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Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond 14 

differently to hydrometeorological variability across time scales, and so does our scientific 15 

understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon 16 

cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly 17 

uncertain. Here, we present a comprehensive overview of hydrometeorological and ecosystem 18 

variability from hourly to decadal time scales integrating multiple in-situ and remote-sensing 19 

datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is 20 

confined within a hydrometeorological envelope across sites and time scales. Furthermore, 21 

ecosystem variability demonstrates long-term persistence, highlighting ecological memory and 22 

slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-23 

art process-based models do not reflect this long-term persistent behaviour in ecosystem 24 

functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures 25 

hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial 26 

ecosystem modelling and paves the way for new model-data integration opportunities in Earth 27 

system sciences. 28 

The atmosphere and biosphere are intrinsically coupled subsystems of the Earth1. 29 

Hydrometeorological conditions shape ecosystem processes, which, in turn, affect local, 30 

regional, and global climate (e.g., albedo feedbacks, modulations of land-atmosphere water and 31 

energy fluxes, seasonality in atmospheric CO2). Hydrometeorological variability has been 32 

extensively studied2 and short- and long-term variability of climate data have been widely 33 

assessed3,4. With some notable exceptions primarily focusing on shorter time scales and/or 34 

individual sites5–9, much less work has undertaken to quantify the continuum of variability in 35 

ecosystem functioning across time scales. Key uncertainties remain in describing how variations 36 
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in short-term physiological processes, such as photosynthesis10, influence subsequent processes 37 

such as carbon allocation11 and remobilization12, and then, ultimately, inter-annual to long-term 38 

ecosystem variability. 39 

Here, we present a comprehensive overview of the continuum of hydrometeorological and 40 

ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon 41 

dynamics, across sites and time scales. We analyse data from 23 extra-tropical forest sites 42 

covering different climatic zones and vegetation characteristics, and we examine time scales 43 

spanning five orders of temporal magnitude, from hourly to decadal variability (Figure 1). 44 

“Variability” is intuitively quantified with the estimator of standard deviation (ߪ). The 45 

continuum of variability describes how ߪ changes with averaging time scale (k), denoted as ߪ(), 46 

and is illustrated in the double-logarithmic space log ݇ vs. log ߪ(), a graph known as 47 

climacogram13. The advantages of this approach over other mathematically equivalent tools, 48 

such as power spectrum and variogram, are the very intuitive interpretation, the robust statistical 49 

estimation and the possibility to jointly analyse different datasets14. The continuum of variability 50 

represents the relative variability decay with time scale instead of using isolated values of 51 

individual variables or time scales. Thus, several cross-correlated datasets can be represented 52 

together, after applying appropriate linear transformations, to extend the continuum of variability 53 

to longer time scales. Moreover, we derive a mathematically tractable stochastic modelling 54 

framework that allows us to provide a quantitative interpretation and a parsimonious modelling 55 

of the observed cross-scale patterns of variability (see Methods). 56 

Micrometeorological measurements of precipitation (P), air temperature (T), shortwave radiation 57 

(R), and vapour pressure deficit (D) are used to describe hydrometeorological variability at the 58 
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analysed forest sites from hourly to annual time scales. The continuum of hydrometeorological 59 

variability is extended to the decadal time scale using reanalysis data for P, T, R, and D, 60 

extracted from the examined locations (see Methods). Ecosystem variability is quantified using 61 

essential ecosystem variables, namely, long-term (≥10 yr) eddy covariance flux data of hourly 62 

net ecosystem exchange of CO2 between land surface and atmosphere (NEE), monthly remote 63 

sensing measurements of leaf area index (LAI) and fraction of absorbed photosynthetically 64 

active radiation (FPAR), and annual tree ring widths (TRW) and site-level above ground biomass 65 

increment estimates (AGB), available at five of the analysed forests (Figure 1b; see Methods). 66 

We construct the relative ecosystem variability continuum by concatenating the time scales of 67 

