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Abstract 34 

Stochastic models in hydrology traditionally aim at reproducing the empirically-derived statistical 35 

characteristics of the observed data rather than any specific distribution model that attempts to 36 

describe the usually non-Gaussian statistical behavior of the associated processes. SPARTA 37 

(Stochastic Periodic AutoRegressive To Anything) offers an alternative and novel approach which 38 

allows the explicit representation of each process of interest with any distribution model, while 39 

simultaneously establishes dependence patterns that cannot be fully captured by the typical linear 40 

stochastic schemes. Cornerstone of the proposed approach is the Nataf joint-distribution model, 41 

which is related with the Gaussian copula, combined with Gaussian periodic autoregressive 42 

processes. In order to obtain the target stochastic structure, we have also developed a 43 

computationally simple and efficient algorithm, based on a hybrid Monte-Carlo procedure that is 44 

used to approximate the required equivalent correlation coefficients. Theoretical and practical 45 

benefits of the proposed method, contrasted to outcomes from widely-used stochastic models, are 46 

demonstrated by means of real-world as well as hypothetical monthly simulation examples 47 

involving both univariate and multivariate time series. 48 

Plain Language Summary 49 

Stochastic hydrology and, particularly, the synthesis of long hydrometeorological time series (e.g., 50 

precipitation and streamflow) is of high importance in water-related studies since it enables to 51 

account for the intrinsic uncertainty of the associated processes. This in turn provides the means 52 

to embed uncertainty within planning and decision making. Typically, stochastic models in 53 

hydrology aim in the resemblance of the empirically-derived statistical characteristics of the 54 

observed time series rather than in reproducing a specific distribution model. In this work we 55 

propose a novel approach termed SPARTA (Stochastic Periodic AutoRegressive To Anything) 56 

that allows the simulation of multivariate cyclostationary processes with explicit reproduction of 57 

the desirable marginal distributions and correlation structures. Its theoretical background is based 58 

on the Nataf joint-distribution model (NDM), a procedure that emerged from operations research 59 

and is also related with the Gaussian copula. The theoretical and practical benefits of the proposed 60 

method are demonstrated by means of real-world and hypothetical simulation studies, involving 61 

the generation of both univariate and multivariate time series. 62 

1 Introduction 63 

According to the classical classification by Matalas [1975], synthetic hydrology constitutes a sub-64 

branch of stochastic hydrology, which is usually credited to the pivotal works conducted by the 65 

Harvard water program [Maass et al., 1962] and Thomas and Fiering [1962]. Early attempts to 66 

simulate synthetic time series were based on the theory of stochastic processes and the use of linear 67 

stochastic models, accounting for the key peculiarities of hydrometeorological processes, namely 68 

periodicity and skewness [Thomas and Burden, 1963; Matalas, 1967; Fiering and Jackson, 1971; 69 

Klemeš and Borůvka, 1974].  70 

Typically, the standard hypothesis for synthetic time series generation via such approaches does 71 

not lie in the reproduction of a specific distribution, but on the resemblance of the statistical 72 

characteristics of the parent historical time series. These are usually expressed in terms of low-73 

order statistics (e.g. mean, variance, skewness) and correlations in time and space [Matalas and 74 

Wallis, 1976; Salas, 1993]. However, for a given set of low-order statistics multiple distribution 75 



functions may be represented, thus making the simulation problem only partially defined [cf. 76 

Matalas and Wallis, 1976 p. 66]. 77 

On the other hand, theoretical reasons and empirical evidence may impose the preservation of a 78 

specific distribution for the modelled processes, as highlighted by Klemeš and Borůvka [1974] 79 

(our emphasis):  80 

“Simulation of a serially correlated series with a given marginal distribution is one of the 81 

important prerequisites of synthetic hydrology and of its applications to analysis of water 82 

resource system”.  83 

The generation of synthetic data following specific, typically skewed, distributions becomes even 84 

more challenging when aiming to simulate hydrometeorological processes at time scales finer than 85 

annual. In that case, the stochastic model should account for all facets of cyclostationarity, 86 

involving not only, the stochastic structure of the underlying processes but also their distribution, 87 

which may be seasonally-varying.  88 

The standard approaches to handle skewness within linear stochastic models can be classified in 89 

three categories: (a) explicit methods, (b) transformation methods, and c) implicit methods that 90 

produce non-Gaussian innovation terms within the generation scheme. Such approaches suffer 91 

from notable, although not so apparent, limitations that in combination with the need to account 92 

for non-Gaussian distributions motivated this study. 93 

Explicit methods are designed (and hence constrained) to generate realizations from a specific 94 

distribution family. Common approaches within stochastic hydrology are the stationary 95 

multivariate lag-1 model with Log-Normal distribution, proposed by Matalas [1967], and the 96 

gamma-autoregressive (GAR) model of Lawrance and Lewis [1981], as well as its periodic 97 

extension [Fernandez and Salas, 1986]. We remark that so far GAR is restricted for univariate 98 

cases, which is a major limitation, since in most water resources applications multiple processes 99 

have to be represented simultaneously.  100 

Transformation approaches initially aim to “normalize” the non-Gaussian historical data through 101 

a proper transformation function; next, parameter estimation and simulation are performed on the 102 

normalized data and the final product, i.e., the synthetic data, are obtained via the inverse 103 

transformation [Salas et al., 1985]. Early attempts used relatively simple conversions, such as Box-104 

Cox, logarithmic, and alternatives, which is well-known that cannot always ensure a satisfactory 105 

normalization (e.g. when the original data are too asymmetric). For this reason, for the case of 106 

hydrometeorological data, exhibiting significant skewness, more complex schemes have been 107 

proposed, yet involving several unknown parameters and also requiring the use of optimization 108 

[e.g., Koutsoyiannis et al., 2008; Papalexiou et al., 2011]. In fact, the increase of complexity 109 

inevitably raises several questions, namely: How many parameters should be used? How does the 110 

sample size affect their estimation? In the case of multivariate and cyclostationary simulations, 111 

should we use the same transformation function for all processes and seasons? 112 

Nevertheless, even an accurate normalization procedure does not ensure that the inverse 113 

transformation (i.e., the normalization – simulation – de-normalization scheme) will preserve both 114 

the statistical characteristics and the correlation structure of the original variables [Salas et al., 115 

1980 p. 73; Bras and Rodríguez-Iturbe, 1985; Lall and Sharma, 1996; Sharma et al., 1997]. 116 

Actually, it is argued that a general method for normalizing all types of data does not exist 117 

[Papalexiou et al., 2011]. We could also argue that neither an optimal transformation for each 118 



specific process exists (particularly in the multivariate case). Thus, the selection and the parameters 119 

of the transformation model are prone to subjectivity and indefiniteness.  120 

To avoid such ill-transformations, the common practice has leaned towards incorporating 121 

skewness within the generation mechanism of the stochastic model itself. In this context, several 122 

implicit schemes have been proposed to embed non-Gaussian noise within the innovation term. 123 

The first attempts are attributed to Thomas and Burden [1963] and Fiering and Jackson [1971] 124 

who proposed univariate simulation schemes for skewed and periodic streamflow data. Their key 125 

assumption is the preservation of the desirable statistical characteristics through the generation of 126 

white noise from a given distribution, usually the three-parametric Gamma (Pearson type-III). We 127 

remark that such approaches generate explicitly gamma-distributed variables for the white noise, 128 

while the strict “explicitness” is lost when the latter are synthesized to provide the variables of 129 

interest [cf. Matalas and Wallis, 1976 p. 66]. Hence, the desirable distribution is only 130 

approximately preserved [Koutsoyiannis and Manetas, 1996]. After the pioneering works of 131 

Fiering [1964] and Matalas and Wallis [1976], implicit approaches have been implemented within 132 

several linear stochastic models, including the multivariate periodic autoregressive model [cf. 133 

Koutsoyiannis, 1999], the multivariate symmetric moving average model [Koutsoyiannis, 2000] 134 

and their integration within Castalia framework [Efstratiadis et al., 2014].  135 

A well-known alternative to all above categories of linear stochastic models is offered by the so-136 

called non-parametric approaches, which aim to reproduce the empirical distributions of the 137 

observed processes, typically through resampling of historical data [e.g., Lall and Sharma, 1996; 138 

Sharma et al., 1997; Srinivas and Srinivasan, 2005; Mehrotra et al., 2006; Marković et al., 2015]. 139 

In the literature, such approaches have gained particular attention when the marginal distributions 140 

exhibit bi- or multi-modality, which is usually driven by multiple generation mechanisms [Lall 141 

and Sharma, 1996; Sharma et al., 1997]. However, the use of the empirical distributions prohibits 142 

from fitting to a theoretical model and extrapolating out of the observed data ranges. The lack of 143 

theoretical basis makes also difficult to reproduce long-term persistence and cross-correlations 144 

among many variables, with few exceptions [e.g., Kirsch et al., 2013; Herman et al., 2016]. 145 

Heuristic solutions to the above limitations, such as the recently introduced optimization-based 146 

approach by Borgomeo et al. [2015], are subject to extremely high computational effort, and they 147 

are also prone to inherent inefficiencies of optimization algorithms. 148 

Another relatively new and promising option is offered by copulas, which have recently been 149 

embedded in multivariate stochastic simulation schemes in order to describe complex 150 

dependencies among hydrological variables [Hao and Singh, 2013; Chen et al., 2015]. However, 151 

it can be argued that copulas are not directly compatible with linear stochastic models, which rely 152 

on Pearson’s correlation coefficient, since they typically employ rank correlation statistics (e.g., 153 

