορεινοί όγκοι, και σε πολύ μικρή απόσταση έχουμε σημαντικές μεταβολές της μέσης τιμής του ανέμου. Πρόκειται για φαινόμενο που έχει μελετηθεί συστηματικά με μαθηματικά μοντέλα και
αφορά στην επιτάχυνση του μετώπου στην κορυφή και την επιβράδυνση στους πρόποδες μιας λοφοσειράς. Το βόρειο μέρος του Θεσσαλικού κάμπου και ο ορεινός όγκος που αναπτύσσεται στην διεύθυνση αυτή εμφανίζει την πλέον χαμηλές τιμές, λόγω του αποκλεισμού του βορείου μετώπου από τους γύρο ορεινούς όγκους. Παρόμοια εικόνα εμφανίζει και το νότιο παραλιακό πεδινό κομμάτι απέναντι της χερσονήσου του Ηπείρου. Η πεδινή ένταση εμφανίζει σε κάποιο τμήμα της αξιοποιήσιμο αιολικό δυναμικό, φθάνοντας σε κάποια σημεία τα 8 m/s. Την καλύτερη επίδοση εμφανίζουν οι δυτικές πλαγιές και το ύψωμα στην χερσόνησο του Ηπείρου στον, αλλά και οι παρυφές του Ολύμπου, στο βόρειο τμήμα του Ν. Λάρισας.

Διερευνώντας την επίδρασή του υψομέτρου, παρατηρείται ότι με την αύξηση του δεν μεταβάλλονται οι θέσεις εμφάνισης υψηλού αιολικού δυναμικού, αλλά η έκταση που καταλαμβάνουν. Ιδιαίτερα, για το χαμηλό πεδινό τμήμα δεν υπάρχει σημαντική επίδραση, αυξάνονται όμως σημαντικά οι περιοχές των υψωμάτων με αξιοποιήσιμο αιολικό δυναμικό. Η μέση τιμή για την Θεσσαλία αυξάνεται από τα 3.8 m/s στα 80 m υψόμετρο σε 4.0 m/s στα 100 m και σε 4.2 m/s στα 120 m. Σε όρους μέγιστων τιμών, από 10,9 m/s στα 80 m φθάνουμε στα 12.6 m/s στα 100 m και 12.4 m/s στα 120 m. Αξιοσημείωτο είναι ότι αύξηση στα 120 m δεν παρουσιάζει τόσο διαφορετική εικόνα όσο η αύξηση από 80 m σε 120 m, το όποιο φαίνεται και στα σχετικά στατιστικά μεγέθη.

Εικόνα 6.3 Μέση ετήσια ταχύτητα ανέμου (m/s) στα 80 m υψόμετρο (PAE, 2016)
Εικόνα 6.4 Μέση ετήσια ταχύτητα ανέμου (m/s) στα 100 m υψόμετρο (PAE, 2016)

Εικόνα 6.5 Μέση ετήσια ταχύτητα ανέμου (m/s) στα 120 m υψόμετρο (PAE, 2016)
6.1.2 ΕΚΤΙΜΗΣΗ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ ΜΕ ΣΤΟΧΑΣΤΙΚΟ ΜΟΝΤΕΛΟ

Πρόσφατα, οι Dimitriadis et al. (2015) εφάρμοσαν πρωτότυπες στοχαστικές μεθόδους για την προσομοίωση της ταχύτητας του ανέμου σε ωριαία κλίμακα και την επιλογή κατάλληλων αιολικών μηχανών, με περιοχή εφαρμογής την Θεσσαλία. Συνοπτικά, η μεθοδολογία που αναπτύχθηκε εστιάζει στην στατιστική ανάλυση της μεταβλητής της ταχύτητας του ανέμου και στην μακροχρόνια εμμονή που την χαρακτηρίζει, η αγνοία της οποίας μπορεί να οδηγήσει σε μη ρεαλιστικές προβλέψεις και υπερβολικές ανεμοφορτίσεις, με σημαντικές επιπτώσεις στην ενεργειακή παραγωγή και διαχείριση. Αναλύοντας τις χρονοσειρές του ανέμου από σταθμούς του NOAA σε όλη την Ελλάδα και του ΕΕΑ στην Θεσσαλία, αναδεικνύεται η ύπαρξη συμπεριφοράς Hurst-Kolmogorov, με τη μέθοδο του κλιμακογράμματος. Στη συνέχεια, παράγονται συνθετικές χρονοσειρές με την μέθοδο Monte Carlo ικανές να διατηρήσουν το χαρακτηριστικό της μακροχρόνιας εμμονής και την κυκλοστασιμότητα, εκτιμώντας τις ανεμοφορτίσεις και την αναμενόμενη ενεργειακή παραγωγή στην Θεσσαλία. Επιλέγεται τέλος, βάσει των προτύπων IEC-61400, ο κατάλληλος τύπος ανεμογεννήτριας για την περιοχή.

Όπως φαίνεται στην Εικόνα 6.6 και στον Πίνακα 6.2, για την στατιστική ανάλυση των ιστορικών δεδομένων χρησιμοποιήθηκαν 16 σταθμοί του ΕΕΑ στην περιοχή της Θεσσαλίας, οι οποίοι όμως είχαν μικρό μήκος χρονοσειρών (μέγιστο μήκος 9 έτη), καθώς τέθηκαν σε λειτουργία και αναφέρονται σε ωριαία κλίμακα. Για το λόγο αυτό χρησιμοποιήθηκαν και οκτώ σταθμοί του NOAA από όλη την Ελλάδα, σε ωριαία διακριτότητα και ικανοποιητικά μήκος χρονοσειράς για την διερεύνηση της εμμονής (μήκος χρονοσειράς μέχρι και 5 έτη).

Εικόνα 6.6 Σταθμοί NOAA και ΕΕΑ, με κόκκινο και πράσινο χρώμα, αντίστοιχα (Dimitriadis et al., 2015)
Πίνακας 6.2 Σταθμοί μέτρησης ταχύτητας ανέμου και στατιστικά χαρακτηριστικά (Dimitriadis et al., 2015)

<table>
<thead>
<tr>
<th>Σταθμός</th>
<th>Πηγή</th>
<th>Γ. Μήκος</th>
<th>Γ. Πλάτος</th>
<th>Υψόμ. (m)</th>
<th>Μήκος χρον. σε έτη</th>
<th>Μέση ταχύτητα ανέμου (m/s)</th>
<th>Τυπική απόκλιση (m/s)</th>
<th>Μέγιστη παραγ. ενέργεια (KWh/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αλεξανδρούπολη</td>
<td>NOA</td>
<td>25,917</td>
<td>40,850</td>
<td>3,0</td>
<td>80</td>
<td>3,629</td>
<td>3,147</td>
<td>43,0</td>
</tr>
<tr>
<td>Αραξός</td>
<td>NOA</td>
<td>21,417</td>
<td>38,150</td>
<td>12,0</td>
<td>17</td>
<td>2,607</td>
<td>2,105</td>
<td>15,9</td>
</tr>
<tr>
<td>Ελευσίνα</td>
<td>NOA</td>
<td>23,550</td>
<td>38,067</td>
<td>31,0</td>
<td>33</td>
<td>3,065</td>
<td>2,349</td>
<td>25,9</td>
</tr>
<tr>
<td>Ηράκλειο</td>
<td>NOA</td>
<td>25,183</td>
<td>35,333</td>
<td>39,0</td>
<td>41</td>
<td>4,583</td>
<td>2,918</td>
<td>86,6</td>
</tr>
<tr>
<td>Κέρκυρα</td>
<td>NOA</td>
<td>19,917</td>
<td>39,617</td>
<td>4,0</td>
<td>82</td>
<td>2,174</td>
<td>3,166</td>
<td>9,2</td>
</tr>
<tr>
<td>Κως</td>
<td>NOA</td>
<td>27,067</td>
<td>36,783</td>
<td>129,0</td>
<td>81</td>
<td>4,844</td>
<td>2,619</td>
<td>102,3</td>
</tr>
<tr>
<td>Λάρισα</td>
<td>NOA</td>
<td>22,417</td>
<td>39,633</td>
<td>74,0</td>
<td>32</td>
<td>1,669</td>
<td>2,709</td>
<td>4,2</td>
</tr>
<tr>
<td>Νέα Αχίαλος</td>
<td>NOA</td>
<td>22,800</td>
<td>39,217</td>
<td>15,0</td>
<td>62</td>
<td>3,258</td>
<td>2,331</td>
<td>31,1</td>
</tr>
<tr>
<td>Αγια</td>
<td>EEA</td>
<td>22,80</td>
<td>39,70</td>
<td>172,0</td>
<td>4</td>
<td>1,171</td>
<td>0,566</td>
<td>153,8</td>
</tr>
<tr>
<td>Βόλος</td>
<td>EEA</td>
<td>22,96</td>
<td>39,38</td>
<td>54,5</td>
<td>9</td>
<td>1,007</td>
<td>0,801</td>
<td>97,9</td>
</tr>
<tr>
<td>Πολυτεχνέιο Βόλου</td>
<td>EEA</td>
<td>21,30</td>
<td>39,50</td>
<td>11,5</td>
<td>2</td>
<td>1,277</td>
<td>1,087</td>
<td>199,5</td>
</tr>
<tr>
<td>Γαρδίκι</td>
<td>EEA</td>
<td>22,93</td>
<td>39,36</td>
<td>1110,6</td>
<td>0,784</td>
<td>0,716</td>
<td>46,1</td>
<td></td>
</tr>
<tr>
<td>Ζαγόρα</td>
<td>EEA</td>
<td>23,10</td>
<td>39,71</td>
<td>245,0</td>
<td>3</td>
<td>1,059</td>
<td>0,537</td>
<td>113,6</td>
</tr>
<tr>
<td>Καλαμπάκα</td>
<td>EEA</td>
<td>21,63</td>
<td>39,71</td>
<td>510,0</td>
<td>7</td>
<td>0,849</td>
<td>0,808</td>
<td>58,7</td>
</tr>
<tr>
<td>Καρδίτσα</td>
<td>EEA</td>
<td>21,90</td>
<td>39,40</td>
<td>96,0</td>
<td>2</td>
<td>1,097</td>
<td>0,791</td>
<td>126,4</td>
</tr>
<tr>
<td>Κονίσκο</td>
<td>EEA</td>
<td>21,80</td>
<td>39,78</td>
<td>834,0</td>
<td>6</td>
<td>1,100</td>
<td>0,790</td>
<td>127,7</td>
</tr>
<tr>
<td>Λάρίσα</td>
<td>EEA</td>
<td>22,40</td>
<td>39,63</td>
<td>90,0</td>
<td>6</td>
<td>0,352</td>
<td>0,373</td>
<td>4,2</td>
</tr>
<tr>
<td>Ασικός</td>
<td>EEA</td>
<td>23,25</td>
<td>39,18</td>
<td>334,0</td>
<td>4</td>
<td>1,339</td>
<td>0,867</td>
<td>230,2</td>
</tr>
<tr>
<td>Πλαστήρα</td>
<td>EEA</td>
<td>21,79</td>
<td>39,24</td>
<td>865,0</td>
<td>6</td>
<td>2,728</td>
<td>2,175</td>
<td>1944,1</td>
</tr>
<tr>
<td>Μακρινίτσα</td>
<td>EEA</td>
<td>22,98</td>
<td>39,40</td>
<td>855,0</td>
<td>7</td>
<td>2,788</td>
<td>1,800</td>
<td>2076,7</td>
</tr>
<tr>
<td>Μονή Πάου</td>
<td>EEA</td>
<td>23,20</td>
<td>39,21</td>
<td>152,0</td>
<td>2</td>
<td>2,106</td>
<td>1,675</td>
<td>895,4</td>
</tr>
<tr>
<td>Περτούλι</td>
<td>EEA</td>
<td>21,46</td>
<td>39,54</td>
<td>1175,</td>
<td>8</td>
<td>0,866</td>
<td>0,733</td>
<td>62,2</td>
</tr>
<tr>
<td>Πολιτεία</td>
<td>EEA</td>
<td>22,92</td>
<td>39,20</td>
<td>603,0</td>
<td>3</td>
<td>1,651</td>
<td>1,260</td>
<td>431,5</td>
</tr>
<tr>
<td>Τρίκαλα</td>
<td>EEA</td>
<td>21,76</td>
<td>39,56</td>
<td>168,0</td>
<td>9</td>
<td>0,800</td>
<td>0,531</td>
<td>49,0</td>
</tr>
</tbody>
</table>

Από την στατιστική ανάλυση αναδεικνύεται η εποχική και ημερήσια κυκλοστασιμότητα, που εμφανίζει η μεταβλητή της ταχύτητας του ανέμου (όπως και όλες οι μετεωρολογικές μεταβλητές) και επιβεβαιώνει, όπως φαίνεται στο διάγραμμα 6.1 την εμφάνιση μέγιστου σε κλίμακα ημέρας της μεσημεριανής ώρας (14-15h) και σε εποχική κλίμακα τους καλοκαιρινούς μήνες (Ιούνιο και Ιούλιο). Για την προσομοίωση και των δύο κυκλοστασιμοτήτων, εφαρμόζεται ένα απλό μοντέλο αδιάστατων μεταβλητών, που φαίνεται να προσαρμόζεται πολύ καλά στις μετρημένες τιμές.
Για τις επιλογή της στατιστικής κατανομής που προσαρμόζεται καλύτερα στις μετρημένες τιμές, εφαρμόζουμε στην εμπειρική κατανομή των μετρημένων ωριαίων τιμών για κάθε σταθμό (αφαιρώντας τις μηδενικές τιμές) την μέθοδο μέγιστης πιθανοφανείς για τις κατανομές Gamma, Weibull και την κανονική, από οπού προκύπτει εν γένει η καταλληλότητα της κανονικής κατανομής με την εξάρτηση του σταθμού της Λάρισας, οπού η Gamma κρίνεται καταλληλότερη. Η ιδία διαδικασία εφαρμόζεται για τις ριπές του ανέμου για τις κατανομές GEV (General Extreme Value), Burr και Generalized Gamma, οπού η Λάρισα και πάλι διαφοροποιείται με την κατανομή Burr να εμφανίζει καλύτερη προσαρμογή, ενώ για τους υπολοίπους η GEV.

Διάγραμμα 6.1 Ημερήσια κυκλοστασιμότητα για κάθε μήνα για το σταθμό της Θεσσαλίας (Dimitriadis et al., 2015)

Διάγραμμα 6.2 Εμπειρική και προσαρμοσμένη κατανομή για το σταθμό της Λάρισας (Dimitriadis et al., 2015)

Επίσης, διερευνάται η δομή της μεταβλητής του ανέμου, μέσω του κλιμακογράμματος (η τυπική απόκλιση συναθροισμένης ανέλιξης συναρτάται της κλίμακας συνάθροισης είναι συνάρτηση δύναμης με εκθέτη H > 0.5. Κουτσογιάννης, 2015), το οποίο βάσει της βιβλιογραφίας εμφανίζει καλύτερη επίδοση από το φάσμα ισχύος και την αυτοσυνδιασπορά (Dimitriadis & Koutsoyiannis, 2015). Η προσαρμογή του κλιμακογράμματος στους σταθμούς του NOAA από την ωριαία μέχρι την
κλιματική κλίμακα, δίνει συντελεστή Hurst ίσο με 0.7, που αναδεικνύει τη μακροχρόνια εμμονή της μεταβλητής του ανέμου.

Τέλος, επιλέγεται η καταλληλότερη θέση εγκατάστασης με βάση την μέγιστη μέση ημερήσια τιμή του ανέμου, η οποία εμφανίζεται στην περιοχή του Πλαστήρα (11.782 m/s) με βάση τις μετρήσεις των διαθέσιμων σταθμών, αποτελεσματικά με τα αποτελέσματα του ΚΑΠΕ που δείχνουν ιδιαίτερα υψηλές τιμές στην περιοχή των ορεινών όγκων της ΠΕ Καρδίτσας. Στην περιοχή αυτή έχει δοθεί επίσης από τη ΡΑΕ σημαντικός αριθμός αδειών παραγωγής, που μάλιστα φθάνει στη ΔΕ Αθαμανών και Αργιθέας σε τιμές κάλυψης της ΦΙ πάνω από 80%, (όπως αναλύθηκε στην παράγραφο 5.9.), που αποτελούν και τις υψηλότερες της Περιφέρειας.

Ακολούθως παράγονται συνθετικές χρονοσειρές, που διατηρούν την κυκλοστασιμότητα και την στοχαστική φύση της μεταβλητής σε ωριαία κλίμακα. Με βάση τα στατιστικά χαρακτηριστικά της μεταβλητής του ανέμου κρίνεται ο πλέον κατάλληλος τύπος αεροκινητήρα βάση του προτύπου IEC-61400, που δίνει για την περιοχή του πλαστήρα ανεμοκινητήρα κλάσης ΙΙ (αφού έχουμε μέση ετήσια τιμή μεγαλύτερη του 10 m/s και ταχύτητα αναφοράς, η οποία προκύπτει από το μέγεθος της ριπής ανέμου 33 m/s). Προτείνεται τέλος, σαν εμπορική λύση η τοποθέτηση ENERCON E-82, οπότε παράγεται βάσει της καμπύλης ισχύος της E-82 και της συνθετικής χρονοσειράς ταχύτητας του ανέμου μια πρόβλεψη της ωριαίας ενεργειακής παραγωγής.

Το πλήρες κείμενο της εργασίας παρέχεται από τον ακόλουθο σύνδεσμο στην ιστοσελίδα της ιτιάς: https://www.itia.ntua.gr/getfile/1535/1/documents/Wind_EGU15_pr.pdf

6.2 ΗΛΙΑΚΟ ΔΥΝΑΜΙΚΟ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

Σε αντίθεση με το αιολικό δυναμικό, η γεωγραφική θέση της Θεσσαλίας σε συνδυασμό με τις τοπογραφικές συνθήκες της δίνει πλεονεκτική θέση όσον αφορά το μέγεθος της ετήσιας ηλιακής ακτινοβολίας στην επιφάνεια του εδάφους, που προσδιορίζει και το ηλιακό δυναμικό της περιοχής. Η ηλιακή ακτινοβολία που λαμβάνεται σε µια περιοχή εξαρτάται από (Αποστολίδου, 2007) το αζιμούθιο του ήλιου, το υψόμετρο του ήλιου, την απόσταση γης-ήλιου, την ηλιακή απόκλιση την ηλιακή ροή ενέργειας στην ατμόσφαιρα, την κλίση της επιφάνειας, τη σχετική θέση µε τις γειτονικές περιοχές, το υψόμετρο της περιοχής, την αέρια µάζα και την περιεκτικότητα της ατμόσφαιρας σε υδρατμούς και αέρια. Οι παράγοντες αυτοί εξηγούν την εμφάνιση των μεγαλύτερων τιμών δυνητικής ηλιακής ακτινοβολίας οι οποίες λαμβάνονται από τα νότια τμήματα των βουνών, µε την προϋπόθεση ότι δεν παρεμποδίζεται από τοπογραφικούς παράγοντες (απουσία σκίασης). Επίσης εξηγούν, την μειωμένη επίδραση των παραγόντων που διαφοροποιούν την κατανομή της δυνητικής ηλιακής ακτινοβολίας (τοπογραφικοί παράγοντες, γεωγραφικό πλάτος κλπ.) το καλοκαίρι, καθώς ο ήλιος βρίσκεται υψηλότερα από ότι τους χειμερινούς μήνες.

Συγκεκριμένα, η Θεσσαλία λόγω του μεγάλου ποσοστού μηδενικών και μικρών κλίσεων που παρουσιάζει, εμφανίζει υψηλές τιμές ηλιακής ακτινοβολίας τους μήνες Ιούνιο και Ιούλιο που
βρίσκονται μάλιστα για το διάστημα αυτό στο άνω 5% σε σχέση με την υπόλοιπη Ελλάδα. Το γεγονός αυτό, σε σύνδεσμο με την εποχική μεγιστοποίηση της ζήτησης σε ενέργεια τους καλοκαιρινούς μήνες, αλλά και την ημερησία ταυτόσημη σχεδόν του μέγιστου της ζήτησης σε ενέργειας με την μέγιστο ημερήσιας παραγόμενης ηλιακής ενεργείας της μεσημεριανές ώρες από τα Φωτοβολταϊκά Πάρκα, μειώνει την ανάγκη αποθήκευσης της ηλιακής ενέργειας. Πρόκειται για ένα ιδιαίτερα σημαντικό πλεονέκτημα που της δίνει προβάδισμα πάρα την χαμηλή της απόδοσή, σε σχέση με την αιολική ενέργεια. Μοναδικός παράγων στοχαστικότητας της ηλιακής ενέργειας αποτελεί η νεφοκάλυψη, η οποία όμως δεν προσθέτει στην ηλιακή ακτινοβολία την μεταβλητότητα και δυσκολία πρόβλεψης της αιολικής.

Εικόνα 6.7 Περιοχές που λαμβάνουν μηνιαίες τιμές δυνητικής ηλιακής ακτινοβολίας που βρίσκονται στο άνω (με κόκκινο) και στο κάτω 5% (με μπλε) του συνόλου των τιμών για τον Ιούλιο (Αποστολίδου, 2007)

To JRC (Joint Research Center) παρέχει χάρτες για όλες τις χώρες της ΕΕ, στους οποίους αναπαριστάται το ετήσιο άθροισμα ηλιακής ακτινοβολίας σε οριζόντια επιφάνεια με βέλτιστη κλίση. Τα δεδομένα της εικόνας 6.5 για την Ελλάδα αναπαριστούν το μέσο όρο για την περίοδο 1998-2001 σε kWh/m². Στην ίδια κλίμακα χρώματος, αναπαρίσταται η δυνητική παραγωγή ηλιακής ενέργειας σε kWh/kWp από φωτοβολταϊκό πάνελ 1 kWp τοποθετημένο στην βέλτιστη κλίση με συντελεστή απόδοσης 0.75.

Ακολούθως γίνεται αναφορά στο μοντέλο εκτίμησης της ηλιακής ενέργειας που αναπτύχθηκε για τις ανάγκες της μεθοδολογίας χωροθέτησης με χρήση του Model Builder και τη βοήθεια του εργαλείου Area Solar Radiation σε συνδυασμό με δορυφορικές μετρήσεις ηλιακής ακτινοβολίας της NASA.
Global irradiation and solar electricity potential
Optimally-inclined photovoltaic modules

GREECE / ΕΛΛΑΔΑ

Εικόνα 6.8 Χάρτης ηλιακού δυναμικού για την Ελλάδα (PVGIS © European Union, 2001-2012)
6.2.1 ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗΣ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ

Για τις ανάγκες της εργασίας ήταν απαραίτητος ένας χάρτης ηλιακού δυναμικού σε μορφή Raster με επαρκή διακριτότητα (τουλάχιστον 250 m) για την υλοποίηση της μεθοδολογίας. Καθώς δεν ήταν διαθέσιμοι χάρτες με την απαιτούμενη ανάλυση αναπτύχθηκε μέσω του εργαλείου Area Solar Radiation της επέκτασης Spatial Analyst του ArcGIS 10.3 σε συνδυασμό με τα διαθέσιμα δορυφορικά δεδομένα ημερήσιας ηλιακής ακτινοβολίας της NASA, ένα μοντέλο εκτίμησης της ηλιακής ακτινοβολίας που παρήγαγε χάρτες ηλιακής ακτινοβολίας σε μηνιαία και ετήσια κλίμακα. Στο σχήμα φαίνεται το μοντέλο, όπως αναπτύχθηκε με τη βοήθεια του Model Builder, του περιβάλλοντος ArcGIS 10.3.

Για την επιλογή τεχνοοικονομικά συμφέρουσας θέσης εγκατάστασης φωτοβολταϊκού πάρκου κρίσιμη είναι η τιμή της συνολικής ετήσιας ηλιακής ακτινοβολίας της προς εξέταση θέσης. Σε επίπεδο διασταυρολόγησης και τελικής τοποθέτησης (micro-sitting), είναι χρήσιμες τόσο η ημερήσια όσο και η ετήσια χρονοσειρά της ηλιακής ακτινοβολίας, ώστε να γίνεται κατά το δυνατόν μέγιστη αξιοποίηση της προσπίπτουσας ηλιακής ακτινοβολίας στην επιφάνεια του κυττάρου. Στόχος λοιπόν, είναι η παραγωγή ενός χάρτη ετήσιας ηλιακής ακτινοβολίας.

