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1. Introduction
Hydroclimatic processes  are  usually  modeled  either  by  exponential  decay  of  the  autocovariance  function,  i.e. 
Markov behaviour,  or  power  type  decay,  i.e.  long-term  persistence  (or  else  Hurst-Kolmogorov behaviour; 
Koutsoyiannis, 2015). Hurst was one of the most influential hydrologists of the last century due to his remarkable 
scientific work. He discovered that hydrological and other geophysical time series exhibited statistical behavior 
Koutsoyiannis, 2015). Hurst was one of the most influential hydrologists of the last century due to his remarkable 
scientific work. He discovered that hydrological and other geophysical time series exhibited statistical behavior 
which was named as Hurst-Kolmogorov phenomenon (long-term persistence or long-range dependence). For the 
Markov process the future state depends entirely on the present state whereas for the HK process entirely on the 
present as well as the past state.

These two processes include only one parameter, i.e., the lag-1 autocorrelation coefficient and the Hurst coefficient, 
respectively. However, as simple as may seem to be, it is often quite challenging to determine which one best respectively. However, as simple as may seem to be, it is often quite challenging to determine which one best 
describes the observed stochastic structure. In hydroclimatic processes, where we usually have limited number of 
measurements, the above identification becomes even harder and sometimes it is statistically impossible to choose 
between one another. For the identification and quantification of such behaviours several graphical stochastic tools 
can be used such as the climacogram, autocovariance, variogram, power spectrum etc. Comparing these tools the 
climacogram is more accurate with a lower total mean-square error, thus smaller statistical uncertainty (Dimitriadis
and Koutsoyiannis, 2015; Dimitriadis et al., 2015). The climacogram comes from the Greek word climax which and Koutsoyiannis, 2015; Dimitriadis et al., 2015). The climacogram comes from the Greek word climax which 
means scale and is defined as the (plot of) variance (or standard deviation) of the averaged process (assuming 
stationary) versus averaging time scale (Koutsoyiannis, 2015).

Most methodologies including the above tools are based on the unbiased estimator of the expected value of the 
standard deviation or variance through least-squares techniques (e.g., Tyralis and Koutsoyiannis, 2011), or based on 
maximum-likelihood estimators (e.g., Kendziorski, 1999). In this analysis, we explore a methodology that combines maximum-likelihood estimators (e.g., Kendziorski, 1999). In this analysis, we explore a methodology that combines 
both the practical use of a graphical representation of the internal structure of  the  process  as  well  as  the  
statistical  robustness  of  the  maximum probability estimator. For  validation  and illustration  purposes, we apply 
this methodology to fundamental stochastic processes such as Markov processes with lag-1 autocorrelations ranging 
from 0.1 to 0.9, and Hurst-Kolmogorov processes, for Hurst coefficients ranging from 0.5 (i.e., white noise) to 0.9.

2. Definitions and notations
For the identification between Markov and HK processes, we adopt the climacogram. Besides the fact that it 
exhibits smaller uncertainty in comparison with other tools like the autocovariance and power spectrum, it has 
the advantageous property of developing true identical log-log derivative/slope (abbreviated LLS) at large 
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the advantageous property of developing true identical log-log derivative/slope (abbreviated LLS) at large 
scales equal to -1, which corresponds to both Markov and white noise processes. Therefore, the climacogram 
allows for a direct comparison between the HK and Markov mathematical processes to decide which of the 
two best describes the natural process. The true climacogram, classical estimator and expected value are given 
by (Koutsoyiannis, 2013; Dimitriadis and Koutsoyiannis, 2015):

, where γ is the climacogram (^ denotes estimation ���� ≔ var	
 ����d��0 ��2  , where γ is the climacogram (^ denotes estimation 
and underscore is used for random variables), x is 
the random process in continuous time, t denotes 
time, m is the scale in continuous time, k is the scale 
in discrete time, n is the length of the sample, x(Δ) is 
the random process in discrete time and Δ is the 
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the random process in discrete time and Δ is the 
time interval.
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The continuous-time Markov and HK processes as well as the definition for the Hurst coefficient are given by:

, where λ is the true variance of the process, q is the ���� = 2���/!�2 "�/! + #−� !⁄ − 1% 
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, where λ is the true variance of the process, q is the 
Markov parameter with e-1/q corresponding to the lag-1 
autocorrelation coefficient, H is the Hurst parameter 
and # denotes the LLS.

3. Methodology
In this work, we explore three common scenarios for the analysis of geophysical processes and for each 
scenario, we provide appropriate tests to enable the identification between the two processes. For each scenario, 
we produce 104 synthetic timeseries of n = 200 for each one of the Markov processes (i.e., q = 0.5, 1, 2, 5 and 10), 
for the white noise (i.e., H = 0.5) and for each one of the examined HK processes (i.e., H = 0.6, 0.7, 0.8 and 0.9). 
we produce 10 synthetic timeseries of n = 200 for each one of the Markov processes (i.e., q = 0.5, 1, 2, 5 and 10), 
for the white noise (i.e., H = 0.5) and for each one of the examined HK processes (i.e., H = 0.6, 0.7, 0.8 and 0.9). 
For the synthesis of the latter processes we use the 3×AR(1) technique of Koutsoyiannis (2002):�� = 1� + 2� + 3�  45 = 1.52�) − 0.5�1.32 49 = 0.953 − 7.69�1 − )�3.85  43 = > 0.932 + 0.087 , * ≤ 0.760.993 + 0.007* , * > 0.76C , and