Spearman’s ρs, or Kendall’s τ) to describe the dependencies among the variables. Nevertheless, 154 

they are more sensitive against sampling uncertainty than classical stochastic schemes, in their 155 

attempt to describe complex (i.e., nonlinear) dependencies on the basis of usually limited 156 

hydrological data. Furthermore, as many researchers argue (see discussion in the aforementioned 157 

papers), they rely on quite complicated and computationally demanding generation schemes, 158 

especially in high-dimensional spaces. 159 

In order to tackle the aforementioned shortcomings, we have developed an explicit method, called 160 

Stochastic Periodic AutoRegressive To Anything (SPARTA) model, which offers a generalized 161 

procedure with solid theoretical background for the generation of cyclostationary processes from 162 

a priori defined distribution functions that are seasonally-varying. The proposed method builds 163 



upon the so-called Nataf joint-distribution model [NDM; Nataf, 1962], which is generic mapping 164 

procedure, and the AutoRegressive To Anything (ARTA) model, introduced by Cario and Nelson 165 

[1996] to represent stationary processes with arbitrary marginal distributions and autocorrelation 166 

structure. Initially, ARTA was formulated as univariate and later extended for multivariate 167 

simulations [Biller and Nelson, 2003]. Both versions involve the simulation of stationary 168 

processes, but they have not been extended to account for cyclostationarity which is sine qua non 169 

requirement for hydrological processes. 170 

The rationale and computational procedure of SPARTA are described in the next three sections, 171 

where section 2 summarizes the overall methodology, section 3 describes the individual 172 

computational steps, while section 4 emphasizes on the Nataf joint-distribution model and the 173 

associated numerical scheme that has been developed and implemented within SPARTA. In 174 

section 5 we evaluate the proposed method by means of three case studies, involving real-world 175 

and hypothetical simulations. A broader discussion on good modelling practices, as well as the 176 

key conclusions and perspectives of this research are outlined in sections 6 and 7, respectively. 177 

2 SPARTA at a glance 178 

SPARTA aims at simulating periodic processes from any given marginal distribution and a given 179 

stochastic structure, typically (but not exclusively) expressed in terms of first order 180 

autocorrelations and lag zero cross-correlations. Its fundamental advantage is the explicit 181 

preservation of the theoretical marginal distributions of the processes, in contrast to existing linear 182 

stochastic approaches that preserve the marginal statistics (not the distributions themselves) up to 183 

a specific order, typically the third one (i.e., mean, standard deviation, skewness). Briefly, our 184 

approach involves the simulation of an auxiliary process from the Periodic AutoRegressive (PAR) 185 

family, in the “normal” domain (i.e., Gaussian), which allows accounting for cyclostationarity, 186 

and then its mapping to the “real” domain, via the desired inverse cumulative distribution functions 187 

(ICDFs). More specifically: Let 𝒙𝑠,𝑡 = [𝑥𝑠,𝑡
1 , … , 𝑥𝑠,𝑡

𝑚 ]
T

 be a m-dimensional vector of 188 

cyclostationary stochastic processes to simulate, where s = 1, …, S denotes the season (e.g., 189 

month) and t = 1, …, T denotes the aggregated time scale (e.g., year). Each element of 𝒙𝑠,𝑡 is 190 

symbolized 𝑥𝑠,𝑡
𝑖 , where i = 1, …, m denotes an individual random process, and 𝑥𝑠,𝑡

𝑖  denotes its 191 

realization. Herein, index i will be also referred to as “location” or “site”, without necessarily 192 

implying spatial reference. Let also 𝜌𝑠,𝑠−𝜏
𝑖,𝑗

≔ Corr[𝑥𝑠
𝑖 , 𝑥𝑠−𝜏

𝑗
 ]  be the Pearson coefficient of 193 

correlation among processes i and j, for season s and time lag τ. For instance, when j = i and τ ≠ 0, 194 

the quantity ρ represents the autocorrelation of the process for lag τ, while for j ≠ i and τ = 0, ρ 195 

represents the cross-correlation between i and j, for zero time lag. Furthermore, when the 196 

superscripts or subscripts of 𝜌 are identical (i.e., when j = i or τ = 0) we may omit repeating them 197 

for convenience (e.g., 𝜌𝑠,𝑠−𝜏
𝑖,𝑖

 may be written as 𝜌𝑠,𝑠−𝜏
𝑖  and 𝜌𝑠,𝑠

𝑖,𝑗
 as 𝜌𝑠

𝑖,𝑗
).  198 

For each process at each season s and each location i, we assign a specific statistical distribution, 199 

𝐹𝑥𝑠
𝑖 ≔ 𝑃(𝑥𝑠

𝑖 ≤ x), and also assign target coefficients of correlation, 𝜌𝑠,𝑠−𝜏
𝑖,𝑗

, to preserve within the 200 

proposed generation scheme. The key idea of SPARTA lies in the generation of an auxiliary 201 

process 𝒛𝑠,𝑡 = [𝑧𝑠,𝑡
1 , … , 𝑧𝑠,𝑡

𝑚 ]
T

 from a standard Normal Periodic AutoRegressive process 202 

(symbolized PAR-N), with such parameters that their mapping via the corresponding inverse 203 

marginal distributions (ICDFs) results into processes with the target marginal distributions and the 204 

target correlation structure, i.e.,  205 



 𝑥𝑠,𝑡
𝑖 = 𝐹

𝑥𝑠
𝑖

−1[Φ(𝑧𝑠,𝑡
𝑖 )] (1) 

where Φ(∙) is the CDF of the standard Gaussian distribution and 𝐹
𝑥𝑠

𝑖
−1(∙) denotes the ICDFs of the 206 

target distributions of process i at season s. 207 

The main challenge, also encountered in the original model (i.e., ARTA), is the identification of 208 

proper parameters for the auxiliary process in the “normal” domain that reproduce the desired 209 

stochastic structure, after applying the mapping procedure. This arises from the fact that the 210 

Pearson correlation coefficient, which is used to describe all kinds of dependencies within linear 211 

stochastic models (including PAR), cannot be preserved when applying a non-linear monotonic 212 

transformation, such as the ICDF. In particular, Eq. (1) results into underestimation of target 213 

correlations, 𝜌𝑠,𝑠−𝜏
𝑖,𝑗

, when they are directly applied to the auxiliary processes. The origin of this 214 

shortcoming is the fact that the Pearsons’ correlation coefficient (in contrast to rank correlation 215 

statistics) is invariant only under linear transformations [Embrechts et al., 1999 p. 7], while for 216 

any other transformation, the correlation coefficients should be properly adjusted. As we will 217 

discuss later (section 4.1), early works in stochastic hydrology were aware of this issue and 218 

attempted to provide analytical or empirical solutions to this problem, for specific distributions 219 

(e.g., Log-Normal). 220 

Following the rationale of ARTA, here we ensure the representation of any distribution across 221 

seasons and processes by employing the so-called Nataf joint-distribution model [NDM; Nataf, 222 

1962]. NDM offers a generic solution to the mapping problem, thus assigning suitable coefficients 223 

to the auxiliary processes that will finally attain the desirable correlation after the transformation 224 

to the “real” domain. Here, we employ NDM in order to identify such “equivalent” coefficients, 225 

𝜌̃𝑠,𝑠−𝜏
𝑖,𝑗

, to be used within the PAR-N generation procedure. As will be elucidated in section 4, for 226 

their estimation we have developed a hybrid method, on the basis of target CDFs, 𝐹𝑥𝑠
𝑖 , and target 227 

𝜌𝑠,𝑠−𝜏
𝑖,𝑗

.  228 

Summarizing, the implementation of SPARTA comprises five steps:  229 

Step 1: For each variable i and each season s, specify a suitable target marginal distribution, 𝐹𝑥𝑠
𝑖 , 230 

and also identify the dependencies to be preserved in time and space, as well as the target values 231 

of the associated coefficients of correlation, 𝜌𝑠,𝑠−𝜏
𝑖,𝑗

. 232 

Step 2: On the basis of the desirable dependencies to preserve (in terms of auto- and cross-233 

correlations), identify the suitable auxiliary model from the PAR-N family.  234 

Step 3: Employ NDM to determine the equivalent coefficients of correlation, 𝜌̃𝑠,𝑠−𝜏
𝑖,𝑗

, for all pairs 235 

of variables that are required by the auxiliary model. 236 

Step 4: Estimate the parameters of the auxiliary model, on the basis of equivalent correlations, and 237 

run the model to generate the auxiliary Gaussian synthetic time series of 𝒛𝑠,𝑡. 238 

Step 5: Map the auxiliary process 𝒛𝑠,𝑡 to the actual domain using their ICDFs, i.e., through Eq. 239 

(1), to obtain 𝒙𝑠,𝑡. 240 

The above steps are described in section 3, while step 3, which is the core element of the proposed 241 

methodology, is discussed in detail in section 4. 242 



3 Insights to the computational procedure 243 

3.1 Selection of target marginal distributions and correlations 244 

In contrast to classical stochastic approaches, which imply the use of a specific statistical model 245 

for the noise, SPARTA allows to employ pre-specified distribution models, in order to describe 246 

the statistical structure of the modelled processes themselves and not of the noise, which is an 247 

auxiliary process. This flexibility involves the selection of the marginal distributions, 𝐹𝑥𝑠
𝑖 , and the 248 

identification of their parameters. In addition, the proposed approach allows for identifying target 249 

dependencies to preserve, in time and space, expressed by means of target coefficients of 250 

correlation, 𝜌𝑠,𝑠−𝜏
𝑖,𝑗

. We highlight that the specification of the above inputs is not a straightforward 251 

decision neither it is advised to be made automatically. As thoroughly discussed in section 6, the 252 

modeler should account for multilateral information, based both on historical data and expert 253 

judgment, in order to establish a realistic formulation of the stochastic simulation model. 254 