NEE variability with those of LAI, FPAR, TRW, and AGB data. We scrutinize their common 68 

relative variability decay patterns, even if the variables themselves reflect different aspects of 69 

ecosystem processes and dynamics. NEE data capture high frequency variations of ecosystem 70 

carbon fluxes exchanged between atmosphere and the biosphere15 and describe ecosystem 71 

variability from hourly to inter-annual time scales5–8. Today, the longest analysed NEE time 72 

series is approx. 20 years (Figure 1c), allowing characterization of the ecosystem variability 73 

continuum from hourly up to biennial time scales (see Methods). Remote sensing data of 74 

vegetation indices, such as LAI and FPAR, are tightly related to vegetation carbon dynamics 75 

(e.g., light use efficiency models use FPAR to derive vegetation carbon fluxes16 and stocks17). 76 

Thus, these vegetation indices can be used as proxies of ecosystem functioning extending the 77 

ecosystem variability continuum from intra-annual to triennial time scales with 30-year-long LAI 78 

and FPAR time series18. At these time scales, carbon fluxes and remote sensing vegetation 79 

indices should be tightly interconnected and can therefore be expected to show similar patterns 80 

of variability. At longer time scales, TRW and AGB data reveal annual tree growth and biomass 81 
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dynamics and provide estimates of forest carbon dynamics that converge to observed NEE across 82 

several forests worldwide19–22. Time series length of TRW and AGB at the five analysed forest 83 

sites ranges from 41 to 111 years20 (Figure 1b), thus the annual to decadal ecosystem variability 84 

at these sites can be sufficiently captured (see Methods). 85 

RESULTS 86 

We find that most hydrometeorological drivers display similar pattern of variability from hourly 87 

to inter-annual time scales across all sites, except for P which is also well-known for its high 88 

spatial variability3,4 (Figure 2b-e). However, such convergence across sites is not reflected in the 89 

ecosystem variability (i.e., NEE, Figure 2a, as well as individual NEE components, Figure S3). 90 

Although the continuum of ecosystem variability follows a similar pattern across all the analysed 91 

sites (i.e., consistent drops in standard deviation at specific time scales), site-specific vegetation 92 

phenology dictates the magnitude of standard deviation at intra-annual time scales. Seasonal 93 

ecosystem variability at deciduous forest sites is thus larger compared to evergreen forest sites. 94 

This is a result of the pronounced phenological cycles of the former, whereas at forest sites with 95 

mixed vegetation phenology, seasonal ecosystem variability falls between the variability of 96 

evergreen and deciduous forest sites (Figure 2a). Furthermore, NEE, R, T, and D with 97 

pronounced periodical cycles at diurnal or annual scales show characteristic drops in their 98 

standard deviation at these very time scales, together with discontinuities (spikes) at half the 99 

period of the harmonic cycle (τ/2), as well as at time scales k equal to mτ/2, m∈N. This pattern 100 

is caused by the interplay of daily and annual harmonic cycles and can be described analytically 101 

(see Methods).  102 
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By superimposing the continuum of variability of the analysed ecosystem variables, namely 103 

NEE, LAI, FPAR, TRW, and AGB, we obtain a composite cross-scale ecosystem variability 104 

continuum from one hour to one decade (Figure 3a). The composed variability continuum is 105 

consistent as confirmed by the close match of the variability of individual ecosystem variables at 106 

the overlapping time scales (Figure 3a; see Figure S10 for a quantitative assessment). More 107 

specifically, as illustrated in Figure 3a for an exemplary forest site, the standard deviation of 108 

NEE, as well as that of LAI and FPAR from two independent remote sensing products, overlap 109 

at monthly to inter-annual time scales. Similarly, the standard deviation of TRW and AGB 110 

matches closely the standard deviation of NEE at the annual to biennial time scales and the 111 

standard deviation of LAI, FPAR at annual to triennial time scales (Figure 3a). Therefore, 112 

despite the fact that different variables represent specific, yet tightly interwoven aspects of 113 

ecosystem functioning, the overall ecosystem variability across time scales may now be 114 

approximated by the variability of NEE, LAI, and TRW data for hourly-to-monthly, monthly-to-115 

annual, and annual-to-decadal time scales, respectively (Figure 3a). Micrometeorological 116 

measurements, compiled together with reanalysis climate data, describe the continuum of 117 

variability of P, T, R, and D from one hour to one decade (Figure 3b). The use of several 118 

reanalysis datasets allows us to provide a better description of the hydrometeorological 119 

variability, accounting for uncertainties due to different products and gridding algorithms23 (see 120 