Συνοπτικά η ρουτίνα Area Solar Radiation δίνει σαν αποτέλεσμα την συνολική ηλιακή ακτινοβολία για την περιοχή που εισάγεται μέσω του DEM σε Wh/m² για κάθε φατνίου ανάλογα με την ανάλυση του DEM. Η ρουτίνα μπορεί να εκτελεστεί για μέγιστο χρονικό διάστημα ενός έτους, αλλά δίνονται και επιλογές για υπολογισμό σε διάστημα ενός μήνα, μια ημέρα και παραγωγής αποτελεσμάτων για κάθε διάστημα. Συστήνεται να εφαρμόζεται σε περιοχές με εύρος γεωγραφικού πλάτους 1°, αλλιώς προτείνεται ο χωρισμός του DEM σε επιμέρους περιοχές.

Εικόνα 6.9 Περιβάλλον του εργαλείου υπολογισμού ηλιακής ακτινοβολίας Area Solar Radiation

73
Αρχικά έγινε με την βοήθεια του λογισμικού Υδρογνώμων, στατιστική ανάλυση της χρονοσειράς ημερησίων ηλιακής ακτινοβολίας που αναφέρεται σε μια περιοχή με συντεταγμένες σε WGS 84, όπως φαίνονται στον πίνακα. στόχος της ανάλυσης ήταν να προσδιοριστεί η μέση ετήσια τιμή ηλιακής ακτινοβολίας από τις μετρήσεις της NASA. Η τιμή αυτή η οποία προσδιοριστικά στα 1520 kW/m² ήταν η ζητούμενη μέση τιμή ηλιακής ακτινοβολίας που έπρεπε να προκύπτει για την περιοχή μεσώ της αλλαγής της παραμέτρου Transmittivity της εντολής area solar radiation. Αφού προσδιορίστηκε η τιμή αυτή, στο 0,557 γίνεται μια τελευταία εφαρμογή της εντολής area solar radiation στο DEM της Θεσσαλίας οπότε παράγεται η Εικόνα 6.11 ετήσιου ηλιακού δυναμικού. Επιλέγεται να εξαχθούν αποτελέσματα για κάθε μήνα, ώστε να αναδειχθεί η εποχικότητα της ηλιακής ακτινοβολίας. Επιλέγεται να παρουσιαστεί η μηνιαία ακτινοβολία για τους μήνες Ιούνιο και Δεκέμβριο, που αποτελούν τους μήνες με την υψηλότερη και χαμηλότερη μηνιαία ηλιακή ακτινοβολία αντίστοιχα. Παρατηρώντας τους χάρτες επιβεβαιώνεται η παρατήρηση για μείωση της επίδρασης των τοπογραφικών παραγόντων του καλοκαίριος σε σχέση με το χειμώνα λόγω της μεγαλύτερης γωνίας πρόσπτωσης της ηλιακής ακτινοβολίας.

Στην Εικόνα 6.10 συνολική μηνιαία ηλιακή ακτινοβολία για τον Ιούνιο (αριστερά) και Δεκέμβριο (δεξιά) Στην Εικόνα 6.11 φαίνεται η συνολική ετησία ηλιακής ακτινοβολίας που λαμβάνει η Θεσσαλία σε κάθε φατνί της. Παρατηρούμε την υπερίερα καλή επίδοση της Περιφέρειας της οποίας η ελάχιστη τιμή (341 kW/m²) είναι πολύ κοντά στο κατώφλι της αξιοποιήσιμης ηλιακής ακτινοβολίας 800 kW/m². Η μέση τιμή δε, είναι 1453 kW/m², γεγονός που δείχνει ότι κατά το 50% της έκτασης της Θεσσαλίας εμφανίζει βιώσιμο αιολικό δυναμικό (> 1400 kW/m²). Τέλος η μέγιστη τιμή φθάνει τα 2000 kW/m², με τα μέγιστα να εμφανίζονται στις νότιες πλαγιές των υψώματων, όπως είναι αναμενόμενο.

Στην Εικόνα 6.12, η οποία παράχθηκε με το εργαλείο Aspect του Spatial Analyst, φαίνεται ο προσανατολισμός κάθε φατνίου και η άμεση συσχέτιση με το ηλιακό δυναμικό. Σε πολλές μεθοδολογίες χωροθέτησης ο προσανατολισμός εισάγεται σαν επιπλέον κριτήριο χωροθέτησης, έκτος του αιολικού δυναμικού. Στην παρούσα εργασία θεωρείται ότι το κριτήριο αυτό εισάγεται στο ηλιακό δυναμικό και δεν λαμβάνεται υπόψη.
Εικόνα 6.11 Ετήσια ηλιακή ακτινοβολία στην επιφάνεια του εδάφους για την Περιφέρεια Θεσσαλίας

Εικόνα 6.12 Προσανατολισμός εδάφους Περιφέρειας Θεσσαλίας
7 ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΔΥΝΗΤΙΚΩΝ ΠΕΡΙΟΧΩΝ ΑΝΑΠΤΥΞΗΣ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ

7.1 ΚΑΘΟΡΙΣΜΟΣ ΖΩΝΩΝ ΑΠΟΚΛΕΙΣΜΟΥ/ΑΣΥΜΒΑΤΟΤΗΤΑΣ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ

Για τον προσδιορισμό των επιτρεπόμενων περιοχών χωροθέτησης αιολικών και φωτοβολταϊκών πάρκων λαμβάνοντας υπόψη θεσμικούς, περιβαλλοντικούς και τεχνικούς περιορισμούς επιλέγεται να εφαρμοστούν δυο σενάρια αποκλεισμού, που αποτελεί δόκιμη πρακτική και σε άλλες μεθοδολογίες χωροθέτησης (Siyal et al., 2015). Το 1ο Σενάριο εφαρμόζει το ισχύον νομικό πλαίσιο, που τέθηκε κυρίως από το ΕΠΧΣΑΑ- ΑΠΕ και το Ν.3851/2010, ενώ το 2ο λαμβάνει υπόψη επιπλέον περιβαλλοντικούς και τεχνικούς περιορισμούς, οι οποίοι:

α. άρθηκαν από το Ν. 3851/2010, αλλά στην πραγματικότητα κρίνεται ότι δεν χαίρουν κοινωνικής αποδοχής και δεν είναι στην κατεύθυνση της βιωσιμότητας (π.χ., ΤΚΣ Δικτύου NATURA 2000)

β. δεν λήφθηκαν υπόψη από το ελληνικό νομικό πλαίσιο, αλλά υποστηρίζονται από τη διεθνή βιβλιογρafia και τις πολιτικές χωροθέτησης ΑΠΕ άλλων χωρών (π.χ. περιοχές ΖΕΠ Δικτύου Natura 2000, δασικές εκτάσεις κ.ά.)

γ. σχετίζονται με τα ιδιαιτέρα χαρακτηριστικά της περιοχής μελέτης και των απαιτήσεων μεγάλων εγκαταστάσεων ΑΠΕ που εξετάζονται στην παρούσα εργασία.

Συγκεκριμένα, για το 1ο Σενάριο εφαρμόστηκαν οι παρακάτω περιοχές αποκλεισμού, βάσει του ΕΠΧΣΑΑ και του Ν. 3851/2010:

β. Οι περιοχές απολύτου προστασίας της φύσης και προστασίας της φύσης που καθορίζονται κατά τις διατάξεις των άρθρων 19 παρ. 1 και 2 και 21 του Ν. 1650/1986.

γ. Τα όρια των Υγροτόπων Διεθνούς Σημασίας (Υγρότοποι Ραμσάρ).

δ. Οι πυρήνες των εθνικών δρυμών, τα κηρυγμένα μνημεία της φύσης και τα αισθητικά δάση.

στ. Οι εντός σχεδίων περιοχές πόλεων και ορίων οικισμών προ του 1923 ή κάτω των 2.000 κατοίκων.
ζ. Οι Π.Ο.Τ.Α. του άρθρου 29 του Ν. 2545/97, των Περιοχών Οργανωμένης Ανάπτυξης Παραγωγικών Δραστηριοτήτων του τριτογενούς τομέα του άρθρου 10 του Ν. 2742/99, τα θεματικά πάρκα και οι τουριστικοί λιμένες.

η. Οι ατύπως διαμορφωμένες, στο πλαίσιο της εκτός σχεδίου δόμησης, τουριστικές και οικιστικές περιοχές. Ως ατύπως διαμορφωμένες τουριστικές και οικιστικές περιοχές για την εφαρμογή του παρόντος νοούνται οι περιοχές που περιλαμβάνουν 5 τουλάχιστον δομημένες ιδιοκτησίες με χρήση τουριστική ή κατοικία, οι οποίες ανά δύο βρίσκονται σε απόσταση μικρότερη των 100 μέτρων, και συνολική δυναμικότητα 150 κλίνες τουλάχιστον. Για τον υπολογισμό της δυναμικότητας κάθε δομημένη ιδιοκτησία με χρήση κατοικίας θεωρείται ισοδύναμη με 4 κλίνες, ανεξαρτήτως εμβαδού. Οι ανωτέρω περιοχές θα αναγνωρίζονται στο πλαίσιο της οικείας Π.Π.Ε.Α.

θ. Οι ακτές κολύμβησης που περιλαμβάνονται στο πρόγραμμα παρακολούθησης της ποιότητας των νερών κολύμβησης που συντονίζεται από το Υ.ΠΕ.ΧΩ.Δ.Ε.

ι. Τα τμήματα των λατομικών περιοχών και μεταλλευτικών και εξορυκτικών ζωνών που λειτουργούν επιφανειακά.

ια. Άλλες περιοχές ή ζώνες που υπάγονται σήμερα σε ειδικό καθεστώς χρήσεων γης, βάσει του οποίου δεν επιτρέπεται η χωροθέτηση αιολικών εγκαταστάσεων, για όσο χρόνο ισχύουν.
Εφαρμόζονται, επιπλέον, και όλες οι ασύμβατες χρήσεις και οι ελάχιστες απαιτούμενες αποστάσεις για χωροθέτηση αιολικών εγκαταστάσεων, όπως αναφέρονται στο Παράρτημα ΙΙ του ΕΠΧΣΑΑ-ΑΠΕ και παρατίθενται στην παράγραφο 3.3.1.

Επιλέχθηκε ακόμη να αποκλεισθούν από το 1ο σενάριο οι περιοχές με μέση ετήσια ταχύτητα ανέμου κάτω των 4 m/s, που αποτελεί το όριο βιώσιμου αιολικού δυναμικού από το ΚΑΠΕ. Ακόμη, αφαιρούνται τα υδάτινα σώματα και οι υγρότοποι, καθώς δεν είναι τεχνικά εφικτή η χωροθέτηση ΑΠΕ σε αυτές τις περιοχές.

Τα αποτελέσματα παρουσιάζονται στην Εικόνα 7.1, στην οποία διακρίνεται η ομοιόμορφη κατανομή των επιτρεπόμενων περιοχών στα όρια της Περιφέρειας, όπου αναπτύσσονται οι ορεινοί ορέγκοι και το αιολικό δυναμικό είναι αξιόλογο. Μικρό τμήμα των επιτρεπόμενων περιοχών ανήκει στο νοτιοανατολικό τμήμα του Θεσσαλικού κάμπου. Η έκταση τους ανέρχεται σε 3984 km², που αντιστοιχούν στο 28% της έκτασης της Περιφέρειας και μπορούν να καλύψουν 123 GW εγκατεστημένης ισχύος (η μέγιστη επιτρεπόμενη ισχύς για την περιφέρεια Θεσσαλίας υπολογίζεται περί τα 7 GW). Για τον υπολογισμό της εγκατεστημένης ισχύος αξιοποιείται η ελάχιστη απόσταση που επιβάλλει ο ΕΠΧΣΑΑ (3 διαμέτρους φτερωτής) για την μείωση της επίδρασης ομόρου και την καλή απόδοση της εγκατάστασης, η οποία για τυπική ανεμογεννήτρια με διάμετρο φτερωτής 85 m υπολογίζεται στα 255 m. Μικρό τμήμα των επιτρεπόμενων περιοχών ανήκει στο νοτιοανατολικό τμήμα του Θεσσαλικού κάμπου. Η έκτασή τους ανέρχεται σε 65 025 m², δηλαδή 30.76 MW/km².

Η αφαίρεση των μη βιώσιμων περιοχών από πλευράς αιολικού δυναμικού, επιφέρει σημαντική μείωση (της τάξης του 54%) των επιτρεπόμενων περιοχών χωροθέτησης για το Σενάριο 1, αποτέλεσμα που αναδεικνύει το αιολικό δυναμικό σε σημαντικό περιοριστικό παράγοντα για τη Θεσσαλία. Το αποτέλεσμα αυτό έρχεται σε αντίθεση με αυτό για τις φωτοβολταϊκές εγκαταστάσεις, για τις οποίες μόλις 26 km² της περιφέρειας παρουσιάζουν μη βιώσιμο ηλιακό δυναμικό (βλ. παράγραφο 8.1).

Στο 2ο Σενάριο προστέθηκαν κάποιες περιοχές που κρίθηκαν ακατάλληλες για την χωροθέτηση αιολικών εγκαταστάσεων, βάσει τεχνικών και περιβαλλοντικών κριτηρίων όπως:

α. Οι περιοχές ΤΚΣ (Τόποι Κοινότητας Σημασίας), αλλά και οι ΖΕΠ (Ζώνες Ειδικής Προστασίας) του Δικτύου Natura 2000.

β. Οι δασικές εκτάσεις.

γ. Όλες οι προστατευόμενες θεσμικά περιβαλλοντικές περιοχές, όπως οι προστατευόμενοι φυσικοί σχηματισμοί, τα προστατευόμενα τοπία και στοιχεία του τοπίου, τα προστατευόμενα δάση, τα καταφύγια άγριας ζωής και οι ελεγχόμενες κυνηγετικές περιοχές.

δ. Οι περιοχές με υψόμετρο μεγαλύτερο των 2000 m, καθώς πέρα από τις τεχνικές δυσκολίες πρόσβασης και σύνδεσης με το δίκτυο, έχουν χαμηλή πυκνότητα αέρα, που δρα δυσμενώς για τη παράγωγη αιολικής ενέργειας, η οποία είναι ανάλογη της πυκνότητας του ρευστού.
Οι επιτρεπόμενες περιοχές του Σεναρίου 2 διακρίνονται στην Εικόνα 7.2, και παρουσιάζουν παρόμοια κατανομή με το 1ο Σενάριο. Η επιβολή των τεχνικών και περιβαλλοντικών κριτηρίων επιφέρει σημαντική μείωση των επιτρεπόμενων περιοχών χωροθέτησης, οι οποίες πλέον ανέρχονται σε 1479 km² (11% της έκτασης της περιφέρειας). Η εγκατεστημένη ισχύς που αντιστοιχεί στο σενάριο αυτό ανέρχεται στα 45 GW, υπερκαλύπτοντας την μέγιστη επιτρεπόμενη εγκατεστημένη ισχύ των 7 GW για την Θεσσαλία.

Εικόνα 7.2 Επιτρεπόμενες περιοχές χωροθέτησης ΑΠ Σενάριου 2

Πίνακας 7.1 Έκταση και ποσοστό κάλυψης των διαθέσιμων περιοχών των δύο σεναρίων για ΑΠ

<table>
<thead>
<tr>
<th>Σενάριο</th>
<th>Έκταση διαθέσιμων περιοχών (km²)</th>
<th>Εγκατεστημένη ισχύς (MW)</th>
<th>Μέγιστη επιτρεπόμενη εγκατεστημένη ισχύς (MW)</th>
<th>Ποσοστό κάλυψης (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σενάριο 1</td>
<td>3984</td>
<td>122541</td>
<td>7057</td>
<td>28%</td>
</tr>
<tr>
<td>Σενάριο 2</td>
<td>1479</td>
<td>45483</td>
<td>7057</td>
<td>11%</td>
</tr>
<tr>
<td>Θεσσαλία</td>
<td>14049</td>
<td>432111</td>
<td>7057</td>
<td></td>
</tr>
</tbody>
</table>

7.2 ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΤΡΕΠΟΜΕΝΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ

Στόχος της αξιολόγησης είναι η ιεράρχηση των επιτρεπόμενων περιοχών για τη χωροθέτηση αιολικών πάρκων που προέκυψαν από τα δύο παραπάνω σενάρια, με μια σειρά κριτηρίων (περιβαλλοντικών, τεχνικοοικονομικών και αισθητικών), τα οποία πηγάζουν από την ισχύουσα
νομοθεσία, τη διεθνή βιβλιογραφία, επιστημονικές έρευνες, αλλά και τις ιδιαιτερότητες της περιοχής μελέτης (βλ. Πίνακα 7.2).

Πίνακας 7.2 Κριτήρια αξιολόγησης για τη χωροθέτηση ΑΠ

<table>
<thead>
<tr>
<th>Κριτήριο αξιολόγησης</th>
<th>Τύπος κριτηρίου</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW1 Αιολικό δυναμικό</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CW2 Κλίση εδάφους</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CW3 Απόσταση από το οδικό δίκτυο</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CW4 Απόσταση από το ηλεκτρικό δίκτυο μεταφοράς ενέργειας (Y.T.& M.T)</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CW5 Υψόμετρο</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CW6 Απόσταση από την ακτογραμμή και το υδρογραφικό δίκτυο</td>
<td>Αισθητικό</td>
</tr>
<tr>
<td>CW7 Απόσταση από υγροτόπους, λίμνες και περιοχές ΖΕΠ Δικτύου Natura 2000</td>
<td>Αισθητικό</td>
</tr>
<tr>
<td>CW8 Απόσταση από οικιστικές περιοχές</td>
<td>Αισθητικό</td>
</tr>
</tbody>
</table>

Τα κριτήρια είναι ανάλογα με αυτά για τα ΦΠ, αλλά με ορισμένες διαφοροποιήσεις, δεδομένων των διαφορετικών επιπτώσεων και απαιτήσεων χωροθέτησης των αιολικών εγκαταστάσεων. Τα κριτήρια παρουσιάζονται στη συνέχεια, χωρίς να γίνει διάκριση τους σε αμιγώς περιβαλλοντικά ή τεχνικά, καθώς πολλά από αυτά έχουν διπλό χαρακτήρα. Για κάθε κριτήριο δημιουργήθηκε πίνακας, με χωρισμό σε κλάσεις των τιμών και αντίστοιχη βαθμολογία. Τα όρια που επιλέχτηκαν ανά κριτήριο τεκμηριώνονται βάσει βιβλιογραφικών αναφορών και από την ανάλυση των χαρακτηριστικών της περιοχής μελέτης που έγινε στο Κεφάλαιο 5.

Η κλίμακα αξιολόγησης που εφαρμόστηκε παρουσιάζεται στον Πίνακα 7.3. Αποτελείται από πέντε κλίμακες ιεράρχησης με βαθμολογία από μηδέν έως τέσσερα, με το μηδέν για την «ακατάλληλη» και το τέσσερα για την «πολύ υψηλής καταλληλότητας» αξιολόγηση.

Πίνακας 7.3 Κλίμακα αξιολόγησης της καταλληλότητας των θέσεων χωροθέτησης ΑΠ

<table>
<thead>
<tr>
<th>Κλίμακα αξιολόγησης</th>
<th>Βαθμολογία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πολύ υψηλή καταλληλότητα</td>
<td>4</td>
</tr>
<tr>
<td>Υψηλή καταλληλότητα</td>
<td>3</td>
</tr>
<tr>
<td>Ικανοποιητική καταλληλότητα</td>
<td>2</td>
</tr>
<tr>
<td>Οριακά αποδεκτή καταλληλότητα</td>
<td>1</td>
</tr>
<tr>
<td>Ακατάλληλη</td>
<td>0</td>
</tr>
</tbody>
</table>

7.2.1 ΚΡΙΤΗΡΙΟ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ

Το αιολικό δυναμικό αποτελεί κρισιμό παράγοντα της βιωσιμότητας των επενδύσεων, καθώς καθορίζει το μέγεθος της παραγόμενης ενέργειας για την συγκεκριμένη εγκατεστημένη ισχύ, την.
επιλογή του συστήματος εγκαταστάσες (μέγεθος ανεμογεννήτριας) αλλά και και την μεταβλητότητα της ενεργειακής παραγωγής.

Το αιολικό δυναμικό αξιολογείται, προσεγγιστικά, μέσω της μέσης ετήσιας ταχύτητας ανέμου από τους χάρτες αιολικού δυναμικού που παρέχει η ΡΑΕ. Λόγω της κακής επίδοσης της Θεσσαλίας ως προς το αιολικό δυναμικό, επιλέχθηκε η αξιολόγηση του Πίνακα 7.3, με την ανω βαθμολογικά κλάση να ορίζεται για μέσες ετήσιες ταχύτητες ανέμου μεγαλύτερες των 7 m/s. Τα αποτελέσματα επιβεβαιώνουν την αρχική υπόθεση, καθώς μόλις το 2,6% της έκτασης της Θεσσαλίας εμφανίζει μέση ετήσια ταχύτητα πάνω από 6 m/s, ενώ στο 6,3% της έκτασης παρατηρείται μέση ταχύτητα από 4 έως 5 m/s. Το μεγαλύτερο τμήμα της περιφέρειας (ποσοστό 67%) εμφανίζει μέση ετήσια ταχύτητα ανέμου κάτω από 4 m/s, κρίνεται συνεπώς ακατάλληλη για την ανάπτυξη ΑΠ.

Πίνακας 7.4 Κριτήριο αιολικού δυναμικού με βάση την μέση ετησία ταχύτητα του ανέμου (m/s)

<table>
<thead>
<tr>
<th>Μέση ετήσια ταχύτητα του ανέμου (m/s)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>>7</td>
<td>4</td>
<td>270,5</td>
<td>0,69%</td>
</tr>
<tr>
<td>6-7</td>
<td>3</td>
<td>740,9</td>
<td>1,90%</td>
</tr>
<tr>
<td>5-6</td>
<td>2</td>
<td>2457,4</td>
<td>6,30%</td>
</tr>
<tr>
<td>4-5</td>
<td>1</td>
<td>9379,8</td>
<td>24,03%</td>
</tr>
<tr>
<td>0-4</td>
<td>0</td>
<td>26177,1</td>
<td>67,08%</td>
</tr>
</tbody>
</table>

Εικόνα 7.3 Κριτήριο αιολικού δυναμικού
7.2.2 ΚΡΙΤΗΡΙΟ ΚΛΙΣΕΩΝ ΕΔΑΦΟΥΣ

Οι περιοχές μεγάλης κλίσης αποτελούν προβληματικές ζώνες χωροθέτησης, καθώς έκτος των δυσκολιών πρόσβασης του οδικού δικτύου για την κατασκευή και την συντήρηση του αιολικού πάρκου, προσθέτουν και άλλες τεχνικές δυσκολίες, που σχετίζονται με την τύρβη που εμφανίζεται συχνότερα σε λείες πλάγιες με απότομες κλίσεις. Πολλές είναι μάλιστα οι περιπτώσεις στις οποίες η κλίση λαμβάνεται υπόψη στον υπολογισμό του αιολικού δυναμικού, καθώς με την αύξηση της κλίσης του εδάφους μειώνεται η αποδόμενη ισχύς και, συνεπώς, η παραγόμενη ενέργεια.