3.2 The auxiliary model 255 

As mentioned above, the generation procedure of SPARTA requires the synthesis of an auxiliary 256 

process  𝒛𝑠,𝑡 , which is then mapped to the actual one, i.e.,  𝒙𝑠,𝑡 . This process has to be 257 

cyclostationary (since the underlying process is also cyclostationary) and normal. These premises 258 

are fulfilled by standard periodic autoregressive models with normally-distributed noise (PAR-N) 259 

of any order [e.g., Salas and Pegram, 1977; Salas et al., 1985; Salas, 1993].  260 

Although any stochastic scheme from the PAR-N family may be applicable, we pay attention to 261 

the PAR(1) process, in order to keep things simple and parsimonious, thus providing an easy to 262 

follow narrative. In addition, it is argued that the assumption of a first-order model is well-justified 263 

for most of practical applications in hydrology [Efstratiadis et al., 2014]. Nevertheless, higher-264 

order models may be cumbersome, because the empirical estimation of joint statistics from 265 

historical samples is subject to major uncertainty, usually resulting to ill-posed conditions (e.g., 266 

due to inconsistent autocorrelation structures), which in turn leads to substantial defects within 267 

parameter estimation. 268 

With respect to cross-correlations, the multivariate PAR(1) model, in its full formulation, preserves 269 

both the lag zero and lag one dependencies. However, as Koutsoyiannis and Manetas [1996] have 270 

shown, for reasons of parsimony it is sufficient using the contemporaneous PAR(1) [Salas, 1993 271 

p. 19.31], which does not explicitly accounts for lag-one cross-correlations within parameter 272 

estimation. This is also advocated by an older study of Pegram and James [1972]. For instance, in 273 

a four-variable problem with 12 seasons, the full PAR(1) model requires the specification of 264 274 

parameters to describe the dependencies among the variables, while the contemporaneous one 275 

entails 120. 276 

3.3 Estimation of equivalent coefficients of correlation 277 

In order to employ the multivariate contemporaneous PAR(1)-N within SPARTA, it is essential to 278 

provide the equivalent lag-1 month-to-month correlations (i.e., autocorrelations), 𝜌̃𝑠,𝑠−1
𝑖 , for each 279 

process i and season s, as well as the equivalent zero-lag cross-correlations, 𝜌̃𝑠
𝑖,𝑗

, for each pair of 280 

processes i and j and season s. We remark that the equivalent correlations differ from the target 281 

ones, and they are estimated on the basis of the NDM approach, which is described in detail in 282 

section 4.  283 



3.4 Parameter estimation within PAR(1)-N process 284 

3.4.1 Multivariate contemporaneous case 285 

Keeping the same notation for the auxiliary and actual processes, the multivariate PAR(1) reads 286 

(for convenience, time index t is omitted): 287 

 𝒛𝑠 = 𝜜̃𝑠𝒛𝑠−1 + 𝜝̃𝑠𝒘𝑠 (2) 

where 𝒛𝑠 = [𝑧𝑠
1, … , 𝑧𝑠

𝑚]
T

 is a vector of m stochastic processes in season s, 𝜜̃𝑠, 𝜝̃𝑠  are 𝑚 × 𝑚 288 

parameter matrices that depend on season s, and 𝒘𝑠 = [𝑤𝑠
1, … , 𝑤𝑠

𝑚]
T

 is a vector of mutually 289 

independent random variables. By definition, the random process 𝒛𝑠 is Gaussian, provided that 𝒘𝑠 290 

is generated from the standard normal distribution, i.e., 𝒘𝑠~𝑁(0, 1).  291 

For each season s, the parameter matrix 𝜜̃𝑠 is diagonal and contains the equivalent lag-1 month-292 

to-month correlations, 𝜌̃𝑠,𝑠−1
𝑖 , i.e., 293 

 𝜜̃𝑠 = diag(𝜌̃𝑠,𝑠−1
1 , … , 𝜌̃𝑠,𝑠−1

𝑚 )  (3) 

On the other hand, parameter matrices 𝜝̃𝑠 are calculated as follows: 294 

 𝜝̃𝑠𝜝̃Τ
𝑠 = 𝑮̃𝑠 (4) 

where 𝑮̃𝑠 := 𝑪̃𝑠 −  𝜜̃𝑠𝑪̃𝑠−1𝜜̃Τ
𝑠  and 𝑪̃𝑠  is a symmetric 𝑚 × 𝑚matrix that contains the equivalent 295 

lag-zero cross-correlations, 𝜌̃𝑠
𝑖,𝑗

, i.e., 296 

𝑪̃s = (
1 ⋯ 𝜌̃𝑠

1,𝑚

⋮ ⋱ ⋮
𝜌̃𝑠

𝑚,1 ⋯ 1

) 297 

In order to estimate the parameter matrix 𝜝̃𝑠, it is essential to solve a decomposition problem, also 298 

expressed as finding the square root of 𝑮̃𝑠. This can be obtained with the use of typical numerical 299 

techniques, such as Cholesky or singular value decomposition [e.g., Johnson, 1987]. We remark 300 

that when 𝑮̃𝑠 is positive definite, it has infinite number of feasible solutions, such as the solutions 301 

provided by the aforementioned numerical methods. On the other hand, if 𝑮̃𝑠  is non-positive 302 

definite (this is often the case when the historical data are of different length) the problem does not 303 

have a feasible solution, thus requiring the detection of a parameter matrix 𝜝̃𝑠  ensuring an 304 

approximation of the given 𝑮̃𝑠, e.g., through optimization [Koutsoyiannis, 1999; Higham, 2002].  305 

In particular, Koutsoyiannis [1999] has developed an optimization-based approach, paying 306 

attention on the preservation of skewness, which is a well-known trouble of multivariate stochastic 307 

models, asking for generating skewed white noise [e.g., Todini, 1980]. A great advantage of our 308 

approach is the assumption of normality within the auxiliary process, which substantially 309 

simplifies the optimization problem within decomposing non-positive definite matrices. More 310 

precisely, the empirical penalty term considered by Koutsoyiannis [1999], in order to prohibit the 311 

generation of highly-skewed white noise, which introduces significant complexity to the 312 

optimization procedure [cf. Efstratiadis et al., 2014], is neglected, thus resulting to a “reduced” 313 

objective function that only contains a distance term to minimize. 314 



3.4.2 Univariate case 315 

The univariate model can easily be derived from the above equations. Since m = 1, 𝜜̃𝑠 = 𝜌̃𝑠,𝑠−1
1  316 

and  𝑪̃𝑠 = 1 , thus  𝜝̃𝑠𝑩̃Τ
𝑠 = 1 −  𝜌̃𝑠,𝑠−1

1 𝜌̃𝑠,𝑠−1
1 , which leads to  𝜝̃𝑠 = √1 −  𝜌̃𝑠,𝑠−1

1 2
. Hence, by 317 

substituting in Eq. (2) and removing the redundant indices we read: 318 

 𝑧𝑠 = 𝜌̃𝑠,𝑠−1𝑧𝑠−1 + √1 − 𝜌̃𝑠,𝑠−1
2 𝑤𝑠 (5) 

where 𝑤𝑠 are i.i.d. white noise with 𝑁~(0, 1). We remark that since i = 1 the superscript of 𝜌̃(∙) 319 

has been omitted for simplicity. 320 

3.5 Mapping auxiliary processes to the actual domain 321 

After generating the synthetic time series of the auxiliary processes 𝒛𝑠, the last step is its mapping 322 

throughout Eq. (1) to the actual domain  𝒙𝑠,  through the inverse CDFs. This procedure is 323 

implemented for each individual process and season. Due to the use of the inverse CDF, as well 324 

as the use of equivalent coefficients of correlation within the PAR(1)-N model, the resulting data 325 

will preserve both the target marginal distributions, for all seasons and locations, as well as the 326 

target auto- and cross-correlations. Even in case of non-positive definite correlation matrices, 327 

where the desired stochastic characteristics are not explicitly preserved by the PAR(1)-N model, 328 

the “reduced” optimization approach ensures a very good approximation, with minimal 329 

computational burden. 330 

4 Nataf joint-distribution model and computational advances 331 

4.1 Historical summary and rationale 332 

The problem of obtaining a joint pdf of random variables based on their individual distributions 333 

and correlation has long been discussed within the statistical community. Nataf [1962] has 334 

proposed a quite simple, yet general solution by mapping multivariate normal variables with a 335 

given correlation matrix to multivariate uniform variables, which in turn are mapped to the desired 336 

distributions via the corresponding inverse cumulative functions. The key challenge is to identify 337 

the equivalent correlations to be applied within the generation of random variables in the normal 338 

domain, in order to attain the desired correlation in the real domain. In their classical work, Liu 339 

and Der Kiureghian [1986] showed that the Nataf’s Distribution Model (NDM) is suitable for 340 

describing a wide range of correlation values. Later, Cario and Nelson [1997], developed a 341 

generalized procedure based on NDM and referred to as NORTA (NORmal To Anything), for the 342 

generation of correlated random vectors with arbitrary marginal distributions, including discrete 343 

and mixed ones. In fact, NDM may be considered as a specific case of copulas [Sklar, 1973], and 344 

more specifically the Gaussian one. In fact, linear stochastics are compatible with the latter copula, 345 

since both use the Pearson’s linear correlation as measure of dependence. Lebrun and Dutfoy 346 

[2009], in view of copula theory, provide an extensive and insightful discussion on the relation of 347 