Methods). 121 

Overall, we find that ecosystem variability is confined within a hydrometeorological envelope 122 

that describes the range of variability of the available resources, i.e., water and energy (Figure 4). 123 

The hydrometeorological envelope emerges from the continua of variability of individual 124 

hydrometeorological variables (e.g., Figure 3b). For an exemplary site, a one-order-of-magnitude 125 
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increase of the time scale (e.g., from one day to one month; x-axes Figure 3) leads to a fivefold 126 

decrease in the standard deviation of precipitation (lower bound of the envelope) and to a mild 127 

decrease in the standard deviation of temperature by approx. 10 % (upper bound of the envelope; 128 

y-axis Figure 3b), while the standard deviation of ecosystem functioning exhibits a gentle 129 

decrease by approx. 15 % (y-axis Figure 3a). Figure 4 illustrates the hydrometeorological 130 

envelope of ecosystem variability continua at five European forest sites where TRW and AGB 131 

data are available (Figure 1b). The slopes of the entire continuum of P, T, R, and D variability, 132 

when compared to those of the ecosystem variability continua at the 23 analysed forest sites, 133 

provide a quantitative description of the hydrometeorological envelope in which ecosystem 134 

variability is confined (Figure S15). Steep slopes of P variability describe the lower limit of the 135 

hydrometeorological envelope and gentle slopes of R and T variability the upper limit, while the 136 

slopes of ecosystem variability continua fall within the range of slopes of the 137 

hydrometeorological variables (Figure S15). 138 

Furthermore, ecosystem variability demonstrates long-term persistence. Although absolute 139 

values of ecosystem variability differ across sites as a result of different climate, vegetation 140 

composition, and stand characteristics, the temporal dependences exhibit the same behaviour 141 

across the entire range of analysed time scales (Figure 4). The lower end of the continuum of 142 

ecosystem variability shows gentle slopes, indicating long-term persistence in ecosystem 143 

functioning (Figure 5a). Yet, simulation results with state-of-the-art Dynamic Global Vegetation 144 

Models (DGVMs; TRENDY multi-model ensemble24; see Methods) do not reflect this pattern 145 

(Figure 5b and Figure S12, as well as Figure S13d for TRENDY-simulated net primary 146 

productivity, NPP). TRENDY-derived ecosystem variability continuum is consistent with the 147 

composite of observations at intra-annual time scales, yet diverges significantly at inter-annual or 148 
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longer time scales. At these scales, ecosystem variability simulated with the TRENDY multi-149 

model ensemble presents a much steeper decrease than what observations indicate (Figure 5, 150 

Figure S13). Thus, the simulated continua of both NEE (Figure 5b) and NPP (Figure S13d) 151 

variability approach the lower limit of the hydrometeorological envelope (i.e., P variability), 152 

with the former exhibiting steeper variability decay than the latter, and contradict observational 153 

evidence of long-term persistence in ecosystem functioning (i.e., upper limit of the envelope, 154 

close to R and T variability). 155 

To further investigate the properties and controls on the ecosystem and hydrometeorological 156 

variability, we develop a stochastic modelling framework to simulate the observed patterns of 157 

variability across time scales. A combination of deterministic harmonics and stochastic processes 158 

(Figure 6; see Methods) allows us to analytically describe the observed patterns (e.g., the imprint 159 

of harmonic cycles on ecosystem variability across time scales or the magnitude of its low 160 

frequency variability), and to further investigate the properties and controls on ecosystem and 161 

hydrometeorological variability. Diurnal and seasonal cycles correspond to variability continua 162 

of harmonic functions with periods T1=24 h (ߪ భ்()) and T2=1 yr (ߪ మ்()), respectively (Figure 6a). 163 

The deterministic harmonics are then combined with three structurally different stochastic 164 

processes, namely, a purely random process (white noise; abrupt drop in standard deviation as 165 

time scale increases, i.e., corresponding to processes with no memory), a Markovian process 166 

