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Abstract Stochastic simulation of hydrological 

processes has a key role in water resources planning and 

management due to its ability to incorporate 

hydrological uncertainty within decision-making. Due 

to seasonality, the statistical characteristics of such 

processes are considered periodic functions, thus 

implying the use of cyclo-stationary stochastic models, 

typically using a common statistical distribution. Yet, 

this may not be representative of the statistical structure 

of such processes across all seasons. In this context, we 

introduce a novel model suitable for the simulation of 

periodic processes with arbitrary marginal distributions, 

called Stochastic Periodic AutoRegressive To Anything 

(SPARTA). Apart from capturing the periodic 

correlation structure of the underlying processes, its 

major advantages are a) the accurate preservation of 

seasonally-varying marginal distributions; b) the 

explicit generation of non-negative values; and c) the 

parsimonious model structure. Finally, the performance 

of the model is demonstrated through a theoretical 

(artificial) case study. 

Keywords: Stochastic simulation, periodic processes, 

hydrological processes, arbitrary marginal distributions 

1. Introduction 

Two common peculiarities of time series (especially in 

hydrological domain) are non-Gaussianity and 

periodicity, with the latter implying a periodic 

fluctuation of the marginal statistics of the underlying 

process as well as a periodic correlation structure. 

Characteristic examples of such processes are the 

monthly time series of precipitation and river flow 

discharge. Concerning the modelling of such time 

series, it is known that the classic cyclic standardization 

approach (Kottegoda, 1980; Salas, 1993) is not able to 

capture the seasonally varying autocorrelation 

coefficients due to the underlying assumption of 

stationarity. On the contrary, cyclostationarity (i.e., 

seasonally varying parameters), allows the variation of 

such properties and hence it consists a more appropriate 

modelling scheme. The first cyclostationary model is 

attributed to Thomas-Fiering (1962) who developed a 

Gaussian univariate periodic simulation model able to 

preserve the lag-1 correlation between successive 

seasons. The seminal work of Thomas-Fiering have led 

to a broader family of models, termed periodic 

autoregressive (PAR). The latter family of models have 

been extensively studied by many researchers including 

higher order and multivariate implementations (Bras 

and Rodríguez-Iturbe, 1985; Kottegoda, 1980; Salas, 

1993).  

Further to periodicity, non-Gaussianity is another 

typical characteristic of hydrological variables, 

commonly observed across (almost) all time-scales. 

This highlights the necessity to account for skewed, non-

Gaussian distributions. Early attempts to simulate non-

normal time series involved their transformation to 

Gaussian via a normalization function; such as Box-Cox 

and logarithmic transformation. Next, parameter 

estimation and simulation is performed on the 

normalized data and the final product is obtained via the 

inverse transformation (Salas et al., 1985). However, in 

most cases, such simple transformations are not 

adequate and many attempts have been made using ad-

hoc functions involving typically 4-5 parameters (e.g., 

Koutsoyiannis et al., 2008). Hence, this procedure can 

be characterized as non-trivial and prone to subjectivity. 

Note, that even if a proper normalization function is 

identified, it is not ensured that the normalization – 

simulation – de-normalization procedure will preserve 

the desired statistics or the stochastic structure of the 

original variables (Bras and Rodríguez-Iturbe, 1985; 

Salas et al., 1985). The latter highlight that failure or ill-

transformation of the data to Gaussian may lead to miss-

specification of the marginal statistics and inevitably 

lead to miss-specified models.  

Probably due to the aforementioned shortcomings, the 

literature has lean towards approaches that incorporate 

skewness within the model structure; i.e., via generating 

white noise from a specific, skewed, distribution 

(Fiering and Jackson, 1971). Extended reviews 

regarding such methods can be found in literature 

(Matalas and Wallis, 1976; Salas et al., 1985) which also 

includes approaches with white noise generated from the 

Pearson type-III distribution (e.g., Efstratiadis et al., 

2014; Koutsoyiannis and Manetas, 1996). The two 

notable shortcomings of such approaches are a) the 

generation of negative values and b) that they provide 

just an approximation of the variable’s marginal 

distribution since the “strict exactness” is lost due to the 

underlying generation mechanism (Koutsoyiannis and 

Manetas, 1996). 

In order to address the aforementioned issues, we 

propose a method for generating periodic processes with 
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arbitrary marginal distributions while preserving 

simultaneously the stochastic structure of the processes.  

Our method, called Stochastic Periodic AutoRegressive 

To Anything (SPARTA, Tsoukalas et al., 2017)  

constitutes a generalization of the univariate 

AutoRegressive To Anything (ARTA) model of Cario 

and Nelson (1996) for periodic processes.  The central 

idea involves a) the simulation of an auxiliary periodic 

PAR process upon the “Gaussian” domain with such 

parameters that capture the stochastic structure (season-

to-season autocorrelation) of the process, and b) the 

mapping of the generated series to the “real” domain, via 

the inverse cumulative distribution function (ICDF). 

