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‘ ‘Panta Rhei’ in Hydrology:
The scientific decade of IAHS 2013-2022

PANTA RHEI
CHANGE IN HYDROLOGY AND SOCIETY

The new scientific decade 2013-2022 of IAHS, entitled “Panta Rhei — Everything Flows”, is
dedicated to research activities on change in hydrology and society. The purpose of Panta
Rhei is to reach an improved interpretation of the processes governing the water cycle by
focusing on their changing dynamics in connection with rapidly changing human systems.
Panta Rhei is presented by Montanari et al., Panta Rhei—Everything Flows”:Change in
hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences
Journal, 58:6, 1256-1275, DOI:10.1080/02626667.2013.809088. The practical aim is to
improve our capability to make predictions of water resources dynamics to support
sustainable societal development in a changing environment. The concept implies a focus
on hydrological systems as a changing interface between environment and society, whose
dynamics are essential to determine water security, human safety and development, and to
set priorities for environmental management. The Scientific Decade 2013—-2022 will devise
innovative theoretical blueprints for the representation of processes including change and
C"‘"’gﬁdigaﬁ{gif,“’” will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be
sought by increased efforts to bridge with the socio—economic sciences and geosciences in

general.
PANTA RHEI LIBRARY Concepts of Panta Rhei

http://iahs.info/Commissions--W-Groups/Working-Groups/Panta-Rhei.do
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‘Panta Rhei’: © Heraclitus
Change and randomness

HMavta pel
Everything flows

(Heraclitus; quoted in Plato’s Cratylus,
339-340)

Alwv aic é0Tl Tai{wV TECCEVWVY
Time is a child playing, throwing dice
(Heraclitus; Fragment 52)

Heraclitus
ca. 540-480 BC
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Change, logic, precision: © Aristotle

MeTafaAAel T@ YpOovew TAVTa
All is changing in the course of time

(Aristotle; Meteorologica, [.14, 353a 16)

AOYLKY], GUAAOYLOHOC, EMAYWYT)
Logic, deduction, induction

(Aristotle, Organon)

.. TOOGOUTOV TAKPIPEC EMINTEY KO’
EKAOTOV YEVOG, £@° 000V 1) TOD
TIPAYURTOC PUOIC ETIOEYETAL

... look for precision in each class of

: _ Aristotle
things just so far as the nature of the 384 — 322 BC
subject admits (wikipedia)

(Aristotle, Nicomachean Ethics 1094b)
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Change and
predictability

Predictable
(regular)

V) i Py

Non-periodic Periodic
e.g. acceleration of e.g. daily and
a falling body annual cycles

-
Simple systems — Short time horizons
Important but trivial )
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Perpetual change as seen in

the Nilometer record
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Nilometer data: Koutsoyiannis (2013a)
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‘ Change, stationarity and nonstationarity

POLICYFORUM |

Stationarity Is Dead:
Whither Water Management?

P.C. D. Milly,** Julio Betancourt,2Malin Falkenmark 3 Robert M. Hirsch* Zbigniew W.
Kundzewicz,3 Dennis P. Lettenmaier,® Ronald J. Stouffer’

Climate change undermines a basic assumption
that historically has facilitated management of
water supplies, demands, and risks.

ystems for management of w

throughout the developed world |

been designed and operated unde
assumption of stationarity. Stationarity—
idea that natural systems fluctuate withi
unchanging envelope of variability—
foundational concept that permeates trai
and practice in water-resource engineerir
implies that any variable (e.g., annual str¢
flow or annual flood peak) has a time-in
ant (or 1-year—periodic) probability der
function (pdf), whose properties can be
mated from the instrument record. Under
tionarity, pdf estimation errors are ackn
edged, but have been assumed to be redw
by additional observations, more effic
estimators, or regional or paleohydrol
data. The pdfs, in turn, are used to eval
and manage risks to water supplies, wi

works, and floodplains; annual global inv

1174 Hydrological Sciences Journal — Journal des Sciences Hydrologiques, 60 (7-8) 2015
http://dx.doi.org/10.1080/02626667.2014.959959
Special issue: Modelling Temporally-variable Catchments

