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Many “important” persons (particularly politicians and 
economists) are very certain about the future 
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Source: https://data.oecd.org/gdp/gdp-long-term-forecast.htm 

Forecasting of Greek GDP 
up to 2060, to drive the 
running economic policy 
(including my salary) 



Some scientists (?) are very certain as well 
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“Forecasting” of future 

climate for several 

time horizons, from 

2100 to 100 000 AD 

(Koutsoyiannis, 2014) 

The fallacy of climate models and predictions: Koutsoyiannis et al., 2007; 2008; Anagnostopoulos et al., 2011 



Good news: Hydrologists are aware of uncertainty (and 
they write a lot about it) 
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 638 000 citations in Google Scholar (keywords 

uncertainty + hydrology) 

 ~ 1300 article titles in Hydrology & Earth 

System Sciences, Water Resources Research, 

Hydrological Processes, Journal of Hydrology, 

Environmental Modelling & Software, Advances in 

Water Resources, Hydrological Sciences Journal 



Widely used (sometimes uncertain) terms in hydrological 
literature associated with uncertainty 
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The hydrological community does not provide a commonly accepted interpretation 
for uncertainty. Which is your interpretation? 
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The origins of uncertainty in hydrology (and nature, in 
general): change, predictability, randomness 
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 “Panta rhei” = everything flows (Heraclitus of Ephesus, 535-475 BC; Pre-Socratic 
Greek philosopher) – motto of the IAHS Scientific Decade 2013–2022. 

 A change may be either predictable or not; uncertainty is associated with 
changing systems that are not predictable. 

 By definition, predictable changes follow deterministic laws 

 In hydrology, determinism originates from the daily and annual cycles of the 
Earth (remark: these cycles are also varying, at extremely large temporal scales). 

 Hydrological systems are mainly (but not solely) driven by meteorological 
processes that are not predictable, thus such systems are intrinsically uncertain. 

 They are also affected by unpredictable exogenous processes, e.g. anthropogenic 
interventions, natural hazards, etc., causing non-systematic changes. 

 As the responses of hydrological systems are combined effects of multiple drivers, 
determinism and randomness cannot be handled separately (processes are 
not the sum of a deterministic and a random component). 

 Uncertainty is intrinsic property of perpetually changing hydrological systems.  

 Process uncertainty substantially increases when represented by approximate 
simulators, i.e. models. 



Why physical uncertainty is amplified through models? 
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 Models are essential on order to substitute the missing information about the 
system behavior and its responses (otherwise there is any need to use models). 

 Models are built upon deduction and induction: 

 Deductive reasoning (“top-down”), works from the more general to the more 
specific. Its starts from a theory, to be finally confirmed from observations; 

 Inductive reasoning (“bottom-up”) uses observations to establish broader 
generalizations and theories. 

 Models are mainly employed for “predicting” the future – more precisely, for 
assessing the system response under hypothetical future scenarios, in order to 
support planning and decision-making. 

 Less often, models are exclusively applied for reproducing the past, although the 
reproduction of the past is essential step of any modelling procedure, in order to 
validate the model performance against observed data. 

 Models are (and they will always be) imperfect: 

 Due to assumptions and simplifications (model = working hypothesis); 

 Due to the use of finite and inaccurate data. 

 The deviation from perfectness is the model uncertainty.  

 The combined effects of process and model uncertainty may be terrifying! 



Hydrological predictions under uncertainty 
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From certainty to uncertainty 
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 All past realizations of a process are certain (because they happened!). 

 All future realizations of a process are uncertain (definition of process = 
a randomly changing quantity). 

 All observed past realizations of a process are uncertain (because 
observations are subject to uncertainties). 

 All modelled past realizations of a process are uncertain (because 
models, either calibrated or not, are subject to uncertainties). 

 All modelled future realizations of a process are uncertain (because 
forecasting is subject to combined uncertainties). 

Let agree that: 

 Modelled processes are more uncertain than observations. 

 Models with empirically-derived parameters are more uncertain than 
calibrated models, i.e. fitted on observations. 

 Forecast models are more uncertain than past simulation models. 

 Long-term forecast models are more uncertain than short-term models. 



The role of information in process representation 
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 Knowledge-based (deduction, logic) 

 Theoretical description of the process (establishment of physical laws, 
based on deterministic cause-effect relationships); 

 Approximate description based on empirically-derived laws; 

 Understanding of macroscopic physical behaviors (evidence, 
experience); 

 Data-based (induction, inference) 

 Direct measurements of the process at the field (raw data); 

 Evaluation of the process of interest based on the observed data of 
relevant processes (e.g., stage → discharge); 

 Any other type of qualitative or proxy information (soft data); 

 Hydrological models are built upon both types of information (purely 
“physically-based” and “data-driven” models do not exist!). 