Πίνακας 7.5 Κριτήριο κλίσεων εδάφους (%) για χωροθέτηση Αιολικών Πάρκων

<table>
<thead>
<tr>
<th>Κλίση εδάφους (%)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15 %</td>
<td>4</td>
<td>9135,2</td>
<td>65,14%</td>
</tr>
<tr>
<td>15-20 %</td>
<td>3</td>
<td>1385,3</td>
<td>9,88%</td>
</tr>
<tr>
<td>20-25 %</td>
<td>2</td>
<td>1093,3</td>
<td>7,80%</td>
</tr>
<tr>
<td>25-30 %</td>
<td>1</td>
<td>782,5</td>
<td>5,58%</td>
</tr>
<tr>
<td>>30%</td>
<td>0</td>
<td>1627,8</td>
<td>11,61%</td>
</tr>
</tbody>
</table>

Εικόνα 7.4 Κριτήριο κλίσης εδάφους για χωροθέτηση ΑΠ

Με βάση της κλάσεις του Πίνακα 7.4 προκύπτει ότι η Περιφέρεια Θεσσαλίας παρουσιάζει πολύ καλή επίδοση ως προς το κριτήριο αυτό, σε αντίθεση με το αιολικό δυναμικό. Συγκεκριμένα, μόλις το 12% της Περιφέρειας παρουσιάζει κλίσεις κάτω ανά του 30%, που αποτελεί το επιτρεπτό όριο
για αιολικές εγκαταστάσεις. Το μεγαλύτερο τμήμα της Θεσσαλίας, δηλαδή ποσοστό 65%, παρουσιάζει κλίσεις κάτω των 15%, που είναι ιδανικές για την χωροθέτηση αιολικών πάρκων.

Παρά τις ευνοϊκές εν γένει κλίσεις, οι «κακές» βαθμολογίες του κριτηρίου των κλίσεων εδάφους συγκεντρώνονται, όπως αναμένεται στους ορεινούς όγκους της Περιφέρειας, οπού απαντώνται και οι ελάχιστες υψηλές τιμές αιολικού δυναμικού.

7.2.3 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΟΔΙΚΟ ΔΙΚΤΥΟ

Το οδικό δίκτυο αποτελεί ιδιαίτερα σημαντικό τεχνοοικονομικό παράγοντα για την χωροθέτηση των αιολικών εγκαταστάσεων, καθώς οι υψηλές τιμές του απαντώνται συχνά σε δυσπρόσιτες περιοχές ή πολλές φόρες με κακής ποιότητας οδικό δίκτυο. Από την άλλη τα ίδια τα αιολικά συστήματα παραγωγής ενέργειας λογού του μεγέθους (μεγάλο ύψος πύργου) και του σημαντικού τους βάρους έχουν υψηλές τεχνικές προδιαγραφές σε ποιότητα οδοποιίας με απαιτήσεις ήπιων κλίσεων και επαρκούς πλάτους οδοτρόχων. Πρόκειται συνεπώς για κρίσιμο παράγοντα, που πολλές φόρες μπορεί να αποκλείσει την επιλογή μιας θέσης εγκαταστάσης αιολικού πάρκου.

![Εικόνα 7.5 Κριτήριο απόστασης από το οδικό δίκτυο για χωροθέτηση ΑΠ](image-url)

Μετά την εφαρμογή της κλίμακας αξιολόγησης του Πίνακα 7.6, προκύπτει ότι το 64% της περιφέρειας βρίσκεται σε απόσταση μικρότερη των 2 km από το υφιστάμενο οδικό δίκτυο. Στον αντίποδα μόλις το 2% απέχει πάνω από 8 km, οπότε λίγες περιοχές της περιφέρειας θα λάβουν
βαθμολογία «0». Παρατηρώντας την Εικόνα 7.5 του κριτήριου οδικού δικτύου, φαίνεται ότι σε όρους χωρικής κατανομής, οι λίγες περιοχές που βρίσκονται σε απόσταση μεγαλύτερη των 8 km, συγκεντρώνονται στις ορεινές περιοχές, όπως και στην περίπτωση των κλίσεων.

Πίνακας 7.6 Κριτήριο απόστασης από το οδικό δίκτυο (m) για χωροθέτηση Αιολικών Πάρκων (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Απόσταση από οδικό δίκτυο (m)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2000</td>
<td>4</td>
<td>8818,4</td>
<td>63,79%</td>
</tr>
<tr>
<td>2000-4000</td>
<td>3</td>
<td>2883,3</td>
<td>20,86%</td>
</tr>
<tr>
<td>4000-6000</td>
<td>2</td>
<td>1224,9</td>
<td>8,86%</td>
</tr>
<tr>
<td>6000-8000</td>
<td>1</td>
<td>616,5</td>
<td>4,46%</td>
</tr>
<tr>
<td>>8000</td>
<td>0</td>
<td>280,6</td>
<td>2,03%</td>
</tr>
</tbody>
</table>

7.2.4 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΙΚΤΥΟ ΜΕΤΑΦΟΡΑΣ ΕΝΕΡΓΕΙΑΣ

Οι αιολικές εγκαταστάσεις λόγω της έντονης μεταβλητότητας της παραγόμενης ενέργειας αλλά και του σημαντικού τους μεγέθους σε όρους εγκατεστημένης ισχύος συνδέονται συνήθως στο δίκτυο υψηλής ή κακόμη υπερψηλής τάσης εφόσον είναι διαθέσιμο. Σε περίπτωση που η εγκατεστημένη τους ισχύς δεν ξεπερνά τα 20MW μπορούν να συνδεθούν στο δίκτυο μέσης τάσης(βλ. και Παράγραφο 5.8.3). Στην Θεσσαλία αναπτύσσεται μόνο δίκτυο υψηλής και μέσης τάσης, καθώς μέχρι τώρα δεν έχει υπάρξει κορεσμός του δικτύου λόγω της ιδιαίτερα αργής ανάπτυξης αιολικής ενεργείας στην περιοχή (μόλις 17MW σε λειτουργεία).

Πίνακας 7.7 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής και μεταφοράς ενέργειας για την χωροθέτηση ΑΠ (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Απόσταση από δίκτυο διανομής (km)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>4</td>
<td>1968,3</td>
<td>14,24%</td>
</tr>
<tr>
<td>1-4</td>
<td>3</td>
<td>4086,3</td>
<td>29,56%</td>
</tr>
<tr>
<td>4-7</td>
<td>2</td>
<td>2775,4</td>
<td>20,08%</td>
</tr>
<tr>
<td>7-10</td>
<td>1</td>
<td>1738,9</td>
<td>12,58%</td>
</tr>
<tr>
<td>>10</td>
<td>0</td>
<td>3253,4</td>
<td>23,54%</td>
</tr>
</tbody>
</table>

Για την εφαρμογή του κριτηρίου χρησιμοποιήθηκε το ψηφιοποιημένο δικτύο του ΑΔΜΗΕ, με χρήση του εργαλείου Euclidean Distance για τον προσδιόρισμο της απόστασης και στην συνέχεια το εργαλείο Reclassify για την εφαρμογή των κλάσεων αξιολόγησης. Από τα αποτελέσματα του Πίνακα 7.7 διαπιστώνουμε ότι ένα ποσοστό 24% βρισκόταν σε απόσταση μεγαλύτερη από 10 km από το υφιστάμενο δίκτυο μεταφόρας, οπότε λαμβάνει βαθμολογία «0», λογω του ιδισίτερα αυξημένου κόστους συνδέσης. Παρόλα αύτα το 14% βρισκόταν σε απόσταση μικρότερη του 1 km. Σημαντική είναι η χωρική συμπτώση των γραμμών υψηλής τάσης με κάποιες περιοχές υψηλού αιολικού δυναμικού, όπως η χερσόνησος του Πηλίου, που τους δίνει βαθμολογικό προβάδισμα.
Το υψόμετρο αποτελεί πολύ σημαντικό κριτήριο με τεχνικό και περιβαλλοντικό χαρακτήρα, καθώς αφενός στις ορεινές περιοχές απαντάται υψηλής οικολογικής σημασίας πανίδα και χλωρίδα, και αφετέρου η χωροθέτηση σε αυτές της περιοχές συνεπάγεται σημαντικές τεχνικές δυσκολίες. Συγκεκριμένα, η διάταξη οδικού και ηλεκτρικού δικτύου και τις απότομες κλίσεις, που ήδη εξετάστηκαν, στις ορεινές περιοχές μειώνεται η πυκνότητα του αέρα, οπότε και η ενεργειακή απόδοση των αιολικών μηχανών. Σημειώνεται ότι η παραγόμενη από ανεμογεννήτριες ενέργεια όπως και κάθε αλλού στροβίλου είναι αναλογική της πυκνότητας του ρευστού.

Πίνακας 7.8 Κριτήριο υψομέτρου για χωροθέτηση ΑΠ

<table>
<thead>
<tr>
<th>Υψόμετρο (m)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-500</td>
<td>4</td>
<td>8621,6</td>
<td>62,45%</td>
</tr>
<tr>
<td>500-1000</td>
<td>3</td>
<td>3112,7</td>
<td>22,55%</td>
</tr>
<tr>
<td>1000-1500</td>
<td>2</td>
<td>1616,2</td>
<td>11,71%</td>
</tr>
<tr>
<td>1500-2000</td>
<td>1</td>
<td>399,1</td>
<td>2,89%</td>
</tr>
<tr>
<td>>2000</td>
<td>0</td>
<td>55,6</td>
<td>0,40%</td>
</tr>
</tbody>
</table>
Ευτυχώς όπως φαίνεται στον Πίνακα 7.8 μόνο το 0.4% της περιφέρειας έχει υψόμετρο κάτω από 2000 m, ενώ η πλειοψηφία της έκτασης της Θεσσαλίας (62%) έχει υψόμετρο κάτω από 500 m. Ως αποτέλεσμα της εφαρμογής της κλίμακας αξιολόγησης προκύπτει ελάχιστες περιοχές με βαθμολογία «0», στα βόρεια του Νομού Λάρισας και στους δυτικούς ορεινούς όγκους της Περιφέρειας. Αξιόλογη είναι η παρατήρηση ότι, και πάλι υπάρχει σύμπτωση των καλών περιοχών αιολικού δυναμικού με τις ακατάλληλες με βάση την κλίμακα αξιολόγησης περιοχές.

Εικόνα 7.7 Κριτήριο υψόμετρου για την χωροθέτηση ΑΠ

7.2.6 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Καθώς ο κοινωνικός και αισθητικός, αλλά και τεχνικός παράγοντας ένταξης αιολικών πάρκων έχει απεδείχθει κρίσιμος για την ανάπτυξή τους σε πολλές περιπτώσεις και έκτος του ελληνικού χώρου, κρίνεται ακόμα και σημαντικό να είναι αποτελέσματα της μεθοδολογίας αξιολόγησης των διαθέσιμων προς χωροθέτηση περιοχών. Το ΕΠΧΣΑΑ για τις ΑΕ ήδη λαμβάνει σοβαρά υπόψη την αισθητική παρέμβαση που αποτελούν τα αιολικά πάρκα στο τοπίο, θέτοντας διαφορετικές ελάχιστες ακτίνες χωροθέτησης από τα όρια οικισμών ανάλογα με μέγεθος του πληθυσμού τους και το καθεστώς προστασίας (π.χ. Για τους παραδοσιακούς οικισμούς ανεξάρτητα του μεγέθους απαιτείται ελάχιστη απόσταση ακτίνας 1500 m από τα όρια τους). Πέραν όμως της αισθητικής παρέμβασης αποτελούν εγκατάστασης υψηλής όχλησης με βάση την νομοθεσία, οπότε συνίσταται
τόσο από το ΕΠΧΣΑ για τις ΑΠΕ όσο και από τη βιβλιογραφία ελάχιστη απόσταση για την μείωση της όχλησης στους όμορους με την περιοχή χωροθέτησης οικισμούς. Παρόλα αυτά οφείλει να υπάρχει και ένα άνω όριο στην επιθυμητή απόσταση από τις οικιστικές περιοχές, ώστε να μειώνεται το κόστος μεταφοράς και οι απώλειες ενέργειας.

Εικόνα 7.8 Κριτήριο απόστασης από οικιστικές περιοχές για χωροθέτηση ΑΠ

Πίνακας 7.9 Κριτήριο απόστασης από οικιστικές περιοχές

<table>
<thead>
<tr>
<th>Απόσταση από όριο οικισμού (km)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>0</td>
<td>3353,1</td>
<td>24,26%</td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
<td>4105,8</td>
<td>29,70%</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>3011,7</td>
<td>21,79%</td>
</tr>
<tr>
<td>3-4</td>
<td>3</td>
<td>1785,4</td>
<td>12,92%</td>
</tr>
<tr>
<td>>4</td>
<td>4</td>
<td>1566,3</td>
<td>11,33%</td>
</tr>
</tbody>
</table>

Προτείνεται συνεπώς με βάση τις συνέπειες αυτές η ακόλουθη ενιαία γραμμική κλίμακα αξιολόγησης (ανεξάρτητη του μεγέθους και του καθεστώτος προστασίας) με βάση την εγγύτητα σε οικιστικές περιοχές. Στην ανώτερη βαθμολογικά κλάση βρίσκεται το 11% της έκτασης της Περιφέρειας, ενώ στην κατώτερη το 24%. Παρατηρώντας την Εικόνα 7.8 διακρίνεται η σημαντική διασπορά των οικισμών στην Περιφέρεια, και σε ορεινές περιοχές με καλό αιολικό δυναμικό, όπως το Πήλιο, οπού μάλιστα συναντώνται και πολλοί παραδοσιακοί οικισμοί.
7.2.7 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΗΝ ΑΚΤΟΓΡΑΜΜΗ ΚΑΙ ΤΑ ΥΔΑΤΙΝΑ ΣΩΜΑΤΑ

Τα ποταμιά και οι ακτές, λόγω της αισθητικής τους αξίας και των δυνατοτήτων αναψυχής που προσφέρουν, αποτελούν συνήθως πόλους έλξης επισκεπτών. Ειδικότερα στις ακτές αναπτύσσεται σημαντικό πλήθος τουριστικών μονάδων, των οποίων η λειτουργεία προστατεύεται και από το ΕΠΧΣΑΑ για τις ΑΠΕ. Στην παρούσα εφαρμογή θεωρείται εύλογο να εφαρμοστεί μια κλίμακα αξιολόγησης, για την άμβλυνση των αισθητικών επιπτώσεων αλλά και του θορύβου που παράγουν οι αιολικές εγκαταστάσεις.

Πίνακας 7.10 Κριτήριο απόστασης (m) από την ακτογραμμή και τα ποτάμια για χωροθέτηση ΑΠ

<table>
<thead>
<tr>
<th>Απόσταση από ακτογραμμή και ποτάμια (m)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><250</td>
<td>0</td>
<td>1188,7</td>
<td>7,57%</td>
</tr>
<tr>
<td>250-500</td>
<td>1</td>
<td>799,5</td>
<td>5,09%</td>
</tr>
<tr>
<td>500-750</td>
<td>2</td>
<td>927,3</td>
<td>5,90%</td>
</tr>
<tr>
<td>750-1000</td>
<td>3</td>
<td>746,9</td>
<td>4,76%</td>
</tr>
<tr>
<td>>1000</td>
<td>4</td>
<td>12041,8</td>
<td>76,68%</td>
</tr>
</tbody>
</table>

Εικόνα 7.9 Κριτήριο απόστασης από ακτογραμμή και υδάτινα σώματα

Για την υλοποίηση του κριτηρίου εφαρμόζεται η κλίμακα του Πίνακα 7.10, οπού αποτυπώνεται η μικρή αναμενομένη επίδρασή αυτού του κριτηρίου, λόγω της τοπικότητάς του, αφού άνω του 76% της Περιφέρειας βρίσκεται σε απόσταση μεγαλύτερη από 1 km από τις ακτές. Ως προς την χωρική
του κατανομή, οι μηδενικές βαθμολογικά περιοχές παρουσιάζουν ομοιόμορφη σχετικά εμφάνιση όλης της περιφέρειας.

7.2.8 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΥΓΡΟΤΟΠΟΥΣ, ΛΙΜΝΕΣ & ΖΕΠ NATURA 2000

Στις περιοχές περιβαλλοντικής σημασίας συμπεριλαμβάνουμε τις περιοχές ΖΕΠ Natura 2000, οι υγρότοποι και οι λίμνες. Πέραν της αισθητικής τους αξίας η οποία χρήζει προστασίας και επιβάλλεται από το νομικό πλαίσιο ορισμού τους, άλλα και την υπάρχουσα βιβλιογραφία, οι περιοχές αυτές αποτελούν ζώνες συγκέντρωσης πτηνών αυξάνοντας τις πιθανές περιβαλλοντικές επιπτώσεις της χωροθέτησης ΑΠ εντός ή πλησίον αυτών. Το παρόν κριτήριο συμπληρώνει ουσιαστικά τη νομοθεσία και τους περιορισμούς ελαχίστων αποστάσεων που ήδη τέθηκαν από τον ΕΠΧΣΑΑ ΑΠΕ με το Σενάριο 1.

Εικόνα 7.10 Κριτήριο απόστασης από περιοχές περιβαλλοντικής σημασίας

Η εφαρμογή της κλίμακας αξιολόγησης του Πίκανα 7.11, αναδεικνύει την σημαντική έκταση των περιβαλλοντικού ενδιαφέροντος στην Περιφέρεια Θεσσαλίας, που συνεπάγεται ότι 36% της έκτασής της Περιφέρειας λαμβάνει βαθμολογία «0», παρά την τοπικότητας που χαρακτηρίζει και εύτε το κριτήριο, είναι αρκετές οι περιπτώσεις όπως στην δυτική Θεσσαλία και στην χερσόνησό του Πηλίου οπού έχουμε ευνοϊκό αιολικό δυναμικό. Συνεπώς και οι περιβαλλοντικοί πέραν των τεχνικών παραγόντων αξιολογούν δυσμενώς αυτές τις περιοχές.
7.3 ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΤΑΛΛΗΛΟΤΗΤΑΣ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ

Αφού ολοκληρώθηκε η επιλογή των κριτηρίων χωροθέτησης αιολικών πάρκων και η εφαρμογή κατάλληλης κλίμακας αξιολόγησης για κάθε κριτήριο, εφαρμόστηκε στα οκτώ προκρινόμενα πολυκριτηριακά ανάλυση με ισοβαρείς συντελεστές για όλα τα κριτήρια. Για τον σκοπό αυτό, επιλέχθηκε το εργαλείο Weighted Sum της επέκτασης Spatial Analyst του ArcGIS, το οποίο αθροίζει τις τιμές όλων των αρχείων raster που αντιστοιχούν στο ίδιο κελί, δημιουργώντας ένα αθροιστικό αρχείο raster με εύρος τιμών [0-32] για όλα τα κριτήρια που αντιπροσωπεύει τη βαθμολογία του ως προς την καταλληλότητα χωροθέτησης ΑΠ (βλ. Εικόνα 8.11).

Πίνακας 7.12 Αξιολόγηση του συνόλου της Περιφέρειας Θεσσαλίας για τα 8 κριτήρια χωροθέτησης ΑΠ

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Δυνητική εγκατεστημένη ισχύς (GW)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>914,00</td>
<td>28,1</td>
<td>6,65%</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>9370,94</td>
<td>288,2</td>
<td>68,15%</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>3356,69</td>
<td>103,2</td>
<td>24,41%</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>109,75</td>
<td>3,4</td>
<td>0,80%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>13751,38</td>
<td>423,0</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Τα αποτελέσματα της αξιολόγησης για το σύνολο της Θεσσαλίας παρουσιάζονται στον Πίνακα 7.12 και στην Εικόνα 7.11, με διάκριση σε 4 κλάσεις καταλληλότητας ανάλογα με τη βαθμολογία [0-25%, 25-50%, 50-75%]. Στην ανώτερη κλάση βαθμολογίας ανήκει το 7% της Περιφέρειας, οπού θα μπορούσαν δυνητικά να εγκατασταθούν 28 GW. Η πλειοψηφία της Θεσσαλίας κατατάσσεται στην δεύτερη κατηγορία καταλληλότητας [50-75%], σε ποσοστό 68%, που αντιστοιχεί σε δυνητική εγκατεστημένη 288 GW. Η μέγιστη βαθμολογία για το σύνολο της Θεσσαλίας είναι 29 και αφορά μόλις 2.26 km². Ως προς την χωρική κατανομή των κλάσεων καταλληλότητας, στην Εικόνα 7.11 διακρίνουμε τις πλέον κατάλληλες περιοχές στην χερσόνησο του Πηλίου, στα νοτιά της Περιφέρειας, σε κάποιες περιοχές του Θεσσαλικού κάμπου και στο βόρειο όριο στης Περιφέρειας.

Διαφορετικά, το σύνολο των περιοχών της κατώτερης κατηγορίας καταλληλότητας συγκεντρώνεται στο δυτικό όριο της Θεσσαλίας.
Για την αξιολόγηση των επιτρεπόμενων περιοχών χωροθέτησης του Σεναρίου 1 φιλτράρουμε το Raster της αξιολόγησης μεσώ του εργαλείου extract by Mask της επέκτασης Spatial Analyst, οπότε προκύπτει η Εικόνα 7.12.

Εικόνα 7.11 Αξιολόγηση Περιφερείας Θεσσαλίας για χωροθέτηση ΑΠ με εφαρμογή 8 κριτηρίων

Πίνακας 7.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σεναρίου 1

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Δυνητική εγκατεστημένη ισχύς (MW)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>211,38</td>
<td>6501</td>
<td>5,52%</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>2433,13</td>
<td>74837</td>
<td>63,52%</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>1157,19</td>
<td>35592</td>
<td>30,21%</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>28,63</td>
<td>880</td>
<td>0,75%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>3830,31</td>
<td>117810</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Τα αποτελέσματα σε ποσοτικούς όρους παρουσιάζονται στον Πίνακα 7.13. Παρατηρώντας τα ποσοστά της Περιφέρειας ανά κατηγορία καταλληλότητας, εντοπίζουμε μια μικρή μεταβολή προς τα κάτω των ποσοστών της Θεσσαλίας που ανήκουν στις άνω κατηγορίες καταλληλότητας (άνω του 50%). Σε όρους εγκατεστημένης ισχύς εκτιμάται ότι μπορούν να εγκατασταθούν 6501 MW στις περιοχές καταλληλότητας άνω του 75%, που είναι πολύ κοντά με την μέγιστη επιτρεπόμενη εγκατεστημένη ισχύ για την περιφέρεια που υπολογίζει η ΡΑΕ. Στην επομένη κατηγορία μπορούν
να εγκατασταθούν περίπου 75 GW. Η μέγιστη βαθμολογία για της περιοχές του Σεναρίου 1 είναι 29 και αφορά 1.76 km².

Παρατηρώντας την Εικόνα 7.12 του Σεναρίου 1, εξάγεται ότι οι υψηλής καταλληλότητας περιοχές που έμειναν συγκεντρώνονται στο νότιο κεντρικό και νότιο δυτικό τμήμα της Περιφέρειας, ενώ οι λιγότερο κατάλληλες (<25%) στο δυτικό τμήμα.

Εικόνα 7.12 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σεναρίου 1

Πίνακας 7.14 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σεναρίου 2

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Δυνητική εγκατεστημένη ισχύς (MW)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>196,31</td>
<td>6038</td>
<td>13,49%</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>1008,12</td>
<td>31007</td>
<td>69,28%</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>244,81</td>
<td>7530</td>
<td>16,82%</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>6,00</td>
<td>185</td>
<td>0,41%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>1455,25</td>
<td>44760</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Ακολουθείται η ίδια διαδικασία για τις επιτρεπόμενες περιοχές του Σεναρίου 2 με τα αποτελέσματα να αποτυπώνονται στον Πίνακα 7.14 και την Εικόνα 7.13. Οι περιοχές του δεύτερου σεναρίου ανήκουν σε σχέση με το σύνολο της Περιφέρειας σε μεγαλύτερο ποσοστό στις άνω κατηγορίες καταλληλότητας, με το 13% της έκτασης στην κλάση 75-100% και το 69% στην 50-75%.
Σε απολυτά μεγέθη μπορούν να εγκατασταθούν περί τα 6 GW στις υψηλότερες βαθμολογικά περιοχές (>75% καταλληλότητα) και 31 GW στην ακόλουθη κατηγορία (50-75% καταλληλότητα). Αξιοσημείωτο είναι ότι η ανώτερη βαθμολογία για τις περιοχές του σεναρίου 2 είναι και πάλι 29 και καταλαμβάνει την ίδια έκταση με το Σενάριο 1 (1.76 km²).