(autoregressive model of order one, AR(1), i.e., reflecting processes with short-term persistence), 167 

and a Hurst-Kolmogorov (HK) process with long-term persistence (Figure 6b). The continuum 168 

of variability of the latter (ߪୌ()) combined with that of the two harmonic functions, ߪ భ்() and ߪ మ்() 169 

(i.e., ܽߪ భ்() + ߪܾ మ்() +  ୌ(), where a, b, and c are weighting factors) are fully sufficient to 170ߪܿ

describe the observed ecosystem and hydrometeorological variability from hourly to decadal 171 
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time scales (Figure 6c,d; see Methods). The close agreement between simulated and observed 172 

patterns of ecosystem variability brings quantitative evidence on the magnitude of long-term 173 

persistence in ecosystem functioning (Figure S15).  174 

DISCUSSION 175 

As time scale increases, hydrometeorological and ecosystem variability decreases. However, 176 

hydrometeorological conditions frame an envelope constraining the continuum of ecosystem 177 

variability within its boundaries. We find that ecosystem variability exhibits a gentle decrease as 178 

time scale increases, highlighting the impact of low frequency variability in ecosystem 179 

functioning. Precipitation defines the lower limit and energy (i.e., temperature and radiation) the 180 

upper limit of plausible variability regimes, with the resulting ecosystem variability being 181 

confined within these boundaries across sites and time scales. Low frequency ecosystem 182 

variability has pronounced implications for our understanding of ecosystem stability and 183 

resilience25, because it denotes ecological memory26,27 and slow ecosystem recovery rates after 184 

disturbances25,28. For instance, a steep decay of ecosystem variability with time scale (i.e., 185 

processes with no- or short-memory) would indicate fast ecosystem recovery rates after 186 

disturbances (i.e., enhanced resilience), but both theoretical26 and observational evidence 187 

reported in the ecological literature rather suggest substantial memory effects in ecosystem 188 

functioning (e.g. after drought stress27). This pattern epitomizes the slow recovery rates of forest 189 

ecosystems and their susceptibility to tipping points25. It is also expected that changes in the 190 

hydrometeorological drivers, for example in the frequency and severity of climate extremes1, 191 

could alter the hydrometeorological envelope and affect the cross-scale continuum of ecosystem 192 

variability29,30. 193 
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DGVMs offer a process-based representation of terrestrial ecosystem dynamics, integrating our 194 

current ecophysiological understanding. However, a bottom-up modelling of terrestrial 195 

ecosystem functioning is challenging, particularly when long-term predictions are envisioned31. 196 

While DGVMs capture intra-annual ecosystem variability adequately, ecosystem variability 197 

simulated with the TRENDY multi-model ensemble24 does not reflect the pattern derived from 198 

the composed observational data at inter-annual to decadal time scales. We acknowledge that the 199 

composite of cross-scale ecosystem variability is approximated using various datasets of 200 

vegetation carbon dynamics while it ideally should be based on multi-decadal NEE 201 

measurements which are, however, not available today. Yet, at long time-scales net exchange 202 

rates of ecosystems are expected to have a similarly persistent behaviour compared to the tree 203 

ring width variations. Hence, the observed discrepancy leads us to the hypothesis that processes 204 

influencing low frequency variability in ecosystem functioning are either insufficiently 205 

constrained or not included in current DGVMs. For example, stand demographic processes and 206 

the resulting age-related variability in tree growth are rarely simulated in many DGVMs32, with 207 

some notable exceptions33,34. However, apart from the five analysed forest sites where tree ring 208 

data are available, low frequency variability is also revealed with remote sensing data from the 209 

remaining 18 sites (Figure S15). This underlines that, apart from stand demography, other factors 210 

will contribute to persistence in ecosystem functioning. In particular, the interplay of plant 211 

ecophysiological processes relating carbon supply (i.e., photosynthesis; source activity) to 212 

carbon demand (i.e., tissue expansion; sink activity) is yet to be realistically described in 213 