NDM with the Gaussian copula, as well as provide an alternative formulation of the former in 348 

terms of Spearman’s ρs and Kendall’s τ. 349 

We remark that when Cario and Nelson [1997] have published their work, they argued that the 350 

generality of their approach came at the cost of computational efficiency (i.e., computational time), 351 



since the estimation 𝜌̃ presupposed solving numerically a double integral in the infinite domain. 352 

However, this argument is far from interest now, grace to continuous advances in computing, 353 

which have significantly contributed in waiving such barriers. 354 

4.2 Theoretical background 355 

In the general case, let that we wish to generate a correlated random vector 𝒙 = [𝑥1, … , 𝑥𝑘, … , 𝑥𝑚]T 356 

with target marginal distributions 𝐹𝑥
𝑘

 and target correlation matrix:  357 

𝑪𝒙 = (

1 ⋯ 𝜌1,𝑚

⋮ ⋱ ⋮
𝜌𝑚,1 ⋯ 1

) 358 

Let also 𝒛 = [𝑧1, … , 𝑧𝑘, … , 𝑧𝑚]T  be a multivariate normal vector with correlation matrix 359 

(equivalent): 360 

𝑪̃𝒛 = (

1 ⋯ 𝜌̃1,𝑚

⋮ ⋱ ⋮
𝜌̃𝑚,1 ⋯ 1

) 361 

In order to obtain 𝒙 through 𝒛 the following mapping equation is employed: 362 

 𝑥𝑘 = 𝐹𝑥𝑘
−1[Φ(𝑧𝑘)] (6) 

where 𝐹𝑥𝑘
−1 is the ICDF of variable k and Φ(∙) is the standard normal CDF. A direct outcome of Eq. 363 

(6) is that for two variables 𝑥𝑘 and 𝑥𝑙 their correlation is given by: 364 

 Corr[𝑥𝑘, 𝑥𝑙] = 𝜌𝑘,𝑙  = Corr [𝐹𝑥𝑘
−1[Φ(𝑧𝑘)], 𝐹𝑥𝑙

−1[Φ(𝑧𝑙)]] (7) 

thus the target correlations 𝜌𝑘,𝑙 are associated with the unknowns 𝜌̃𝑘,𝑙.  365 

An apparent approach could be setting 𝑪̃𝒛 ≡ 𝑪𝒙 However, both theoretical and empirical evidence 366 

have indicated that this assumption will result to systematically underestimated correlations within 367 

the synthetic data. The theoretical justification of this behavior stems from the Pearson correlation 368 

coefficient itself, since it is not invariant under non-linear monotonic transformations, such as 369 

those imposed by the ICDFs [Embrechts et al., 1999 p. 8]. More specifically, the largest the 370 

departure of the actual distribution,  𝐹𝑥
𝑘

, from the normal one, the largest will be the 371 

underestimation. Therefore, and except the trivial normal case, in order to eliminate biases, we 372 

should assign a priori larger values to 𝜌̃𝑘,𝑙. 373 

Hopefully, NDM and its theoretical background can provide a theoretical solution to the above 374 

problem by means of an appropriate correlation matrix 𝑪̃𝒛 that leads to the target correlation matrix 375 

𝑪𝒙. As highlighted by Liu and Der Kiureghian [1986], in order to employ NDM it is essential to 376 

ensure 1) one to one mapping of Eq. (6), and 2) positive definite correlation matrix 𝑪̃𝒛. The former 377 

requirement is by definition valid in typical case of continuous distributions used in hydrology, 378 

while the latter is also usually satisfied, since the distances 𝜀𝑘,𝑙 ≔  |𝜌𝑘,𝑙 − 𝜌̃𝑘,𝑙| are expected to be 379 

generally small (provided, of course, that the target matrix 𝑪𝒙 is positive definite). 380 



The following procedure is applied to each specific pair of variables 𝑥𝑘 and 𝑥𝑙  (i.e., 𝑚(𝑚 −381 

1)/2 times). Given that 382 

 Corr[𝑥𝑘, 𝑥𝑙] = 𝜌𝑘,𝑙 =
E[𝑥𝑘, 𝑥𝑙] − E[𝑥𝑘]𝐸[𝑥𝑙]

√Var[𝑥𝑘]Var[𝑥𝑙]
 (8) 

where E[𝑥𝑘], E[𝑥𝑙]  and Var[𝑥𝑘], Var[𝑥𝑙]  are the mean and variance of 𝑥𝑘 and 𝑥𝑙  respectively, 383 

which are obviously known since the associated marginal distributions are already specified (and 384 

have finite moments, otherwise the Pearson correlation coefficient cannot be defined) the 385 

computational procedure is limited to identifying E[𝑥𝑘, 𝑥𝑙]. Since the corresponding variables to 386 

be mapped, 𝑧𝑘 and 𝑧𝑙 , respectively, are by definition normally distributed, with 387 

correlation Corr[𝑧𝑘, 𝑧𝑙] = 𝜌̃𝑘,𝑙, then, using (6) and the first cross-product moment of 𝑥𝑘 and 𝑥𝑙 we 388 

get: 389 

 

E[𝑥𝑘, 𝑥𝑙] = E [𝐹𝑥
𝑘

−1[Φ(𝑧𝑘)]𝐹𝑥
𝑙

−1[Φ(𝑧𝑙)]]  

= ∫ ∫ 𝐹𝑥𝑘
−1[Φ(𝑧𝑘)]𝐹𝑥𝑙

−1[Φ(𝑧𝑙)] 𝜑2(𝑧𝑘, 𝑧𝑙, 𝜌̃𝑘,𝑙)𝑑𝑧𝑘𝑑𝑧𝑙

∞

−∞

∞

−∞

 

(9) 

where 𝜑2(𝑧𝑘 , 𝑧𝑙 , 𝜌̃𝑘,𝑙) is the bivariate standard normal probability density function. Therefore, each 390 

target 𝜌𝑘,𝑙  is a function of  𝜌̃𝑘,𝑙 , which is embedded in  𝜑2(𝑧𝑘 , 𝑧𝑙 , 𝜌̃𝑘,𝑙), and the given marginal 391 

distributions 𝐹𝑥
𝑘
 and 𝐹𝑥

𝑙
, i.e.,  392 

 𝜌𝑘,𝑙 = ℱ(𝜌̃𝑘,𝑙|𝐹𝑥
𝑘

, 𝐹𝑥
𝑙
 ).  (10) 

Unfortunately, Eq. (10) cannot be analytically derived from Eq. (9), with the exception of few 393 

special cases [Li and Hammond, 1975; Cario and Nelson, 1997]. Among them the Log-Normal 394 

case [Mostafa and Mahmoud, 1964] which is of particular interest in hydrology. The 395 

aforementioned researchers, as well as Liu and Der Kiureghian [1986], provided several Lemmas 396 

that can be useful in order to approximate Eq. (10). Among them, 397 

Lemma 1: 𝜌𝑘,𝑙 is a strictly increasing function of 𝜌̃𝑘,𝑙. 398 

Lemma 2: 𝜌̃𝑘,𝑙 = 0 for  𝜌𝑘,𝑙 = 0 as well as, 𝜌̃𝑘,𝑙 ≥ (≤) 0 if  𝜌𝑘,𝑙 ≥ (≤) 0. 399 

Lemma 3: | 𝜌𝑘,𝑙| ≤ |𝜌̃𝑘,𝑙|. 400 

Note that in Lemma 3, the equality sign is valid when 𝜌𝑘,𝑙 = 0 or when both marginal distributions 401 

are normal. Furthermore, the minimum and maximum attainable value of 𝜌𝑘,𝑙 is given for 𝜌̃𝑘,𝑙 =402 

−1 and 𝜌̃𝑘,𝑙 = 1, respectively. The literature offers a variety of approaches to establish ℱ(∙), 403 

including crude search procedures [Cario and Nelson, 1996], methods based on the Gauss-Kronrod 404 

quadrature rule [Cario, 1996], root finding methods [Li and Hammond, 1975; Chen, 2001] as well 405 

as Gauss–Hermite quadrature and Monte-Carlo methods [Xiao, 2014]. Herein, we propose a 406 

simple and easy to implement method based on hybrid combination of Monte-Carlo simulation 407 

and polynomial interpolation. 408 



4.3 Hybrid procedure for solving 𝓕(∙) 409 

As already mentioned, in order to preserve the target correlations 𝜌𝑘,𝑙 in the actual domain, after 410 

mapping the generated Gaussian values with their prescribed distributions, using Eq. (6), it is 411 

essential to establish a suitable relationship between 𝜌̃𝑘,𝑙  and  𝜌𝑘,𝑙  . In this context, we have 412 

developed the following procedure (indices k and l are omitted for simplicity): 413 

Step 1: Create a q-dimensional vector 𝒓̃ = [𝑟̃1, … , 𝑟̃𝑞] of equally spaced values in the interval 414 

[rmin, rmax]. Here, lemma 2 can be accounted for in order to determine the boundaries rmin and rmax, 415 

since it provides insights regarding the sign of 𝜌̃ . For example, if the target correlation 𝜌  is 416 

positive, then we set rmin = 0 and rmax = 1. 417 

Step 2: For each element of 𝒓̃ , generate N samples from the bivariate standard normal distribution, 418 

with correlation 𝑟̃𝑖. 419 

Step 3: Map the synthetic data to the actual domain through Eq. (6), using the associated target 420 

marginal distribution,  421 

Step 4: Calculate the empirical correlations 𝑟𝑖 and store them in the vector 𝒓 = [𝑟1, … , 𝑟𝑞]. 422 

Step 5: Approximate the relationship between target (𝜌 ) and equivalent ( 𝜌̃ ) correlation by 423 

establishing a polynomial function of order p, among the values of 𝒓̃ and 𝒓 i.e.: 424 