Παρατηρώντας και την εικόνα 7.13, διαπιστώνουμε και χωρικά το φιλτράρισμα περισσότερων «κόκκινων» από ότι «πράσινων» περιοχών για το Σενάριο 2.

Εικόνα 7.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΑΠ Σεναρίου 2

7.4 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΚΡΙΤΗΡΙΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ

Για να αξιολογηθεί η επιλογή των κριτηρίων και η επίδρασή τους στην αξιολόγηση επιλέγεται να εφαρμοστεί πολυκριτηριακή ανάλυση, λαμβάνοντας υπόψη μόνο τους «τεχνικούς» και μόνο τους «περιβαλλοντικούς» παράγοντες αντίστοιχα. Ως «τεχνικοί» επιλέγονται το αιολικό δυναμικό, η κλίση, η απόσταση από το οδικό δίκτυο και το δίκτυο μεταφοράς ηλεκτρικής ενέργειας, ενώ ως «περιβαλλοντικοί» το υψόμετρο, η απόσταση από οικιστικές περιοχές, η απόσταση από λίμνες, υγροτόπους και περιοχές ΖΕΠ του δικτύου Natura 2000, και η απόσταση από την ακτογραμμή και τα ποτάμια.
Εικόνα 7.14 Αξιολόγηση επιτρεπόμενων περιοχών Σεναρίου 2 για τα τεχνικά κριτήρια

Εικόνα 7.15 Αξιολόγηση επιτρεπόμενων περιοχών Σεναρίου 2 για τα περιβαλλοντικά κριτήρια
Η χωρική αποτυπώση των αποτελεσμάτων (βλ. Εικόνες 7.14 και 7.15), αναδεικνύει την αντιστροφή αξιολόγηση κάποιων περιοχών με τους τεχνικούς να αξιολογούν δυσμένως (κάτω του 50% και τους περιβαλλοντικούς ευμενώς (άνω του 50%), στις περιοχές του Σεναρίου Ροκκά της Χερσονήσου Πηλίου.

Πίνακας 7.15 Ποσοστά καταλληλότητας τεχνικής & περιβαλλοντικής αξιολόγησης για τις περιοχές του Σεναρίου 2

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Τεχνική αξιολόγηση</th>
<th>Περιβαλλοντική αξιολόγηση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</td>
<td>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</td>
<td>Ποσοστό ανά κατηγορία καταλληλότητας</td>
<td></td>
</tr>
<tr>
<td>12-16</td>
<td>75-100 %</td>
<td>81,50</td>
<td>5,60%</td>
</tr>
<tr>
<td>8-12</td>
<td>50-75 %</td>
<td>773,38</td>
<td>53,14%</td>
</tr>
<tr>
<td>4-8</td>
<td>25-50 %</td>
<td>487,44</td>
<td>33,50%</td>
</tr>
<tr>
<td>0-4</td>
<td>0-25 %</td>
<td>112,94</td>
<td>7,76%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>1455,25</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Ακολούθως προσδιορίζονται τα ποσοστά καταλληλότητας που προκύπτουν για τις επιτρεπόμενες περιοχές χωροθέτησης του Σεναρίου 2 για την «περιβαλλοντική» και «τεχνική» αξιολόγηση αντίστοιχα, όπως φαίνεται στον Πίνακα 7.15. Αρχικά παρατηρούμε την σημαντική διαφοροποίηση των δύο αξιολογήσεων για την υψηλή κατηγορία καταλληλότητας οπού στην τεχνική ανήκει μόλις το 6% της έκτασης, ενώ στην περιβαλλοντική είναι πενταπλάσιο (34%). Για την κατηγορία 50-75% τα ποσοστά είναι περίπου ίδια. Η επίδραση των τεχνικών κριτήριων είναι καθοριστική για τις κάτω του 50% καταλληλότητας περιοχών, οπού ανήκει το 41% της εκτάσεως σε αντίθεση με τα περιβαλλοντικά οπού ανήκει μόλις το 14%. Συνεπώς αν οι τεχνικοί παραγόντες επιλέγουν να βαρύνουν περισσότερο την αξιολόγηση θα είχαμε σημαντική μείωση των περιοχών υψηλής καταλληλότητας για τη χωροθέτηση αιολικών πάρκων.

7.5 ΕΠΙΛΟΓΗ ΒΙΩΣΙΜΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΑΠ

Για την επιλογή των βιώσιμων περιοχών χωροθέτησης αιολικών πάρκων επιλέγεται να εφαρμοστούν, επιπλέον της αξιολόγησης, κάποια φίλτρα. Προκύπτουν έτσι:

α. Περιοχές που αξιολογούνται με ποσοστό προτεραιότητας πάνω από 50%, για όλα τα κριτήρια εκτός του αιολικού δυναμικού.

β. Περιοχές που αποτελούν επιτρεπόμενες περιοχές του Σεναρίου 2, οι οποίες πληρούν τους θεσμικούς, περιβαλλοντικούς και τεχνικούς περιορισμούς χωροθέτησης.

γ. Περιοχές με μέση ετήσια ταχύτητα ανέμου μεγαλύτερη από 5m/s, ώστε να εξασφαλιστούν ικανοποιητικές τιμές αιολικού δυναμικού.

δ. Περιοχές εμβαδού μεγαλύτερου 50 000 m², ώστε να μπορούν να χωροθετηθούν αιολικά πάρκα εγκατεστημένα σε τοπία περίπου 15MW με βάση τις απαιτήσεις του ΕΠΔΑΑ- ΑΠΕ (ελάχιστα απόσταση 3D κάθε ανεμογεννήτριας από την γειτονική της για την άμβλυνση της επίδρασης ομόρου).
Σημειώνεται ότι για το βιώσιμο σενάριο των φωτοβολταϊκών πάρκων που θα εφαρμοστεί στην παράγραφο 8.5, εφαρμόζονται υψηλότερες απαιτήσεις (περιοχές καταλληλότητας άνω του 75% και ηλιακό δυναμικό βαθμολογίας 3 ή 4). Και αυτό διότι όπως θα διαπιστωθεί από την εφαρμογή της μεθοδολογίας για τα φωτοβολταϊκά πάρκα στο Κεφάλαιο 7, η περιφέρεια παρουσιάζει μεγαλύτερη ενέργεια από την εφαρμογή της ηλιακής ενέργειας.

Όπως διακρίνεται στην Εικόνα 7.16, οι βιώσιμες θέσεις χωροθέτησης με την υψηλότερη βαθμολογία απαντώνται στην χερσόνησο του Πηλίου, ενώ αυτές με την χαμηλότερη στα δυτικά της Περιφέρειας όπου αναπτύσσεται επίσης ηλιακό αιολικό δυναμικό.

Εικόνα 7.16 Βιώσιμες περιοχές χωροθέτησης ΑΠ στην Περιφέρεια Θεσσαλίας

Τα αποτελέσματα για όλες τις βαθμολογίες από 15 μέχρι 26, που αντιπροσωπεύουν την βαθμολογία όλων των κριτηρίων πλην του αιολικού δυναμικού (εύρος 0-28), παρουσιάζονται στον Πίνακα 7.16. Η συνολική εγκατεστημένη ισχύς που προκύπτει είναι 4271 MW, και είναι μικρότερη από την εγκατεστημένη ισχύ που υπολογίζεται από την ΡΑΕ με βάση το συντελεστή Φέρουσας Ικανότητας (αριθμός τυπικών ανεμογεννητριών \(\text{km}^2 \)), που εισάγει ο ΕΠΧΣΑ ΑΠΕ μέσω των ειδικών απαιτήσεων για αιολικές εγκαταστάσεις. Αξιοσημείωτο είναι ότι δεν συναντάται για κανένα κελί του βιώσιμου σενάριου η βέλτιστη βαθμολογία 28, που σηματοδοτεί καταλληλότητα 100% και εκπλήρωση όλων των κριτηρίων. Από την περιοχή αυτή με βαθμολογία 2, μπορούν να εγκατασταθούν περί τα 20 MW.
Πίνακας 7.16 Βιώσιμες περιοχές χωροθέτησης ΑΠ

<table>
<thead>
<tr>
<th>Βαθμολογία</th>
<th>Εκτάση (km²)</th>
<th>Εγκατεστημένη ισχύς (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15,63</td>
<td>480,6</td>
</tr>
<tr>
<td>16</td>
<td>18,00</td>
<td>553,6</td>
</tr>
<tr>
<td>17</td>
<td>19,81</td>
<td>609,4</td>
</tr>
<tr>
<td>18</td>
<td>18,56</td>
<td>570,9</td>
</tr>
<tr>
<td>19</td>
<td>17,13</td>
<td>526,7</td>
</tr>
<tr>
<td>20</td>
<td>11,44</td>
<td>351,8</td>
</tr>
<tr>
<td>21</td>
<td>9,19</td>
<td>282,6</td>
</tr>
<tr>
<td>22</td>
<td>6,69</td>
<td>205,7</td>
</tr>
<tr>
<td>23</td>
<td>5,06</td>
<td>155,7</td>
</tr>
<tr>
<td>24</td>
<td>9,25</td>
<td>284,5</td>
</tr>
<tr>
<td>25</td>
<td>7,50</td>
<td>230,7</td>
</tr>
<tr>
<td>26</td>
<td>0,63</td>
<td>19,2</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>138,88</td>
<td>4271,4</td>
</tr>
</tbody>
</table>

7.6 ΑΞΙΟΛΟΓΗΣΗ ΑΔΕΙΟΔΟΤΗΜΕΝΩΝ ΑΠ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

Στην παράγραφο αυτή επιχειρείται η εφαρμογή της μεθοδολογίας αξιολόγησης για την εκτίμηση των πραγματικών αιτήσεων προς χωροθέτηση αιολικών εγκαταστάσεων. Συγκεκριμένα, επιλέγουμε να φιλτράρουμε τις υποψηφίες προς αδειοδότηση ή ήδη αδειοδοτημένα έργα, ώστε να εξεταστεί κατά πόσο επαληθεύονται τα αποτελέσματα με τις αποφάσεις της ΡΑΕ. Σε πρώτο στάδιο, ελέγχεται το ποσοστό των θέσεων χωροθέτησης βρίσκεται εντός των επιτρεπόμενων περιοχών του Σεναρίου 1 ή 2, και ακολούθως τα ποσοστά καταλληλότητας που συγκεντρώνουν.

Πίνακας 7.17 Αξιολόγηση αδειοδοτημένων ή υπό αδειοδότηση ΑΠ

<table>
<thead>
<tr>
<th>Ποσοστό εντός επιτρεπόμενων περιοχών</th>
<th>Ποσοστό καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σενάριο 1</td>
<td>Σενάριο 2</td>
</tr>
<tr>
<td>Αδεία εγκατ.</td>
<td>95%</td>
</tr>
<tr>
<td>Αδεία εγκατ.</td>
<td>77%</td>
</tr>
<tr>
<td>Αδεία παρ.</td>
<td>100%</td>
</tr>
<tr>
<td>Αδεία παρ.</td>
<td>0%</td>
</tr>
<tr>
<td>Σε αξιολ.</td>
<td>84%</td>
</tr>
<tr>
<td>Σε αξιολ.</td>
<td>63%</td>
</tr>
<tr>
<td>Απορ. αποφ.</td>
<td>79%</td>
</tr>
<tr>
<td>Απορ. αποφ.</td>
<td>45%</td>
</tr>
</tbody>
</table>

Τα αποτελέσματα παρουσιάζονται στον Πίνακα 7.17 και αφορούν τις άδειες εγκατάστασης, παράγωγης τα έργα σε αξιολόγηση και τις απορριπτέες αποφάσεις. Οι θεσμικά επιτρεπόμενες περιοχές του σεναρίου 1, φαίνεται να έχουν αποτυχία καθώς για τις άδειες παραγωγής το 95% βρίσκεται εντός, ενώ για τις άδειες εγκατάστασης το 100%. Μικρότερα είναι τα ποσοστά για τα απορριπτέα και σε αξιολόγηση έργα. Στο περιβαλλοντικό σενάριο 2, ανήκει σημαντικό ποσοστό (άνω του 60%) για τις άδειες εγκατάστασης και τα έργα σε αξιολόγηση. Για τα απορριπτέα πέφτει κάτω από 50%, οπότε πιθανώς η περιβαλλοντική τους ασυνέπεια να συγκαταλέγονταν στους λόγους απόρριψής. Όσο αναφέρα τα ποσοστά καταλληλότητας δεν πετυχαίνουμε να καταχτούν όλα τα έργα σε ποσοστό άνω του 50%. Η μεγαλύτερη έκταση των
έργων βρίσκεται πάνα στην 3η κατηγόρια καταλληλότητας αλλά και ένα υπολογίσμο μερίδιο στην 25-50%, τις τάξεις του 20%. Αυτό μπορεί να συμβαίνει είτε διότι έχουν τεθεί ιδιαίτερα αυστηροί τεχνικοί περιορισμοί στη παρούσα εργασία, είτε διότι οι άδειες τις ΡΑΕ δεν είναι σύμφωνες με τα κριτήρια που τεθήκαν. Σημειώνεται ότι για την θέση σε λειτουργεία του έργου απαιτείται η έκδοση αδείας λειτουργίας.

7.7 ΕΝΑΛΛΑΚΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΓΙΑ ΑΝΕΜΟΓΕΝΝΗΡΙΕΣ ΥΨΗΛΟΤΕΡΟΥ ΠΥΡΓΟΥ

Λιγοστές ήταν οι περιοχές οι οποίες προκύπτουν ως βιώσιμες από την εφαρμογή της μεθοδολογίας με το οικονομικά εκμεταλλεύσιμο αιολικό δυναμικό στα 80m μέτρο υψόμετρο να αποδεικνύεται βασικός περιοριστικός παράγοντας. Προτείνεται, η ίδια ανάλυση για λογούς διερεύνησης και σύγκρισης με το εκτιμώμενο αιολικό δυναμικό στα 100m, 120 m υψόμετρο, οπού αυξάνονται οι περιοχές με βιώσιμο αιολικό δυναμικό, αλλά ταυτόχρονα και το ύψος του πύργου της ανεμογεννήτριας αυξάνοντας την δυνατή εγκατεστημένη ισχύ για την περίπου ίδια κάλυψη (επιβαλλομένη ελάχιστη απόσταση λόγω της επίδρασης ομόρου 3 διαμέτρους φτερωτής με βάση το ΕΠΧΣΣΑ για τις ΑΠΕ).
Εικόνα 7.18 Περιοχές εκμεταλλεύσιμου αιολικού δυναμικού στα 100 m υψόμετρο

Εικόνα 7.19 Περιοχές εκμεταλλεύσιμου αιολικού δυναμικού στα 120 m υψόμετρο
Σημειώνεται ότι πάρα τα πλεονέκτημα της αυξημένης απόδοσης μεγαλύτερου μεγέθους ανεμογεννητριών, εμφανίζονται και κάποια μειονεκτήματα τα οποία σχετίζονται με την δυσκολία μεταφοράς των ανεμογεννητριών στην θέση εγκαταστάσεως που αυξάνουν τις τεχνικές απαιτήσεις για ευρύ και μικρών επικλήσεων οδικό δίκτυο. Επίσης πρέπει να ληφθεί υπόψη, αύξηση των ελαχίστων αποστάσεων μεταξύ των Α/Γ, αλλά και από τις ασύμβατες χρήσεις οι οποίες είναι συνάρτηση της διαμέτρου της ανεμογεννήτριας. Η αύξηση της εγκατεστημένης ισχύος αυξάνει πιθανώς και το ελάχιστο όριο λειτουργίας, οπότε απαιτείται επιπλέον διερεύνηση του ελάχιστου αιολικού δυναμικού, που θα εξασφαλίζει την βιωσιμότητα των επενδύσεων δεδομένης και της αύξησης του κόστους των Α/Γ.
ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΔΥΝΗΤΙΚΩΝ ΠΕΡΙΟΧΩΝ ΑΝΑΠΤΥΞΗΣ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΠΑΡΚΩΝ

8.1 ΚΑΘΟΡΙΣΜΟΣ ΖΩΝΩΝ ΑΠΟΚΛΕΙΣΜΟΥ/ΑΣΥΜΒΑΤΟΤΗΤΑΣ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ

Σε αναλογία με τις αιολικές εγκαταστάσεις, επιλέγεται να εφαρμοστούν και για τα φωτοβολταϊκά πάρκα (ΦΠ) δύο σενάρια αποκλεισμού, στην λογική που αναλύθηκε στην παράγραφο 4.3. Το πρώτο εφαρμόζει τους περιορισμούς χωροθέτησης που τίθενταν από τη νομοθεσία (βλ. παράγραφο 3.3), και μπορούν να υλοποιηθούν βάσει των διαθέσιμων δεδομένων (χάριν πληρότητας, αναφέρονται όλοι οι ισχύοντες περιορισμοί ακόμα και αν λόγω έλλειψης χωρικών δεδομένων κάποιοι περιορισμοί δεν ήταν δυνατόν να εφαρμοστούν στην παρούσα εργασία). Στο δεύτερο σενάριο προστίθενται κάποιοι περιορισμοί χωροθέτησης, περιβαλλοντικής ή και τεχνικής φύσης, οι οποίοι:

α. Αρθήκαν από το Ν. 3851/2010, αλλά στην πραγματικότητα κρίνεται ότι δεν χαίρουν κοινωνικής αποδοχής και δεν είναι στην κατεύθυνση της βιωσιμότητας

β. Δεν λήφθηκαν υπόψη από το ελληνικό νομικό πλαίσιο, αλλά υποστηρίζονται από τη διεθνή βιβλιογραφία και τις πολιτικές χωροθέτησης ΑΠΕ άλλων χωρών

γ. Σχετίζονται με τα ιδιαιτέρα χαρακτηριστικά της περιοχής μελέτης και των απαιτήσεων μεγάλων εγκαταστάσεων ΑΠΕ που εξετάζονται στην παρούσα εργασία.

Συγκεκριμένα, για το 1ο Σενάριο εφαρμόστηκαν οι περιοχές αποκλεισμού του ΕΠΧΣΑΑ-ΑΠΕ, οι οποίες δεν άρθηκαν από τον Ν. 3851/2010. Βάσει αυτών, αποκλείεται η χωροθέτηση οποιουδήποτε είδους εγκατάστασης παραγωγής ενέργειας από ηλιακά συστήματα στις έξι περιοχές:

β. Στις περιοχές απολύτου προστασίας της φύσης και του τοπίου (διατάξεις των άρθρων 19 παρ. 1 και 2 και 21 του Ν. 1650/1986)

γ. Στους εθνικούς δρυμούς, στα κηρυγμένα μνημεία της φύσης και στα αισθητικά δάση που βρίσκονται εντός της περιοχής μελέτης

δ. Στις περιοχές που τίθενται ως απαγορευτικές για εγκαταστάσεις ΑΠΕ από εγκεκριμένα ΣΓΠ/ΣΧΟΑΠΠ, οι οποίες λαμβάνουν υπόψη το ΕΠΧΣΑΑ για τις ΑΠΕ, συμφώνα και με το Ν. 3851/2010.

Καθώς στην παρούσα μελέτη αντικείμενο είναι οι μεγάλες φωτοβολταϊκές εγκαταστάσεις και όχι τα φωτοβολταϊκά σε στέγες, από το 1ο Σενάριο ήδη αποκλείονται οι περιοχές οικοανάπτυξης του
Corine 2000 (urban fabric, CLC; 211, 212) με ακτίνα 500 m. Επίσης, για λόγους περιορισμού θέασης των εγκαταστάσεων από πολυσύχναστους χώρους, αποκλείονται και οι οικισμοί της ΕΛΣΤΑΤ. Επειδή αυτοί δίνονται σημειακά, επιλέγεται να αποκλεισθούν με μια ακτίνα 1000 m, η οποία εκτιμάται ότι αποτελεί το όριο έκτασής τους (500 m), συν μια επιπλέον ακτίνα ορατότητας ίση με 500 m (ΥΠΕΚΑ, 2008).

Στις περιοχές αυτές προστίθενται, για λόγους βιωσιμότητας, οι περιοχές με χαμηλό ηλιακό δυναμικό, το οποίο μεταφράζεται σε ετήσια ηλιακή ακτινοβολία χαμηλότερη των 800 kWh/m².

Εικόνα 8.1 Επιτρεπόμενες περιοχές χωροθέτησης ΦΠ Σεναρίου 1

Όπως φαίνεται στην Εικόνα 8.1, η επιβολή των κριτηρίων της νομοθεσίας και του ελάχιστου δυναμικού δεν επιφέρουν σημαντική μείωση των επιτρεπόμενων περιοχών χωροθέτησης ΦΠ, καθώς η επιφάνεια μειώνεται στα 11 925 km², δηλαδή στο 85% της αρχικής διαθέσιμης (βλ. Εικόνα 8.2). Επίσης, σε αντίθεση με το αιολικό δυναμικό, το οποίο στην περίπτωση χωροθέτησης ΑΠ αποτελεί σημαντικό περιοριστικό παράγοντα για την Θεσσαλία, ο περιορισμός του βιώσιμου ηλιακού δυναμικού μειώνει ελάχιστα τις διαθέσιμες περιοχές χωροθέτησης ΦΒ εγκαταστάσεων (μόλις 27.28 km² έχουν ετήσιο ηλιακό δυναμικό μικρότερο των 800 000 Wh/m²).

Στο 2ο Σενάριο προστίθενται ως περιοχές ασυμβατότητας κάποιες περιοχές αποκλεισμού του ΕΠΣΣΑΑ- ΑΠΕ που αρθήκαν από το Ν.3851/2010:
α. Οι δασικές εκτάσεις, οι οποίες θεωρείται ότι ταυτίζονται με τα δάση του Corine 2000 (forests, CLC;311,312,313, καθώς δεν υπάρχει άλλη διαθέσιμη αποτύπωση
β. Οι ΤΚΣ (Τόποι Κοινοτικής Σημασία) του Δικτύου Natura 2000
γ. Οι γαίες υψηλής παραγωγικότητας που, λόγω απουσίας χωρικών δεδομένων, θεωρείται ότι ταυτίζονται με τις μόνιμες αρδευόμενες εκτάσεις (permanently irrigated land, CLC; 212) και τις μόνιμες καλλιέργειες (Permanent crops, CLC; 211-244) του Corine 2000.

Επιπλέον, για περιβαλλοντικούς, αισθητικούς λόγους, καθώς και για λόγους ασφαλείας τίθενται και οι εξής περιοχές αποκλεισμού (Aydin et al., 2013):

α. Βασικό οδικό δίκτυο, ακτές και ποτάμια, σε ακτίνα 100 m
β. Αεροδρόμια, με ζώνη αποκλεισμού ακτίνας 3000m
γ. Υγρότοποι και λίμνες, με ζώνη αποκλεισμού ακτίνας 2500 m
δ. Οι περιοχές προστασίας, απόλυτου προστασίας της φύσης και τα καταφύγια άγριας ζωής

Εικόνα 8.2 Επιτρεπόμενες περιοχές χωροθέτησης ΦΠ Σεναρίου 2

Στο 2ο σενάριο, οι περιοχές μειώνονται σημαντικά (35,3% της αρχικής έκτασης), κυρίως λόγω τις προσθήκης ως περιοχών αποκλεισμού των δασικών περιοχών, των γαίων υψηλής παραγωγικότητας και των περιοχών περιβαλλοντικής σημασίας (καταφύγια άγριας ζωής, περιοχές προστασίας της φύσης, ΤΚΣ Δικτύου Natura 2000). Υπολογίζοντας ότι για την εγκατάσταση φωτοβολταϊκών συστημάτων ισχύος 60 kW απαιτείται έκταση 1 200 m², δηλαδή εγκαθίστανται
0.05 kW/m² (Τσούτσος κ.α., 2013), προκύπτει η δυνητική μέγιστη εγκατεστημένη ισχύς ΦΠ στην Ηπειρωτική Θεσσαλία για τα δύο σενάρια. Συγκεκριμένα, βάσει του 1ου σεναρίου μπορούν να εγκατασταθούν ΦΠ ισχύος 600 GW, ενώ βάσει του 2ου σεναρίου περί τα 250 GW.