The main challenge encountered in the aforementioned 

methods is the identification of the parameters of the 

auxiliary process that result in the desired stochastic 

structure after the application of the inverse cumulative 

distribution function. This arises from the fact that 

Pearson correlation coefficient, which is used within the 

parameter identification procedure of both AR and PAR 

models, is not invariant under monotonic 

transformations; such as those imposed by the inverse of 

the desired distribution. Therefore, we have to identify 

the “equivalent” correlation coefficient that should be 

used within the parameter identification procedure of the 

auxiliary PAR model in order to attain the desired 

correlation after the mapping to the “real” domain. The 

estimation of “equivalent” correlation coefficient 

requires the integration of a double infinite integral 

which can be easily accomplished with the use of 

numerical methods. The latter joint relationship is 

known as Nataf distribution model (Nataf, 1962). 

The main advantages of the proposed methodology are 

a) its ability to account for the cyclostationarity and 

simultaneously simulate time series with arbitrary 

marginal distributions b) the flexibility provided in the 

selection of distribution fitting method and c) the 

parsimonious model structure, since SPARTA uses 

exactly the same number of parameters as PAR model. 

2. Methodology 

The key idea behind SPARTA model lies in the 

simulation of an auxiliary univariate periodic Gaussian 

process {𝑍𝑠}; where s refers to season; with such 

parameters (which define the stochastic structure) that 

after the mapping with the corresponding inverse 

distribution function results into a process {𝑋𝑠} with the 

desired correlation structure and marginal distributions. 

The mapping operations is of the following form: 

 𝑋𝑠 = 𝐹Xs

−1[Φ(𝑍𝑠)] (1) 

Where Φ(∙) refers to the standard normal cumulative 

distribution function (CDF) and 𝐹Xs

−1(∙) denotes the 

ICDF of the desired distribution. Briefly, the 

methodology can be summarized in five steps:  

a) Define (i.e., fit) a suitable marginal distribution 

function 𝐹𝑋𝑠
, to each season. 

b) Select an appropriate auxiliary periodic Gaussian 

model (e.g., PAR(1)). 

c) Approximate the equivalent correlation of pairs of 

interest (e.g., those related with the model parameters). 

d) Estimate the parameters of the auxiliary process {𝑍𝑠} 

using the equivalent correlations identified in step c.  

e) Simulate a realization of the auxiliary process {𝑍𝑠} 

and map the generated data to the real domain (using eq. 

(1)), in order to attain the process {𝑋𝑠}, using the ICDFs 

identified in step a.  

Although the proposed methodology is generic and 

higher order models can be employed, here we prefer to 

use the PAR(1) model in order to keep things simple and 

provide an easy to follow narrative. Furthermore, our 

choice regarding the PAR(1) model is further supported 

by the findings of other researchers that highlight that 

the parsimonious structure of PAR(1) model is adequate 

for the simulation of hydrological time series (e.g., 

Efstratiadis et al., 2014; Koutsoyiannis and Manetas, 

1996).  Therefore, prior to describing the methodology 

for the identification of the equivalent correlation allow 

us first to describe the auxiliary univariate PAR(1) 

model. Hereafter we will symbolize the equivalent 

correlation in Gaussian space as 𝜌̂(∙) and the desired 

correlation in the real domain as 𝜌(∙). The key equation 

of the univariate PAR(1) model is of the form: 

 𝑍𝑠 = 𝜌̂𝑠,𝑠−1𝑍𝑠−1 + √1 − 𝜌̂𝑠,𝑠−1
2 𝑊𝑠 (2) 

Where 𝑊𝑠 is an independent identically distributed 

variable from N ~(0, 1). It can be shown that the 

resulting process {𝑍𝑠} will have marginal distributions 

N ~(0, 1), which in combination with eq. (1) ensures that 

the process {𝑋𝑠} will have the desired distribution. 

