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The hydrological “paradox” of Greece

O While Western Greece is
very prosperous in water
recourses (wet climate,
mountainous topography),
it is weakly developed.
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O Eastern Greece attracts
most of the population
(~40% in Athens) and the
economic activities, but is
poor in water, due to its
semi-arid hydroclimatic
regime.

O Large transfer projects are
essential to restore both
water and energy
“equilibrium” across the
country.
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The water supply system of Athens (~ 4000 km?2)
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s (2000)
~ | Inflows: 275 hm?3

Mornos (1980)
Inflows: 235 hm?3

River basins
Lakes - reservoirs
Boreholes

Pumping stations

Channels - pipes

Water treatment

Athens and
surroundings

Hylike (1953)
Inflows: 295 hm3
Capacity: 585 hm?3

Marathon (1932)
Inflows: <15 hm3
Capacity: 32 hm3
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Providing drinking water to Athens: Evolution of
annual demand, population, GDP and water recourses
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Management challenges and complexity issues

O Conflicting objectives
m Operational cost, mainly due to pumping (to be minimized)
m Long-term reliability (at least 99%, on annual basis)

O Multiple water resources & water paths

Four reservoirs (total useful capacity 1360 hm3, mean annual inflow 820 hm3)
~100 boreholes, used as emergency resources (estimated safe yield 50 hm3)
Multiple water conveyance options, some of them through pumping

Four water treatment plants, multiple water distribution options

O Multiple water uses

Drinking water to Athens (450 hm3, also considering water conveyance leakages)
Local water uses across the water conveyance network (50 hm3)
Environmental flows through Evinos dam (30 hm3) — first established EF in Greece

Hydroelectric energy through small hydropower plants (Mornos aqueduct)

O Multiple sources of uncertainty

m Non-predictable inflows (hydroclimatic uncertainty)
m Uncertain demands, subject to uncertain socio-economic conditions
m Operational issues (leakages, malfunction of critical system components)
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Architecture of the decision support system (DSS) for
the management of Athens water supply

Database
and GIS

Remark: The DSS was developed during 1999-2003 and upgraded during 2008-2010
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Geo-data base

Open database with GIS functionalities,
providing dynamic maps and online hydro-
meteorological information from reservoir
stations, also including software applications
for data processing and management.
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Software tools

Hydrological scenario variables

Genesal information

Parameters calibration

Parameters estimation criterian
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Schematization of the water resource system
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Representation of the water resource system in the graphical environment of Hydronomeas
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Modelling task 1: Generation of hydrological inputs
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Remark: Historical hydrological records
are too short to estimate probabilities
up to 99% through enumeration; this
requires samples of thousands of years
length (e.g., about 10 000 years, for
achieving accuracy of 1%)
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The stochastic model Castalia
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Multivariate stochastic modelling, to represent multiple processes at multiple locations
that are inherently correlated;

Preservation of marginal statistics up to third order (asymmetry);

Preservation of temporal and spatial correlations;

Multiple time scales of preservation, from annual (preservation of over-year scaling,
i.e. the Hurst phenomenon) to monthly (preservation of periodicity);

Operation in steady-state simulation mode (synthetic series of very long horizon) and
forecast mode, conditioned to present and past data (terminating simulation;
“ensemble” series, representing multiple hydrological scenarios for relatively small
horizons).
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Representing the Hurst-Kolmogorov behaviour

O Historical data exhibit peculiarities, such as 0 | Hylike rain
fluctuations at multiple scales and trends, which o
cannot be represented through short-memory
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Modelling task 2: Establishment of a systematic
control policy for reservoirs and boreholes
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Operation rules for multi-reservoir systems

O The rules are nomographs that
specify the desirable allocation of
reservoir resources and the
corresponding releases on a 500 |
monthly basis, as function of:

700 Reservoir

capacity, k;
600 + I '\

400 +

s =gla, b, k, v)

m the estimated total storage of the o | Tarset
system at the end of month; storage, s,
m the capacities of all reservoirs 2007 I

Total system
storage, v

(physical constraints); 100+

m any other kind of storage ;
constraints, imposed by the user. 0 200 400 600 800 1000 1200 1400

O Since inflows are projected through simulation, the target releases are easily
estimated, on the basis on the actual storages and the total water demand.

O The rules are mathematically expressed using two parameters per reservoir, thus
ensuring a parsimonious parameterization of the related optimization problem, where
their values depend on the statistical characteristics of inflows.

O In contrast, linear or dynamic programming approaches would require plethora of
decision variables, the number of which depend on the control horizon, while their
values depend on the sequence of inflows.
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Activation thresholds for groundwater control

O Groundwater are assumed auxiliary resources, which should be only activated
in case of emergency.

O There are more than a hundred boreholes, which are grouped into five
clusters to represent combined abstractions from broader aquifer areas.