 Full knowledge or full data do not exist, thus perfect models cannot exist. 

 The more the knowledge and data, the less the model uncertainty.  



Greek-Russian example on 
modelling and information 
(Olympiacos Pireus vs. CSKA 
Mockow; Euroleague Final Four 
Madrid 2015, Semifinal B) 
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 Question: Which will be the outcome of 

this 3-pt shoot attempt by Vasilis 

Spanoulis (last shoot of the game)? 

 Information hints: 

 The trajectory of the shot is governed 

by well-known physical laws, i.e. 

Newtonian mechanics; 

 Spanoulis’ average career 3-pt shoot percentage exceeds 35%; 

 Spanoulis is a top player, one of the best guards of Euroleague history; 

 Last years, Spanoulis statistics are getting worse; 

 Until this shoot, Spanoulis has only 2 out of 7 successful 3-pt attempts; 

 Spanoulis scored two subsequent 3-pt shots in last minutes; 

 Voronchevic is much taller and he will probably stop the shot; 
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Contrasting a basketball shot with river flows 

The trajectory of the shot is 
governed by well-known physical 
laws, i.e. Newtonian mechanics 

The river dynamics is governed by well-
known physical laws, i.e. Saint-Venant 
equations 

This river produces large floods, some of 
the most hazardous ever observed 

Spanoulis is a top player, one of the 
best guards of Euroleague history 

The mean annual flow of the river exceeds 
100 m3/s 

Spanoulis’ average career 3-pt 
shoot percentage exceeds 35% 

Last years, the river flows seems being 
systematically decreasing 

This year, only two out of seven months 
produced larger flow than their average 

Last two subsequent months produced the 
larger flows of this year 

There is a major reservoir upstream that 
will probably store the high flows 

Last years, Spanoulis statistics are 
getting worse 

Until this shoot, Spanoulis has only 
2 out of 7 successful 3-pt attempts 

Spanoulis scored two subsequent 
3-pt shots in last minutes 

Voronchevic is much taller and he 
will probably stop the shot 



Lessons learned from basketball and rivers 

 Both systems are governed by physical laws, fully deterministic. 

 A summary, long-term information about the systems’ behavior is 
provided by the statistical characteristics of the observed data. 

 Qualitative information (“soft” data) about the macroscopic behavior of 
the two systems may also be provided by human experience. 

 Medium-term observations may indicate a systematically changing 
pattern, i.e. a decreasing trend. 

 Short-term statistical information may indicate a significant shift from the 
observed mean. 

 Clusters of high and low values appear at multiple scales, thus indicating 
the existence of both long-term and short-term dependencies. 

 Human-induced interventions may dramatically affect the actual 
dynamics of the system. 
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 Can we model the past, and next use the model for future predictions? 

 How can these knowledge and data be accounted for in predictions?  

 How much informative (or misleading) is the statistical information? 



The ultimate medicine for uncertainty estimation: Monte 
Carlo & stochastics 
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 Theoretical relationships for uncertainty assessment are restricted to 
very few cases (e.g., confidence limits for normally-distributed variables). 

 Monte Carlo approaches = computer experiments based on random 
numbers that are generated from given statistical distributions. 

 For dependent processes: 

 Stochastic models (representing linear correlations) 

 Copulas (representing complex dependencies) 

 Ensembles (change of initial conditions) 

Uncertainties within uncertainty assessment 

 The theoretical model for random number generation is manually selected and 
assigned a priori → Which is the “true” theoretical model?  

 The parameters of theoretical distributions are extracted from sample data, using 
estimators → Which data? Which estimators? 

 Monte Carlo methods make use of several algorithmic inputs → Which inputs? 

On the selection of distributions to be reproduced within stochastic modelling: Tsoukalas et al., 2017 



Be aware of statistics! 
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 Statistical information that is forced to be reproduced in 
stochastic models is exclusively data-driven. 

 Observed hydrological samples are generally too short to 
capture with satisfactory accuracy the actual statistical 
behavior of the process. 

 Uncertainty increases as moving from low-order to high-
order statistics (mean → variance → skewness). 

 Significantly important statistical characteristics,  
associated with the representation of dependencies and 
the extremes are very uncertain. 



The curse of small samples (and rolling statistics) 
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 Acheloos river at Kremasta dam (the 
largest river in Greece and the largest 
reservoir, with 4200 hm3 capacity). 

 40 years of inflow data, comprising 
systematically dry and systematically 
wet periods. 

 Random fluctuations at the annual 
scale, “structured” randomness at 
coarser scales. 

 Precipitation at Aliartos station, 
one of the oldest in Greece. 

 30-year moving average (climate 
scale) indicates a negative trend. 

 30-year standard deviation 
(measure of uncertainty) exhibits 
significant fluctuations. 

