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‘Panta Rhei’ in Hydrology: 
The scientific decade of IAHS 2013-2022 
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http://iahs.info/Commissions--W-Groups/Working-Groups/Panta-Rhei.do 



‘Panta Rhei’: © Heraclitus  
Change and randomness 
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Πάντα ῥεῖ 
Everything flows 

(Heraclitus; quoted in Plato’s Cratylus, 
339-340) 

Αἰών παῖς ἐστι παίζων πεσσεύων  
Time is a child playing, throwing dice 

(Heraclitus; Fragment 52) 

Heraclitus 
ca. 540-480 BC 



Change, logic, precision: © Aristotle 
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Μεταβάλλει τῷ χρόνῳ πάντα 
All is changing in the course of time 

(Aristotle; Meteorologica, I.14, 353a 16)  

Aristotle 
384 – 322 BC 
(wikipedia) 

…τοσοῦτον τἀκριβὲς ἐπιζητεῖν καθ᾽ 
ἕκαστον γένος, ἐφ᾽ ὅσον ἡ τοῦ 
πράγματος φύσις ἐπιδέχεται 

… look for precision in each class of 
things just so far as the nature of the 
subject admits 

(Aristotle, Nicomachean Ethics 1094b)  

Λογική, συλλογισμός, επαγωγή 
Logic, deduction, induction  

(Aristotle, Organon) 
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Change and 
predictability 

Simple systems – Short time horizons 
Important but trivial 

Complex systems – Long time horizons 
Most interesting 

Change 

Predictable  
(regular) 

Unpredictable  
(random) 

Purely random 
e.g. consecutive 
outcomes of dice 

Non-periodic 
e.g. acceleration of 

a falling body 

Periodic 
e.g. daily and 
annual cycles 

Structured 
random  

e.g. climatic 
fluctuations 
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Perpetual change as seen in the Nilometer record 
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Purely 
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Nilometer data: Koutsoyiannis (2013a) 
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Change, stationarity and nonstationarity 
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Is this time series stationary or nonstationary? 

 Answer 1: Stationary – Wrong answer 

 Answer 2: Nonstationary – Wrong answer 

 Answer 3: The question is wrong – Right answer 
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A time series cannot be stationary nor nonstationary. 

These are properties of the process that generated the time series.  

This series was generated by a stationary process (Koutsoyiannis, 2011). 



Process, stochastic process, stationarity: 
© Kolmogorov  
 Kolmogorov (1931)  

 clarified that the term process means  
change of a certain system; 

 introduced the term stochastic process; 

 used the term stationary to describe  
a process in probabilistic terms.  

 Kolmogorov (1938) clarified: 
a stationary stochastic process […] is a set  
of random variables xt depending on the parameter t,  
−∞ < t < +∞, such that the distributions of the systems  

(xt1
, xt2

, …, xtn
) and (xt1 + τ, xt2 + τ, …, xtn + τ)  

coincide for any n, t1, t2, … , tn, and τ. 
 Note: nonstationary processes are those whose statistical 

properties change in time in a deterministic manner. 

Andrey Kolmogorov 
(1903 –1987) 
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The cause of change: © Peter Atkins 
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Atkins, 2007  

Atkins, 2004  



Entropy ≡ Uncertainty quantified 
 Historically entropy was introduced in thermodynamics but later it was 

given a rigorous definition within probability theory (owing to 
Boltzmann, Gibbs and Shannon). 

 Thermodynamic and probabilistic entropy are essentially the same thing 
(Koutsoyiannis, 1010, 2013b, 2014; but others have different opinion). 

 Entropy acquires its importance from the principle of maximum 
entropy (Jaynes, 1957), which postulates that the entropy of a random 
variable should be at maximum, under the conditions (constraints) which 
incorporate the available information about this variable. 

 The tendency of entropy to become maximal explains a spectrum of 
phenomena from the random outcomes of dice to the 2nd Law of 
thermodynamics  as the driving force of natural change. 

 Entropy is a dimensionless measure of uncertainty: 
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Discrete random variable z Continuous random variable z 

Φ[z] := E[–ln P(z)] =  P
j
ln P

j

w
j = 1  

where Pj ≔ P{z = zj} (probability) 

Φ[z] := – ln
f z
h z

 = –  ln
f z
h z

f z dz
∞
−∞  

where f(z) is probability density and h(z) 
is the density of a background measure 
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“It is difficult to make predictions, especially about 
the future”: © Anonymous (Danish proverb, not Niels Bohr/Mark Twain) 

[DK addition: but it is easy to laugh at predictions] 

 1970: Civilization will end within 15 or 30 years unless immediate 
action is taken against problems facing mankind. 
George Wald, Harvard Biologist, share of the 1967 Nobel Prize in Physiology or Medicine 
(quoted in Looney, 2011, p. 390, and Dudley, 2001, p. 26) . 