DGVMs35–37 and is known to significantly affect the low frequency variability in the terrestrial 214 

carbon cycle. A mechanistic understanding of the interplay between environmental drivers (e.g., 215 

water38, CO2
39, nutrients40) and ecophysiological response (resource allocation and 216 
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remobilization11,12, plant acclimation and plasticity41,42) is still to be consolidated, leading to 217 

well-documented structural and parameterizations issues in DGVMs37,43 that could eventually 218 

explain the steep decay in the TRENDY-simulated ecosystem variability continuum. Moreover, 219 

the mismatch between the spatial scale of DGVMs input (e.g., climate forcing, initial conditions) 220 

and the resolution of the DGVMs simulation grid hampers the parameterization of fine-scale 221 

processes and results in aggregation biases in the simulated terrestrial carbon dynamics44,45. 222 

Finally, several processes with well-documented impact on terrestrial carbon fluxes and stocks 223 

are also not yet adequately represented in state-of-the-art DGVMs (e.g., leaf mesophyll 224 

conductance46, carbon turnover rates47, soil microbial activity48), and may affect cross-scale 225 

ecosystem variability. 226 

We derive an analytical model, combining deterministic harmonics and stochastic processes, that 227 

represents major mechanisms and uncertainties and mimics the observed pattern of 228 

hydrometeorological and ecosystem variability. Additional natural (e.g., wildfires, insect 229 

outbreaks) or anthropogenic (e.g., forest management) mechanisms, that may affect the 230 

variability of certain ecosystems, can be also incorporated in the aforementioned framework by 231 

including theoretical representations of their cross-scale variability according to the observed 232 

patterns. This stochastic modelling framework offers a parsimonious and mathematically 233 

tractable approach for understanding and modelling ecosystem variability across sites and time 234 

scales, overcoming the aforementioned limitations of DGVMs. Furthermore, this framework 235 

well-reflects the observed ecological memory, an inherent property of ecosystem functioning, 236 

enhancing therefore the ecological realism in numerical simulations. 237 

The presented analysis offers a perspective for understanding and modelling the variability of the 238 

terrestrial carbon cycle and paves the way for new model-data integration opportunities in Earth 239 
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system sciences. DGVMs are incorporated in Earth System Models (ESMs) to simulate the 240 

terrestrial ecosystem dynamics and climate-biosphere feedbacks49. Thus, poorer fidelity of low 241 

frequency variability in the former will be propagated to simulation results with the latter, 242 

leading to potential biases in the resulting climate projections50. While model-data comparisons 243 

in terms of relative, rather than absolute, variability are widespread, so far the focus has been on 244 

individual time scales (e.g., monthly or annual anomalies of observed vs. simulated variables). 245 

However, analysing and modelling the interplay between hydrometeorological drivers and 246 

ecosystem response requires developing a joint framework across multiple sites and time scales.  247 

Hence, we advocate to formalize and implement a cross-scale model-data integration approach. 248 

The presented continuum of ecosystem variability offers an independent emerging observational 249 

constraint for ESMs49 and the projected terrestrial carbon source-sink dynamics24. Moreover, the 250 

derived hydrometeorological envelope defines the boundaries of plausible climate-carbon cycle 251 

sensitivities allowing for a predictive understanding of long-term terrestrial ecosystem response 252 

and climate-biosphere feedbacks1,31.  253 
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METHODS 254 

Datasets 255 

Hydrometeorological drivers. Time series of P, T, R, and D are used to quantify 256 

hydrometeorological variability (Table S2). Micrometeorological data, obtained from 257 

FLUXNET2015 (December 2015 release; http://fluxnet.fluxdata.org/data/fluxnet2015-258 

dataset/fullset-data-product/), are compiled together with time series of the following reanalysis 259 

gridded products: ERA Interim51, NCEP I52 and II53, 20th century reanalysis version v2c54–56, 260 

CRU TS 1.257, CRU TS 3.2358, and CRU-NCEPv4. The latter is a combination of CRU TS 3.21 261 

and NCEP I, and is used for climate forcing of TRENDY simulations24. Grid cells that 262 

correspond to the locations of the eddy covariance forest sites are selected (supporting 263 

information S1.1 and S1.2).  264 

Ecosystem response. Ecosystem variability is quantified based on multivariate proxies of 265 

ecosystem functioning (Table S1), consisting of: (i) hourly NEE data (Table S3); (ii) monthly 266 

LAI and FPAR time series from grid cells corresponding to the location of the eddy covariance 267 

forest sites, provided by the Moderate Resolution Imaging Spectroradiometer Two‐stream 268 