O The management policy is specified on the basis of two threshold-type
parameters per borehole group, i.e. an upper and a lower bound, which
express the percentage of total actual reservoir resources to the total
capacity. In this context:

m when the filling ratio of the reservoirs exceeds the upper threshold, the
borehole group is not activated;

m when the filling ratio of the reservoirs is below the lower threshold, the
group is activated by priority, without accounting for energy costs;

® inintermediate states, the group is either activated or not, depending on
the minimization of the total energy consumption across the
hydrosystem.

O Different threshold values are assigned to the five borehole groups of Athens,
thus specifying a desirable hierarchy in their use.
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Modelling task 3: Optimal allocation of actual fluxes
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Network linear programming approach for the flow
allocation problem

O The real-world system is described through a conceptual graph, whose dummy
properties are conveyance capacities and unit costs.

O All hydrosystem fluxes are represented as control variables of a network linear
programming (NLP) problem, whose objective is the minimization of the total
transportation cost through the graph.

O Artificial costs are set either to prohibit undesirable fluxes (positive costs) or to force
the model fulfilling water demands for various uses (negative costs).

O Real costs are expressed in energy terms, by means of specific energy (kWh/m3).
O The assignment of unit costs, real and artificial, is based on a recursive algorithm that
implements the following requirements:
m strict satisfaction of all physical constraints (storage and flow capacities);
m satisfaction of demands and constraints, preserving their hierarchy;
B  minimization of departures between actual and target abstractions;
B minimization of total energy consumption.

O The specific mathematical structure of NLP allows for using accurate and exceptionally
fast solvers.
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Representation of an elementary water resource
system as NLP model
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Modelling task 4: Evaluation and optimization of the
hydrosystem operation policy
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Simulation results
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Question 1: Appraisal of energy cost against demand

and reliability R R ——
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the operation rules for Mornos, Evinos and % 20 ’?/‘( energy ||
S 0 | —

Hylike, while the borehole thresholds were

manually specified. T For99% ;

801| reliability, the
7.0 4| safeyield is up l / /
601l 10415 hm3 R /

5.0

/)
A
)

o Demand
~E . t
, / \fs coF

O Formulated as a non-linear (global)
optimization problem of two criteria, i.e.
minimization of energy and preservation of the
desirable reliability level.

O The two criteria were evaluated through
steady-state simulation, using 2000 years of
synthetic hydrological data.

Mean annual pumping cost (Meuros)

O Practical interest: Assessing the full (i.e.

. . . 300 325 350 375 400 425 450 475 500
financial and environmental) cost of water.

Annual demand for water supply (hm?)
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Question 2: Potential of existing resources

O Problem statement: Estimation of
theoretical safe abstraction from water
resources for 99% reliability, assigning
unlimited flow capacity to the network, for
various borehole operation policies.

O Practical interest: assessing the limits of
the actual resources, for the long-term

planning of new projects.

750

a0

B50

EO0

550

500

450

400

350

300

250
200

Target reservoir storage [hm3]

150
100

=

800 1000 1200 1400
Total system stor. m3]
Below this

Borehole operation policy Intensive ‘\Normal ) Limited |No pumping
Upper usage threshold (%) 80 \40/ 20 0
Lower usage threshold (%) 50 25 10 0

Safe abstraction for water supply (hm?) 610.0 560.0 510.0 430.0
Average abstraction from Mornos (hm?) 330.4 400.9 378.1 340.1
Average abstraction from Hylike (hm?) 183.6 140.6 128.8 93.5
Average abstraction from boreholes (hm?®)| 101.0 23.5 8.0 0.0
Average losses due to leakage (hm?) 82.7 113.8 125.4 143.9
Safe inflow to Athens (hm?) 530.7 487.2 443.7 374.1
Average energy consumption (GWh) 220.7 120.1 98.9 66.1

limit, Hylike
should be
used by

priority
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Question 3: Assessment of impacts from groundwater
abstractions from Boeoticos Kephisos boreholes

Unknown yet significant
underground losses to
Hylike and the sea

Water

supply
boreholes

Pumping conveyed |
to Athens (output)

Méyotos 'Dykog Eufvau [3)

Kzt Mavroneri

springs

Edinvog

BoodusdTopopt
\ Water supply
F T boreholes (for
i, Maupovepio [4 emergency)
(I Mepiatie fuot
a

AlgTopo

Basin runoff
diverted to
Hylike (input)

Abstractions from
conjunctive surface and
groundwater resources

Not a typical water management problem, but a
J; \@ Y own combined hydrological, hydrogeological and water
e B e management problem (Hydrogeios model)

Efdsotog Oyrog Mopwou [3) “(Gpeuon Ok, K
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The HYDROGEIOS modelling framework