 1970: Demographers agree almost unanimously on the following grim 
timetable: by 1975 widespread famines will begin in India; these will spread 
by 1990 to include all of India, Pakistan, China and the Near East, Africa. … 
By the year 2000, 30 years from now, the entire world, with the 
exception of W. Europe, N. America, and Australia, will be in famine. 
Peter Gunter, professor, North Texas State University (quoted in Looney, 2001, p. 389). 

 1970: The world has been chilling sharply for about twenty years... If 
present trends continue, the world will be about four degrees colder for the 
global mean temperature in 1990, but eleven degrees colder in the year 
2000. This is about twice what it would take to put us into an ice age. 

Also: We have about five more years at the outside to do something. 
Kenneth E. W. Watt, Ecologist and Professor of University of California, Davis 
(Environmental Action, 1970, pp. 14-15). 
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From 2100 AD 
(Battisti and Naylor, 
Science, 2009)... 

Predictions about the future climate abound 

...to 100 000 AD 
(Shaffer et al., 
PNAS, 2009) 

... to 3000 AD 
(Solomon et al., 
Nature Geoscience, 
2009) 



How good have climate predictions been so far?  
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Answer: They are 
mostly irrelevant to 
reality; see details in 
Koutsoyiannis et al. 
(2008, 2011), 
Anagnostopoulos et 
al. (2010), Tsaknias 
et al. (2017). 



 Yes—we can and we should. 

 Method 1: By perturbing input data, parameters and model output (the 
latter by adding random outcomes from the population of the model 
error): see the blueprint by Montanari and Koutsoyiannis (2012). 

 Method 2: By incorporating one or many deterministic forecasts into an 
initially independent stochastic model: Tyralis and Koutsoyiannis (2017). 

 

Can we convert deterministic predictions into stochastic? 

 With reference to the 
sketch on the right, we 
simulate the unknown 
future y3 conditional on 
the known past y1, y2 
and the deterministic 
model outputs x2, x3 by  

h(y3|y1, y2, x2, x3)  
f(x3|y3) g(y3|y1, y2)  

where  f(x3|y3) is the 
model likelihood and 
the other functions are 
conditional densities. 
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x 

y y1 y2 y3 

x2 x3 



Application to the climate of the USA 
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 The example on 
temperature (95% 
prediction intervals) 
shows a slight increase 
in annual temperature in 
the USA if conditioned 
on the output of MRI-
CGCM3 climate model. 

 The example on 
precipitation shows 
indifference despite 
conditioning on the GISS-
E2-H climate model. 

 Historical data for temperature and 
precipitation from 362 and 319 stations, 
respectively, have been used to estimate  
the areal averages (historical   
observations). 

 Deterministic forecasts were taken from  
14 different climate models. The model 
likelihood was evaluated in the period 2006-15. 



Multimodel approach: The Bayesian Thistle 
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Cirsium arizonicum, Arizona Thistle 
http://calscape.org/Cirsium-arizonicum-var.-arizonicum-(Arizona-Thistle)?srchcr=sc560da0614b1b2 

 Some models have negative correlation with historical data. 

 As a result, the predicted temperature rise turns into decline in the 
stochastic  
framework. 

 In turn, this 
results in  
huge 
uncertainty  
if many 
climate 
models are 
used in 
conditioning 
our stochastic 
model. 

 The resulting 
shape looks as 
a thistle. 



Final multimodel results for temperature and 
precipitation in the USA 

Only its 
uncertainty 
increases  
slightly 
(±50 mm,  
if compared 
to that 
without 
condition-
ing on 
models). 
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 If all models are taken into account, the temperature change up to 2100 
could be somewhere in the range −4 to 4 K. 

 Precipitation does not change by conditioning on all models.  



Concluding remarks 

 Πάντα ῥεῖ (or: Change is Nature’s style). 

 Change occurs at all time scales. 

 A process is synonymous to change—even a stationarity 
process means change. 

 Nonstationarity should not be confused with change, nor 
with dependence of a process in time. 

 Change and uncertainty are tightly connected through 
(maximized) entropy. 