Πίνακας 8.1 Έκταση και ποσοστό κάλυψης των διαθέσιμων περιοχών των δύο σεναρίων για ΦΠ

<table>
<thead>
<tr>
<th>Σενάριο 1</th>
<th>Έκταση διαθέσιμων περιοχών (km²)</th>
<th>Εγκατεστημένη ισχύς (GW)</th>
<th>Ποσοστό κάλυψη (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σενάριο 1</td>
<td>11925</td>
<td>596,3</td>
<td>84,9%</td>
</tr>
<tr>
<td>Σενάριο 2</td>
<td>4956</td>
<td>247,8</td>
<td>35,3%</td>
</tr>
<tr>
<td>Θεσσαλία</td>
<td>14049</td>
<td>702,4</td>
<td>100%</td>
</tr>
</tbody>
</table>

8.2 ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΤΡΕΠΟΜΕΝΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ

Στόχος της αξιολόγησης είναι η ιεράρχηση των επιτρεπόμενων προς χωροθέτηση περιοχών Фωτοβολταϊκών Πάρκων, που προέκυψαν από τα δύο σενάρια (βλ. Παράγραφο 8.1) με μια σειρά κριτηρίων (περιβαλλοντικών, τεχνικοοικονομικών και αισθητικών) τα οποία πηγάζουν από την ισχύουσα νομοθεσία, τη διεθνή βιβλιογραφία, επιστημονικές έρευνες, αλλά και τις ιδιαιτερότητες της περιοχής μελέτης (βλ. Πίνακα 8.2).

Πίνακας 8.2 Κριτήρια αξιολόγησης για τη χωροθέτηση ΦΠ

<table>
<thead>
<tr>
<th>Κριτήριο αξιολόγησης</th>
<th>Τύπος κριτηρίου</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1 Ηλιακό δυναμικό</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CS2 Κλίση εδάφους</td>
<td>Τεχνοοικονομικό\ Αισθητικό</td>
</tr>
<tr>
<td>CS3 Απόσταση από το οδικό δίκτυο</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CS4 Απόσταση από το ηλεκτρικό δίκτυο μεταφοράς ενέργειας (Υ.Τ.& Μ.Τ)</td>
<td>Τεχνοοικονομικό</td>
</tr>
<tr>
<td>CS5 Υψόμετρο</td>
<td>Τεχνοοικονομικό\ Περιβαλλοντικό</td>
</tr>
<tr>
<td>CS6 Απόσταση από την ακτογραμμή και το υδρογραφικό δίκτυο</td>
<td>Αισθητικό\ Περιβαλλοντικό</td>
</tr>
<tr>
<td>CS7 Απόσταση από υγροτόπους και λίμνες</td>
<td>Αισθητικό\ Περιβαλλοντικό</td>
</tr>
<tr>
<td>CS8 Απόσταση από οικιστικές περιοχές</td>
<td>Αισθητικό\ Τεχνοοικονομικό</td>
</tr>
</tbody>
</table>

Παρουσιάζονται στις ακόλουθες υποενότητες χωρίς να γίνει διάκριση τους σε αμιγώς περιβαλλοντικά ή τεχνικά, καθώς πολλά από αυτά έχουν διπλό χαρακτήρα. Για κάθε κριτήριο δημιουργήθηκε πίνακας, με χωρισμό σε κλάσεις των τιμών και αντίστοιχη βαθμολογία. Τα όρια που επιλέχθηκαν για το κάθε κριτήριο τεκμηριώνονται βάσει βιβλιογραφικών αναφορών και από την ανάλυση των χαρακτηριστικών της περιοχής μελέτης που έγινε στο Κεφάλαιο 5.

Η κλίμακα αξιολόγησης που εφαρμόστηκε παρουσιάζεται στον Πίνακα 8.2 και είναι ίδια με αυτή που εφαρμόστηκε για τα αιολικά πάρκα, ώστε να διευκολύνεται η σύγκριση των αποτελεσμάτων. Αποτελείται από πέντε κλίμακες ιεράρχησης με βαθμολογία από μηδέν έως τέσσερα, με το μηδέν για την «ακατάλληλη» και το τέσσερα για την «πολύ υψηλής καταλληλότητας» αξιολόγηση.
Πίνακας 8.3 Κλίμακα αξιολόγησης της καταλληλότητας των θέσεων χωροθέτησης ΦΠ

<table>
<thead>
<tr>
<th>Κλίμακα αξιολόγησης</th>
<th>Βαθμολογία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πολύ υψηλή καταλληλότητα</td>
<td>4</td>
</tr>
<tr>
<td>Υψηλή καταλληλότητα</td>
<td>3</td>
</tr>
<tr>
<td>Ικανοποιητική καταλληλότητα</td>
<td>2</td>
</tr>
<tr>
<td>Οριακά αποδεκτή καταλληλότητα</td>
<td>1</td>
</tr>
<tr>
<td>Ακατάλληλη</td>
<td>0</td>
</tr>
</tbody>
</table>

8.2.1 ΚΡΙΤΗΡΙΟ ΗΛΙΑΚΟΥ ΔΥΝΑΜΙΚΟΥ

Δεδομένου ότι η βιωσιμότητα των επενδύσεων σε ΑΠΕ και τα συνεπαγόμενα περιβαλλοντικά οφέλη πηγάζουν από την καλή απόδοση της εγκατάστασης και την απορρόφηση της παραγόμενης ενέργειας, η επιλογή μιας θέσης με υψηλό δυναμικό αποτελεί από τους πλέον κρίσιμους παράγοντες επιτυχίας χωροθέτησης. Η κρισιμότητα αυτή αναγνωρίζεται και από την ΡΑΕ, που κατά την διαδικασία αδειοδότησης ζητά τεκμηρίωση της επάρκειας σε δυναμικό για την υποψηφία θέση.

Η κλίμακα αξιολόγησης για το ηλιακό δυναμικό φαίνεται στον Πίνακα 8.4, όπου η ποσοτικόποιση του ηλιακού δυναμικού γίνεται μέσω της ετήσιας ηλιακής ακτινοβολίας (σε kW/m²). Βάσει του χάρτη ηλιακού δυναμικού που αναπτύχθηκε, λίγες μόνο περιοχές της Περιφέρειας Θεσσαλίας συγκεντρώνουν πάνω από το όριο των 1800 kWh/m², το οποίο εφάρμοσαν οι Τσούτσος κ.ά. (2014) για την Περιφέρεια Κρήτης. Για τον λόγο αυτό, λόγω του γενικά χαμηλότερου ηλιακού δυναμικού περιοχής μελέτης, επιλέγεται το όριο της ανώτερης κλάσης να τεθεί στα 1600 αντί των 1800 kWh/m². Συμφωνά με τις αποτελέσματα της αξιολόγησης η Θεσσαλία παρουσιάζει πολύ καλή επίδοση, αφού σημαντικό ποσοστό της περιφέρειας, περίπου 9%, έχει συνολικό ετήσιο ηλιακό δυναμικό μεγαλύτερο των 1600 kWh/m², και άνω του 82% διαθέτει πάνω από 1400 kWh/m².

Πίνακας 8.4 Κριτήριο ηλιακού δυναμικού

<table>
<thead>
<tr>
<th>Συνολική ετήσια ηλιακή ακτινοβολία (kWh/m²)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1600</td>
<td>4</td>
<td>1212,9</td>
<td>8,63%</td>
</tr>
<tr>
<td>1400-1600</td>
<td>3</td>
<td>10272,4</td>
<td>73,12%</td>
</tr>
<tr>
<td>1200-1400</td>
<td>2</td>
<td>2341,7</td>
<td>16,67%</td>
</tr>
<tr>
<td>1200-1000</td>
<td>1</td>
<td>186,9</td>
<td>1,33%</td>
</tr>
<tr>
<td>800-1000</td>
<td>0</td>
<td>34,8</td>
<td>0,25%</td>
</tr>
</tbody>
</table>

Για την εφαρμογή της μεθοδολογίας παράγεται ο χάρτης της Εικόνας 8.3, με χρήση της εντολής Reclassify του Spatial Analyst και Raster εισόδου του χάρτη ηλιακού δυναμικού (βλ. παράγραφο 6.2.1), που παράχθηκε για την Περιφέρεια Θεσσαλίας. Βαθμολογία «4» παριζάνθηκε στον πλειόνοτητα τους οι νότιες κλίτες των βούνων, ένω βαθμολογία «3» οι πεδινές εκτάσεις του Θεσσαλικού κάμπου.
Εικόνα 8.3 Κριτήριο ηλιακού δυναμικού

8.2.2 ΚΡΙΤΗΡΙΟ ΚΛΙΣΕΩΝ ΕΔΑΦΟΥΣ

Οι κλίσεις του εδάφους αποτελούν σημαντικό τεχνικοοικονομικό αλλά και περιβαλλοντικό κριτήριο για την χωροθέτηση ΦΠ, λόγω των ενδεχόμενων αισθητικών και οικονομικών τους επιπτώσεων στις εγκαταστάσεις. Συγκεκριμένα, τυχόν απαίτηση εξομάλυνσης μιας περιοχής χωροθέτησης απαιτεί εκτενέστατα χωματουργικά έργα, αφού μεγάλες τιμές κλίσεων εδάφους δυσκολεύουν την σωστή χωροθέτηση (με βέλτιστη κλίση) των ηλιακών πάνελ. Η Θεσσαλία, όπως αναδείχθηκε και στην παράγραφο 5.2, εμφανίζει ιδιαίτερα ευνοϊκές κλίσεις για την χωροθέτηση φωτοβολταϊκών εγκαταστάσεων, λόγω της πεδινής μορφολογίας του κεντρικού της τμήματος. Μάλιστα, οι ήπιες κλίσεις επηρεάζουν θετικά και το ηλιακό δυναμικό της περιοχής (βλ. παράγραφο 6.2), το οποίο είναι από τα υψηλότερα της χώρας, ιδιαίτερα κατά τους καλοκαιρινούς μήνες.

Δεδομένου ότι η νομοθεσία δεν θέτει όρια κλίσεων για τις εγκαταστάσεις φωτοβολταϊκών, αναζητήθηκαν αντίστοιχα όρια στην βιβλιογραφία (Aydin et al., 2013; Τσόύτσος κ.ά., 2014), σύμφωνα με την οποία κλίσεις μέχρι 15% θεωρούνται αποδεκτές, ενώ μέχρι 7% κατάλληλες. Για λόγους συμμετρίας των κλάσεων, εδώ χρησιμοποιείται ως ανώτατη τιμή το 16%, η οποία είναι αισθητά χαμηλότερη σε σχέση με τα αιολικά, για τα οποία υιοθετείται μέγιστη επιτρεπτή κλίση 30%. Οι κλάσεις διαμορφώθηκαν όπως φαίνονται στον Πίνακα 8.5. Για την υλοποίηση του χάρτη
κριτηρίου κλίσεων της Εικόνας 8.4, εφαρμόστηκε και πάλι το εργαλείο Reclassify του Spatial Analyst, με αρχείο εισόδου τον χάρτη κλίσεων σε % (αρχείο τύπου Raster).

Πίνακας 8.5 Κριτήριο κλίσεων εδάφους (%) για χωροθέτηση ΦΠ

<table>
<thead>
<tr>
<th>Κλίση εδάφους (%)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7%</td>
<td>4</td>
<td>4933,9</td>
<td>35,18%</td>
</tr>
<tr>
<td>7-10%</td>
<td>3</td>
<td>508,9</td>
<td>3,63%</td>
</tr>
<tr>
<td>10-13%</td>
<td>2</td>
<td>465,9</td>
<td>3,32%</td>
</tr>
<tr>
<td>13-16%</td>
<td>1</td>
<td>429,5</td>
<td>3,06%</td>
</tr>
<tr>
<td>>16%</td>
<td>0</td>
<td>7685,8</td>
<td>54,80%</td>
</tr>
</tbody>
</table>

Εικόνα 8.4 Κριτήριο κλίσεων εδάφους

Η εφαρμογή της κλίμακας βαθμολόγησης και τα αποτελέσματα που προκύπτουν (βλ. Εικόνα 8.4), επιβεβαιώνουν την ύπαρξη ηπίων κλίσεων στην Περιφέρεια Θεσσαλίας, με το 35% περίπου της περιοχής να παρουσιάζει κλίσεις μικρότερες του 7%.

Σημειώνεται ότι, πέραν των τοπικών κλίσεων στη θέση χωροθέτησης, σημαντικές είναι και οι όμορες κλίσεις στην γύρω περιοχή, οι οποίες μπορεί να δυσκολεύσουν ή να διευκολύνουν την κατασκευή των συνοδόνων έργων (π.χ., δρόμοι μεταφοράς υλικών, σύνδεση με το ηλεκτρικό δίκτυο κτλ.), τα οποία δεν λαμβάνονται υπόψη μέσω του παραπάνω κριτηρίου.
8.2.3 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΟΔΙΚΟ ΔΙΚΤΥΟ

Η πυκνότητα του οδικού δικτύου είναι κρίσιμη για την οικονομική βιωσιμότητα των ΦΠ, καθώς επηρεάζει σημαντικά το κόστος κατασκευής και συντήρησης της εγκατάστασης. Για τις φωτοβολταϊκές εγκαταστάσεις, δεν τίθενται από το ΕΠΧΣΑΑ-ΑΠΕ ελάχιστα και μέγιστα όρια, όπως στη περίπτωση των αιολικών πάρκων, αναφέρεται όμως ότι «ενδείκνυται η αξιοποίηση / χρήση υφισταμένων οδών με τις απαραίτητες βελτιώσεις και επεκτάσεις. Ο σχεδιασμός των έργων αυτών πρέπει να γίνεται κατά τρόπο ώστε να αποφεύγονται, κατά το δυνατόν, μεγάλου βάθους και εκτεταμένες εκσκαφές το δε πλάτος των δρόμων πρόσβασης πρέπει να περιορίζεται στο αναγκαίο μέτρο.»

Εικόνα 8.5 Κριτήριο απόστασης από το οδικό δίκτυο

Πίνακας 8.6 Κριτήριο απόστασης από το οδικό δίκτυο για χωροθέτηση ΦΠ

<table>
<thead>
<tr>
<th>Απόσταση από οδικό δίκτυο (km)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>4</td>
<td>5809,4</td>
<td>42,03%</td>
</tr>
<tr>
<td>1-2</td>
<td>3</td>
<td>3007,3</td>
<td>21,76%</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>1742,1</td>
<td>12,60%</td>
</tr>
<tr>
<td>3-4</td>
<td>1</td>
<td>1140,1</td>
<td>8,25%</td>
</tr>
<tr>
<td>>4</td>
<td>0</td>
<td>2123,4</td>
<td>15,36%</td>
</tr>
</tbody>
</table>
Στην λογική της κατά το δυνατόν αποφυγής χωροθέτησης εγκαταστάσεων σε απομακρυσμένες από το οδικό δίκτυο περιοχές, επιλέγεται ως ανώτατο όριο η απόσταση των 4 km. Η διαμόρφωση των κλάσεων φαίνεται στον Πίνακα 5.6, με ανώτερη βαθμολογικά την κλάση με απόσταση από το οδικό δίκτυο μικρότερη του 1 km. Σημειώνεται ότι για την εφαρμογή του κριτηρίου δεν έγινε διάκριση ως προς την κατηγορία του οδικού δικτύου (αυτοκινητόδρομοι, επαρχιακές οδοί, κ.α.), καθώς δεν επιδρά σημαντικά στην οικονομικότητα της εγκατάστασης ΦΠ. Παρατηρείται ότι το 42% της έκτασης της περιοχής απέχει απόσταση μικρότερη του 1 km από το οδικό δίκτυο, ενώ το 15% μεγαλύτερη από 4 km. Για την παραγωγή του χάρτη κριτηρίου απόσταση από τα οδικά δίκτυα (βλ. Εικόνα 8.5) εφαρμόστηκε αρχικά το εργαλείο Euclidean Distance, με είσοδο το οδικό δίκτυο, και στη συνέχεια το Reclassify, για την εισαγωγή της βαθμολογίας των κλάσεων τιμών.

8.2.4 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΙΚΤΥΟ ΜΕΤΑΦΟΡΑΣ ΕΝΕΡΓΕΙΑΣ

Η εγγύτητα της εγκατάστασης με το ηλεκτρικό δίκτυο μεταφοράς και διανομής, καθώς και η χωρητικότητα του, είναι καθοριστικής σημασίας για την βιωσιμότητα των εγκαταστάσεων ΑΠΕ. Αυτό συμβαίνει διότι το ηλεκτρικό δίκτυο αποτελεί την οδό σύνδεσης της παραγωγής με την κατανάλωση, που είναι και ο κύριος στόχος της επένδυσης. Ειδικά για τα φωτοβολταϊκά πάρκα, τα οποία έχουν μικρή σχετικά εγκατεστημένη ισχύ (βλ. παράγραφο 5.8.3), η σύνδεση γίνεται στο δίκτυο διανομής χαμηλής ή μέσης τάσης, ανάλογα με το μέγεθος της εγκατεστημένης ισχύος και την δυνατότητα πρόσβασης σε Y/Σ και δίκτυο διανομής.

Καθώς το ΕΠΧΣΑΑ-ΑΠΕ δεν θέτει για τις εγκαταστάσεις φωτοβολταϊκών συγκεκριμένα όρια απόστασης από το ηλεκτρικό δίκτυο διανομής και μεταφοράς ενέργειας, αυτά θεωρούνται κατ’ αναλογία με τα αιολικά πάρκα με ανώτερες επιτρεπτές απόστασες από το ηλεκτρικό δίκτυο διανομής και μεταφοράς ενέργειας, δηλαδή 10 km (Πίνακας 8.7). Το κριτήριο εφαρμόζεται για τις γραμμές μεταφοράς υψηλής ή μέσης τάσης. Τα αποτελέσματα που προκύπτουν για την Περιφέρεια Θεσσαλίας είναι αρκετά ευνοϊκά, καθώς το 44 % της έκτασης της περιοχής απέχει απόσταση μικρότερη των 4 km από τις γραμμές μεταφοράς υψηλής ή μέσης τάσης.

Πίνακας 8.7 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής και μεταφοράς ενέργειας για τη χωροθέτηση ΦΠ (ΥΠΕΚΑ, 2008)

<table>
<thead>
<tr>
<th>Απόσταση από δίκτυο διανομής (km)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>4</td>
<td>1968,3</td>
<td>14,24%</td>
</tr>
<tr>
<td>1-4</td>
<td>3</td>
<td>4086,3</td>
<td>29,56%</td>
</tr>
<tr>
<td>4-7</td>
<td>2</td>
<td>2775,4</td>
<td>20,08%</td>
</tr>
<tr>
<td>7-10</td>
<td>1</td>
<td>1738,9</td>
<td>12,58%</td>
</tr>
<tr>
<td>>10</td>
<td>0</td>
<td>3253,4</td>
<td>23,54%</td>
</tr>
</tbody>
</table>

Η σημασία της χωρητικότητας και του συνεπαγόμενου βαθμού κορεσμού του δικτύου, από τον οποίο εξαρτάται και η δυνατότητα απορρόφησης της παραγόμενης ενέργειας, ξεφεύγουν της παρούσας εργασίας. Στη βιβλιογραφία, αναφέρεται η χρήση αλγορίθμων βελτιστοποίησης που
προτείνουν τη βέλτιστη διάταξη και σύνδεση των μονάδων διεσπαρμένης παραγωγής, για την κατά το δυνατόν μεγαλύτερη απόδοσή τους. Μάλιστα η ΡΑΕ, λόγω του κορεσμού που έχει εμφανιστεί λόγω της εκτεταμένης σύνδεσης ΑΠΕ, εκδίδει κατά καιρούς αποφάσεις αδυναμίας ή περιορισμένης δυνατότητας απορρόφησης για συγκεκριμένες κατηγορίες παραγωγών, μετά από εισήγηση του αρμόδιου Διαχειριστή Δικτύου.

Εικόνα 8.6 Κριτήριο απόστασης από το ηλεκτρικό δίκτυο διανομής ενέργειας

8.2.5 ΚΡΙΤΗΡΙΟ ΥΨΟΜΕΤΡΟΥ

Το υψόμετρο αποτελεί κρίσιμο τεχνικό και περιβαλλοντικό κριτήριο, καθώς συχνά πάνω από τα 900 m απαντώνται σπανία ειδή χλωρίδας και πανίδας (βλ. παράγραφο 5.4). Ως προς τις τεχνικές δυσκολίες, οι επικρατούσες χαμηλές θερμοκρασίες δρουν αρνητικά για την απόδοση των ηλιακών πάνελ και την συντήρησή τους, ενώ αυξάνονται και τα προβλήματα σύνδεσης με το ηλεκτρικό δίκτυο, λόγω τις αραιότερης διάταξης του σε ορεινές περιοχές και της δυσκολίας προσέγγισης, λόγω των απότομων κλίσεων.

Για όλους αυτούς του λόγους εφαρμόζεται η κλίμακα του Πίνακα 8.8, με τις περιοχές με υψόμετρο ανω των 1500 m, να χαρακτηρίζονται ακατάλληλες για τη χυμοθέτηση, και τις περιοχές με υψόμετρο κάτω των 300 m να θεωρούνται, υψηλής καταληλότητας βαθμολογία 4. Συγκεκριμένα, το 49% της περιφέρειας έχει υψόμετρο μικρότερο των 300 m, αποτέλεσμα ιδιαίτερα ευνοϊκό για
την χωροθέτηση. Τη χειριστή βαθμολογία λαμβάνει μόνο το 3% της περιοχής μελέτης, που έχει υψόμετρο πάνω από 1500 m. Πρόκειται για αναμενόμενα αποτελέσματα, δεδομένης της πεδινής μορφολογίας της Θεσσαλίας (βλ. παράγραφο 5.2).

Πίνακας 8.8 Κριτήριο υψομέτρου (m) για τη χωροθέτηση φωτοβολταϊκών πάρκων

<table>
<thead>
<tr>
<th>Υψόμετρο (m)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><300</td>
<td>4</td>
<td>6864,0</td>
<td>48,94%</td>
</tr>
<tr>
<td>300-700</td>
<td>3</td>
<td>3438,2</td>
<td>24,52%</td>
</tr>
<tr>
<td>700-1100</td>
<td>2</td>
<td>2092,1</td>
<td>14,92%</td>
</tr>
<tr>
<td>1100-1500</td>
<td>1</td>
<td>1175,2</td>
<td>8,38%</td>
</tr>
<tr>
<td>>1500</td>
<td>0</td>
<td>454,6</td>
<td>3,24%</td>
</tr>
</tbody>
</table>

Εικόνα 8.7 Κριτήριο υψομέτρου

8.2.6 ΚΡΙΤΗΡΙΟ ΑΠΟΣТАΣΗΣ ΑΠΟ ΟΙΚΙΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Οι οικιστικές περιοχές αποτελούν διφορούμενο παράγοντα στην χωροθέτηση ΑΠΕ. Γενικά, από τεχνική άποψη, θεωρείται ευνοϊκή η χωροθέτηση εγκαταστάσεων ΑΠΕ πλησίον των οικισμών, για την μείωση των απωλειών και του κόστους επέκτασης του δικτύου μεταφοράς ενέργειας. Από την άλλη πλευρά, επιβάλλεται η κατά το δυνατόν απομάκρυνσή τους από πολυσύχναστες περιοχές για την μείωση των αισθητικών επιπτώσεων. Η παράμετρος αυτή λαμβάνεται υπόψη και από τον
ΕΠΧΣΑΑ για τις ΑΠΕ ο οποίος αναφέρει ότι: «Ως περιοχές προτεραιότητας για τη χωροθέτηση εγκαταστάσεων εκμετάλλευσης της ηλιακής ενέργειας μπορεί ενδεικτικά να θεωρηθούν οι περιοχές που είναι άγονες ή δεν είναι υψηλής παραγωγικότητας και κατά προτίμηση αδέατες από πολυσύχναστους χώρους, και με δυνατότητες διασύνδεσης με το Δίκτυο ή το Σύστημα.»