 𝜌 = ℱ (𝜌̃|𝐹𝑥
𝑘

, 𝐹𝑥
𝑙
) ≅ 𝑟 = 𝑎𝑝𝑟̃𝑝 + 𝑎𝑝−1𝑟̃𝑝−1 + ⋯ + 𝑎1𝑟̃1 + 𝑎0 (11) 

Step 6: Evaluate the equivalent correlation 𝜌̃𝑘,𝑙 by inverting the relationship between the fitted 425 

polynomial and the target correlation 𝜌𝑘,𝑙. 426 

We highlight that, according to Weierstrass approximation theorem, the formulation of the 427 

polynomial expression (11) is theoretically feasible, since ℱ(∙) is continuous and 𝑟̃ is bounded on 428 

the interval [-1, 1]. Moreover, we remark that the constant term 𝑎0 could be omitted, as indicated 429 

by Lemma 2.  430 

The above procedure, which is hybrid combination of Monte Carlo simulation and numerical 431 

interpolation through polynomial regression, uses three input arguments, i.e., the vector dimension 432 

q, the sample size N, and the polynomial order p. The first two influence the accuracy and 433 

computational effort of the Monte Carlo procedure, while the third influences the accuracy of the 434 

interpolation approach. Preliminary analysis detected that a good balance between accuracy and 435 

computational efficiency is ensured for q around 10 ― 20, and N around 50 000 ― 100 000 trials. 436 

Regarding the polynomial order, Xiao [2014] conducted an extensive analysis, with distributions 437 

exhibiting a wide range of skewness and kurtosis coefficients, and concluded that ℱ(∙) can be 438 

accurately approximated by a polynomial of less than ninth degree (p ≤ 9). Apparently, for p = q 439 

– 1, the polynomial passes exactly through all simulated points, yet, in order to ensure parsimony, 440 

it may be preferable employing a less complicated expression. In this vein, in order to avoid over-441 

fitting, we propose adjusting the order of the polynomial with the use of cross-validation 442 

techniques or the Akaike information criterion [Akaike, 1974]. We note that in the basis of a 443 

systematic study one could identify alternative functions instead of polynomials in order to 444 

describe the relationship ℱ(∙). 445 

The key advantage of the proposed methodology, which is applicable for continuous, discrete or 446 

mixed-type distributions, is its simplicity and the fact that it doesn’t depend on specialized 447 

algorithms to solve the double integral of Eq. (9), in order to obtain a valid expression ℱ(∙). It is 448 



noteworthy that despite the iterative nature of the algorithm, its implementation in high-level 449 

programming languages, such as R or MATLAB, requires less than 1 second (assuming N = 450 

150 000 and m = 20) on a modest 3.0 GHz Intel Dual-Core i5 processor with 4 GB RAM. 451 

4.4 Numerical example 452 

Consider a bivariate example with variables 𝑥1 and 𝑥2, representing either the same process at two 453 

adjacent seasons or two simultaneous processes at the same season. We assume that the two 454 

variables follow the same target marginal distribution (𝐹𝑥1
≡ 𝐹𝑥2

), i.e., the Pearson type-III, with 455 

probability density function:  456 

 𝑓(𝑥|𝑎, 𝑏, 𝑐) =
1

|𝑏|Γ(𝑎)
(

𝑥 − 𝑐

𝑏
)

𝑎−1

exp (−
𝑥 − 𝑐

𝑏
) (12) 

where Γ(∙) is the gamma function, a, b and c are the shape, scale and location parameters 457 

respectively. For both variables, we assume the common parameter values a = 1, b = 20 and c = 458 

0.60, as well as a target correlation 𝜌1,2 = 0.70. Employing the NDM approach and the numerical 459 

method of section 4.3, with q = 20, N = 50 000 and p = 2, we approximate ℱ(∙) through the 460 

following polynomial (quadratic) function (indices are omitted for simplicity): 461 

 𝜌 = ℱ(𝜌̃|𝐹𝑥1
, 𝐹𝑥2

) ≅ 0.2049𝜌̃2 + 0.7963𝜌̃ − 0.0009 (13) 

Given the relationship (13), it is easy to solve for the equivalent correlation  𝜌̃1,2 which can be used 462 

for the generation of standard normal variables, 𝑧1 and 𝑧2, that results to the target value 𝜌1,2. In 463 

particular, for 𝜌1,2 = 0.7 and inverting (13), we get  𝜌̃1,2 = 0.739. 464 



 465 

Figure 1: Hypothetical example of mapping two correlated variables, where the target and equivalent 466 
correlations represented through Eq. (13) are shown in panel (a). Panels (b), (c) and (d) illustrate the data 467 
in the normal, uniform and actual domain, respectively. 468 

The mapping procedure of the numerical example, is shown in Figure 1 for the generation of 469 

100 000 correlated values. In panel (a) we depict the relationship between target and equivalent 470 

correlations as established via Eq. (13). In panel (b) we illustrate the simulated auxiliary Gaussian 471 

variables, 𝑧1 and 𝑧2, which are generated by assigning the equivalent correlation 𝜌̃1,2. Initially, 472 

these variables are mapped to the uniform domain through function Φ(∙) (panel c), and then they 473 

are mapped to the actual domain (panel d), via the corresponding inverse functions, 𝐹𝑥1
−1 and𝐹𝑥2

−1. 474 

Within the two mapping procedures, the equivalent correlation 𝜌̃1,2 is progressively decreased, 475 

down to the target value 𝜌1,2. 476 

We remark that due to the very large sample size, the empirical correlation between the auxiliary 477 

synthetic variables 𝑧1 and 𝑧2 coincides the theoretical one, i.e.,  𝜌̃1,2 = 0.739, while the empirical 478 

correlation between the actual variables 𝑥1 and 𝑥2 is 0.707, thus practically identical to the target 479 

value 𝜌1,2 = 0.70. Moreover, the empirically estimated parameters of the derived distributions are 480 

a = 0.947, b = 20.001 and c = 0.622, for the synthetic variable 𝑥1 and a = 0.921, b = 20.000 and c 481 

= 0.671 for 𝑥2 . The aforementioned values, which were computed through the maximum 482 

likelihood estimation method (MLE), are in agreement with the theoretical ones. 483 



4.5 Coupling SPARTA and NDM  484 

It is apparent that in order to align NDM with SPARTA, we just have to set 𝑥𝑘 ≔ 𝑥𝑠
𝑖  and 𝑥𝑙 ≔485 

𝑥𝑠−𝜏
𝑗

 throughout equations (7) to (10), and approximate the required (by the auxiliary model) 486 

equivalent correlation coefficients 𝜌̃𝑠,𝑠−𝜏
𝑖,𝑗

 of the target correlations 𝜌𝑠,𝑠−𝜏
𝑖,𝑗

. For the estimation of the 487 

equivalent correlations across all processes and seasons, we also offer the aforementioned hybrid 488 

computational procedure to approximate the relationship of Eq. (10), i.e., ℱ(∙). 489 

4.6 Previous applications of NDM in hydrology 490 

NDM-based approaches have been widely applied in industrial, financial and operations research 491 

applications, as indicated from the popularity of the original article by Nataf [1962] and the 492 

relevant publications [e.g., Liu and Der Kiureghian, 1986; Cario and Nelson, 1996, 1997; Biller 493 

and Nelson, 2003].  494 

While hydrological community does not make direct reference to NDM and the associated models, 495 

such as NORTA, ARTA, VARTA, etc., it actually shares the same rationale, even from the geneses 496 

of hydrological stochastics. Loosely speaking, the core idea of NDM comprises the initiation from 497 

the Gaussian domain, with properly adjusted correlation coefficients, and then a mapping to the 498 

desirable domain.  499 

In particular, Matalas [1967] has studied the effects of logarithmic transformations in the context 500 

of synthesizing log-normally distributed processes, concluding that the so far prevailing 501 

transformation approach failed to resemble the historical statistics. To reestablish consistency, he 502 

developed a framework based on the generation of normal processes, and provided a set of 503 

theoretical equations to estimate the statistical parameters (including adjusted correlation 504 

coefficients) in the Log-Normal domain. Later, Klemeš and Borůvka [1974] developed a 505 

generation scheme for gamma-distributed univariate first-order Markov chains, through a mapping 506 

procedure of Gaussian processes with the use of adjusted correlation coefficients. More recently, 507 

Kelly and Krzysztofowicz [1997] proposed and illustrated through several hydrology-related 508 

applications, a flexible bivariate distribution model, termed meta-Gaussian, which builds upon the 509 

bivariate standard normal distribution and the normal quantile transformation. Furthermore, Wilks 510 

[1998], in the context of his widely known weather generation model, has also employed a 511 

transformation procedure initiating from the standard Gaussian distribution, coupled with an 512 

empirical method to estimate the adjusted correlations for the simulation of multivariate daily 513 

precipitation with mixed exponential distributions. This seminal work has triggered the 514 

development of improved schemes, supporting more distributions and correlation structures. 515 

Detailed reviews are provided by Wilks and Wilby [1999] and Ailliot et al. [2015]. Additionally, 516 

running advances in stochastic hydrology are also in alignment with NDM. In particular, in a 517 

similar vein, Serinaldi and Lombardo [2017] proposed a fast procedure for autocorrelated 518 

univariate binary processes, while Lee [2017] introduced a simulation-based method for Gamma-519 

distributed precipitation. Finally, Papalexiou [2017] proposes an elegant and unified overview for 520 

synthetic data generation using autoregressive models. 521 



5 Case studies 522 

5.1 Univariate simulation with common distribution models  523 

The first case study involves the simulation of monthly flow of Nile River at Aswan dam, based 524 

on a historical dataset from March 1870 to December 1945 [Hipel and McLeod, 1994]. The flows 525 

are characterized by strong seasonality and high correlations across all subsequent months (Figure 526 