 Change and uncertainty are inevitable. 

 Uncertainty is not an enemy; rather this world is livable 
because of it. 
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The quest for certainty blocks the search for meaning. Uncertainty is 
the very condition to impel man to unfold his powers.  

Erich Fromm 



D. Koutsoyiannis, ‘Panta Rhei’ and its relationship with uncertainty 21 

References 
 Anagnostopoulos, G. G., D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A 

comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences 
Journal, 55 (7), 1094–1110, 2010.  

 Atkins, P., Four Laws that Drive the Universe, Oxford Univ. Press, 131 pp, 2007 
 Atkins, P., Galileo’s Finger: the Ten Great Ideas of Science. OUP, 2004. 
 Battisti, D.S. and R.L. Naylor, Historical warnings of future food insecurity with unprecedented 

seasonal heat, Science 323, 240-244, 2009. 
 Dudley, W., The Environment: Opposing Viewpoints, Greenhaven Press, 2001,  

books.google.com/books?id=vwAKAQAAMAAJ. 
 Environmental Action, Earth Day—the Beginning: A Guide for Survival, 1970, 

books.google.com/books?id=1yE9AAAAIAAJ. 
 Jaynes, E.T., Information theory and statistical mechanics, Physical Review, 106 (4), 620-630, 1957. 
 Kolmogorov, A. N., Uber die analytischen Methoden in der Wahrscheinlichkcitsrechnung, Math. Ann., 

104, 415-458, 1931 (English translation: On analytical methods in probability theory, In: 
Kolmogorov, A.N.,. Selected Works of A. N. Kolmogorov - Volume 2, Probability Theory and 
Mathematical Statistics A. N. Shiryayev, ed., Kluwer, Dordrecht, The Netherlands, pp. 62-108, 1992).  

 Kolmogorov, A.N., A simplified proof of the Birkhoff-Khinchin ergodic theorem, Uspekhi Mat. Nauk, 5, 
52-56, 1938 (English edition: Kolmogorov, A.N., Selected Works of A. N. Kolmogorov - Volume 1, 
Mathematics and Mechanics, Tikhomirov, V. M. ed., Kluwer, Dordrecht, The Netherlands, pp. 271-276, 
1991). 

 Koutsoyiannis, D., A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, 2010. 
 Koutsoyiannis, D., Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water 

Resources Association, 47 (3), 481–495, 2011. 
 Koutsoyiannis, D., Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi: 

10.1080/02626667.2013.804626, 2013a.  
 Koutsoyiannis, D., Physics of uncertainty, the Gibbs paradox and indistinguishable particles, Studies 

in History and Philosophy of Modern Physics, 44, 480–489, doi: 10.1016/j.shpsb.2013.08.007, 2013b. 
 



D. Koutsoyiannis, ‘Panta Rhei’ and its relationship with uncertainty 22 

References (2) 
 Koutsoyiannis, D., Entropy: from thermodynamics to hydrology, Entropy, 16 (3), 1287–1314, 2014. 
 Koutsoyiannis, D., A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific 

dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the 
Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, 2011.  

 Koutsoyiannis, D., A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate 
predictions, Hydrological Sciences Journal, 53 (4), 671–684, 2008.  

 Looney, C.G., Climate Change and the Emergence of Civilization, Xlibris, 2011, 
books.google.com/books?id=cMlBE3umGzMC. 

 Montanari, A., and D. Koutsoyiannis, A blueprint for process-based modeling of uncertain 
hydrological systems, Water Resources Research, 48, W09555, doi:10.1029/2011WR011412, 2012. 

 Shaffer, G., S.M. Olsen and J.O.P. Pedersen, Long-term ocean oxygen depletion in response to carbon 
dioxide emissions from fossil fuels, Nature Geoscience, DOI: 10.1038/NGEO420, 2009. 

 Solomon, S., G.-K. Plattner, R. Knutti and P. Friedlingstein, Irreversible climate change due to carbon 
dioxide emissions, Proceedings of the National Academy of Sciences, 106(6), 1704–1709, 2009. 

 Tsaknias, D., D. Bouziotas and D. Koutsoyiannis, Statistical comparison of observed temperature and 
rainfall extremes with climate model outputs in the Mediterranean region, ResearchGate, doi: 
10.13140/RG.2.2.11993.93281. 2016 

 Tyralis, H., and D. Koutsoyiannis, On the prediction of persistent processes using the output of 
deterministic models, in review, 2017. 
 
 