Therefore, the main challenge of the aforementioned 

procedure is to identify the equivalent correlation 

coefficient 𝜌̂𝑠,𝑠−1 which should be used in the auxiliary 

process {𝑍𝑠}. For notational purposes allow us to define 

the following indices, 𝑋𝑖 ≔ 𝑋𝑠 and 𝑋𝑗 ≔ 𝑋𝑠−1. The 

season-to-season correlation structure of the {𝑍𝑠} 

process is associated with that of {𝑋𝑠} since, 

𝜌𝑖,𝑗  = Corr[𝑋𝑖, 𝑋𝑗] = Corr {𝐹𝑋𝑖

−1[Φ(𝑍𝑖)], 𝐹𝑋𝑗

−1[Φ(𝑍𝑗)]}  

for all 𝑖 ≠ 𝑗. As shown in Nataf (1962), as well as, in 

Cario and Nelson (1997) the latter relationship  is 

limited to adjusting 𝐸[𝑋𝑖 , 𝑋𝑗], since,  

 Corr[𝑋𝑖, 𝑋𝑗] = 𝜌𝑖,𝑗 =
𝐸[𝑋𝑖, 𝑋𝑗] − 𝜇𝑖𝜇𝑗

𝜎𝑖𝜎𝑗

 (3) 

Where 𝜇𝑖, 𝜇𝑗 and 𝜎𝑖 , 𝜎𝑗 denote the mean and the standard 

deviation of 𝑋𝑖  and 𝑋𝑗 respectively, which can be 

derived from corresponding marginal distributions. 

Then since the relationship between 𝑍𝑖  and 𝑍𝑗  is 

expressed via the bivariate standard normal distribution 

with correlation Corr[𝑍𝑖 , 𝑍𝑗] = 𝜌̂𝑖,𝑗   and with the use of 

the first cross product moment of 𝑋𝑖  and 𝑋𝑗 we obtain 

the following equation, 
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𝐸[𝑋𝑖 , 𝑋𝑗] =  

∫ ∫ 𝐹𝑋𝑖

−1[Φ(𝑧𝑖)]𝐹𝑋𝑗

−1[Φ(𝑧𝑗)]  𝜑(𝑧𝑖 , 𝑧𝑗 , 𝜌̂𝑖,𝑗)d𝑧𝑖dz𝑗

∞

−∞

∞

−∞

 
(4) 

Where 𝜑(𝑧𝑖 , 𝑧𝑗 , 𝜌̂𝑖,𝑗) is the bivariate normal probability 

density function (PDF) with correlation 𝜌̂𝑖,𝑗. It can be 

shown, by substituting eq. (4) in eq. (3), that the desired 

correlation consists a function of equivalent correlation, 

which can be expressed as: 

 𝜌𝑖,𝑗 = 𝑓(𝜌̂𝑖,𝑗 , 𝐹𝑋𝑖
, 𝐹𝑋𝑗

)  (5) 

Where 𝐹𝑋𝑖
 and 𝐹𝑋𝑗

 denote the specified marginal 

distributions. This relationship should be resolved for 

every pair 𝜌̂𝑖,𝑗  (𝑖 ≠ 𝑗) of the auxiliary PAR(1) process. 

The literature includes a variety of approaches to solve 

the latter equation, including Newton’s method (Cario 

and Nelson, 1997, 1996; Li and Hammond, 1975), root-

fnding methods (Chen, 2001), as well as, numerical 

integration and Monte-Carlo methods (Xiao, 2014). In 

this paper we employ a simple algorithm based on 

Monte-Carlo simulation and polynomial approximation 

proposed by Tsoukalas et al.,  (2017). 

3. Case study 

In order to illustrate the potential of SPARTA method 

we choose to employ a theoretical case study of an 

artificial univariate time series. Let us assume that we 

want to simulate an annual process {𝑋𝑠} consisted of 12 

seasons. Furthermore, let us assume that each one has 

different marginal distribution and its parameters are a 

priori known. The specified distributions as well as their 

parameters are synopsized in Table 1. Furthermore, we 

assumed that the desired season-to-season correlation is 

equal to, 𝝆 = [𝜌12,1, 𝜌1,2, … , 𝜌𝑡,𝑡−1 … , 𝜌11,12] =
[0.7,0.6,0.3,0.5,0.6,0.7,0.5,0.6,0.7,0.8,0.7,0.6].  

Since the marginal distributions and their parameters are 

already known the generation procedure reduces in to 

performing steps (b) – (e) of the procedure described in 

section 2. More specifically we employed PAR(1) as 

auxiliary model which is consisted of 12 parameters and 

hence, the double integral in eq. (4) had to be resolved 

12 times. The performance assessment of SPARTA was 

based on its ability to capture the key statistical 

characteristics (i.e., mean, standard deviation, skewness, 

kurtosis and season-to-season correlation) of theoretical 

distributions as well as its ability to exactly reproduce 

the specified marginal distributions.  

4. Results 

To this end we employed SPARTA and simulated 5 000 

years of the process {𝑋𝑠}. As depicted in Figure 1, the 

model was able to accurately reproduce the seasonal 

mean and standard deviation with high precision where 

the two lines are almost indistinguishable. A similar 

behavior is observed when comparing the theoretical 

and simulated values of skewness and kurtosis. The 

latter behavior highlights the ability of the model to 

capture the key statistical characteristics of the 

understudy process even if different marginal models 

are established for each season. 