Negligent killing of scientific concepts: the stationarity case

Demetris Koutsoyiannis' and Alberto Montanari®

! Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens,
Athens, Greece

dk@itia.ntua.gr
“Department DICAM, University of Bologna, Bologna, Iltaly

Received 21 March 2014; accepted 11 August 2014
Editor Z.W. Kundzewicz; Guest editor G. Thirel

Abstract In scientific vocabulary, the term “process” is used to denote change in time. Even a stationary process
describes a system changing in time, rather than a static one that keeps a constant state all the time. However, this
is often missed, which has led to misuse of the term “nonstationarity” as a synonym of “change”. A simple rule to
avoid such misuse is to _answer the guestion: can the change be predicted in deterministic terms? Only if the
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[s this time series stationary or nonstationary?

4.5

4 —— Time series

35 - —— Local average [\\V/\ N A A\/Av
;- VW
2.5 1

21\ M N MY M A AR

P A ARV A VA VAR
1_
0.5 A

O I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

= Answer 1: Stationary - Wrong answer Time, i
= Answer 2: Nonstationary - Wrong answer
= Answer 3: The question is wrong - Right answer

A time series cannot be stationary nor nonstationary.
These are properties of the process that generated the time series.
This series was generated by a stationary process (Koutsoyiannis, 2011).
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Process, stochastic process, statlonarlty
© Kolmogorov

s Kolmogorov (1931)

o clarified that the term process means
change of a certain system:;

o introduced the term stochastic process;
0 used the term stationary to describe
a process in probabilistic terms.
= Kolmogorov (1938) clarified: Andrey Kolmogorov

a stationary stochastic process |...] isa set (1903 -1987)
of random variables x, depending on the parameter ¢,
—-00 < t < +00, such that the distributions of the systems

(X Xy oo X ) AN (Xp, 4 00 Xp) 4o oo Xp 2 1)
coincide for any n, t;, t,, ..., t, and .
= Note: nonstationary processes are those whose statistical
properties change in time in a deterministic manner.
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‘ The cause of change: © Peter Atkins

Atkins, 2004

ENTROPY

THE SPRING OF CHANGE

Not knowing the Second Law of thermodynamics is like never
having read a work of Shakespeare’

c. p. snow timents. The second law is of central importance in the whole
of science, and hence in our rational understanding of the uni-
verse, because it provides a foundation for understanding why
any change occurs. Thus, not only is it a basis for understanding

why engines run and chemical reactions occur, but it is also a

foundation for understanding those most exquisite consequences
Atkins ; 2007 of chemical reactions, the acts of literary, artistic, and musical
creativity that enhance our culture.
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Entropy = Uncertainty quantified

Historically entropy was introduced in thermodynamics but later it was
given a rigorous definition within probability theory (owing to
Boltzmann, Gibbs and Shannon).

Thermodynamic and probabilistic entropy are essentially the same thing
(Koutsoyiannis, 1010, 2013b, 2014; but others have different opinion).
Entropy acquires its importance from the principle of maximum
entropy (Jaynes, 1957), which postulates that the entropy of a random
variable should be at maximum, under the conditions (constraints) which
incorporate the available information about this variable.

The tendency of entropy to become maximal explains a spectrum of
phenomena from the random outcomes of dice to the 2" Law of
thermodynamics as the driving force of natural change.