Inversion Package59 (MODIS TIP; time period: 2001-2014, Figure S5) and the third generation 269 

of Global Inventory Modelling and Mapping Studies18 (GIMMS 3g; time period: 1981-2011, 270 

Figure S6); and (iii) TRW (Figure S7) and AGB20 (Figure S8) available at five European sites 271 

(Figure 1b). The pattern of variability of the partitioned hourly NEE data to gross primary 272 

productivity and ecosystem respiration is also examined (supporting information S1.1.3). 273 

Moreover, the observed pattern of ecosystem variability is compared with simulated monthly 274 
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NEE from TRENDY v1 multi-model ensemble24 (Figure 5) as well as additional simulated 275 

variables (supporting information and S1.6). 276 

Statistical analysis 277 

Empirical climacograms. The continuum of hydrometeorological and ecosystem variability is 278 

quantified by examining how the (sample) standard deviation (ߪ()) of various 279 

hydrometeorological and ecosystem variables changes across averaging time scales (k). The 280 

values of k range from the original temporal resolution of each dataset (Δ) to L/10 where L is the 281 

total length of the time series13, allowing therefore for at least 10 values for the estimation of 282 ߪ() at k=L/10. In order to compare hydrometeorological and ecosystem variability across sites 283 

and variables, data are standardized, i.e., zero mean and unit variance at the original time scale 284 

(e.g., Δ = 1 h for micrometeorological and NEE measurements, Figure 2a; Δ = 1 mon for LAI 285 

and FPAR, Figure S5, S6; and Δ = 1 yr for TRW and AGB, Figure S9).  286 

Composite climacograms. Linear transformations are applied to construct the combined 287 

continuum of ecosystem and hydrometeorological variability. Cross-correlated variables that 288 

reflect ecosystem functioning at different time scales can be combined in a single climacogram 289 

after applying appropriate linear transformations. This allows us to compare how the standard 290 

deviation of different processes varies and co-varies across ecosystems and time scales. For 291 

example, if the process of interest is ecosystem functioning ((ݐ)ݕ; where t denotes time) then 292 

NEE, LAI, FPAR, TRW, AGB can be seen as proxies of (ݐ)ݕ. These proxies are intrinsically 293 

related, and, as an approximation, we can assume that they are linearly connected. In other 294 

words, (ݐ)ݕ = (ݐ)ݔܽ + ܾ, where (ݐ)ݔ can be any of the proxy variables NEE, LAI, FPAR, 295 

TRW, AGB. Thus, it follows that ߪ௬() =  ௫(). The close match of the variability of individual 296ߪܽ
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ecosystem variables at the overlapping time scales supports this approximation (Figure 3a and 297 

Figure S10). Moreover, theoretical and observational evidence demonstrate the applicability of 298 

light use efficiency models to linearly relate LAI and FPAR with carbon uptake, thus capturing 299 

the variability of vegetation carbon fluxes16 and stocks17. 300 

More specifically, LAI and FPAR data are transformed so that ߪ୍,ୖ(ୀଵ ୫୭୬) =  அ(ୀଵ ୫୭୬)  and 301ߪ 

TRW and AGB data are transformed so that ߪୖ,ୋ(ୀଵ ୷୰) =  ୍(ୀଵ ୷୰). Reanalysis 302ߪ 

hydrometeorological data are transformed so that the standard deviation of each 303 

hydrometeorological variable at the original time scale (Δi) matches the standard deviation of the 304 

same variable from the micrometeorological measurements at this time scale, e.g., for the case of 305 

precipitation ߪ୰ୣୟ୬ୟ୪୷ୱ୧ୱ,(ୀ௱) = ୫୧ୡ୰୭୫ୣ୲,(ୀ௱)ߪ   (Figure 3b). The increments in the x-axis of the 306 

hydrometeorological envelope depicted in Figure 4 are coarser than Figure 3b for the sake of 307 

figure’s clarity, thus the drops in standard deviation due to the diurnal and seasonal harmonic 308 

cycles are not visible (cf. Figure 3b).  309 

Theoretical climacograms. Once the underlying process is known, its continuum of variability 310 

can be derived analytically13. Figure 6a depicts the theoretical variability across time scales for 311 