2). In order to demonstrate the performance of SPARTA against PAR, we compare the outcomes 527 

of a stochastic simulation scenario of 2 000 years length, which has been used several times in the 528 

past for providing synthetic flows [e.g., Koutsoyiannis et al., 2008]. Since PAR(1) is typically 529 

coupled with Pearson type-III distribution for white noise generation (referred to as PAR-PIII 530 

model), in order to conduct a fair and meaningful evaluation, within SPARTA we also set this 531 

distribution as target one for all months (referred to as SPARTA-PIII model). We remind that 532 

SPARTA explicitly accounts for the marginal distribution of each season, while PAR-PIII, 533 

similarly to most linear stochastic models, attempts to resemble the statistical characteristics via 534 

implicitly representing the marginal distributions into the innovation term. We note that the 535 

multivariate formulation of PAR-PIII of order 1 is given in Appendix A. 536 

It is remarked that due to the use of Pearson type-III distribution, which allows for negative 537 

location parameters, the two models can produce negative values that would not be acceptable in 538 

a real-world hydrological study. A typical way to address this inconsistency within both models is 539 

the artificial truncation of all synthetic values to zero, which would yet introduce bias to the 540 

stochastic structure of the synthetic processes. However, among the two models, SPARTA also 541 

offers a much more rigorous alternative, since the data are generated via the corresponding ICDFs. 542 

The latter property enables fitting another positively bounded distribution model (e.g., Gamma, 543 

Log-Normal, etc.) to the observed data that explicitly prohibits the generation of negative values. 544 

The two models are evaluated through visual inspection of simulated against observed values of 545 

their monthly statistical characteristics, in terms of calculated values of mean, μ, standard 546 

deviation, σ, skewness coefficient, Cs, and lag-1 month-to-month correlation, ρ1 (Figure 2), as well 547 

as in terms of their monthly marginal distributions (Figure 3). It is noted that the latter statistics 548 

were calculated after truncation of negative values. Except for the trivial case of means and 549 

standard deviations, which are perfectly reproduced by both models, for the skewness and month-550 

to-month correlations, only SPARTA-PIII ensures full consistency with the target values across 551 

all seasons. In addition, SPARTA-PIII fits perfectly the target theoretical distribution models, 552 

which is a direct outcome of employing the inverse mapping, while PAR-PIII occasionally 553 

deviates from the target distributions, and particularly their tails (e.g., in February, March, April 554 

and May). 555 

To further highlight the advantages of SPARTA over PAR-PIII, we also investigate the derived 556 

dependence forms, by focusing on the scatter plots of the 12 pairs of adjacent monthly data sets 557 

(Figure 4). Interestingly, PAR-PIII, although it preserves quite satisfactory the key statistical 558 

characteristics, including the observed coefficients of correlation, it fails to capture the full extent 559 

of the observed patterns, in contrast to SPARTA-PIII, which generates well-spread data pairs 560 

which are in compliance with the observations. In particular, in the scatter plots of pairs December 561 

– January, January – February, February – March and March – April, it is evident that PAR-PIII 562 

not only fails to capture the dependence patterns of the historical data, but also seems fails to 563 

produce synthetic pairs out of a lower boundary. Therefore, the synthetic dependencies are not in 564 

good agreement with the observed ones, although the correlation coefficients themselves are 565 

reproduced with high accuracy. 566 



 567 

Figure 2: Comparison of key statistics (μ, σ, Cs and ρ1) between historical and simulated flow data of Nile 568 
River (PAR and SPARTA). 569 



 570 

Figure 3: Comparison between simulated flow data (109 m3), through PAR-PIII and SPARTA-PIII, 571 
empirical and theoretical cumulative distribution functions (Weibull plotting position). Simulated negative 572 
values are also included to avoid the distortion of the established CDFs. 573 



 574 

Figure 4: Month-to-month scatter plots of historical and simulated flow data (109 m3), through PAR-PIII 575 
and SPARTA-PIII. Simulated negative values are also included to avoid the distortion of the established 576 
dependence patterns. 577 

5.2 Toy simulation with seasonally-varying distribution models 578 

The second case study involves the simulation of a hypothetical seasonal process,  𝑥𝑠,𝑡 , with 579 

different marginal distribution per season (for convenience, 12 seasons are considered). The target 580 

distribution models and the associated parameters across seasons are given in Table 1. In addition, 581 

we assume the target lag-1 (i.e., season-to-season) correlation coefficients equal to 𝝆 =582 

[𝜌12,1, 𝜌1,2, … , 𝜌𝑠,𝑠−1 … , 𝜌10,11, 𝜌11,12] = [0.93, 0.90, 0.76, 0.84, 0.32, 0.67, 0.80, 0.88, 0.83, 0.74, 583 

0.94, 0.93]. Using SPARTA we generated 1 000 × 12 = 12 000 synthetic values of  𝑥𝑠,𝑡  and 584 

compared their statistical characteristics against the target ones. We remark that in contrast to the 585 

previous case study, we do not compare against another linear stochastic model (e.g., PAR-PIII), 586 



given that we have specified different statistical distributions across seasons, which cannot be 587 

represented by such models. 588 

The theoretical and simulated values of the key statistical characteristics of the modelled process 589 

are illustrated in Table 2. The former were calculated through the corresponding theoretical 590 

equations of each distribution. As shown, SPARTA is very efficient, since it reproduces all key 591 

statistics, including the kurtosis coefficient, Ck. Furthermore, SPARTA preserves the parameters 592 

of the target marginal distributions (Table 1, upper part), which are estimated through the MLE 593 

method. Actually, as shown in Table 1 (lower part), there is close agreement between the target 594 

and simulated parameter values for all seasons. This is also visually confirmed by plotting the 595 

associated CDFs (Figure 5), as the disparencies between the theoretical and empirical distributions 596 

are almost indistinguishable. It is noted that the distributions employed for season 5 and 10 allowed 597 

the generation of negative values since we assigned to the former a Gaussian one (which is 598 

unbounded) and in the latter a Pearson Type-III with location parameter c = -50 which coincides 599 

with its theoretical lower bound (given that b > 0). All other distributions are defined in the positive 600 

real axis, hence they don’t allow the generation of negative values. 601 

Furthermore, the stochastic structure of the hypothetical process, by means of season-to-season 602 

correlations, ρ1, is reproduced, despite the fact that it exhibits significant variability, also 603 

comprising some very high ρ1 values. In order to shed further light on the seasonal dependence 604 

patterns, we provide scatter plots combined with histograms for four adjacent seasons, from which 605 

it becomes evident that SPARTA can reproduce a plethora of marginal distributions and 606 

simultaneously account for dependence patterns of different complexity (Figure 6). 607 

Table 1: Theoretical distributions and associated parameters of hypothetical process across seasons, as well 608 
as MLE estimation of simulated data. 609 

Season 1 2 3 4 5 6 7 8 9 10 11 12 

Distribution/ 

Parameters 

PIII Exp Gam Norm LoNo Wei Wei LoNo Exp PIII Wei Gam 

Theoretical Values 

a 1.7 0.015 10 85 5 4.5 6 6 0.003 11 3 9 

b 10 - 0.15 30 0.3 680 820 0.25 - 19 155 0.2 

c 40 - - - - - - - - -50 - - 

 Simulated Values 

a 1.72 0.015 10.01 85 5 4.47 5.99 6 0.003 9.12 2.97 9.09 

b 9.88 - 0.15 29.98 0.29 680.03 819.91 0.25 - 20.98 154.90 0.20 

c 39.94 - - - - - - - - -51.39 - - 

*Distribution abbreviations: PIII: Pearson type-III (a = shape, b = scale, c = location), Exp: Exponential 

(a = rate), Gam: Gamma (a = shape, b = rate), Norm: Normal (a = mean, b = st. dev.), LoNo: Log-Normal 

(a = log mean, b = log st. dev.), Wei: Weibull (a = shape, b = scale). 

 610 

 611 



Table 2: Simulated and theoretical values of key statistical characteristics of hypothetical process. 612 

Season/ Statistic 1 2 3 4 5 6 7 8 9 10 11 12 

μ (Theor.) 57.00 66.67 66.67 85.00 155.24 620.55 760.72 416.23 333.33 159.00 138.41 45.00 

μ (Sim.) 56.99 66.56 66.67 85.00 155.27 620.53 760.81 416.34 333.23 159.01 138.37 45.00 

σ (Theor.) 13.03 66.67 21.08 30.00 47.64 156.45 147.40 105.70 333.33 63.02 50.30 15.00 

σ (Sim.) 13.26 66.96 21.20 30.00 48.18 156.02 147.18 107.38 335.69 63.80 50.24 15.14 

Cs (Theor.) 1.53 2.00 0.63 0.00 0.97 -0.17 -0.37 0.88 2.00 0.60 0.16 0.66 

Cs (Sim.) 1.75 1.98 0.72 -0.04 1.09 -0.13 -0.39 0.94 1.89 0.75 0.27 0.82 

Ck (Theor.) 6.53 9.00 3.60 3.00 4.99 2.80 3.03 4.06 9.00 3.54 2.72 3.66 

Ck (Sim.) 7.62 8.01 3.84 2.98 5.20 2.88 3.20 4.46 7.32 3.85 3.05 4.20 

ρ1 (Theor.) 0.93 0.90 0.76 0.84 0.32 0.67 0.80 0.88 0.83 0.74 0.94 0.93 

ρ1 (Sim.) 0.94 0.90 0.76 0.82 0.31 0.66 0.80 0.87 0.85 0.77 0.95 0.93 

𝜌̃1 (Equiv.) 0.95 0.91 0.80 0.85 0.32 0.70 0.80 0.90 0.88 0.78 0.96 0.94 

*Table abbreviations: Theor: Theoretical value, Sim: Simulated value, Equiv: Equivalent value. 