Εικόνα 8.8 Κριτήριο απόστασης από οικιστικές περιοχές

Πίνακας 8.9 Κριτήριο απόστασης από οικιστικές περιοχές

<table>
<thead>
<tr>
<th>Απόσταση από όριο οικισμού (km)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>0</td>
<td>3353,1</td>
<td>24,26%</td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
<td>4105,8</td>
<td>29,70%</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>3011,7</td>
<td>21,79%</td>
</tr>
<tr>
<td>3-4</td>
<td>3</td>
<td>1785,4</td>
<td>12,92%</td>
</tr>
<tr>
<td>>4</td>
<td>4</td>
<td>1566,3</td>
<td>11,33%</td>
</tr>
</tbody>
</table>

Στο πλαίσιο της κατά το δυνατόν μείωσης της αισθητικής όχλησης, εφαρμόζουμε την κλίμακα αξιολόγησης του Πίνακα 8.9(σε όρους απόστασης), για τον περιορισμό της θέασης ΦΠ από τις οικιστικές περιοχές. Γίνεται εφαρμογή γραμμικής κλίμακας, με τις περιοχές σε απόσταση μικρότερη του 1 km να παίρνουν βαθμολογία «0», και αυτές σε απόσταση μεγαλύτερη των 4 km να λαμβάνουν «4». Η κλίμακα αύτη εφαρμόζεται για την απόσταση από τους οικισμούς της ΕΛΣΤΑΤ (θεωρώντας ότι καταλαμβάνουν ζώνη ακτίνας 1 km) και τις οικιστικές περιοχές του Corine 2000.
(Urban areas, CLC 111, 112). Σημειώνεται ότι το 44% της Περιφέρειας Θεσσαλίας βρίσκεται σε απόσταση μικρότερη των 2 km από οικιστικές περιοχές, γεγονός που αναδεικνύει την σημαντική διασπορά των οικισμών στην περιοχή μελέτης και της σημαντικής επιρροής τους στην αξιολόγηση.

8.2.7 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΑΚΤΟΓΡΑΜΜΗ & ΥΔΑΤΙΝΑ ΣΩΜΑΤΑ

Στο πνεύμα της κατά το δυνατό μείωσης της θέασης των ΦΠ από πολυπληθείς περιοχές εφαρμόζονται για τα υδάτινα σώματα και τις ακτές ελάχιστες αποστάσεις όπως διακρίνονται στον Πίνακα 8.10. Συγκεκριμένα για την ακτογραμμή, υπεισέρχονται και λόγοι περιορισμού της ελεύθερης πρόσβασης στις ακτές (σε συμφωνία με το Ν.2971/2001 "Αιγιαλός, Παραλία και άλλες διατάξεις" ΦΕΚ 285Α/2001), περιορισμού της θέασης εγκαταστάσεων ΦΠ από τουριστικές δραστηριότητες και προστασίας θαλασσιών οικοσυστημάτων από κινδύνους ρύπανσης. Επίσης υπεισέρχονται και τεχνικοί λόγοι, καθώς η αλμύρα μειώνει το χρόνο ζωής και την απόδοση των ηλιακών συστημάτων. Τα υδάτινα σώματα αντίστοιχα, χαρακτηρίζονται από τουριστική κίνηση, επιβάλλοντας την τήρηση ελαχιστών αποστάσεων για λόγους θέασης, ενώ ταυτόχρονα αποτελούν και ευαίσθητους αποδέκτες, για τους οποίους κάποια υλικά των Φωτοβολταϊκών πάρκων σε περίπτωση εγκατάλειψης μπορούν να αποτελέσουν ρυπαντές μέσω του υδροφόρου ορίζοντα.

Εικόνα 8.9 Κριτήριο απόστασης από ακτογραμμή και υδάτινα σώματα
Εφαρμόζοντας την κλίμακα του Πίνακα 8.10 προκύπτει ότι το 77% της έκτασης της Θεσσαλίας απέχει μεγαλύτερη από 1 km απόσταση από την ακτογραμμή και υδάτινα σώματα.

Πίνακας 8.10 Κριτήριο απόστασης (m) από την ακτογραμμή και υδάτινα σώματα για χωροθέτηση ΦΠ

<table>
<thead>
<tr>
<th>Απόσταση από ακτογραμμή και ποτάμια (m)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td><250</td>
<td>0</td>
<td>1188,625</td>
<td>7,57%</td>
</tr>
<tr>
<td>250-500</td>
<td>1</td>
<td>799,5</td>
<td>5,09%</td>
</tr>
<tr>
<td>500-750</td>
<td>2</td>
<td>927,3125</td>
<td>5,90%</td>
</tr>
<tr>
<td>750-1000</td>
<td>3</td>
<td>746,9375</td>
<td>4,76%</td>
</tr>
<tr>
<td>>1000</td>
<td>4</td>
<td>12041,8125</td>
<td>76,68%</td>
</tr>
</tbody>
</table>

8.2.8 ΚΡΙΤΗΡΙΟ ΑΠΟΣΤΑΣΗΣ ΑΠΟ ΛΙΜΝΕΣ & ΥΓΡΟΤΟΠΟΥΣ

Το κριτήριο αυτό τίθεται στην λογική της περιβαλλοντικής προστασίας, αλλά και της ενδεχόμενης τουριστικής αξίας, λόγω της συγκέντρωσης σημαντικού αριθμού επισκεπτών στις περιοχές των λιμνών και υγροτόπων.

Εικόνα 8.10 Κριτήριο απόστασης από λίμνες και υγροτόπους

Επιλέγεται ως βέλτιστη η απόσταση των 4 km, η οποία εφαρμόστηκε για τους ταμιευτήρες και τις περιοχές υγροτόπων του Corine 2000 (Inland Wetlands, CLC 411;4 12). Ως ελάχιστη εφαρμόζεται η απόσταση 2500 m, η οποία είναι αυστηρότερη από αυτή που εφαρμόστηκε για τα ποτάμια και τις
ακτές. Πρόκειται για κριτήριο με μικρή σχετικά σημασία, καθώς το 85% της Περιφέρειας Θεσσαλίας χαρακτηρίζεται ως υψηλής καταλληλότητας, σύμφωνα με τον Πίνακα 8.11.

Πίνακας 8.11 Κριτήριο απόστασης από λίμνες και υγροτόπους (m) για χωροθέτηση ΦΠ

<table>
<thead>
<tr>
<th>Απόσταση από λίμνες και υγροτόπους (km)</th>
<th>Βαθμολογία</th>
<th>Έκταση (km²)</th>
<th>Ποσόστο</th>
</tr>
</thead>
<tbody>
<tr>
<td><2,5</td>
<td>4</td>
<td>12219,7</td>
<td>88,41%</td>
</tr>
<tr>
<td>2,5-3</td>
<td>3</td>
<td>231,4</td>
<td>1,67%</td>
</tr>
<tr>
<td>3-3,5</td>
<td>2</td>
<td>240,9</td>
<td>1,74%</td>
</tr>
<tr>
<td>3,5-4</td>
<td>1</td>
<td>195,6</td>
<td>1,42%</td>
</tr>
<tr>
<td>>4</td>
<td>0</td>
<td>934,6</td>
<td>6,76%</td>
</tr>
</tbody>
</table>

8.3 ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΑΤΑΛΛΗΛΟΤΗΤΑΣ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ ΠΕΡΙΦΕΡΕΙΑΣ ΘΕΣΣΑΛΙΑΣ

Αφού ολοκληρώθηκε η επιλογή των κριτηρίων και η εφαρμογή κατάλληλης κλίμακας αξιολόγησης για κάθε κριτήριο, εφαρμόστηκε στα οκτώ προκριμένα κριτήρια πολυκριτηριακή ανάλυση με ισοβαρείς συντελεστές για όλα τα κριτήρια. Για τον σκοπό αυτό, επιλέχθηκε το εργαλείο Weighted Sum της epέκτασης Spatial Analyst του ArcGIS 10.4, το οποίο αθροίζει τις τιμές όλων των αρχείων raster που αντιστοιχούν στο ίδιο κελι, δημιουργώντας ένα αθροιστικό arχείο raster με εύρος τιμών [0-32] για όλα τα κριτήρια που αντιπροσωπεύει τη βαθμολογία του ως προς την καταλληλότητα χωροθέτησης ΦΠ (βλ. Εικόνα 8.11)

Εικόνα 8.11 Αξιολόγηση Περιφερείας Θεσσαλίας για χωροθέτηση ΦΠ με εφαρμογή 8 κριτηρίων
Πίνακας 8.12 Αξιολόγηση του συνόλου της Περιφέρειας Θεσσαλίας για τα 8 κριτήρια χωροθέτησης ΦΠ

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Έκταση περιοχών χωροθέτησης (km²)</th>
<th>Δυνητική εγκατεστημένη ισχύς (GW)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>3381,81</td>
<td>169,09</td>
<td>24,55%</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>7858,31</td>
<td>392,92</td>
<td>57,04%</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>2496,69</td>
<td>124,83</td>
<td>18,12%</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>39,69</td>
<td>1,98</td>
<td>0,29%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>13776,50</td>
<td>688,82</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Για την παρουσίαση και τελική επιλογή των βιώσιμων περιοχών χωροθέτησης, τα αποτελέσματα χωρίστηκαν σε τέσσερις κλάσεις, που εκφράζουν το ποσοστό καταλληλότητας κάθε περιοχής ανάλογα με τη βαθμολογία που συγκέντρωσε. Για λόγους πληρότητας και σύγκρισης, τα αποτελέσματα παρουσιάζονται και για τα δύο σενάρια χωροθέτησης, αν και τελικά προκρίνονται μόνο οι περιοχές του Σεναρίου 2 (βλ. παράγραφο 8.5). Όπως αποτυπώνεται στον Πίνακα 8.12, αν ήταν δυνατό να αξιοποιηθεί το σύνολο της Θεσσαλίας για τη χωροθέτηση φωτοβολταϊκών πάρκων, το 25% θα παρουσιάζει καταλληλότητα ανώ του 75%, με δυνατότητα εγκατάστασης 170 GW, ποσοστό που αναδεικνύει την καλή επίδοση της Θεσσαλίας για της ηλιακές εγκαταστάσεις. Σημαντικό είναι και το ποσοστό περιοχών με καταλληλότητα 50-75%, που ανέρχεται στο 57%.

Εικόνα 8.12 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 1
Πίνακας 8.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης Σεναρίου 1

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Δυνητική εγκατεστημένη ισχύς (GW)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>2894,75</td>
<td>144,74</td>
<td>24,75%</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>6697,56</td>
<td>334,88</td>
<td>57,26%</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>2076,69</td>
<td>103,83</td>
<td>17,75%</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>28,69</td>
<td>1,43</td>
<td>0,25%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>11697,69</td>
<td>584,88</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Εικόνα 8.13 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 2

Πίνακας 8.14 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης Σεναρίου 2

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Δυνητική εγκατεστημένη ισχύς (GW)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>1402,75</td>
<td>70,14</td>
<td>28,40%</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>2985,69</td>
<td>149,28</td>
<td>60,45%</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>549,56</td>
<td>27,48</td>
<td>11,13%</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>0,75</td>
<td>0,04</td>
<td>0,02%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>4938,75</td>
<td>246,94</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Ακολούθως εφαρμόζεται η αξιολόγηση στις επιτρεπόμενες περιοχές του Σεναρίου 2, στο οποίο φαίνεται ότι αφαιρούνται σε μεγαλύτερο ποσοστό περιοχές με καταλληλότητα κάτω του 50%. Με αλλά λόγια στο Σενάριο 2 προκρίνονται υψηλότερες βαθμολογικά περιοχές σε σχέση με την
συνολική έκταση της Θεσσαλίας. Με βάση τα αποτελέσματα, μπορούν να εγκατασταθούν 70 GW σε περιοχές καταλληλότητας άνω του 75%, και 150 GW σε περιοχές καταλληλότητας άνω του 50%.

8.4 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΚΡΙΤΗΡΙΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ

Για να αξιολογηθεί η επιλογή των κριτηρίων και η επίδρασή τους στην αξιολόγηση επιλέγεται να εφαρμοστεί πολυκριτηριακή ανάλυση, λαμβάνοντας υπόψη μόνο τους «τεχνικούς» και μόνο τους «περιβαλλοντικούς» παράγοντες. Ως «τεχνικοί» επιλέγονται το ηλιακό δυναμικό, η κλίση, η απόσταση από το οδικό δίκτυο και το δίκτυο μεταφοράς ηλεκτρικής ενέργειας, ενώ ως «περιβαλλοντικοί» το υψόμετρο, η απόσταση από οικιστικές περιοχές, η απόσταση από λίμνες και υγροτόπους, και η απόσταση από την ακτογραμμή και τα υδάτινα σώματα.

Ακολούθως προσδιορίζονται τα ποσοστά καταλληλότητας που προκύπτουν για τις επιτρεπόμενες περιοχές χωροθέτησης του Σεναρίου 2 για την «περιβαλλοντική» και «τεχνική» αξιολόγηση αντίστοιχα, όπως φαίνεται στον Γίνακα 8.15. Παρατηρείται το χαμηλότερο ποσοστό καταλληλότητας για τη κατηγορία 75-100% των τεχνικών κριτήρων, το οποίο είναι 23%, ενώ για τα περιβαλλοντικά 58%. Συνεπώς σε περίπτωση που τα τεχνικά κριτήρια βάραιναν περισσότερο στην συνολική αξιολόγηση σε σχέση με τα περιβαλλοντικά, θα μειώνονταν σημαντικά οι πλέον κατάλληλες περιοχές χωροθέτησης. Σημαντική είναι και η επίδρασή των κριτηρίων στις κάτω κλάσεις καταλληλότητας οπού για τα περιβαλλοντικά κριτήρια μόλις το 2% της Περιφέρειας παίρνει ποσοστό κάτω του 50%, ενώ για τα τεχνικά το 46%. Η χωρική διάσταση αυτής της
διαφοροποίησης αποτυπώνεται στις εικόνες 8.14 και 8.15 αντίστοιχα οπού για τους περιβαλλοντικούς παραγόντες σχεδόν απουσίαζουν οι περιοχές με καταλληλότητα κάτω του 25%, ενώ για τους τεχνικούς έχουν σημαντική έκταση πού αφορά στην περιφερειακή ζώνη της Θεσσαλίας, εκτός του Θεσσαλικού κάμπτου.

Εικόνα 8.15 Αξιολόγηση επιτρεπόμενων περιοχών χωροθέτησης ΦΠ Σεναρίου 2 βάσει περιβαλλοντικών κριτηρίων

Πίνακας 8.15 Ποσοστά καταλληλότητας τεχνικής & περιβαλλοντικής αξιολόγησης για τις περιοχές του Σεναρίου 2

<table>
<thead>
<tr>
<th>Βαθμολογική κλίμακα</th>
<th>Ποσοστό καταλληλότητας</th>
<th>Τεχνική αξιολόγηση</th>
<th>Περιβαλλοντική αξιολόγηση</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-16</td>
<td>75-100 %</td>
<td>1133,94</td>
<td>22,96%</td>
</tr>
<tr>
<td>8-12</td>
<td>50-75 %</td>
<td>1542,06</td>
<td>31,22%</td>
</tr>
<tr>
<td>4-8</td>
<td>25-50 %</td>
<td>1693,31</td>
<td>34,29%</td>
</tr>
<tr>
<td>0-4</td>
<td>0-25 %</td>
<td>569,44</td>
<td>11,53%</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>4938,75</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
<th>Έκταση επιτρεπόμενων περιοχών χωροθέτησης (km²)</th>
<th>Ποσοστό ανά κατηγορία καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>2859,06</td>
<td>57,89%</td>
<td>1987,69</td>
<td>40,25%</td>
</tr>
<tr>
<td>91,63</td>
<td>1,86%</td>
<td>4938,74</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

8.5 ΕΠΙΛΟΓΗ ΒΙΩΣΙΜΩΝ ΠΕΡΙΟΧΩΝ ΧΩΡΟΘΕΤΗΣΗΣ ΦΠ

Για την επιλογή των βιώσιμων περιοχών χωροθέτησης φωτοβολταϊκών πάρκων επιλέγεται να εφαρμοστούν, επιπλέον της αξιολόγησης, κάποια φίλτρα. Προκρίνονται έτσι:
α. Περιοχές που αξιολογούνται με ποσοστό προτεραιότητας πάνω από 75%, για όλα τα κριτήρια εκτός του ηλιακού δυναμικού.

β. Περιοχές που αποτελούν επιτρεπόμενες περιοχές του Σεναρίου 2, οι οποίες πληρούν τους θεσμικούς, περιβαλλοντικούς και τεχνικούς περιορισμούς χωροθέτησης.

γ. Περιοχές με μέση ετήσια ηλιακή ακτινοβολία μεγαλύτερη από 1400 kWh/m², ώστε να εξασφαλιστούν ικανοποιητικές τιμές ηλιακού δυναμικού

δ. Περιοχές εμβαδού μεγαλύτερου 1 200 m², ώστε να είναι δυνατή η εγκατάσταση ΦΠ ισχύς 60 kW.

Εικόνα 8.16 Βιώσιμες περιοχές χωροθέτησης ΦΠ

Με βάση τους παραπάνω περιορισμούς προκύπτει ο χάρτης της Εικόνας 8.16, όπου φαίνονται οι βιώσιμες περιοχές χωροθέτησης ΦΠ, οι οποίες αποτελούν το 9% της έκτασης της Περιφέρειας Θεσσαλίας. Βάσει του Πίνακα 8.16 συνεπάγεται ότι μπορούν να εγκατασταθούν 60 GW σε υψηλής καταλληλότητας περιοχές (μεγαλύτερη του 75%). Αν επιλεχθούν δε αυστηρά οι περιοχές με βαθμολογία 28, δηλαδή 100% καταλληλότητα, μπορούν να τοποθετηθούν περίπου 250 MW. Πρόκειται για ιδιαίτερα μεγάλες τιμές σε περιφερειακό επίπεδο, οι οποίες είναι αναδεικνύουν την δυναμική της Θεσσαλίας στην ανάπτυξη ΦΠ, δεδομένου ότι είναι σε λειτουργία μόλις 78MW με βάση τα στοιχεία του ΑΔΜΗΕ για τον Μάρτιο του 2016.
Πίνακας 8.16 Βιώσιμες περιοχές χωροθέτησης ΦΠ

<table>
<thead>
<tr>
<th>Βαθμολογία</th>
<th>Εκταση (km²)</th>
<th>Εγκατεστημένη ισχύς (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>234,00</td>
<td>11700,0</td>
</tr>
<tr>
<td>23</td>
<td>321,25</td>
<td>16062,5</td>
</tr>
<tr>
<td>24</td>
<td>313,31</td>
<td>15665,6</td>
</tr>
<tr>
<td>25</td>
<td>207,81</td>
<td>10390,6</td>
</tr>
<tr>
<td>26</td>
<td>95,69</td>
<td>4784,4</td>
</tr>
<tr>
<td>27</td>
<td>28,69</td>
<td>1434,4</td>
</tr>
<tr>
<td>28</td>
<td>4,94</td>
<td>246,9</td>
</tr>
</tbody>
</table>

Σύνολο 60284,375

8.6 ΑΞΙΟΛΟΓΗΣΗ ΑΔΕΙΟΔΟΤΗΜΕΝΩΝ ΦΠ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

Στην παράγραφο αυτή επιχειρείται η εφαρμογή της μεθοδολογίας αξιολόγησης για την εκτίμηση των πραγματικών αιτήσεων προς χωροθέτηση φωτοβολταϊκών εγκαταστάσεων. Συγκεκριμένα, επιλέγουμε να φιλτράρουμε τα υποψήφια προς αδειοδότηση ή ήδη αδειοδοτημένα έργα, ώστε να εξεταστεί κατά πόσο επαληθεύονται τα αποτελέσματα με τις αποφάσεις της ΡΑΕ. Σε πρώτο στάδιο, ελέγχεται τι ποσοστό των θέσεων χωροθέτησης βρίσκεται εντός των επιτρεπόμενων περιοχών του Σεναρίου 1 ή 2, και ακολούθως τα ποσοστά καταλληλότητας που συγκεκριμένουν.

Πίνακας 8.17 Αξιολόγηση αδειοδοτημένων και προς αδειοδότηση φωτοβολταϊκών εγκαταστάσεων

<table>
<thead>
<tr>
<th>Ποσοστό εντός επιτρεπόμενων περιοχών</th>
<th>Ποσοστό καταλληλότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σενάριο 1</td>
<td>Σενάριο 2</td>
</tr>
<tr>
<td>Άδεια λειτ.</td>
<td>97%</td>
</tr>
<tr>
<td>Άδεια εγκατ.</td>
<td>100%</td>
</tr>
<tr>
<td>Άδεια παρ.</td>
<td>92%</td>
</tr>
<tr>
<td>Σε αξιο.</td>
<td>100%</td>
</tr>
<tr>
<td>Απορ. αποφ.</td>
<td>98%</td>
</tr>
</tbody>
</table>

Τα αποτελέσματα παρουσιάζονται στον Πίνακα 8.17 και αποτελούν πολύ χρήσιμα συμπεράσματα για τις αδειοδοτημένες, τις προς αδειοδότηση καθώς και τις απορριπτέες φωτοβολταϊκές εγκαταστάσεις. Ειδικά, στο 1ο Σενάριο στο οποίο εφαρμόστηκαν οι νομοθετικοί περιορισμοί ανήκει ανώ του 90% των περιοχών όλων των σταδίων αδειοδότησης. Στις επιτρεπόμενες περιοχές του 2ου «περιβαλλοντικού» Σεναρίου ανήκει το 69% των εγκαταστάσεων με άδεια παραγωγής και το 72% των έργων με άδεια λειτουργίας. Το αποτέλεσμα αυτό, αναδεικνύει την περιβαλλοντική συνέπεια της πλειοψηφίας των αδειοδοτήσεων. Σημαντικό είναι ότι το σύνολο των αιτήσεων συγκεκριμένων καταλληλότητας ανώ του 50%, με την πλειονότητα να εντάσσεται στην υψηλότερη κατηγορία καταλληλότητας. Ειδικότερα, όλα τα έργα με άδεια εγκατάστασης εντάσσονται στην υψηλότερη κατηγορία καταλληλότητας, ενώ τα έργα σε λειτουργεία σε ποσοστό 55%.

121
9 ΑΝΑΠΤΥΞΗ ΣΥΝΔΥΑΣΜΕΝΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΑΠΕ

9.1 ΥΒΡΙΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΠΕ & Ο ΡΟΛΟΣ ΤΟΥ ΝΕΡΟΥ

Η ανάγκη για ανάπτυξη υβριδικών συστημάτων ΑΠΕ προέκυψε από την άμεση εξάρτηση των κύριων ανανέωσιμων πηγών ενέργειας, από τις τρέχουσες υδρομετεωρολογικές διεργασίες (απορροή, ταχύτητα ανέμου, ηλιοφάνεια), οι οποίες μεταβάλλονται ακανόνιστα, συντελώντας στην αδυναμία εξασφάλισης της απαιτούμενης εξισορρόπησης της προσφοράς ενέργειας από τις ΑΠΕ και της αντίστοιχης ζήτησης ελεκτρικής ενέργειας. Κατά συνέπεια, η υπόθεση ενός μελλοντικού σχεδίου στο οποίο οι ΑΠΕ θα κυριαρχούν ποσοτικά στο ενεργειακό μίγμα θα είναι εφικτή μόνο εφόσον οι ΑΠΕ συνδυαστούν με τεχνολογίες αποθήκευσης και αναρρύθμισης της ενέργειας (Koutsoyiannis & Efstratiadis, 2012).

Η τεχνική της αντλησοταμίευσης αντιπροσωπεύει την καλύτερη διαθέσιμη τεχνολογία αποθήκευσης ενέργειας και αποτελεί φιλοπεριβαλλοντική πρακτική που δεν εκπέμπει κανένα παραπτώμα τον περιβάλλον, και είναι οικονομικά αποδοτική, με ποσοστά απωλειών μικρότερα του 10% (για έργα μεγάλης κλίμακας). Επιπλέον, η παραγόμενη υδροιλιτερική ενέργεια δεν καταναλώνει νερό (απλά μετατρέπει τη δυνητική του ενέργεια), ενώ μπορεί ακόμα να συνδυαστεί με άλλες χρήσεις νερού (αστική, γεωργική, βιομηχανική).