deterministic harmonic processes with different periods, τ, while Figure 6b illustrates the 312 

variability across time scales for three structurally different stochastic process. The standard 313 

deviation as a function of k of a single harmonic process is given by: 314 

ఛ()ߪ  = ݇ߨ߬ ฬ݊݅ݏ ฬ߬݇ߨ , for ݇ ≠ ൬݉ + 12൰ ߬, where     (1)ۼ∋݉

For ݇ = ቀ݉ + ଵଶቁ ߬ there is a discontinuity in the continuum of variability (e.g., spikes for k=12 h 315 

for the case of diurnal cycle, or k=6 mon for the seasonal cycle in Figure 3; supporting 316 
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information S4). A purely random process (white noise; WN) and two widely used stochastic 317 

processes in geophysics, namely, (i) a Markovian process characterized by short-term persistence 318 

and (ii) a Hurst-Kolmogorov (HK) process with long-term persistence, are also examined. The 319 

standard deviation of WN decays with k as follows: 320 

()ߪ  =  (2) ݇√ߪ

where σ denotes the standard deviation at the original time scale. For Markovian process, 321 

described by an autoregressive model of order one, AR(1) with lag-1 autocorrelation (ρ), σ(k) is 322 

given by: 323 

ୖ(ଵ)()ߪ  = ݇√ߪ ඨ(1 − (ଶߩ − 1)ߩ2 − (ߩ ݇⁄(1 − ଶ(ߩ  (3) 

while for HK process σ(k) is equal to: 324 

ୌ()ߪ  = ݇ுିଵ(4) ߪ 

where H is the Hurst coefficient (ܪ = 0.5ሾlogଶ(ߩ + 1) + 1ሿ). The continuum of variability of 325 

AR(1) and HK process present distinct patterns. The former is characterized by a fast decay that 326 

is equal to WN for large time scales, while the latter shows gentle slopes as a result of long-term 327 

persistence (Figure 5b). 328 

Model fitting. Theoretical climacograms are fitted to empirical estimates of standard deviation 329 

 can be estimated a priori 330 ()ߪ due to sample size (L). Bias in ()ߪ accounting for biases in (()ߪ)

analytically13 and is equal to: 331 

 Eൣߪ()൧ = ௬()1ߪ−௬()ߪ − ݇ ⁄ܮ   

A model, ߪ௬()
, is assumed based on a linear combination of ߪ భ்(), ߪ మ்(), ()ߪ  , ୖ(ଵ)()ߪ ,  ୌ(), i.e.,  332ߪ
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௬()ߪ  =
۔ۖەۖ
ۓ ߪܽ భ்() + ߪܾ మ்() + ()ߪܿ

ߪܽ   భ்() + ߪܾ మ்() + ୖ(ଵ)()ߪܿ
ߪܽ భ்() + ߪܾ మ்() + ୌ()ߪܿ

  

Weighting factors a, b, c, as well as lag-1 autocorrelation (ρ), for the case of AR(1), or Hurst 333 

coefficient (H), for the case of the HK process, are fitting parameters adjusted so that the sum of 334 

squared errors is minimized numerically (supporting information S3). For the model fitting of 335 

ecosystem variability continuum (Figure 6c), theoretical models are fitted to the composite 336 

empirical ecosystem continuum as described by NEE (1 h – 1 mon), LAI 3g (1 mon – 1 yr), and 337 

TRW (1 yr – 10 yr) where available. Model fitting for each hydrometeorological variable (Figure 338 

6d) is conducted by fitting theoretical models to the mean empirical continuum of variability 339 

estimated as the mean of the micrometeorological, CRU-NCEPv4, and 20th century reanalysis 340 

version v2c datasets (supporting information S2). These three datasets are selected due the large 341 

overlap in the analysed time scales (Figure 3b). 342 

Data availability 343 

The micrometeorological, eddy covariance and remote sensing data that support the findings of 344 

this study are available from public repositories (see supporting information S1). Tree-ring 345 

widths and site-level above ground biomass increment estimates used in this study are available 346 

upon reasonable request to D.C.F. and F.B., respectively. 347 

Code availability 348 

The analysis was conducted in R version 3.3.2 and the scripts of the analysis are available from 349 

the corresponding author upon reasonable request. 350 
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Figure 1. Spatial distribution of the analysed forest sites. (a) The 23 sites with long-term (≥10 516 

yr) micrometeorological and NEE measurements. (b) European sites where, additionally, TRW 517 

and AGB data are available (white circles). (c) Length of the analysed time series of 518 

micrometeorological and eddy covariance measurements (the five European sites with additional 519 

measurements are highlighted in black). Different colours correspond to different forest types. 520 