Surface hydrology module

O
O

O

O

O
O

Real evapo- Precipitation, potential
Semi-distributed schematization; transpiration evapotranspiration
Conceptualization through two interconnected
tanks, representing the surface processes; Surface hydrology
Model inputs: daily precipitation and potential model
precipitation (PET) data, varying per sub-basin;
o _ Percolation
Parameterization through the hydrological response o5
unit (HRU) concept; S Groundwater
Model outputs: evapotranspiration, percolation and § model
runoff, transferred to the sub-basin outlet. t
(V] .
Groundwater module Spring flows,
o . _ o cell levels
Finite-volume approach, aquifer discretization to a >
limited number of polygonal cells of flexible shape;
Darcian representation of the flow field; W
. s . . Demand ater
Stress data: percolation, infiltration, pumping; data management
model

O

Model outputs: cell levels, spring runoff;

Water allocation module

O

Extension of the NLP approach, to also embrace the
river network components.

!

Hydrosystem fluxes
(river and aqueduct
flows, abstractions)

Under-
ground
losses

Pumping,
river infiltration
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Modelling the Boeoticos Kephisos basin

River network, sub-
basins and springs

Virtual cells, )
accounting for
underground
losses

Groundwater
cells and wells

Hydrological
response units

/

-

Product of three
permeability and
two terrain slope
classes

Basin area: 1956 km?

Mean altitude: 481 m

Main course length: 102 km
Mean annual rainfall: 875 mm

Mean annual runoff: 146 mm (after
abstractions; 50% is the baseflow)
Major geological formation: limestone,
at most karstified (40%)
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Question 3: How sustainable is the exhaustive use of
boreholes?

O Most of the water supply boreholes of Athens were drilled within the frame of
emergent measures taken during the persistent drought from 1988 to 1994.

O The most important were drilled in the middle course of Boeoticos Kephisos basin, close
to the karst springs of Mavroneri, accounting for 15% of the basin runoff, which is turn is
diverted to Hylike.

O Due to the considerable reduction of rainfall and the intense pumping, the flow of
Mavroneri springs was twice interrupted during 1990 and 1993, thus resulting to severe
social and environmental problems.

---x-- Obs. discharge (under pumping) —®— Sim. discharge (under pumping) —&— Sim. discharge (no pumping)

------------------------ - 0.0
————————————— - 1.0
W 2.0
3.0

(m®/s)

g 1

Pumping through Vassilika-
Parori boreholes (m%/s)

Discharge at Mavroneri springs

Oct-85 T
Apr-86
Oct-86 T
Apr-87 7
Oct-90

Oct-84
Apr-85 7
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Stochastic simulation of the basin under alternative
water supply policies

8.0 No pumping I\

O Terminating simulation; generation of 100 synthetic ;z v, ]A\ A
rainfall scenarios, of 10-year length. 5:0 /\ N /\ /\ I\ A I \

O Two extreme management scenarios are examined, 40 //A\\\//ln\\\/ \\/\ / \/ \\/\/ \N\\ /\\
with regard to the operation of the water supply 30 NV \ /\\/I \ I \ N /"\
boreholes at the middle course of the basin, assuming 20 \v /\v /\ f\ V[\\//A\\
(a) zero pumping, and (b) intensive pumping, during ;z \/ \j NAY W/\/ \)
the 10-year control period. . ——————————

. : : :

O Actual irrigation demands were considered across 7.0 Miensive pumping ]
seven broader agricultural areas. 6.0 /\ . i A

O Under the intensive abstraction policy, there is a jz AT T ]
progressive decrease of the spring outflow, which 20 AV\TRNARRIRFIVRNYA
indicates that, in a long-term perspective, the intensive 20 A\{)/ \\)/\\V//\\\/f\ W\V,\, N \/ A
use of the boreholes for the water supply of Athens is 10 \\/\V&\/ \V/ \v//\\v/\vl \v//\vl/r\\\
not sustainable. Yo h 8 o J\ﬁ o T % \3

O Practical interest: evaluation of safe groundwater yield; 5588383838338
estimation of environmental impacts and related costs, Simulated outflows through
under specific pumping policies. Mavroneri springs (mean

and 80% prediction limits)

Efstratiadis A., The water supply system of Athens: Management complexities, modelling challenges and low risk & cost decisions 27



Synopsis of the modelling framework

O Model schematisation through a network-type representation of the
hydrosystem components;

O Parameterisation of processes and controls on the basis of parsimonious
structures, which are consistent with the available data;

O Conjunctive representation of hydrological and anthropogenic processes;

O Recognition of uncertainty and quantification of system risks through
stochastic simulation;

O Representation of the Hurst-Kolmogorov behaviour in the modelled
hydroclimatic processes;

O Faithful description of system dynamics;

O Use of effective and efficient optimization techniques to provide rational
results, with reasonable computational effort;

O Interpretation of model results to provide pragmatic solutions in real-world
problems.

Complex processes - simple models - solutions validated by common sense
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