 613 

Figure 5: Comparison between simulated (SPARTA) and theoretical cumulative distribution functions 614 
(Weibull plotting position) of hypothetical process. Simulated negative values (season 5 and 10) are also 615 
included to avoid the distortion of the established CDFs. 616 



 617 

Figure 6: Scatter plots with histograms for a) season 12 vs. 1 b) season 1 vs. 2, c) season 5 vs. 6, and d) 618 
season 10 vs. 11. 619 

5.3 Multivariate simulation 620 

The third case study involves the simultaneous generation of monthly runoff and rainfall data at 621 

two major reservoirs of the water supply system of Athens, i.e., Evinos and Mornos (details about 622 

the system are provided by Koutsoyiannis et al, [2003]). The historical data cover a 29-year period 623 

(Oct/1979 – Sep/2008), which is marginally adequate for estimating up to third moment statistics 624 

with acceptable accuracy. For convenience, herein we will refer to Evinos runoff and rainfall as 625 

“sites” A and B, respectively, and to Mornos runoff and rainfall as “sites” C and D, respectively 626 

(here term “site” denotes a specific hydrological process at a specific location). 627 

In this problem we employed the multivariate version of SPARTA and compared against the 628 

contemporaneous PAR(1) model with Pearson type-III white noise, again, referred as PAR-PIII 629 

model (Appendix A). Similarly to case study 1, in the context of specifying the underlying 630 

marginal distributions of SPARTA, and in order to ensure fair comparisons, we decided fitting the 631 

Pearson type-III model at all sites and for all months, and estimating its parameters via the method 632 

of moments. Under this premise, the generating scheme will be next referred to as SPARTA-PIII. 633 

Although we remark, that in an operational, “real-world study” one could take advantage of 634 

SPARTA model flexibility and select appropriate distributions models that are positively bounded, 635 

thus directly surpass the problem of negative values generation (see also the previous sections). 636 



The performance of both models was assessed in a monthly basis, by contrasting the statistical 637 

characteristics of historical data that should be theoretically preserved by the corresponding 638 

generating schemes (i.e., monthly means, standard deviations, and skewness coefficients, lag-1 639 

correlations across months, and zero-lag cross-correlations between all sites) against the simulated 640 

ones. 641 

It is well-known that while the theoretical equations of any stochastic model are built in order to 642 

explicitly reproduce a specific set of statistical characteristics, this preservation is only ensured for 643 

very long (theoretically infinite) simulation horizons [Efstratiadis et al., 2014]. If we consider 644 

relatively small horizons and repeat the simulation many times, the smaller the length of the 645 

synthetic sample, the larger is expected to be the variability of the simulated against the theoretical 646 

values of these characteristics. In this context, the stochastic model that ensures the minimum 647 

variability will be recognized as the most robust, since its performance will be the less sensitive 648 

against the simulation length. In this context, we employed two experiments, the first one by 649 

employing a single simulation of 500 000 years length, and the second one by running each model 650 

500 times, to obtain independent synthetic samples of 1 000 years length. This Monte Carlo 651 

approach allowed for evaluating the uncertainty of the simulated statistical characteristics (after 652 

truncation of negative values to zero), which is depicted by means of box-plots (Figure 7 to Figure 653 

11). 654 

As shown in supplementary material (SM; Figure S1-S5), the estimated statistical characteristics 655 

from the large (i.e., 500 000 years) synthetic sample perfectly agree with the historical ones, thus 656 

confirming the solid theoretical background of SPARTA-PIII. As expected, PAR-PIII also ensures 657 

perfect fitting of the simulated to the observed statistics, expect for skewness, which are slightly 658 

underestimated. Probably, this systematic deviation is due to the simplified method employed for 659 

covariance matrix decompositions (namely, the Cholesky technique), as already mentioned in 660 

section 3.4.1.  661 

The superiority of SPARTA-PIII against PAR-PIII is further revealed when evaluating the fitting 662 

of synthetic data to the theoretical distribution that has been adopted in this simulation experiment, 663 

i.e., Pearson type III. The latter is mathematically defined through Eq. (12) comprising three 664 

parameters, i.e., shape, a, scale, b, and location, c, which have been estimated for each site and 665 

each month with the method of moments (SM, Table S1). It is clearly shown that the estimated 666 

parameter values originated by SPARTA-PIII are very close to the theoretical ones, thus the 667 

desirable distributions are accurately reproduced. On the other hand, there are several cases where 668 

the PAR-derived parameters, and consequently the derived distributions, oscillate significantly 669 

form the theoretical model. This becomes even more evident when expressing these deviations in 670 

terms of root mean square error, per site and parameter. As shown in SM, Table S2, this error is 671 

up to three times larger than the error induced by SPARTA-PIII. 672 

With respect to the second (i.e., Monte Carlo) experiment, from Figure 7 and Figure 8 it is shown 673 

that both SPARTA-PIII and PAR-PIII are able to reproduce the observed monthly means and 674 

standard deviations, respectively, since their variability is generally low across all sites and 675 

seasons. Regarding the reproduction of monthly coefficients of skewness (Figure 9), it seems that 676 

SPARTA-PIII slightly outperforms PAR-PIII in terms of statistical uncertainty, as indicated by 677 

the narrower box-plots that are provided is several cases (e.g., October, March, August and 678 

September for site A, October, November and March for site B, November, December and March 679 

for site C, and March, August and September for site D). Finally, in terms of lag-1 month-to-month 680 



and lag-0 cross-correlations, both schemes ensure robustness, as illustrated in Figure 10 and Figure 681 

11, respectively. 682 

 683 

Figure 7: Comparison of monthly mean values, μ, of historical and synthetic data. 684 

 685 

Figure 8: Comparison of monthly standard deviation values, σ, of historical and synthetic data. 686 



 687 

Figure 9: Comparison of monthly skewness coefficients, Cs, of historical and synthetic data. 688 

 689 

Figure 10: Comparison of month-to-month lag-1 correlations, ρ1, of historical and synthetic data. 690 



 691 

Figure 11: Comparison of monthly lag-0 cross-correlations, ρ0, between sites of historical and synthetic 692 
data. 693 

 694 

Figure 12: Scatter plots of 500 000 synthetic data for sites A and C, representing monthly runoff (mm) 695 
processes at Evinos and Mornos reservoirs, respectively, for (a) January and (b) February. Simulated 696 
negative values are also included to avoid the distortion of the established dependence patterns. 697 



As already highlighted, a great advantage of SPARTA over linear stochastic schemes, such as 698 

PAR-PIII, is its ability to reproduce realistic dependence patterns, in compliance to the observed 699 

ones. This is also empirically confirmed in the current case study, which aims to reproduce both 700 

temporal and spatial dependencies (i.e., dependencies between different processes). A 701 

characteristic example is given in Figure 12, illustrating the scatter plots of historical and simulated 702 

runoff values of at Evinos (site A) and Mornos (site C), for months January and February, from 703 

the long-term experiment (i.e., 500 000 years). It becomes now even more evident that the 704 

SPARTA-PIII generation scheme provides reasonably-distributed data, while the synthetic data 705 

by PAR-PIII are again bounded within a specific range, which is far from truthful and does not 706 

capture the full extent of the observed scatter (notice the incompatibility between the synthetic 707 

series of PAR-PIII and the historical data in Figure 12).  708 

6 Discussion  709 

As briefly discussed in the introduction, and demonstrated through three case studies, the need for 710 

generic simulation schemes that allow producing synthetic data from multiple distributions 711 

primarily originates from the fact that the statistical behavior of many of hydroclimatic processes 712 

is not satisfactory captured by classical stochastic models. Such models cannot reproduce 713 

significant statistical aspects of the simulated processes (e.g., maxima and minima, associated with 714 

the tails of the distribution), although the “essential”, low-order statistical characteristics of the 715 

parent data may be well-preserved. 716 

However, to our opinion, the overall question is not just a technical issue, i.e., providing better 717 

stochastic models, but, in a more general context, revisiting the “essentials” of synthetic data. In 718 

particular, we suggest moving from the preservation of a specific set of statistical characteristics, 719 

which are exclusively inferred from the observed data, to the preservation of a priori specified 720 

theoretical distributions that are hypothesized to be consistent with the anticipated stochastic 721 

behavior of the underlying processes. 722 

We recognize that the assignment of a specific distribution model for each modelled process is not 723 

a straightforward task, since the true distribution will always be unknown. Obviously, for a given 724 

data sample one can fit a plethora of distributions, combined with different parameter estimation 725 

procedures (e.g., classical moments, L-moments, maximum likelihood), and use typical statistical 726 

tests to assess the “optimal” scheme. Even for a given set of statistical characteristics, multiple 727 

distributions may be used. However, theoretical reasons, such as the central limit theorem and the 728 

principle of maximum entropy, may induce the selection of a different distribution, even when the 729 

latter is not so favored by the data [e.g., Koutsoyiannis, 2005; Papalexiou and Koutsoyiannis, 730 

2012]. In any case, particularly when the historical samples are short or not so much reliable, the 731 

selection of the most suitable distribution may be supported by hydrological evidence. For 732 

instance, one may take advantage of the statistical behavior of the underlying processes in the 733 

broader area, as validated by large-scale regional studies [e.g., Blum et al., 2017]. 734 

