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Abstract: We perform an extensive comparison between four stochastic and two machine learning (ML) forecasting algorithms 
by conducting a multiple-case study. The latter is composed by 50 single-case studies, which use time series of total 
monthly precipitation and mean monthly temperature observed in Greece. We apply a fixed methodology to each 
individual case and, subsequently, we perform a cross-case synthesis to facilitate the detection of systematic patterns. 
The stochastic algorithms include the Autoregressive order one model, an algorithm from the family of 
Autoregressive Fractionally Integrated Moving Average models, an Exponential Smoothing State Space algorithm 
and the Theta algorithm, while the ML algorithms are Neural Networks and Support Vector Machines. We also use 
the last observation as a Naïve benchmark in the comparisons. We apply the forecasting methods to the 
deseasonalized time series. We compare the one-step ahead as also the multi-step ahead forecasting properties of the 
algorithms. Regarding the one-step ahead forecasting properties, the assessment is based on the absolute error of the 
forecast of the last observation. For the comparison of the multi-step ahead forecasting properties we use five metrics 
applied to the test set (last twelve observations), i.e. the root mean square error, the Nash-Sutcliffe efficiency, the ratio 
of standard deviations, the index of agreement and the coefficient of correlation. Concerning the ML algorithms, we 
also perform a sensitivity analysis for time lag selection. Additionally, we compare more sophisticated ML methods 
as regards to the hyperparameter optimization to simple ones. 
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1. INTRODUCTION  

Machine learning (ML) algorithms are widely used for the forecasting of geophysical processes 
as an alternative to stochastic algorithms. Popular ML algorithms are the rather well established 
Neural Networks (NN) and the new-entrant in most scientific fields Support Vector Machines 
(SVM). The latter was presented in its current form by Cortes and Vapnik (1995; see also Vapnik, 
1995, 1999). The large number of the relevant applications is imprinted in Maier and Dandy (2000) 
and Raghavendra and Deka (2014). 

As a result, the research in geophysical sciences often focuses on comparing stochastic to ML 
forecasting algorithms. The comparisons performed are usually based on single-case studies (e.g. 
Koutsoyiannis et al., 2008; Valipour et al., 2013), which offer the benefit of studying the 
phenomena in detail as also in their context and thus can provide interesting insights. On the other 
hand, single-case studies do not allow generalizations to any extent (Achen and Snidal, 1989). 
Generalizations could be derived by examining a sufficient number of different cases, as 
implemented in Papacharalampous et al. (2017). Within the latter study large-scale computational 
experiments based on simulations are conducted to compare several stochastic and ML methods 
regarding their multi-step ahead forecasting properties. A statistical analysis is performed and the 
results are presented accordingly. 

Here we conduct a multiple-case study composed by 50 individual cases, each of them based on 
geophysical time series data from Greece. We apply a fixed methodology to each individual case 
for the comparison between several stochastic and ML methods regarding their one-step ahead and 
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multi-step ahead forecasting properties. Concerning the ML methods, we also perform a sensitivity 
analysis for time lag selection. Additionally, we compare more sophisticated ML methods as 
regards to the hyperparameter optimization to simple ones. Finally, we perform a cross-case 
synthesis to facilitate the detection of systematic patterns. We believe that the multiple-case study 
method can be useful for the comparative assessment of forecasting methods, as it can provide a 
form of generalization named “contingent empirical generalization”, while retaining the immediacy 
of the single-case study method (Achen and Snidal, 1989).  

2. DATA AND METHODS 

2.1 Time series 

We use 50 time series of total monthly precipitation and mean monthly temperature observed in 
Greece. We select only those with few missing values (blocks with length equal or less than one). 
Subsequently, we use the Kalman filter algorithm from the zoo R package (Zeileis and 
Grothendieck, 2005) for filling in the missing values. We use the deseasonalized time series for the 
application of the forecasting methods for the improvement of the forecasting quality, as suggested 
in Taieb et al. (2012). The deseasonalization is performed using a multiplicative model of time 
series decomposition. 

The basic information about the time series is provided in Table 1. To describe the long-term 
persistence of the deseasonalized time series, we estimate the Hurst parameter H for each of them 
using the maximum likelihood method (Tyralis and Koutsoyiannis, 2011) implemented with the 
HKprocess R package (Tyralis, 2016). 