Μάλιστα, τα υβριδικά συστήματα, που συνδυάζουν πολλαπλές ΑΠΕ (π.χ. αιολικά με φωτοβολταϊκά) ή και ΑΠΕ με έργα αντλησοταμίευσης (π.χ. αιολικά με υδροιλιτερικά έργα), θεωρούνται γενικά μια καθιερωμένη τεχνολογία για την αύξηση του επιπέδου διείσδυσης των ΑΠΕ σε ενεργειακά συστήματα. Ωστόσο, τέτοια έργα έχουν, γενικά, μειωμένη απόδοση και έχουν κυρίως εφαρμοστεί σε σχετικά μικρές περιοχές, π.χ. για την εξυπηρέτηση αυτόνομων νησιωτικών δικτύων. Από την άλλη πλευρά, οι κυρίαρχες ιδεολογικές απόψεις, ειδικά στην Ευρωπαϊκή Ένωση, δεν εύνουν την κατασκευή νέων φραγμάτων και μεγάλων υδραυλικών έργων, που θα επέτρεπαν τον ανασχεδιασμό και αναβάθμιση του ενεργειακού τοπίου σε εθνική κλίμακα.

Τονίζεται ότι το ζήτημα της κλίμακας των έργων αναφέρεται τόσο στο μέγεθος των ενεργειακών μονάδων όσο και στην χωρική τους έκταση. Η έννοια αυτή έχει καθοριστική σημασία, δεδομένου ότι η αποδοτικότητα, σε όρους παραγωγής ενέργειας προς την αντίστοιχη εγκατεστημένη ισχύ, αυξάνει με την κλίμακα, όπως και η αξιοπιστία, σε όρους κάλυψης της ενεργειακής ζήτησης (Koutsoyiannis, 2011). Είναι συνεπώς, αδύνατο να προσβλέπουμε σε ένα μελλοντικό ενεργειακό τοπίο χωρίς μεγάλης κλίμακας υδροιλιτερικούς ταμιευτήρες, εξοπλισμένους με διατάξεις αντλησοταμίευσης (αντιστρεπτοί στρόβιλοι, που συνδυάζονται με ένα μικρό αναρρυθμιστικό έργο είτε ανάντη είτε, συνηθέστερα, κατάντη). Στο πλαίσιο αυτό, κρίνεται εύλογο και επιθυμητό ένα ολιστικό σχέδιο για μεγάλης κλίμακας συστήματα ανανεώσιμης ενέργειας, στα οποία το νερό, ο
άνεμος και η ηλιακή ακτινοβολία θα αποτελούν τις πηγές ενέργειας, με το νερό σε έναν επιπρόσθετο αποθηκευτικό και αναρρυθμιστικό ρόλο.

Σε διαχειριστικό επίπεδο, οι υδατικοί πόροι και τα συναφή υδραυλικά έργα (π.χ. ταμιευτήρες) έχουν αισχυνή αλληλεξάρτηση με την ενέργεια. Ο ρόλος του νερού μπορεί να είναι πολλαπλός, καθώς ανάλογα με τη χρήση του μπορεί να θεωρηθεί ως παραγωγός, ως καταναλωτής, ως μέσο αποθήκευσης αλλά και αναρρύθμισης της παραγόμενης ενέργειας από άλλες πηγές.

Εικόνα 9.1 Η σχέση νερού και ενέργειας στο υδροσύστημα Αχελώου-Πηνειού

Ο πολλαπλός ρόλος του νερού φαίνεται στο παράδειγμα της Εικόνας 9.1, όπου απεικονίζεται το μοντέλο προσομοίωσης του υδροσυστήματος Αχελώου-Πηνειού. Ο κεντρικός στόχος του έργου είναι η ανάπτυξη ενός μεθοδολογικού πλαισίου συνδυασμένης διαχείρισης των υδατικών και ανανεώσιμων ενεργειακών πόρων, στο οποίο αναδεικνύεται ο κομβικός και πολύπλευρος ρόλος του νερού, και ειδικότερα των μεγάλων υδροηλεκτρικών έργων και της αντλησοταμίευσης. Η μεθοδολογία εφαρμόζεται πιλοτικά στην περιοχή των συζευγμένων λεκανών απορροής Αχελώου και Πηνειού.

9.2 ΤΟ ΠΡΟΒΛΗΜΑ ΣΥΝΔΙΑΧΕΙΡΗΣΗΣ ΝΕΡΟΥ ΚΑΙ ΕΝΕΡΓΕΙΑΣ

Προκύπτει έτσι άμεσα το πρόβλημα συνδυασμένης διαχείρισης νερού και ενέργειας, που αφορά σε υβριδικά ενεργειακά συστήματα (ειδικότερα, σε συστήματα μεγάλης κλίμακας), στα οποία συνυπάρχουν έργα τυπικά αξιοποίησης υδατικών πόρων και έργα παραγωγής ενέργειας από ανανεώσιμες πηγές (ΑΠΕ), που έχουν ως κοινές συνιστώσες τα υδροηλεκτρικά έργα. Απο
συστήματα αυτά, όπως φαίνεται στην Εικόνα 9.2, θεωρούνται πολλαπλές χρήσεις νερού και πολλαπλοί καταναλωτές ενέργειας, στους οποίους περιλαμβάνονται και ορισμένες κοινές συνιστώσες των υδατικών συστημάτων, συγκεκριμένα αντλιοστάσια, γεωτρήσεις και αντλιοστρόβιλοι.

Ουσιώδης διεπαφή των δύο συστημάτων (υδατικό και ενεργειακό) είναι τα έργα αντλησοταμίευσης, που λειτουργούν ως διατάξεις αποθήκευσης ενέργειας. Σε τέτοια συστήματα, η αντλησοταμίευση πραγματοποιείται όταν υπάρχει περίσσεια παραγωγής ενέργειας από τις ΑΠΕ (πλην των υδροηλεκτρικών έργων, των οποίων η παραγωγή είναι πλήρως ελεγχόμενη), ενώ αντίθετα η παραγωγή ενέργειας από τα υδροηλεκτρικά έργα γίνεται κατά προτεραιότητα όταν η ζήτηση ενέργειας υπερβαίνει τη δυνατότητα παραγωγής από τις άλλες ΑΠΕ.

Εικόνα 9.2 Σχηματική απεικόνιση των συνιστωσών ενός υποθετικού συστήματος συνδυασμένης διαχείρισης υδατικών και ενεργειακών πόρων

Το πρόβλημα συνδυασμένης διαχείρισης νερού και ενέργειας τίθεται ως η αναζήτηση μιας αξιόπιστης και οικονομικά αποδοτικής πολιτικής λειτουργίας των διαφόρων συνιστωσών του συστήματος, ώστε να εξασφαλίζεται η απόσκοπτη εξυπηρέτηση των χρήσεων νερού και της ζήτησης ηλεκτρικής ενέργειας, κάτω από ένα σύνολο περιορισμών (τεχνικών, θεσμικών, περιβαλλοντικών, κλπ. Δεδομένου αυτού, η μεθοδολογία χωροθέτησης και διαστασιολόγησης που παρουσιάστηκε μπορεί να παρέχει χρήσιμα δεδομένα εγκατεστημένης ισχύος και συνεπώς ενεργειακής παραγωγής, ώστε οι παράμετροι που θα εισαχθούν να είναι κατά το δυνατόν ρεαλιστικοί.
9.3 ΠΡΟΟΠΤΙΚΕΣ ΣΥΝΧΩΡΟΘΕΤΗΣΗΣ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ

Στα πλαίσια της μείωσης της αβεβαιότητας της ενεργειακής παραγωγής, και της υποστήριξης των παραπάνω μελετών συνδυασμένης διαχείρισης γίνεται μια τελευταία εφαρμογή της μεθοδολογίας χωροθέτησης. Για να εξεταστεί η προοπτική συνχωροθέτησης αιολικών και φωτοβολταϊκών πάρκων επιλέγεται να συγκριθούν οι περιοχές που προέκυψαν από την αξιολόγηση των περιοχών με βάση το 2ο «περιβαλλοντικό» σενάριο χωροθέτησης και για τις δύο εγκαταστάσεις. Ακολούθως, συγκρίνονται οι περιοχές που προέκυψαν από τα επιμέρους βιώσιμα σενάρια για να διερευνηθεί αν υπάρχουν προοπτικές ανάπτυξης υβριδικών πάρκων στις περιοχές αυτές.

Πίνακας 9.1 Παρουσίαση δυνητικών περιοχών ανάπτυξης υβριδικών πάρκων για τις περιοχές του Σεναρίου 2

<table>
<thead>
<tr>
<th>Βαθμολ. κλίμακα</th>
<th>Ποσοστό καταλ.</th>
<th>Φωτοβολταϊκές εγκαταστάσεις</th>
<th>Αιολικές εγκαταστάσεις</th>
<th>Υβριδικά</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Έκταση (km²)</td>
<td>Δυνητική εγκατ. ισχύς (MW)</td>
<td>Έκταση χωρ. (km²)</td>
</tr>
<tr>
<td>25-32</td>
<td>75-100 %</td>
<td>145,19</td>
<td>7259</td>
<td>180,31</td>
</tr>
<tr>
<td>16-24</td>
<td>50-75 %</td>
<td>741,06</td>
<td>37053</td>
<td>752,44</td>
</tr>
<tr>
<td>9-16</td>
<td>25-50 %</td>
<td>182,88</td>
<td>9144</td>
<td>135,31</td>
</tr>
<tr>
<td>0-8</td>
<td>0-25 %</td>
<td>0,19</td>
<td>9</td>
<td>1,25</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>1069</td>
<td>53466</td>
<td>1069</td>
</tr>
</tbody>
</table>

Εικόνα 9.3 Περιοχές Σεναρίου 2 για ανάπτυξη υβριδικών πάρκων
Όπως φαίνεται στον Πίνακα 9.1, αν αξιοποιούνταν το σύνολο των επιτρεπόμενων περιοχών του Σεναρίου 2 για υβριδικά πάρκα, θα προκύπτανε 1069 km² έκτασης (με εμβαδό μεγαλύτερο από 500000 m²), τα οποία μπορούν συνολικά να φιλοξενήσουν 53 GW φωτοβολταϊκής και 33 GW αιολικής ισχύος αντίστοιχα. Στην Εικόνα 9.4 απεικονίζονται με πράσινο οι περιοχές που ανήκουν και για τους δύο τύπους εγκαταστάσεων στην άνω κατηγορία καταλληλότητας και αντιστοιχούν σε έκταση 145 km² και δυνητική εγκατεστημένη ισχύ 7300 MW φωτοβολταϊκών και 4500 MW αιολικών πάρκων αντίστοιχα. Στην επομένη κατηγορία 50-75% ανήκουν 752,44 km², τα οποία αντιστοιχούν σε 22 GW αιολικών πάρκων και 37 GW φωτοβολταϊκών εγκαταστάσεων.

Πίνακας 9.2 Βιώσιμη χωροθέτηση υβριδικών πάρκων και αντίστοιχες βαθμολογίες για κάθε εγκατάσταση

<table>
<thead>
<tr>
<th>Βαθμολογία</th>
<th>Αιολικές εγκαταστάσεις</th>
<th>Φωτοβολταϊκές εγκαταστάσεις</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Έκταση (km²)</td>
<td>Εγκατεστημένη ισχύς (MW)</td>
</tr>
<tr>
<td>20</td>
<td>0,38</td>
<td>11,53</td>
</tr>
<tr>
<td>21</td>
<td>0,44</td>
<td>13,46</td>
</tr>
<tr>
<td>22</td>
<td>0,38</td>
<td>11,53</td>
</tr>
<tr>
<td>23</td>
<td>0,38</td>
<td>11,53</td>
</tr>
<tr>
<td>24</td>
<td>1,44</td>
<td>44,21</td>
</tr>
<tr>
<td>25</td>
<td>2,88</td>
<td>88,43</td>
</tr>
<tr>
<td>26</td>
<td>0,25</td>
<td>7,69</td>
</tr>
<tr>
<td>6,13</td>
<td>188,39</td>
<td>6,13</td>
</tr>
</tbody>
</table>

Εικόνα 9.4 Βιώσιμες περιοχές χωροθέτησης υβριδικών πάρκων
Τα αποτελέσματα της σύγκρισης των περιοχών των βιώσιμων σεναρίων για τις αιολικές και φωτοβολταϊκές εγκαταστάσεις αντίστοιχα δίνουν ελάχιστες περιοχές εγκατάστασης υβριδικών πάρκων (βλ. Πίνακας 9.2.) Το σύνολο των περιοχών βιώσιμων υβριδικών πάρκων βρίσκεται στην ΠΕ Μαγνησίας στο άκρο της χερσονήσου του Πηλίου όπως διακρίνεται στην Εικόνα 9.4. Συνολικά μπορεί να αξιοποιηθεί έκταση 6.13 km² με εγκατεστημένη ισχύ 188 MW αιολικών και 306 MW φωτοβολταϊκών πάρκων αντίστοιχα. Παρατηρείται η σημαντική μείωση σε σχέση με το 2ο σενάριο, καθώς οι βιώσιμες περιοχές για ανάπτυξη αιολικών και φωτοβολταϊκών πάρκων αντίστοιχα αναπτύσσονται σε διαφορετικές μη επικαλυπτόμενες θέσεις.
10 ΣΥΜΠΕΡΑΣΜΑΤΑ, ΣΗΜΕΙΑ ΒΕΛΤΙΩΣΗΣ & ΜΕΛΛΟΝΤΙΚΟΙ ΤΟΜΕΙΣ ΠΡΟΣ ΔΙΕΡΕΥΝΗΣΗ

10.1 ΓΕΝΙΚΑ ΣΥΜΠΕΡΑΣΜΑΤΑ

Τα γενικά συμπεράσματα αφορούν στην συνολική ανάλυση που πραγματοποιήθηκε στην παρούσα εργασία και συνοψίζονται στα εξής:

- Ένα ολιστικό πλαίσιο χωροταξικού σχεδιασμού, που θα λαμβάνει υπόψη όλες τις ΑΠΕ, αποτελεί το κλειδί για μια αποδοτική και βιώσιμη ανάπτυξη, καθώς κάνει δυνατή τη μελέτη τόσο των διαφορετικών χωρικών περιορισμών, όσο και των δυνατότητων συγχωροθέτησης διαφορετικών τύπων ΑΠΕ.

- Το δυναμικό των ΑΠΕ, η κάλυψη και η χωρητικότητα του ηλεκτρικού δικτύου, η ανάπτυξη του οδικού δικτύου, οι εγκαταστάσεις αντλησοτάμιευσης και άλλοι τεχνικοί παράγοντες είναι κρίσιμοι για την αποδοτικότητα των επενδύσεων σε ΑΠΕ.

- Οι κοινωνικές, αισθητικές και περιβαλλοντικές επιπτώσεις των ΑΠΕ μπορούν επίσης να αποτελέσουν σημαντικός παράγοντας ανάσχεσης στην ανάπτυξη των ΑΠΕ, και συνεπώς πρέπει να λαμβάνονται σοβαρά υπόψη σε όλα τα επίπεδα σχεδιασμού (ευρωπαϊκό, εθνικό, περιφερειακό, τοπικό).

- Συμφώνα με την διεθνή και εθνική εμπειρία, η χωρική διασπορά των αιολικών εγκαταστάσεων αποτελεί την βέλτιστη πρακτική για την εξασφάλιση ικανοποιητικής ευστάθειας του ηλεκτρικού συστήματος (αύξηση των λειτουργικών ωρών, με παράλληλη μείωση της συχνότητας εμφάνισης μηδενικής παραγωγής ενέργειας). Συνεπώς, το κριτήριο της χωρικής διασποράς πρέπει να λαμβάνεται υπόψη τόσο από την νομοθεσία και όσο και τις μεθοδολογίες χωροθέτησης.

- Μεθοδολογίες, όπως η παρούσα, που εξετάζουν την χωρική διάσταση του προβλήματος ανάπτυξης των ΑΠΕ μπορούν να παίξουν σημαντικό ρόλο στην επιτυχή μεγάλης κλίμακας διείσδυση των ΑΠΕ στο ενεργειακό μίγμα, και στην υποστήριξη του έργου των φορέων λήψης αποφάσεων που δραστηριοποιούνται στον ενεργειακό τομέα.

10.2 ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΧΩΡΟΘΕΤΗΣΗΣ

Από το αρχικό κίόλας στάδιο εφαρμογής της μεθοδολογίας προσδιορισμού των διαθέσιμων προς χωροθέτηση περιοχών, διαπιστώνουμε σημαντικές διαφοροποιήσεις ως προς τις προοπτικές χωροθέτησης των αιολικών και φωτοβολταϊκών εγκαταστάσεων. Συγκεκριμένα, από το 1ο «θεσμικό» σενάριο για τον προσδιορισμό των επιτρεπόμενων περιοχών χωροθέτησης αιολικών πάρκων προέκυψε ότι μόλις το 28% της έκτασης της ηπειρώτικης Θεσσαλίας, που αντιστοιχεί σε 3984 km², είναι διαθέσιμα για χωροθέτηση, ενώ από την εφαρμογή του 2ου «περιβαλλοντικού» σενάριου προκύπτουν 1479 km², τα οποία αντιστοιχούν στο 11% της έκτασης της Θεσσαλίας.
Αντίστοιχα, για τα φωτοβολταϊκά πάρκα από το 1ο σενάριο προέκυψε ότι είναι διαθέσιμο το 85% της έκτασης της Θεσσαλίας, που αντιστοιχεί σε 11925 km², ενώ από το 2ο σενάριο απομένει το 35%, δηλαδή έκταση 4956 km². Παρατηρείται ότι:

- Υπάρχει σημαντικό προβάδισμα σε όρους διαθέσιμης έκτασης για τις φωτοβολταϊκές εγκαταστάσεις, που κυρίως οφείλεται στο σημαντικό περιορισμό που εισάγει το αιολικό δυναμικό στην χωροθέτηση αιολικών πάρκων (ελάχιστη μέση ετήσια ταχύτητα 4 m/s).
- Για τα αιολικά πάρκα, η διαθέσιμη έκταση δεν μειώνεται σημαντικά μεταξύ 2ου και 1ου σεναρίου, φανερώνοντας ότι πολλές περιοχές που απορρίπτονται λόγω των τεχνικών περιορισμών αλληλεπικαλύπτονται με τους περιβαλλοντικούς περιορισμούς του 1ου σεναρίου.
- Για τα φωτοβολταϊκά πάρκα υπάρχει σημαντική μείωση των διαθέσιμων περιοχών μεταξύ 1ου και 2ου σεναρίου (απομένει κάτω του 50% της αρχικής έκτασης), η οποία κυρίως οφείλεται στην αφαίρεση των περιοχών NATURA 2000 και των δασικών εκτάσεων, που δεν λήφθηκαν υπόψη στο 1ο σενάριο.

Ακολούθως, από την αξιολόγηση των διαθέσιμων προς χωροθέτηση περιοχών και την ανάλυση ευαισθησίας για τους περιβαλλοντικούς και τεχνικούς παράγοντες, προκύπτει ότι:

- Σε ποσοτικούς όρους, οι αιολικές εγκαταστάσεις υπολείπονται σημαντικά των ηλιακών, καθώς μόλις το 7% εντάσσεται στην κατηγορία υψηλής καταλληλότητας (άνω του 75%), ενώ για τα φωτοβολταϊκά το αντίστοιχο ποσοστό ανέρχεται στο 25%, για το σύνολο της ηπειρωτικής Θεσσαλίας. Τα ποσοστά αυτά διαφοροποιούνται από παράγοντες περιοχών και περιοχές του σεναρίου 2 και για τους δύο τύπους εγκαταστάσεων, ενώ για τις περιοχές του σεναρίου 1 έχουμε μικρή θετική μεταβολή για τα αιολικά έργα και αρνητική για αιολικά.
- Σε χωρικούς όρους, οι βέλτιστες περιοχές αξιοποίησης του ηλιακού δυναμικού συγκεντρώνονται στον Θεσσαλικό κάμπο, ενώ για τα αιολικά πάρκα στα χαμηλά σχετικά υψόμετρα των ορεινών όγκων που περιτριγυρίζουν την Θεσσαλία από βόρεια, νότια και δυτικά.
- Το σύνολο σχεδόν της έπιπεδής ισχύος της ΡΑΕ για την Θεσσαλία (7056 MW) μπορεί να εντάσσεται στην άνω κατηγορία καταλληλότητας των περιοχών του σεναρίου 2, για την οποία προκύπτουν 6501 MW δυνητικής εγκατεστημένης ισχύος. Αντίστοιχα, τα φωτοβολταϊκά έργα μπορούν να αναπτυχθούν σε πολύ μεγαλύτερη ισχύ, καθώς εκτιμάται ότι περίπου 70 GW επέκταση στην άνω κατηγορία καταλληλότητας.
- Από την ανάλυση ευαισθησίας αναδεικνύεται η μεγαλύτερη ευαισθησία της μεθοδολογίας έναντι των τεχνικών σε σχέση με τους περιβαλλοντικούς παράγοντες, και για τους δύο τύπους εγκαταστάσεων. Συγκεκριμένα, για τα αιολικά έργα η άνω κατηγορία καταλληλότητας συγκεντρώνει το 6% των επιπεδής ισχύος του σεναρίου 2 για τα τεχνικά και το 34% για τα περιβαλλοντικά κριτήρια, ενώ η διαφορά αμβλύνεται για τις
φωτοβολταϊκές εγκαταστάσεις (23% για τα τεχνικά και 58% για τα περιβαλλοντικά κριτήρια).

Τέλος, η εφαρμογή του βιώσιμου σεναρίου για τους δύο τύπους εγκαταστάσεων και τις προοπτικές ανάπτυξής των συνδυασμένων εγκαταστάσεων αναδεικνύει ότι:

- Οι βιώσιμες αιολικές εγκαταστάσεις αντιστοιχούν σε 4271 MW εγκατεστημένης ισχύος, ενώ οι φωτοβολταϊκές σε πολύ παραπάνω ισχύ, συγκεκριμένα 60 GW, φανερώνοντας την μεγαλύτερη καταλληλότητα της Θεσσαλίας για χωροθέτηση φωτοβολταϊκών πάρκων.
- Σχετικά με τις προοπτικές συγχωροθέτησης των δυο τύπων εγκαταστάσεων, αν ληφθούν οι επιτρεπόμενες περιοχές του Σεναρίου 2 προκύπτουν συνολικά 1069 km², ενώ και για την άνω κατηγορία καταλληλότητας προκύπτουν 179 km² που αντιστοιχούν σε 7259 MW αιολικής ισχύος. Τέλος αν ληφθούν οι βιώσιμες περιοχές εγκατάστασης, αυτές ανέρχονται σε μόλις 6.13 km².

10.3 ΣΗΜΕΙΑ ΒΕΛΤΙΩΣΗΣ & ΜΕΛΛΟΝΤΙΚΟΙ ΤΟΜΕΙΣ ΠΡΟΣ ΔΙΕΡΕΥΝΗΣΗ

Ως τελική συμβολή της εργασίας, κρίνεται σκόπιμο να αναφερθούν κάποια πιθανά σημεία βελτίωσης της παρούσας μεθοδολογίας με βάση τα δεδομένα και εργαλεία που χρησιμοποιήθηκαν και τα αποτελέσματα που προέκυψαν.

Αναφορικά με τα δεδομένα που χρησιμοποιήθηκαν, θα ήταν υπερ της ακρίβειας ακόμα και σε αυτή την κλίμακα διερεύνησης να συμπληρωθεί η υφιστάμενη κατάσταση με ακριβέστερα χωρικά δεδομένα. Συγκεκριμένα, θα ήταν δόκιμο να συμπληρωθούν στοιχεία όπως τα ακριβή όρια των οικισμών, οι ζώνες προστασίας A των αρχαιολογικών χώρων, οι τουριστικές εγκαταστάσεις και άλλα δεδομένα που αναφέρονται στην παράγραφο 5.1, αν ήταν δυνατό να αναπαραχθούν. Πιθανώς η επικάλυψη των περιοχών αποκλεισμού να μην τα αναδείξει ως κρίσιμα, αξίζει όμως να ληφθεί υπόψη η επίδρασή τους.

