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| 1. Abstract

The long-term persistence (LTP), else known in hydrological science as the Hurst
phenomenon, is a behaviour observed in geophysical processes in which wet years or
dry years are clustered to respective long time periods. A common practice for
evaluating the presence of the LTP is to model the geophysical time series with the
Hurst-Kolmogorov process (HKp) and estimate its Hurst parameter H where high values
of H indicate strong LTP.

We estimate H of the mean annual precipitation using instrumental data from
approximately 1 500 stations which cover a big area of the earth’s surface and span
from 1916 to 2015. We regress the H estimates of all stations on their spatial and
regional characteristics (i.e. their location, elevation and Koppen-Geiger climate class)
using a random forest algorithm. Furthermore, we apply the Mann-Kendall test under
the LTP assumption (MKt-LTP) to all time series to assess the significance of observed
trends of the mean annual precipitation.

To summarize the results, the LTP seems to depend mostly on the location of the
stations, while the predictive value of the fitted regression model is good. Thus when
investigating for LTP properties we recommend that the local characteristics should be
considered. Additionally, the application of the MKt-LTP suggests that no significant
monotonic trend can characterize the global precipitation. Dominant positive significant
trends are observed mostly in main climate type D (snow), while in the other climate
types the percentage of stations with positive significant trends was approximately
equal to that of negative significant trends. Furthermore, 50% of all stations do not
exhibit significant trends at all.




2. Introduction

Long-term persistence (LTP) is an inherent property of geophysical processes in
which wet years or dry years are clustered to respective long time periods
(Koutsoyiannis 2002).

The LTP can be modelled with the Hurst-Kolmogorov process (HKp) and
characterizes the magnitude of LTP (Koutsoyiannis 2003).

Estimation of H is important in engineering practice (Lins and Cohn 2011).

Uncertainty increases substantially when LTP is present (Koutsoyiannis 2006;
Koutsoyiannis and Montanari 2007; Tyralis and Koutsoyiannis 2014).

Significant trends under the independence assumption can be considered non-
significant under the LTP assumption (Hamed 2008).

A few studies examine the LTP properties of global precipitation (Fatichi et al. 2012;
Sun et al. 2014; Iliopoulou et al. 2016). Evidence of LTP presence in annual
precipitation records is inconclusive (O’Connell et al. 2015).

Here we:

Estimate H of mean annual precipitation time series from instrumental
measurements.

Investigate possible relationships between H and station location features (latitude,
longitude, elevation, climate type).

Examine the importance of location features in predicting H.

Predict H using location features as predictor variables.

Estimate trends of mean annual precipitation and their significance.

Perform an exploratory analysis on the trends coupled with station location features.




.3. Data and methods

* Daily precipitation data from 1 535 stations (Menne et al. 2012a,b).

 Time-period of study: 1916-2015.

» Earth’s surface coverage is limited to Australia, Europe, North America due to data
availability.

* Daily time series imputation based on procedure described in Tyralis et al. (2017).

e Daily time series are transformed to mean annual time series.

* Estimation of H using the Maximum Likelihood Estimator (Tyralis and Koutsoyiannis
2011).

 Regression of H on predictor variables (longitude, latitude, xyz Cartesian
coordinates, elevation, Koppen-Geiger climate class (Kottek et al. 2006)) using
random forests (Breiman 2001), the cforest algorithm (Strobl et al. 2007) and linear
regression.

* Estimation of trends and their significance using the Mann-Kendall test under the
LTP assumption (MKt-LTP, Hamed 2008, Tegos et al. 2017).

* Application of methods using R packages (Breiman 2001 for the application of
random forests, Strobl et al. 2007 for the application of the cforest algorithm, Kuhn
2008, Kuhn et al. 2016 for the optimization of the regression algorithms, Tyralis
2016 for the estimation of H and the application of the MKt-LTP).

* Further details and supplementary information can be found in Tyralis et al. (2017).




4. Stations location and Koppen-Geiger climate types
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5. H estimate and climate type

Median of H estimates
equal to 0.56.

A truncated normal
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Higher H values are observed for
positive latitude, however no
trend prevails.

We do not observe any linear
relationship between the two
variables.

We do not observe any clear
linear relationship between H and
the longitude.

H is not linearly related to the
elevation of each station.

Absence of evidence for linear
relationships.

Therefore we must seek for
possible relationships using non-
linear algorithms.




7. Regression predictors and cross-validation

Combinations of predictor variables
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Sample of 1 535 stations is split into 80% fitting
set and 20% testing set.

Performance of the linear models, random forests
and the cforest algorithm are compared for each
combination of predictors using the RMSE, MAE,
MAPE and Pearson’s r metrics.

The metrics are calculated in the testing set.
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8. 5-fold cross-validation, variable importance

Results of the 5-fold cross-validation Variable importance
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9. Significance of annual trend estimates

Median of trends: 0.36 mm/year
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| 10. Conclusions

Median is H = 0.56 for the dataset of 1 535 mean annual precipitation time series for
the time period 1916-2015.

Result is consistent with Fatichi et al. (2012), Sun et al. (2014) and Iliopoulou et al.
(2016).

Location of stations is important in predicting H, followed by the climate type and
elevation.

However, the order of importance of the three former variables depends on the
algorithm.

The cforest algorithm estimates that the climate type is the most important, while
due to its simultaneous handling of continuous and categorical variables can be
considered more reliable than the random forests in estimating the variable
importance.

The combinations 6 and 20 of predictor variables, which include, respectively, the
Cartesian coordinates and the geographic coordinates of the stations performs well
in terms of the error metrics, but most importantly, their predictions had good
correlation with the tested values.

The inclusion of the climate type and the elevation (combinations 9, 23) improved
further, albeit little, the performance of the random forests. However, this marginal
improvement means that the information obtained from the geographic location of
the station already includes the information of the climate type.




| 11. Conclusions

The overall result is that the random forest algorithm can predict well the LTP of the
mean annual precipitation, when the location characteristics are used as predictor
variables while their performance is considerably better compared to the predictive
ability of the simple distribution of H, particularly in terms of the correlation
between the predicted and the estimated values.

Therefore, the random forests can be used to predict H in locations without data or
insufficient quantity of data and can serve as a substitute of spatial interpolation
methods.

Compared to spatial algorithms the random forests excel in combining information
from distant locations through the common latitude, climate type and elevation
variables, even if the spatial coverage is limited and non-uniform.

Median value of the estimated trends is 0.36 mm/year.

Dominant positive significant trends are observed mostly in main climate type D.

In the other climate types the percentage of stations with positive significant trends
is approximately equal to that of negative significant trends.

In main climate types A-D 50% of the stations are characterized by insignificant
trends.

A limitation of our study is that the random forests algorithm can predict values only
if given values of the predictor variables are within the range of the fitting set.

Thus, the limited availability of data prohibits the generalization of the method to
regions and Koppen-Geiger climate classes, which are not represented by the
dataset.

For more details see Tyralis et al. (2017).
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