Entropy is a dimensionless measure of uncertainty:

Discrete random variable z Continuous random variable Z
f(z) f(Z)
®[z] :=E[-In P(2)] = z]W: 1P In Pj [ Ing =S hz)| = —oo INpA2)dz

where P; := P{z = z;} (probability)

where f(z) is probability density and h(z)
is the density of a background measure
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‘ “It is difficult to make predictions, especially about

thefu ture’: © Anonymous (Danish proverb, not Niels Bohr/Mark Twain)
[DK addition: but it is easy to laugh at predictions]

m  1970: Civilization will end within 15 or 30 years unless immediate

action is taken against problems facing mankind.
George Wald, Harvard Biologist, share of the 1967 Nobel Prize in Physiology or Medicine

(quoted in Looney, 2011, p. 390, and Dudley, 2001, p. 26).

s 1970: Demographers agree almost unanimously on the following grim
timetable: by 1975 widespread famines will begin in India; these will spread
by 1990 to include all of India, Pakistan, China and the Near East, Africa. ...
By the year 2000, 30 years from now, the entire world, with the
exception of W. Europe, N. America, and Australia, will be in famine.
Peter Gunter, professor, North Texas State University (quoted in Looney, 2001, p. 389).

= 1970: The world has been chilling sharply for about twenty years... If
present trends continue, the world will be about four degrees colder for the
global mean temperature in 1990, but eleven degrees colder in the year
2000. This is about twice what it would take to put us into an ice age.
Also: We have about five more years at the outside to do something.

Kenneth E. W. Watt, Ecologist and Professor of University of California, Davis
(Environmental Action, 1970, pp. 14-15).
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Predictions about the future climate abound

Summers in{2080-2100 Warmer than Warmest on Record

From 2100 AD
(Battisti and Naylor,
Science, 2009)...

2%/fyr; Actual warming
2%/yr; Warming in equilibrium with actual CO2

/

..t0o 3000 AD
(Solomon et al.,

AT#m (=)
e

o8]

\

o

7

20002800 La000) | Nature Geoscience,
£ 2009)
]
2 21
R |
0
LT U
£ a0 E_”N b e e o
o :3:‘ -\‘\\ ______ e ...tO 100 OOO AD

e I | - 7 (Shaffer et al.,
1900 2000 2100 2500 000 5000 10000 50000 100000
O PNAS, 2009)
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‘ How good have climate predictions been so far?

Hydrological Sciences—Journal-des Sciences Hydrologigi 1334

RAPID COMMUNICATION REPLY

On the credibility of climate predictions

ack e
y D. Ye for the g "
D. KOUTSOYIANNIS, A. EFSTRATIADIS, N. MAM tand Ydrologicqy Sciences Journqp»

Deparmment of Water Resources, Faculty of Civil Engineering, National Tec
Heroon Polytechneiou 5, GR-157 80 Zographou, Greece

. — s A Efstratiadic!
dk(@itia.ntua.gr T — — k. 0.q Anagnostomulogl &N. M
e : - Mamasgig!
Abstract Geographically distributed predictions of future climate, obtained through climate models, are o ————
widely used in hydrology and many other disciplines, typically without assessing their reliability. Here we S ——
compare the output of various m«

| 100 ds fro . . :
C?ﬁt?fﬁgoyegﬁﬂzgf:cﬁé i A comparison of local and aggregated climate model outputs with

models can Eerﬁ:urm better at larﬁu observed data

D. Koutsoyiann:
Oylannis' A Christoﬁdes"

Answer: They are G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis & N. Mamassis

1 Department of Water Resources, Faculty of Civil Engineering, National Technical University of Athens, Heroon Polvtechneiou 5,
mo Stly lrrelevant to GR 157 80 Zographou, Greece

reallty; see detalls ln a.christofides(@itia.ntua.gr
KOLItSOYlannlS et al Received 10 April 2009; accepted 10 May 2010; open for discussion until 1 April 2011

2 0 0 8 2 O 1 1 Citation Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A. & Mamassis, N. (2010) A comparison of local and
( ) ); aggregated climate model outputs with observed data. Hydrol. Sci. J. 55(7), 1094—1110.

AnagHOStOPOUIOS et Abstract We compare the output of various climate models to temperature and precipitation observations at 55
. points around the globe. We also spatially aggregate model output and observations over the contiguous USA using
al. 2 O 1 O ) TsaknlaS data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale.
pe p P g
Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results
et al. 2017 0 show that the spatally integrated projections are also poor.
patially gr pro! P
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Can we convert deterministic predictions into stochastic?