 

 

Figure 1: Comparison of theoretical and simulated 

values of seasonal A) mean (μ), B) standard deviation 

(σ), C) skewness (Cs) and D) kurtosis (Ck).
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Table 1: Theoretical distributions and parameters of each season of the artificial time series as well as MLE estimation 

of simulated data. 

Season 1 2 3 4 5 6 7 8 9 10 11 12 

Distribution/ 

Parameters 

PIII Exp Gam Norm LoNo Wei Beta LoNo Exp PIII Wei Gam 

Theoretical Values 

a 1 1 1 2 0 1 1 0 0.55 1 2.5 2 

b 2 - 2 1 0.5 2 5 0.7 - 1 5 1 

c 2 - - - - - - - - 5 - - 

 Simulated Values 

a 1.01 0.97 1.02 1.97 0.001 1.04 1.98 0.002 0.52 1.01 2.48 2.02 

b 1.97 - 2.01 0.99 0.50 2.02 4.92 0.71 - 0.97 5.01 1.02 

c 2.05 - - - - - - - - 5.03 - - 

*Distribution abbreviations: PIII: Pearson III (a = shape, b = rate, c = location), Exp: Exponential (a = rate), Gam: 

Gamma (a = shape, b = rate), Norm: Normal (a = mean, b = st. dev.), LoNo: Log-Normal (a = log mean, b= log st. 

dev.), Wei: Weibull (a = shape, b = scale); Beta: Beta (a = shape, b = shape). 

Likewise, Figure 2 illustrates the performance of 

SPARTA in terms of reproducing the desired season-

to-season correlation. Again, the theoretical and 

simulated values are almost undistinguishable. 

Furthermore, the identified equivalent correlation 

coefficients are depicted in the same graph in order to 

provide an insight to the reader.  

 

Figure 2: Comparison between theoretical (black line) 

and simulated (red line) season-to-season correlation 

(ρ(1)). The blue line illustrated the estimated 

equivalent correlation coefficients. 

In order to further investigate the performance of the 

model we reverse-estimated the parameters of the 

distributions using the simulated data and the 

maximum likelihood method (MLE). Table 1 

summarizes the estimated parameters which show a 

close agreement with their theoretical values. This can 

be also visually confirmed in Figure 3 where we 

compare the theoretical and simulated CDFs of two 

seasons (i.e., season 2 and 5). Again, the simulated 

data closely agree with the theoretical values, 

highlighting the “exactness” of the method in terms of 

reproducing the marginal distribution. Another 

notable characteristic of the model is that can by 

definition (through the use of eq. (1)) allows the 

avoidance of generating negative values. This is 

realized when the specified marginal distribution is 

positively bounded. For example, it is known that the 

exponential distribution (season 2) is bounded as 

follows, 𝑥 ∈ [0, ∞) therefore the lowest possible value 

that can be generated by the SPARTA method is zero. 

The same applies for the log-normal distribution 

which is defined for 𝑥 ∈ (0, ∞).  

 

Figure 3: Comparison of theoretical and simulated 

cumulative density function (CDF) of A) season 2 and 

B) season 5 using the Weibull plotting position
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5. Conclusions 

In this work, we presented a novel cyclo-statonary 

model, termed Stochastic Periodic AutoRegressive To 

Anything (SPARTA) suitable for the simulation of 

periodic time series with arbitrary marginal 

distributions. The central idea of SPARTA lies into 

employing the Nataf’s joint distribution model to 

capture the dependency among seasons and 

simultaneously exactly preserve their marginal 

distributions. The latter is attained with the use of an 

auxiliary periodic model from the PAR family with 

such parameters that after the mapping to the “real” 

domain attain the desired correlation structure. Apart 

from the obvious advantage of simulating data with 

exact marginal distribution, the proposed model, in 

contrast to the classic PAR models, can avoid the 

generation of negative values which have no physical 

meaning for hydrological time series. Another 

advantage of SPARTA is its parsimonious structure 

since it has the same number of parameters with a 

typical PAR model. The performance of SPARTA was 

assessed using a “toy” case study that involved the 

simulation of a periodic process exhibiting different 

marginal distribution for each season and seasonal 

correlation structure.  SPARTA was able not only to 

reproduce the theoretical statistics and the temporal 

correlation structure but also reproduce the parameters 

of the prescribed marginal distributions. Finally, it can 

be argued that the flexibility of the proposed method, 

concerning the selection of different distributions and 

fitting methods, allows the incorporation of recent 

advances of statistical science within the domain of 

stochastic hydrology. Future work will be focused on 

extending SPARTA for multivariate simulation 

(Tsoukalas et al., 2017), as well as, coupling it with 

disaggregation techniques (e.g., Koutsoyiannis and 

Manetas, 1996). 
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