Figure 2. Ecosystem and hydrometeorological variability based on eddy covariance and 521 

micrometeorological data, respectively. Standard deviation (y-axes) as a function of the 522 

averaging time scale (x-axes) for NEE (subplot a) as well as for the hydrometeorological drivers, 523 

namely R, T, P, and D (subplots b, c, d, and e, respectively), from hourly to inter-annual time 524 

scales for the 23 sites (Figure 1). Data are standardized, i.e., zero mean and unit variance, at the 525 

hourly time scale, so that patterns of variability can be compared across sites. Different colours 526 

correspond to different forest types. 527 

Figure 3. Composite ecosystem and hydrometeorological variability continua. (a) Ecosystem 528 

variability (y-axis) from hourly to decadal time scales of an exemplary site (DE-Tha; Figure 1b) 529 

as revealed by the superposition of several ecosystem variables (i.e., NEE, LAI and FPAR from 530 

MODIS TIP and GIMMS 3g, TRW, and AGB), and (b) its hydrometeorological envelope, based 531 

on the variability continua of individual hydrometeorological variables (i.e., P, D, R, T). 532 

Different colours correspond to different ecosystem and hydrometeorological variables. 533 

Horizontal bars highlight the time scales covered by each dataset. 534 

Figure 4. The hydrometeorological envelope of ecosystem variability continuum. Single 535 

coloured solid lines merge information at multiple time scales: eddy covariance flux 536 

measurements (NEE; 1 h – 1 mon), remote sensing data (LAI 3g; 1 mon – 1 yr), and tree ring 537 
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widths (TRW; 1 yr – 10 yr) and represent the continuum of ecosystem variability at five forest 538 

ecosystems in Europe (coloured lines; Figure 1b). The shaded blue area represents the 539 

hydrometeorological envelope of variability at these five sites and it is quantified by several 540 

state-of-the-art hydrometeorological datasets (Methods; coarser increments in x-axis are used for 541 

enhancing figure’s clarity). 542 

Figure 5. Empirical vs. simulated continua of ecosystem variability. A comparison of 543 

observation-based (i.e., composite of NEE, LAI 3g, and TRW data; subplot a) and simulated 544 

(TRENDY multi-model mean simulated NEE; subplot b) cross-scale ecosystem variability (y-545 

axes) across sites (coloured lines). The shaded area denotes the hydrometeorological envelope of 546 

the TRENDY climate forcing (CRU-NCEPv4). For figures’ clarity, data are standardised so that 547 

they have zero mean and unit variance at the monthly time scale. 548 

Figure 6. A parsimonious stochastic framework for modelling ecosystem and 549 

hydrometeorological variability across time scales. Theoretical values of standard deviation (y-550 

axes) vs. averaging time scale (x-axes) for (a) single (deterministic) harmonics with periods 551 

T1=24 h, T2=1 yr and a process with two harmonic cycles T1 and T2; and for (b) white noise 552 

(WN) and stochastic processes with short- (AR(1)), or long-term (HK) persistence for various 553 

values of Hurst coefficient (H) and lag-1 autocorrelation (ρ). (c) Empirical ecosystem variability 554 

across time scales of an exemplary site (DE-Tha, coloured points; Figure 1b) based on eddy 555 

covariance flux measurements (NEE; 1 h – 1 mon), remote sensing data (LAI 3g; 1 mon – 1 yr), 556 

and tree ring widths (TRW, 1 yr – 10 yr; Figure 3a), together with the fitted theoretical models 557 

(dashed and solid lines; T1+T2+WN, T1+T2+AR(1), and T1+T2+HK). (d) Empirical (coloured 558 

points) and fitted theoretical (solid lines) variability across time scales for each 559 

hydrometeorological variable at DE-Tha site. 560 
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