 Which statistical characteristics 
should be applied for simulations? 
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The time window matters! 
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Source: Climatic Research Unit (www.cru.uea.ac.uk/cru/info/warming) 

Temperature “anomaly” 

Global warming: 1860-1880; 1910-1940; 1970-2010  

Global cooling: 1880-1910; 1940-1955 

Source: Koutsoyiannis (2013) 

Nile River annual 
minimum water 
depth at Roda 
Nilometer (650 to 
1450 AC; longest 
hydrological 
record so far) 



Embedding Hurst-Kolmogorov dynamics within stochastics 
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 Hurst-Kolmogorov (HK) dynamics are present in all hydroclimatic and geophysical 
processes, and they are associated with long-term persistence, scaling 
peculiarities and structured changes (e.g., trends, shifts). 

 HK implies the existence of a heavy-tail autocorrelation structure, which can be 
modelled through a generalized autocovariance function of the form: 

γj = γ0 [1 + κ β j]–1/β  

 where γ0 is the variance and κ, β are shape and scale parameters, respectively,  

 By adjusting κ and β, one can 
take a wide range of feasible 
autocovariance structures (e.g., 
for β = 0 we obtain an ARMA-
type structure). 

 The autocovariances γj can be 
easily reproduced through 
typical stationary stochastic 
models (e.g. moving average).  
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Autocorrelations for Aliartos rain 
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Sample uncertainty + HK dynamics = terrifying uncertainty 
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 Let (x1, …, xn) is a sample of n realizations of the random process X, with mean μ 
and standard deviation σ. The simpler statistical characteristic that can be 
estimated from the sample is the average, with standard estimator: 

𝑋  = 
1

𝑛
  𝑥𝑖

𝑛
𝑖=1  

 According to classical statistics, assuming that X is an iid process (independent 
identically distributed), the variance of 𝑋  is: 

Var[𝑋 ] = σ2/n 

 If X is a Markovian process with first-order autocorrelation ρ, the variance of 𝑋  is: 

 

 If X is a Hurst-Kolmogorov process with exponent H > 0.5, the variance of the 
sample average becomes: 

 

Var[𝑋 ] =
𝜎2

𝑛
 
1−𝜌2 −2𝜌(1−𝜌𝑛)/𝑛

(1−𝜌)2
 

Var[𝑋 ] =
𝜎2

𝑛2(1−𝐻)
 

 The variance of the sample mean 𝑋  depends on the sample size, the variance of the 
random process X, and the Hurst exponent. 

 Both statistics are highly uncertain; parameter H is practically  impossible to be 
derived from an observed time series (needs very long data). 

Uncertain (depend on 
sample and estimation 

procedure) 



How many data is needed to provide reliable estimations 
of the “true” statistics?  
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 The answer depends on the 
model – but the model is just 
a hypothesis (uncertainty!). 

 Theoretical relationships are 
only valid for Gaussian 
distributions and the specific 
correlation structures (white 
noise, Markovian, HK). 

 For any other case, please 
employ the ultimate medicine, 
i.e.  Monte Carlo simulation. 
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Impacts of sample uncertainty to reservoir design and 
management: the capacity-yield-reliability relationship 
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Simulated monthly statistical 
characteristics (100 synthetic 
time series of length equal to 
historical data, i.e. 28 years) 

Average Standard 
deviation 

Skewness  

Lag-1 autocorrelation 

Reservoir capacity vs. reliability, 
for D = 75% of mean runoff, from 
100 synthetic times series of 1000 
years length, reproducing the 
corresponding sets of statistics 

Impacts of inflow sample uncertainty to reservoir 
design and management: Zacharopoulou, 2017 



Deterministic models and uncertainty 
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 Deterministic approaches are preferable over stochastic models for describing: 

 Cause-effect relationships, in case of missing or inadequate response data 
(thus a direct stochastic simulation of the response process is impossible); 

 Nonlinear transformations and complex interactions among processes; 

 Storage, regulation, and timing phenomena; 

 Exogenous interventions and known (or expected) systematic changes. 

 Components of deterministic hydrological models: 

 Governing equations; 

 Initial and boundary conditions; 

 Input variables; 

 Numerical coefficients; 

 Properties derived from field measurements (e.g., geometrical); 

 Parameters (conceptual properties, with macroscopic physical interpretation); 

 Hyper-parameters (quantities that are functions of other parameters); 

 Which of the above components are varying? 

 Which of the above components are uncertain? 



 For uniform flow conditions: 

 

 where n is a friction coefficient, A is the section area, R is the hydraulic radius, and J 
 is the longitudinal slope; A and R are functions of section geometry and depth, y. 

 Traditional approach: y is varying, all other quantities are constants. 

 Working approach: y is varying, n is uncertain, all other quantities are constants. 