2.2 Forecasting methods 

We use four stochastic and two ML forecasting algorithms. The stochastic algorithms include the 
Autoregressive order one model (AR(1)), an algorithm from the family of Autoregressive 
Fractionally Integrated Moving Average models (auto_ARFIMA), an Exponential Smoothing State 
Space algorithm (BATS) and the Theta algorithm. The ML algorithms are Neural Networks (NN) 
and Support Vector Machines (SVM). We also use the last observation as a Naïve benchmark in the 
comparisons. We apply the stochastic algorithms using the forecast R package (Hyndman and 
Khandakar, 2008; Hyndman et al., 2016) and the ML using the rminer R package (Cortez, 2010, 
2015). The Naïve, AR(1), auto_ARFIMA and BATS algorithms apply Box-Cox transformation to 
the input data before fitting a model to them. 

While the stochastic forecasting methods are simply defined by the stochastic algorithm, the ML 
methods are defined by the set {ML algorithm, hyperparameter selection procedure, time lags}. We 
compare two procedures for hyperparameter selection, i.e. predefined hyperparameters or defined 
after optimization, and 21 regression matrices, each using the first n time lags, n = 1, 2, …, 21. The 
hyperparameter optimization is performed with the hold-out method. 

Hereafter, we consider that the ML models are used with predefined hyperparameters and that 
the regression matrix is built only by the first time lag, unless mentioned differently. We use two 
ML forecasting methods (one for each algorithm) in the comparisons conducted between stochastic 
and machine learning. We also use 42 forecasting methods (21 for each algorithm) to perform a 
sensitivity analysis for time lag selection and four ML forecasting methods (two for each algorithm) 
for the investigation of the effect of the hyperparameter optimization. 

2.3 Metrics 

Regarding the one-step ahead forecasting properties, the assessment is based on the absolute 
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error (AE) of the forecast of the last observation. For the comparison of the multi-step ahead 
forecasting properties we use the root mean square error (RMSE), the Nash-Sutcliffe efficiency 
(NSE), the ratio of standard deviations (rSD), the index of agreement (d) and the coefficient of 
correlation (Pr) applied to the test set. These metrics quantify the forecasting methods’ performance 
according to several criteria related to the accuracy, the capture of the variance and the correlation 
between the forecasted and their respective observed values. For the definitions of the metrics NSE, 
d and Pr the reader is referred to Krause et al. (2005), while for the definition of the rSD to 
Zambrano-Bigiarini (2014). 

 
Table 1. Time series examined. The Hurst parameter H is estimated for the deseasonalized time series. 

s/n Process Code Location Station id Reference Start End Length 
(months) 

H 

1 Precipitation prec_1 Agrinion 16672000 Peterson 
and Vose 

(1997) 

Jan 1956 Dec 1987 384 0.48 
2 prec_2 Alexandroupoli 16627000 Jan 1951 Dec 1990 480 0.59 
3 prec_3 Aliartos 16674000 Jan 1907 Dec 1990 1008 0.53 
4 prec_4 Anogeia 16754001 Jan 1919 Dec 1939 252 0.52 
5 prec_5 Anogeia 16754001 Jan 1950 Dec 1979 360 0.53 
6 prec_6 Araxos 16687000 Jan 1949 Dec 2000 624 0.51 
7 prec_7 Athens 16714000 Jan 1860 Dec 1881 264 0.48 
8 prec_8 Athens 16714000 Jan 1887 Dec 2005 1428 0.53 
9 prec_9 Athens 16716000 Jan 1929 Dec 1945 204 0.52 