Αναφορικά με την μεθοδολογία μπορούν να διερευνηθούν διαφορετικά σενάρια αποκλεισμού ανάλογα με την εκάστοτε προσέγγιση (θεσμική, τεχνική, περιβαλλοντική, αισθητική), καθώς και διαφορετικά κριτήρια και κλάσεις τιμών, ώστε να διερευνηθεί η επίδρασή τους στα αποτελέσματα. Ειδικά για την αισθητική επίπτωση των εγκαταστάσεων, αντί της απόστασης προτείνεται να χρησιμοποιηθεί η μεταβλητή της ορατότητα, η οποία μπορεί να διερευνηθεί μέσω των εργαλείων Viewshed, που πρόσφερε η εργαλειοθήκη του ArcGIS και αλλά και άλλου λογισμικού. Προτείνεται ακόμη, να εξεταστούν ανισοβαρείς μέθοδοι πολυκριτηριακών αναλύσεων (π.χ. Αναλυτική Ιεραρχική Διαδικασία, Συνεργασία με τους φορείς λήψης αποφάσεων και Επιτόπια Έρευνα, ώστε να αξιολογηθεί ανταπόκρινται κατά το δυνατό στις δυσκολίες των πραγματικών επενδύσεων. Επίσης, με συνεργασία με αλλού τομείς μπορούν να διερευνηθούν πιο εντατικά Επιδράσεις, όπως αυτή της χωρητικότητας του ηλεκτρικού δικτύου στην χωροθέτηση.
Μια άλλη πιθανή κατεύθυνση διερεύνησης αφορά στην εκτίμηση του αιολικού και ηλιακού
dυναμικού σε αδρότερες κλίμακες, λαμβάνοντας υπόψιν την στοχαστική τους φύση, καθώς οι
μέσες ετήσιες τιμές ταχύτητας ανέμου και συνολικής ετησίας ηλιακής ακτινοβολίας αποτελούν ένα
πρώτο δείγμα για την επάρκεια του δυναμικού μιας περιοχής. Επίσης, θα ήταν κρίσιμο να εισαχθούν στην μεθοδολογία οικονομικά στοιχεία, τα οποία συνδέονται με τους τεχνικούς και
περιβαλλοντικούς περιορισμούς και δεν λήφθηκαν υπόψιν στην παρούσα ανάλυση.

Τέλος μπορούν να γίνουν ειδικότερες αναζητήσεις για τις προοπτικές συνδιαχείρισης νερού και
enέργειας, μέσω της τεχνικής της αντλησοταμίευσης. Αυτό μπορεί να υλοποιηθεί εισάγοντας την
eγκύτητα και την δυνατότητα σύνδεσης με διαθέσιμους ταμιευτήρες ως επιπλέον κριτήριο ώστε να
diereυνηθεί η δυνατότητα ανάπτυξης των ΑΠΕ σε ένα ολιστικό πλαίσιο που θα βελτιστοποιεί την
eνεργειακή απόδοση και θα μειώνει κατά το δυνατόν τις περιβαλλοντικές επιπτώσεις.

Koutsoyiannis, D., Scale of water resources development and sustainability: Small is beautiful, large is great (Invited), LATSIS Symposium 2010: Ecohydrology, Lausanne, Ecole Polytechnique Federale de Lausanne, 2010.

Αποστολίδου, Η., (2007). Η επίδραση του αναγλύφου στην εισερχόμενη ηλιακή ακτινοβολία, Μεταπτυχιακή εργασία, 131 σελίδες, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα

Δήμας, Π., (2013). Πλαίσιο στοχαστικής προσομοίωσης για το βέλτιστο σχεδιασμό υβριδικού συστήματος υδροπολεκτρικής - αιολικής ενέργειας. Διερεύνηση με βάση το υδροσύστημα Αλιάκμονα, Διπλωματική εργασία, 237 σελίδες, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα

Ζερβός Α., & Κάραλης Γ., (2009). Σημειώσεις Αιολικής Ενέργειας, Τομέας ρευστών, Σχολή Μηχανολόγων Μηχανικών, ΕΜΠ
Κακολόγος, Δ., (2012) Αισθητική Χωροθέτηση μεγάλων εγκαταστάσεων ΑΠΕ, Διπλωματική εργασία, 130 σελίδες, Εργαστήριο ανανεώσιμων και βιώσιμων ενεργειακών συστημάτων - Τμήμα μηχανικών περιβάλλοντος - Πολυτεχνείο Κρήτης, Χανιά

Κασιμάτης, Δ., (2015) Εκτίμηση αιολικού δυναμικού στην περιοχή των Κυθήρων, Μεταπτυχιακή εργασία, 128 σελίδες, Τομέας Υδατικών Πόρων και Περιβάλλοντος - Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα

Μαμά, Ν., Α. Ευστρατιάδης, και Δ. Κουτσογιάννης, (2014). Προοπτικές συνδυασμένης διαχείρισης νερού και ενέργειας στην περιοχή της Θεσσαλίας, Φορέας Διαχείρισης Υδατικών Πόρων: Μια απαραίτητη εκσυγχρονιστική πρωτοβουλία αλλά και αναγκαία προϋπόθεση για την διαφύλαξη της οικολογικής ισορροπίας, Λάρισα, 21 σελίδες, ΤΕΕ/Τμήμα ΚΔ Θεσσαλίας.

Μαυρίδης, Α., & Καλότυχου, Κ., (2013) Συμβολή των GIS στη χωροθέτηση των Α.Π.Ε με ταυτόχρονη προσέγγιση ζητημάτων διαχείρισης του φυσικού περιβάλλοντος, 1ο Συνέδριο Χωρικής Ανάλυσης, Αθήνα, 17-18 Μαίου 2013

Μεταλληνού, Α., (2013) Προς ένα θεσμικό πλαίσιο προστασίας παραδοσιακών οικισμών: καταγραφή αξιολόγηση και προτάσεις, Διπλωματική εργασία, 302 σελίδες, Τμήμα μηχανικών χωροταξίας και ανάπτυξης - Πολυτεχνική σχολή - Αριστοτέλειο πανεπιστήμιο, Θεσσαλονίκη

Μεταλληνού, Α., (2013) Προς ένα θεσμικό πλαίσιο προστασίας παραδοσιακών οικισμών: καταγραφή αξιολόγηση και προτάσεις, Διπλωματική εργασία, 302 σελίδες, Τμήμα μηχανικών χωροταξίας και ανάπτυξης - Πολυτεχνική σχολή - Αριστοτέλειο πανεπιστήμιο, Θεσσαλονίκη

Μεταλληνού, Δ., (2015) Ανάπτυξη μοντέλου συνδυασμένης διαχείρισης λεκανών απορροής Αχελώου και Πηνειού, Τομέας Υδατικών Πόρων και Περιβάλλοντος - Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Μάρτιος 2015

Παπαγεωργίου, Μ., & Ποζουκίδου, Γ., (2014) Οι παραδοσιακοί οικισμοί της Ελλάδας: ζητήματα χωροταξίας και προστασίας, Περιοδικό Γεωγραφίες τεύχος 24, σ.σ 107-125

Παππά, Ι., (2014) Πιθανοτική ανάλυση της ταχύτητας ανέμου και διερεύνηση της αιολικής παραγωγής στον Ελλαδικό χώρο, Διπλωματική εργασία, 181 σελίδες, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα

Πολύζος, Σ., & Σαρατσής, Γ., (2013). Η γεωγραφία και τα χαρακτηριστικά του τουρισμού στην Ελλάδα, η θέση και οι προοπτικές της Περιφέρειας Θεσσαλίας

Τσίτουρα, Ι. (2012). Βιώσιμη χωροθέτηση Αιολικών Πάρκων - Μελέτη περίπτωσης στην Περιφέρεια Κρήτης.
ΠΑΡΑΡΤΗΜΑ

Πίνακας 0.1 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Τρικάλων (RAE, 2013)

<table>
<thead>
<tr>
<th>ΔΗΜΟΣ</th>
<th>ΔΗΜ. ΕΝΟΤΗΤΑ</th>
<th>ΕΚΤ. (km²)</th>
<th>ΜΕΓΙΣΤΗ ΕΠΙΤΡ. ΚΑΛ. (ΤΥΠ. ΑΓ/km²)</th>
<th>ΜΕΓΙΣΤΟΣ ΕΠΙΤΡ. ΑΡ. ΤΥΠ.Α/Γ</th>
<th>ΑΡ. ΊΣΟΔ. ΤΥΠ. Α/Γ ΜΕ ΑΔΕΙΑ ΠΑΡ.</th>
<th>% ΚΑΛΥΨΗ ΤΗΣ ΕΠΙΤΡ. ΤΗΣ ΦΙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΚΑΛΑΜΠΑΚΑΣ</td>
<td>Δ. ΒΑΣΙΛΙΚΗΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΚΑΛΑΜΠΑΚΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΚΑΣΤΑΝΙΑΣ</td>
<td>150</td>
<td>0,66</td>
<td>98,75</td>
<td>6,35</td>
<td>6,43</td>
</tr>
<tr>
<td></td>
<td>Δ. ΚΛΕΙΝΟΒΟΥ</td>
<td>180</td>
<td>0,66</td>
<td>118,94</td>
<td>11,65</td>
<td>9,79</td>
</tr>
<tr>
<td></td>
<td>Δ. ΜΑΛΑΚΑΣΙΟΥ</td>
<td>157</td>
<td>0,66</td>
<td>103,91</td>
<td>15,88</td>
<td>15,29</td>
</tr>
<tr>
<td></td>
<td>Δ. ΤΥΜΦΑΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΧΑΣΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Κ.</td>
<td>298</td>
<td>0,66</td>
<td>196,77</td>
<td>38,12</td>
<td>19,37</td>
</tr>
<tr>
<td>ΠΥΛΗΣ</td>
<td>Δ. ΑΙΘΗΚΩΝ</td>
<td>281</td>
<td>0,66</td>
<td>185,54</td>
<td>35,81</td>
<td>19,3</td>
</tr>
<tr>
<td></td>
<td>Δ. ΓΟΜΦΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΙΑΛΕΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΥΛΗΣ</td>
<td>101</td>
<td>0,66</td>
<td>66,48</td>
<td>10,59</td>
<td>15,93</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΥΝΔΑΙΩΝ</td>
<td>166</td>
<td>0,66</td>
<td>109,77</td>
<td>46,05</td>
<td>41,95</td>
</tr>
<tr>
<td></td>
<td>Κ. ΜΥΡΟΦΥΛΛΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Κ. ΝΕΡΑΙΔΑΣ</td>
<td>59</td>
<td>0,66</td>
<td>38,88</td>
<td>2,45</td>
<td>6,29</td>
</tr>
<tr>
<td>ΤΡΙΚΚΑΙΩΝ</td>
<td>Δ. ΕΣΤΙΑΙΟΤΙΔΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΚΟΖΙΑΚΑ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΜΕΓΑΛΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΑΡΑΛΗΘΑΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΤΡΙΚΚΑΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΦΑΛΩΡΕΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΦΑΡΚΑΔΟΝΑΣ</td>
<td>Δ. ΟΙΧΑΛΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΕΛΙΝΝΑΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΦΑΡΚΑΔΟΝΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td></td>
<td>1392</td>
<td>5,28</td>
<td>919,04</td>
<td>166,9</td>
<td>18%</td>
</tr>
</tbody>
</table>
Πίνακας 0.2 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Καρδίτσας (ΡΑΕ, 2013)

ΔΗΜΟΣ	ΔΗΜ. ΕΝΟΤΗΤΑ	ΕΚΤ. (km²)	ΜΕΓΙΣΤΗ ΕΠΙΤΡ. ΚΑΛ. (ΤΥΠ. ΑΓ/κm²)	ΜΕΓΙΣΤΟΣ ΕΠΙΤΡ. ΑΡ. ΤΥΠ.Α/Γ	ΑΡ. ΙΣΟΔ. ΤΥΠ. Α/Γ ΜΕ ΑΔΕΙΑ ΠΑΡ.	ΑΡ. ΙΣΟΔ. ΤΥΠ. Α/Γ ΣΕ ΠΑΠ ΜΕ ΕΠΟ % ΚΑΛΥΨΗ ΤΗΣ ΕΠΙΤΡ. ΤΗΣ ΦΙ	
ΑΡΓΙΘΕΑΣ	Δ. ΑΡΓΙΘΕΑΣ	149632	0.66	98.76	86.46	0	87.55
	Δ. ΑΧΕΛΩΟΥ	88147	0.66	58.18	1.24	0	2.14
	Κ.ΘΑΜΑΝΩΝ	135721	0.66	89.58	77.18	0	86.16
ΚΑΡΔΙΤΣΑΣ	Δ. ΙΤΑΜΟΥ	237650	1.05	249.53	38.59	0	0
	Δ.ΚΑΛΛΙΦΩΝΟΥ	0	0	0	0	0	0
	Δ. ΚΑΜΠΟΥ	0	0	0	0	0	0
	Δ. ΚΑΡΔΙΤΣΑΣ	0	0	0	0	0	0
	Δ. ΜΗΤΡΟΠΟΛΗΣ	0	0	0	0	0	0
ΛΙΜΝΗΣ ΠΛΑΣΘΡΑ	Δ.ΝΕΒΡΟΠΟΛΗΣ ΑΓΡΑΦΩΝ	0	0	0	0	0	0
	Δ. ΠΛΑΣΘΡΑ	0	0	0	0	0	0
ΜΟΥΖΑΚΙΟΥ	Δ. ΘΩΜΗΣ	0	0	0	0	0	0
	Δ. ΜΟΥΖΑΚΙΟΥ	178154	0.66	117.58	2.72	0	2.31
	Δ. ΠΑΜΙΣΟΥ	0	0	0	0	0	0
ΠΑΛΑΜΑ	Δ. ΠΑΛΑΜΑ	0	0	0	0	0	0
	Δ. ΣΕΛΛΑΝΩΝ	0	0	0	0	0	0
	Δ. ΦΥΛΛΟΥ	0	0	0	0	0	0
ΣΟΦΑΔΩΝ	Δ. ΑΡΝΗΣ	0	0	0	0	0	0
	Δ. ΜΕΝΕΛΑΙΔΑΣ	171037	1.05	179.59	1.18	1.18	0.66
	Δ. ΡΕΝΤΙΝΗΣ	56752	1.05	59.59	3.53	3.53	5.92
	Δ. ΣΟΦΑΔΩΝ	0	0	0	0	0	0
	Δ. ΤΑΜΑΣΙΟΥ	0	0	0	0	0	0
Πίνακας 0.3 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Μαγνησίας (ΡΑΕ, 2013)

<table>
<thead>
<tr>
<th>ΔΗΜΟΣ</th>
<th>ΔΗΜ. ΕΝΟΤΗΤΑ</th>
<th>ΕΚΤ. (km²)</th>
<th>ΜΕΓΙΣΤΗ ΕΠΙΤΡ. ΚΑΛ. (ΤΥΠ. ΑΓ/κm²)</th>
<th>ΜΕΓΙΣΤΟΣ ΕΠΙΤΡ. ΑΡ. ΤΥΠ.Α/Γ</th>
<th>ΑΡ. ΙΣΟΔ. ΤΥΠ. Α/Γ ΜΕ ΑΔΕΙΑ ΠΑΡ.</th>
<th>ΑΡ. ΙΣΟΔ. ΤΥΠ. Α/Γ ΣΕ ΠΑΠ ΜΕ ΕΠΟ</th>
<th>% ΚΑΛΥΨΗ ΤΗΣ ΕΠΙΤΡ. ΤΗΣ ΦΙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΛΜΥΡΟΥ</td>
<td>Δ. ΑΛΜΥΡΟΥ</td>
<td>475,1578</td>
<td>0,66</td>
<td>313,6</td>
<td>14,73</td>
<td>4,7</td>
<td>627,2</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΤΕΛΕΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΣΟΥΡΠΗΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Κ. ΑΝΑΒΡΑΣ</td>
<td>122,1978</td>
<td>0,66</td>
<td>80,65</td>
<td>25,74</td>
<td>31,92</td>
<td>161,3</td>
</tr>
<tr>
<td>ΒΟΛΟΥ</td>
<td>Δ. ΑΓΡΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΑΙΣΩΝΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΑΡΤΕΜΙΔΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΒΟΛΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΙΩΛΚΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΝΕΑΣ ΑΓΧΙΑΛΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΝΕΑΣ ΙΩΝΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΠΟΡΤΑΡΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Κ. ΜΑΚΡΙΝΙΤΣΗΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΖΑΓΟΡΑΣ - ΜΟΥΡΕΣΙΟΥ</td>
<td>Δ. ΖΑΓΟΡΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΜΟΥΡΕΣΙΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΝΟΤΙΟΥ ΠΗΛΙΟΥ</td>
<td>Δ. ΑΡΓΑΛΑΣΤΗΣ</td>
<td>74,74542</td>
<td>0,66</td>
<td>49,33</td>
<td>13,76</td>
<td>27,9</td>
<td>98,66</td>
</tr>
<tr>
<td></td>
<td>Δ. ΑΦΕΤΩΝ</td>
<td>81,49251</td>
<td>0,66</td>
<td>53,79</td>
<td>5,29</td>
<td>9,84</td>
<td>107,58</td>
</tr>
<tr>
<td></td>
<td>Δ. ΜΗΛΕΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΣΗΠΙΑΔΟΣ</td>
<td>123,4014</td>
<td>0,66</td>
<td>81,44</td>
<td>32,66</td>
<td>40,1</td>
<td>162,88</td>
</tr>
<tr>
<td></td>
<td>Κ. ΤΡΙΚΕΡΙΟΥ</td>
<td>26,84512</td>
<td>0,66</td>
<td>17,72</td>
<td>12,71</td>
<td>71,71</td>
<td>35,44</td>
</tr>
<tr>
<td>ΡΗΓΑ ΦΕΡΑΙΟΥ</td>
<td>Δ. ΚΑΡΛΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ. ΦΕΡΟΝ</td>
<td>215,1656</td>
<td>0,66</td>
<td>142,01</td>
<td>13,18</td>
<td>9,28</td>
<td>284,02</td>
</tr>
<tr>
<td></td>
<td>Κ. ΚΕΡΑΜΙΔΙΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td></td>
<td>1119,006</td>
<td>4,62</td>
<td>738,54</td>
<td>118,07</td>
<td>16%</td>
<td>1477,08</td>
</tr>
</tbody>
</table>
Πίνακας 0.4 Μέγιστος επιτρεπόμενος αριθμός τυπικών ανεμογεννητριών για την ΠΕ Λάρισας (PAE, 2013)

<table>
<thead>
<tr>
<th>ΔΗΜΟΣ</th>
<th>ΔΗΜ. ΕΝΟΤΗΤΑ</th>
<th>ΕΚΤ. (Km²)</th>
<th>ΜΕΓΙΣΤΗ ΕΠΙΤΡ. ΚΑΛ. (ΤΥΠ. ΑΓ/κm²)</th>
<th>ΜΕΓΙΣΤΟΣ ΕΠΙΤΡ. ΑΡ. ΤΥΠ.Α/Γ</th>
<th>ΑΡ. ΙΣΟΔ. ΤΥΠ. Α/Γ ΜΕ ΑΔΕΙΑ ΠΑΡ.</th>
<th>ΑΡ. ΙΣΟΔ. ΤΥΠ. Α/Γ ΣΕ ΠΑΠ ΜΕ ΕΠΟ</th>
<th>% ΚΑΛΥΨΗ ΤΗΣ ΕΠΙΤΡ. ΤΗΣ ΦΙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΓΙΑΣ</td>
<td>Δ. ΑΓΙΑΣ</td>
<td>191</td>
<td>0,66</td>
<td>125,81</td>
<td>15,44</td>
<td>12,27</td>
<td>251,62</td>
</tr>
<tr>
<td>Δ. ΕΥΡΥΜΕΝΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΛΑΚΕΡΕΙΑΣ</td>
<td>180</td>
<td>0,66</td>
<td>118,71</td>
<td>44,33</td>
<td>37,34</td>
<td>237,42</td>
<td></td>
</tr>
<tr>
<td>Δ. ΜΕΛΙΒΟΙΑΣ</td>
<td>198</td>
<td>0,66</td>
<td>130,46</td>
<td>1,93</td>
<td>1,48</td>
<td>260,92</td>
<td></td>
</tr>
<tr>
<td>ΕΛΑΣΣΟΝΑΣ</td>
<td>Δ. ΑΝΤΙΧΑΣΙΩΝ</td>
<td>142</td>
<td>0,66</td>
<td>94</td>
<td>7,36</td>
<td>7,84</td>
<td>188</td>
</tr>
<tr>
<td>Δ. ΕΛΑΣΣΟΝΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΑΒΑΔΙΟΥ</td>
<td>160</td>
<td>0,66</td>
<td>105,49</td>
<td>34,73</td>
<td>32,92</td>
<td>210,98</td>
<td></td>
</tr>
<tr>
<td>Δ. ΟΛΥΜΠΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΠΟΤΑΜΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΣΑΡΑΝΤΑΠΟΡΟΥ</td>
<td>150</td>
<td>0,66</td>
<td>99,15</td>
<td>11,55</td>
<td>11,65</td>
<td>198,3</td>
<td></td>
</tr>
<tr>
<td>Κ. ΒΕΡΔΙΚΟΥΣΗΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Κ. ΚΑΡΥΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΤΣΑΡΙΤΣΑΝΗΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΚΙΛΕΛΕΡ</td>
<td>Δ. ΑΡΜΕΝΙΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΚΙΛΕΛΕΡ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΚΡΑΝΝΩΝΟΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΝΙΚΑΙΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΠΛΑΤΥΚΛΙΜΠΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΛΑΡΙΣΑΙΩΝ</td>
<td>Δ. ΠΕΝΝΟΥΛΗΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΚΟΙΛΑΔΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΛΑΡΙΣΑΣ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΤΕΜΠΩΝ</td>
<td>Δ. ΓΟΝΝΩΝ</td>
<td>112,8597</td>
<td>0,66</td>
<td>74,48</td>
<td>19,29</td>
<td>25,9</td>
<td>148,96</td>
</tr>
<tr>
<td>Δ. ΚΑΤΩ ΟΛΥΜΠΟΥ</td>
<td>128,76896</td>
<td>0,66</td>
<td>84,99</td>
<td>2,89</td>
<td>3,41</td>
<td>169,98</td>
<td></td>
</tr>
<tr>
<td>Δ. ΜΑΚΡΥΧΩΡΙΟΥ</td>
<td>107,44033</td>
<td>0,66</td>
<td>70,91</td>
<td>1,25</td>
<td>1,76</td>
<td>141,82</td>
<td></td>
</tr>
<tr>
<td>Δ. ΝΕΣΣΩΝΟΣ</td>
<td>172,60888</td>
<td>0,66</td>
<td>113,92</td>
<td>9,84</td>
<td>8,63</td>
<td>227,84</td>
<td></td>
</tr>
<tr>
<td>Κ. ΑΜΠΕΛΑΚΙΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΤΥΡΝΑΒΟΥ</td>
<td>Δ. ΑΜΠΕΛΩΝΑ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΤΥΡΝΑΒΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΦΑΡΣΑΛΩΝ</td>
<td>Δ. ΕΝΙΠΠΕΑ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΝΑΡΟΛΙΑΚΔΟΥ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΠΟΛΥΔΑΜΑΝΤΑ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ. ΦΑΡΣΑΛΩΝ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ</td>
<td>1542</td>
<td>7</td>
<td>1018</td>
<td>149</td>
<td>15%</td>
<td>2036</td>
<td></td>
</tr>
</tbody>
</table>