Model uncertainty is everywhere – even in “constants”: 
The case of Manning’s formula 
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𝑄 = 
1

𝑛
 A R2/3 J1/2 

The uncomfortable reality: 

 Uniform flow is a hypothesis. 

 The Manning’s n is not a physical property but a conceptual quantity, which also 
depends on y – thus n is actually a random variable, not a constant. 

 The area and hydraulic radius depend on section geometry, which is usually 
approximated by a prismatic shape (to facilitate calculations). 

 Geometrical properties (channel slope, bed width, bank slope, etc.) are subject to 
measurement errors and approximations (how is the channel slope defined?). 

 Exponent 2/3 is empirically derived, through laboratory experiments. 

The sole certain component, as 
derived from theoretical hydraulics 



 Deterministic approach, assuming a rectangular section 
with b = 10 m, y = 4 m, n = 0.030, J = 0.01 → Q = 227 m3/s 

 Monte Carlo approach: 

 Normally-distributed inputs, considering different 
coefficients of variation, σ/μ (measure of uncertainty); 

 Generation of 2000 independent b, y, n and J values 
and estimation of Q by the Manning's formula. 

Numerical example 
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for b ~ N(10, 0.50), 

y ~ N(4.0, 0.20),  

n ~ N(0.030, 0.005), 

J ~ N(0.010, 0.001) 

 The range of uncertainty is huge 
(Q5 = 195 m3/s, Q95 = 345 m3/s). 

 The derived distribution of Q for 
normally-distributed inputs is far 
from normal (skewness > 1.5). 

 The statistical characteristics of 
modelled Q strongly depend on 
the simulation length. 

Uncertainties of hydraulic models and impacts 
to flood mapping: Dimitriadis et al., 2016 



Disentangling the rational formula 
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 Assuming a constant rainfall intensity i, uniformly-distributed over the catchment 
area A, for duration d equal to the time of concentration tc, and a constant loss ratio 
φ = 1 – c, the peak discharge is given by: 

Q = c i A 

 In flood studies, the rainfall intensity is typically estimated by an idf relationship 
i(d, T) =  a(T)/b(d), where T is the return period and d the duration. 

 Traditional approach: For a given risk, expressed by means of T, set d = tc and 
apply the rational formula for constants c and tc, to obtain the design peak flow. 

The uncomfortable reality: 

 The runoff coefficient, c, is not a constant but a random variable, depending on 
storm profile, changing soil moisture conditions and catchment properties. 

 The time of concentration, tc, is not a constant but a random variable, depending 
on the runoff produced over the catchment and the river hydraulics. 

 Both c and tc depend on flow, thus they are (negatively) correlated variables. 

 The catchment area, A, may also be varying (partial area hypothesis) and it is also 
subject to (minor) measurement uncertainties. 

 The idf relationship is a statistical model, which is subject to sample, structural 
and parameter uncertainties. 



Mind the correlations! 
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 Statistical model of extreme rainfall: i = λ(Τk – ψ)/(1 + d/θ)η, with λ = 180, k = 0.15, 
ψ = 0.50, θ = 0.30, η = 0.60 (λ, k and ψ are scale, shape and location parameters of a 
GEV distribution model; cf. Koutsoyiannis et al., 1998). 

 Deterministic use of the rational formula to a catchment area A = 10 km2, for several 
return periods T, with c = 0.40 and tc = 1.0 h. 

 Monte Carlo approach: 

 Generation of independent sets 
of c and tc from lognormal 
distributions, with CVar = 0.25; 

 Generation of correlated c and 
tc from a bivariate lognormal 
distribution, with ρ = -0.80. 
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 Remark that the uncertainty 
associated with rainfall (idf) 
is ignored (otherwise?). 
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Models for ungauged basins are tremendously uncertain – 
but if we have data for calibration, we can beat the beast 

The uncomfortable reality: 

 More data → more complex models → more uncertainty (a very dangerous spiral) 

 More automatizations → less hydrological judgment → more uncertainty 



A small step towards reducing uncertainty: The concept of 
parsimony (to be as simple as possible but not simpler) 
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The nonlinear stochastic modelling framework 
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Conclusions 
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 In order to fight the beast of uncertainty, we have to recognize all its 
facets, instead of sweeping the dirt under the carpet. 

 Several modelling aspects that have been traditionally handled as certain 
are actually uncertain. 

 Several modelling aspects that have been traditionally handled as 
constants are actually varying, and thus uncertain. 

 Short historical samples cannot capture the overall changing behavior of 
the observed processes. 

 Ignoring parameter dependencies may result to significant 
underestimation of uncertainty. 

 In order to fight the beast: 

 Distinguish process uncertainty, resulting from the inherent 
variability of physical systems, from model uncertainty; 

 Embed Hurst-Kolmogorov dynamics within process representation; 

 Prefer simple models over complex ones; 

 Take advantage of all sources of information. 
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