, where A, B and C, are Markov processes with autocorrelation coefficients and variances:

�5 = �1 − D1 − D2��� �2 = D1��  

43 = > 0.932 + 0.087 , * ≤ 0.760.993 + 0.007* , * > 0.76C
�3 = D2��  

Firstly, we explore the scenario where we have multiple timeseries of identical length, for example in case of 
repeatable experiments over the same initial conditions. For this case, the analysis is based on the expected 
value of the process (Dimitriadis and Koutsoyiannis, 2015) by applying two tests, one to highlight the difference 
between the expected values of the two process and one for their confidence intervals. At the former test, we 

, and , with c1, c2 fitting parameters between empirical and model γ.

between the expected values of the two process and one for their confidence intervals. At the former test, we 
plot the fitting error of the expected value for the examined and observed processes for various ranges of scales 
(from smaller to larger scales and larger to smaller) vs. scale. At the latter test, we estimate which process best 
fits the confidence intervals (specifically, the q5% and q95%) of the empirical climacogram for various scales.
In the second scenario, we have multiple timeseries of different lengths, for example in case of various 
hydrometeorological stations around the globe with different observational periods. For this case, we apply the hydrometeorological stations around the globe with different observational periods. For this case, we apply the 
same tests as before, but with adjusting a correction factor for the difference in bias to each empirical 
climacogram (specifically, we multiply it with a ratio of the expected value for the length of the original 
timeseries and the desired length). Finally in the third scenario, we have only one timeseries and we apply a 
test based on the most probable value of the climacogram.

4. Is climacogram unbiased?
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Figure 1. True vs. expected values between various HK processes. Figure 2. True vs. expected values between various Markov 
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In the Figures above we observe that the expected value of the climacogram may be different from its true 
value, especially for large Hurst coefficients. Only in case of White Noise (H=0.5) the climacogram is unbiased 
(equivalently, zero autocorrelation).  Moreover, the bias in case of a Markov process is negligible for small lag-1 
autocorrelation coefficients, but it can be significant for large ones. In stochastic modelling we apply the 

Figure 1. True vs. expected values between various HK processes. Figure 2. True vs. expected values between various Markov 
processes.

(equivalently, zero autocorrelation).  Moreover, the bias in case of a Markov process is negligible for small lag-1 
autocorrelation coefficients, but it can be significant for large ones. In stochastic modelling we apply the 
expected value a process without considering that it may be different than its true value since it is impossible 
to have a timeseries of infinite length or equivalently infinite timeseries of finite length.

5. What if we have multiple timeseries of identical length?
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Figure 3. Fitting error of expected HK process (H=0.9). Figure 4. Range of confidence intervals of HK process (H=0.9). 
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Figure 5. Fitting error of expected Markov process (q=10). Figure 6. Range of confidence intervals of Markov process (q=10).
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6. What if we have multiple timeseries of different length?
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Figure 7. Comparison between mean (no adjustment for bias) 
and adjusted mean HK process (H=0.8).

Figure 8. Hurst coefficient distribution functions for HK process 
(H=0.8) with and without adjustement for bias.
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Figure 9. Comparison between mean (no adjustment for bias) 
and adjusted mean Markov process (q=5).

Figure 10. Hurst coefficient distribution functions for 
Markov process (q=5) with and without adjustment for bias.

7. What if we have one timeseries?
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Figure 11. Climacogram characteristics of HK process (H=0.9). Figure 12. Climacogram characteristics of HK process (H=0.6).
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Figure 13. Climacogram characteristics of Markov process (q=0.5). Figure 14. Climacogram characteristics of Markov process (q=10).
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8. What if we have one timeseries? (cont.)
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Figure 15. Expected value and mode for all examined HK processes. Figure 16. Expected value and mode for all examined Markov 
processes.
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Figure 17. Fitting error for HK process (H=0.9). Figure 18. Fitting error for Markov process (q=1).

9. Comments and conclusions
In this work, a common problem in stochastic analysis is tackled, that is the identification from data of an 
exponential-type decay (i.e., Markov behaviour) or power-type decay (i.e., HK behaviour) of the 
autocorrelation function of a random variable. We explore methodologies and propose several tests to ease this autocorrelation function of a random variable. We explore methodologies and propose several tests to ease this 
dilemma. Our analysis is based on the climacogram whose bias can be estimated accurately (sect. 2, 3 and 4). 
The two tests we propose are based on the expected value and confidence intervals of the examined 
mathematical process. In case the expected value of the empirical process can be estimated within reasonable 
accuracy (sect. 5 and 6), we can determine the fitting error for various scales between the expected value of each 
process and the empirical one. As we move from smaller to larger scales and contrariwise, we can easily 
determine which model has the lowest error and thus, which one we should prefer (Fig. 3 and 4). In case we determine which model has the lowest error and thus, which one we should prefer (Fig. 3 and 4). In case we 
only have limited scales and the two processes give equally small fitting errors, we can apply a second test 
based on the range of the confidence intervals for both processes (Fig. 5 and 6). Finally, in case we have only one 
timeseries of the random variable then we can only apply the first test but instead of using the expected value 
we should use the most probable one (sect. 7 and 8).
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