= Yes—we can and we should.

s Method 1: By perturbing input data, parameters and model output (the
latter by adding random outcomes from the population of the model
error): see the blueprint by Montanari and Koutsoyiannis (2012).

s Method 2: By incorporating one or many deterministic forecasts into an
initially independent stochastic model: Tyralis and Koutsoyiannis (2017).

m With reference to the

sketch on the right} we Linear model fitting Prediction

simulate the unknown | e >

future Vs conditionalon = iNormal stationary mode::l ﬁttingi E

Historical N . o 1

the known pasty,, y, observationsy | y ; y : y :

. . . Servat S I | I |

and the deterministic | ! T2 3 i

model outputs X,, X3 by | Hindcast |  Forecast !

iniat] < »d : >

Ayl v, 3) . Deeminiic —————

orecas : : : |

fx31y3) g3ty y2) : 2 3 |

where f(x;|y;)isthe  Time i i i 4
model] likelihood and 1 - B,

the other functions are
conditional densities.
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Application to the climate of the USA

m Historical data for temperature and
precipitation from 362 and 319 stations,
respectively, have been used to estimate
the areal averages (historical
observations).

m Deterministic forecasts were taken from
14 different climate models. The model
likelihood was evaluated in the period 2006-15.

m The example on

<t — GCM
temperature (95% 5w | - ooenstons e .
. ) . Q « | —- prediction quantiles A N~ TWC/)
prediction intervals) g o et ;/\V-//-\m-_v-ﬂ,-v\-1,,q,_7\,ﬂ‘¥si\,\7ﬁ-§;’--‘-L,; : R
shows a slight increase & - | | ' oy AN
- : n £ o 1 A e
in annual temperature in & ¢ - W V\/\\ﬁ /\lw M |
the USA if conditioned > be | i | |
on the output of MRI- — ‘ .
- observations ‘
CGCM3 Cllmate mOdel. ’é‘ 8_ | -- obs;r\;ationsm?‘an [\N\_\ ‘\/l\,\ /\/ VV . VVV /A! .VJ :\Af\AU AMU,VN M\
EF 7| podeenener} L/\r\ ‘ \

m The example on 5§ A Y N ' V“/\(I\/ﬂ'“ P A b AN A ang
Pre.c Ipitation ShOYVS § DA fﬂ_\u " AN l\f\”w\f “-N[n_‘up::.x/_\,,Mr‘;L-ufL:r_’\’_\_“\_Pfy‘_’f\_'f:’uv_-\
indifference despite = o | |V \/\WQV \,VWPJ‘ W [ L AT A Y

L . ~ v ' ! ! VAL vOANAl P WM s N
conditioning on the GISS- , — — ;
E2-H climate model. 1950 2000 2050 2100
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Multimodel approach: The Bayesian Thistle

= Some models have negative correlation with historical data.

m As aresult, the predicted temperature rise turns into decline in the

stochastic
framework.

= In turn, this
results in
huge
uncertainty
if many
climate
models are
used in
conditioning
our stochastic
model.

Temperature (C)

= The resulting
shape looks as
a thistle.
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Final multimodel results for temperature and
precipitation in the USA

= If all models are taken into account, the temperature change up to 2100
could be somewhere in the range -4 to 4 K.

m Precipitation does not change by conditioning on all models.
Only its

w T
t . t T observations :

— = observations mean s
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Concluding remarks

= Ilavta pel (or: Change is Nature’s style).
s Change occurs at all time scales.

= A process is synonymous to change—even a stationarity
process means change.

= Nonstationarity should not be confused with change, nor
with dependence of a process in time.

s Change and uncertainty are tightly connected through
(maximized) entropy.

s Change and uncertainty are inevitable.

= Uncertainty is not an enemy; rather this world is livable
because of it.

The quest for certainty blocks the search for meaning. Uncertainty is

the very condition to impel man to unfold his powers.
Erich Fromm
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