A final remark involves the treatment of historical data themselves. Actually, the observed 735 

statistics are subject to biases and uncertainties induced by their estimation from relatively short 736 

records (e.g., unreasonably high skewness values, due to outliers). Several times, the use of data 737 

as the sole means for extracting the statistical characteristics of the process of interest may also 738 

result to severe inconsistencies, such as negative autocorrelations that do not have physical 739 

meaning in hydrology [Koutsoyiannis, 2000]. Particularly, in the latter case it may be wise to 740 

follow the paradigm of the aforementioned author and fit a theoretical model on the empirically 741 



derived autocorrelation coefficients. Nevertheless, it may be preferable to assign, even manually, 742 

realistic values to the “suspicious” parameters rather than leave the model employing erroneous 743 

values. Moreover, due to changing environmental and hydroclimatic conditions, the statistical 744 

information contained in historical data may not be fully representative of the “projected” future 745 

conditions. In this context, aiming to explore the effects of change, several researchers suggest 746 

perturbing the values of the statistical characteristics to be reproduced within synthetic data [e.g., 747 

Nazemi et al., 2013; Borgomeo et al., 2015], which obviously imply employing parameters 748 

different than the data-driven ones. Nevertheless, wherever it is necessary to manually assign target 749 

input values, these have to be checked against both physical consistency and hydrological 750 

evidence. In this vein, we remark that NDM-based models (e.g., ARTA, VARTA and SPARTA) 751 

are able to synthesize data from any distribution hence allowing their straightforward use in such 752 

studies. This can be easily accomplished by changing the parameters of the distribution functions 753 

(even the distribution functions themselves) or the correlation structure of the process and 754 

subsequently investigate the effects of such changes to the system under study. 755 

7 Conclusions 756 

This work presents a novel approach, termed SPARTA, for the explicit stochastic simulation of 757 

univariate and multivariate cyclostationary (i.e., periodic) processes with arbitrary marginal 758 

distributions. SPARTA uses an auxiliary Gaussian PAR process with properly identified 759 

parameters, such as after its mapping to the actual domain through the ICDFs, it results to a process 760 

with the target correlation structure and a priori specified marginal distributions. Since the 761 

temporal and spatial dependencies are typically expressed by means of Pearson correlation 762 

coefficients, we focus on the identification of equivalent correlation coefficients of the auxiliary 763 

processes to be used in the Gaussian domain, in order to attain the target correlations in the actual 764 

domain. In this context, we use the Nataf joint distribution model, originated from statistical 765 

sciences for the generation of correlated random variables with prescribed distributions. Based on 766 

the theoretical background of NDM, we have developed a simple, yet efficient Monte-Carlo based 767 

approach that allows for identifying the equivalent correlation coefficients, 𝜌̃ , with low 768 

computational effort. 769 

Despite the obvious benefit of simulating processes with any marginal distributions, the proposed 770 

approach is also flexible in implementing any distribution fitting method, offered by recent 771 

advances in statistical sciences. This flexibility also offers the capability of explicitly ensuring the 772 

generation of non-negative values within simulations, through selecting appropriate distributions 773 

that are positively bounded. This very important potential, which is not offered by most of known 774 

stochastic schemes used in hydrology, is attributed to the use of the ICDF; if the latter is positively 775 

bounded, the generated values will be by definition non-negative. 776 

The advantages of SPARTA in practice, i.e., in the context of generating monthly synthetic data, 777 

have been illustrated through three stochastic simulation studies, emphasizing different aspects of 778 

the proposed methodology. Furthermore, in two out of three studies, SPARTA has been contrasted 779 

to the well-established linear stochastic model PAR-PIII, i.e., PAR(1) with Pearson type-III white 780 

noise. The major outcomes of our analyses are:  781 

• Both models reproduced almost perfectly the essential statistical characteristics of the 782 

simulated processes up to second order (means, standard deviations, lag-1 month-to-month 783 

correlations (i.e., autocorrelations), zero-lag cross-correlations); 784 



• SPARTA was also able to preserve with high accuracy the third order statistics, expressed 785 

in terms of skewness coefficients, while in several cases PAR-PIII provided quite 786 

underestimated skewness, which varied significantly across independently generated 787 

synthetic samples; 788 

• SPARTA was able not only to preserve the theoretical statistical characteristics of the 789 

observed data but also the parameters of the prescribed marginal distributions, which is in 790 

fact the primary goal of simulation (see discussion); 791 

• SPARTA produced dependence structures in time and space that are in agreement with the 792 

observed patterns, while, in some cases, PAR-PIII provided rather irregular scatter patterns 793 

that were fragmented out of the observed ranges. 794 

To this end, it is argued, that SPARTA is a convenient way to simulate cyclostationary 795 

processes, either univariate or multivariate, yet it should not be regarded as a panacea for 796 

all kind of simulation problems, since it inherits the characteristics of the auxiliary process 797 

from the periodic autoregressive family. In this context, it cannot preserve the statistical 798 

characteristics at aggregated time scales, e.g., annual, including long-range dependence 799 

(Hurst phenomenon). For this reason, future research involves the integration of SPARTA within 800 

a multi-scale stochastic framework, allowing us to reproduce the desirable distribution and 801 

desirable correlation structures at multiple time scales, and also reproduce the peculiarities of 802 

different scales. As shown in the literature, an effective and efficient way to address this is through 803 

disaggregation techniques. For instance, the hybrid Monte Carlo procedure by Koutsoyiannis and 804 

Manetas [1996], which has been successfully implemented within advanced simulation schemes 805 

[e.g., Efstratiadis et al., 2014; Kossieris et al., 2016], can be easily aligned with SPARTA to ensure 806 

statistical consistency across scales. 807 

As a concluding remark, and following the discussion of section 6, the authors would like to 808 

highlight the fact that the blind use of stochastic models, with overconfidence on historical data, 809 

may create a distorted “reality”, thus feeding operational hydrological and water management 810 

studies with inconsistent synthetic inputs. In this vein, we recommend to turn our efforts into the 811 

selection of the suitable distribution model, as well as the careful assessment of the sample 812 

statistics, with emphasis to high order moments and correlations that are prone to uncertainties. 813 

Therefore, the flexibility of the proposed approach contributes towards the establishment of a new 814 

paradigm in hydrological stochastics. 815 
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Appendix A 991 

We briefly present the contemporaneous PAR(1) model with Pearson type-III (3-parameter 992 

Gamma) white noise (referred as PAR-PIII), for multivariate simulation of monthly time series. 993 

The model is able to preserve the essential statistics (i.e., mean, variance and skewness coefficient) 994 

as well as the lag-1 month-to-month correlations (i.e., autocorrelations) and the lag-0 cross-995 

correlations between locations. Following the notation of Koutsoyiannis [1999], let 𝒙s =996 

[𝑥𝑠
1, … , 𝑥𝑠

𝑚]
T
 be a vector which of m stochastically dependent processes at season s. The generating 997 

scheme is:  998 

 𝒙𝑠 = 𝑨𝑠𝒙𝑠−1 + 𝑩𝑠𝒘𝑠  (A.1) 

where 𝑨𝑠, 𝑩𝑠  are seasonally-varying 𝑚 × 𝑚  parameter matrices and 𝒘𝑠 = [𝑤𝑠
1, … , 𝑤𝑠

𝑚]
T

 is a 999 

vector of independent random variables generated from Pearson type-III distribution. The matrices 1000 

𝑨𝑠 are calculated as follows: 1001 

 𝑨𝑠 = diag (
Cov[𝒙𝑠

1,  𝒙𝑠−1
1 ]

Var[𝒙𝑠−1
1 ]

, … ,
Cov[𝒙𝑠

𝑚,  𝒙𝑠−1
𝑚 ]

Var[𝒙𝑠−1
𝑚 ]

) (A.2) 

while matrices 𝑩𝑠 are given by: 1002 

 𝑩𝑠𝑩𝑠
T = 𝑮𝑠 (A.3) 

where 1003 

 𝑮𝑠 = Cov[𝒙𝑠, 𝒙𝑠] −  𝑨𝑠 Cov[𝒙𝑠−1, 𝒙𝑠−1] 𝑨𝑠
T (A.4) 

where Cov[𝝃, 𝝍] denotes the covariance of vectors 𝝃  and 𝝍 , i.e., Cov [𝝃, 𝝍] = E {(𝝃 −1004 

E[𝝃]) (𝝍T − E[𝝍]T)}. At each season s, the parameter matrix 𝑩𝑠 can be estimated either through 1005 

typical decomposition techniques (e.g., Cholesky or singular value decomposition) or numerically 1006 

approximated, e.g., through optimization approaches [Koutsoyiannis, 1999; Higham, 2002]. 1007 

Regarding the white noise vector  𝒘𝑠 , its statistical structure is associated with the seasonal 1008 

statistical characteristics of the parent process, through the following equations: 1009 

 E[𝒘𝑠] = 𝑩𝑠
−1{E[𝒙𝑠] − 𝑨𝒔E[𝒙𝑠−1]} (A.5) 

 Var[𝒘𝑠] = [1, … ,1]T (A.6) 

 μ3[𝒘𝑠] = (𝑩𝑠
(3)

)−1 {μ3[𝒙𝑠] −  𝑨𝑠
(3) μ3[ 𝒙𝑠−1]} (A.7) 

where 𝑩𝑠
(𝑘)

 is a matrix whose elements are raised to power k while μ3[𝒘𝑠] and μ3[ 𝒙𝑠] are vectors 1010 

that denote the third central moments of 𝒘𝑠 and 𝒙𝑠 respectively. The white noise is produced by a 1011 

suitable random number generator, in particular the Pearson type-III distribution, which can 1012 

explicitly preserve E[𝒘𝑠], Var[𝒘𝑠] and μ3[𝒘𝑠]. 1013 