10 prec_10 Fragma 16715001 Jan 1926 Dec 1990 780 0.54 
11 prec_11 Heraklion 16754000 Jan 1946 Dec 1990 540 0.50 
12 prec_12 Igoumenitsa 16641001 Jan 1951 Dec 1990 480 0.49 
13 prec_13 Ioannina 16642000 Jan 1951 Dec 1990 480 0.58 
14 prec_14 Kalamata 16726000 Jan 1956 Dec 1970 180 0.51 
15 prec_15 Kalo Chorio 16756001 Jan 1950 Dec 1984 420 0.50 
16 prec_16 Kastelli 16760001 Jan 1949 Dec 1976 336 0.55 
17 prec_17 Kerkyra 16641000 Jan 1952 Dec 1996 540 0.51 
18 prec_18 Kythira 16743000 Jan 1951 Dec 1973 276 0.48 
19 prec_19 Kos 16742000 Jan 1958 Dec 1990 396 0.49 
20 prec_20 Kozani 16632000 Jan 1955 Dec 1987 396 0.57 
21 prec_21 Larissa 16648000 Jan 1951 Dec 1997 564 0.55 
22 prec_22 Lemnos 16650001 Jan 1951 Dec 2000 600 0.52 
23 prec_23 Methoni 16734000 Jan 1951 Dec 1991 492 0.49 
24 prec_24 Milos 16738000 Jan 1951 Dec 1990 480 0.57 
25 prec_25 Mytilene 16667000 Jan 1952 Dec 1990 468 0.55 
26 prec_26 Naxos 16732000 Jan 1955 Dec 1971 204 0.46 
27 prec_27 Patra 16689000 Jan 1901 Dec 1984 1008 0.52 
28 prec_28 Sitia 16757000 Jan 1960 Dec 1983 288 0.56 
29 prec_29 Skyros 16684000 Jan 1955 Dec 1987 396 0.50 
30 prec_30 Thessaloniki 16622000 Jan 1931 Dec 1997 804 0.58 
31 prec_31 Thessaloniki 16622002 Jan 1961 Dec 1970 120 0.56 
32 prec_32 Trikala 16645001 Jan 1951 Dec 1990 480 0.56 
33 prec_33 Tripoli 16710000 Jan 1951 Dec 1985 420 0.53 
34 Temperature temp_1 Araxos 16687001 Lawrimore 

et al. (2011) 
Jan 1951 Dec 1980 360 0.66 

35 temp_2 Athens 16714000 Jan 1858 Dec 1975 1416 0.67 
36 temp_3 Athens 16714000 Jan 1989 Dec 2001 156 0.68 
37 temp_4 Athens 16716000 Jan 1951 Dec 2012 744 0.65 
38 temp_5 Heraklion 16754000 Jan 1950 Dec 2015 792 0.69 
39 temp_6 Kalamata 16726000 Jan 1956 Dec 2015 720 0.74 
40 temp_7 Kerkyra 16641000 Jan 1951 Dec 2016 792 0.67 
41 temp_8 Larissa 16648000 Jan 1899 Dec 2016 1416 0.64 
42 temp_9 Lemnos 16650000 Jan 1951 Dec 1998 576 0.75 
43 temp_10 Methoni 16734000 Jan 1951 Dec 1972 264 0.59 
44 temp_11 Methoni 16734000 Jan 1975 Dec 2000 312 0.61 
45 temp_12 Patra 16689000 Jan 1951 Dec 1989 468 0.69 
46 temp_13 Samos 16723000 Jan 1955 Dec 1969 180 0.64 
47 temp_14 Samos 16723000 Jan 1974 Dec 2003 360 0.64 
48 temp_15 Souda 16746000 Jan 1961 Dec 2015 660 0.71 
49 temp_16 Thessaloniki 16622000 Jan 1892 Dec 2016 1500 0.67 
50 temp_17 Thessaloniki 16622001 Jan 1961 Dec 1970 120 0.48 
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2.4 Methodology outline 

We conduct 50 single-case studies by applying a fixed methodology to each time series (see 
Section 2.1), as explained subsequently. First, we split the time series into a fitting and a test set. 
The latter is the last observation for the one-step ahead forecasting experiments and the last 12 
observations for the multi-step ahead forecasting experiments. Second, we fit the models to the 
deseasonalized fitting set, within the context determined by each forecasting method (see Section 
2.2), and make predictions corresponding to the test set. Third, we add the seasonality to the 
predicted values and compare them to their corresponding observed using the metrics (see Section 
2.3). Finally, we conduct the cross-case synthesis presented in Section 3 to demonstrate similarities 
and differences between the single-case studies conducted. 

3. RESULTS AND DISCUSSION 

We visualize the results within and across the individual cases using heatmaps. For the 
quantitative form of the latter graphs, as well as for Figures S1 and S2, the reader is referred to the 
Supplementary material, which is available at: https://doi.org/10.17632/p8sw8pzkcd.3. 

As regards the heatmaps of the present study, they are formed under the following conditions: a) 
the darker the colour the better the forecasts and b) the scaling is performed in the row direction. 
White color rows indicate that no scaling is taking place. The latter happens when the forecasting 
methods under comparison perform equally well regarding the criterion tested. 

In Figures S1 and 1 we present the heatmaps formed for the comparison between the stochastic 
and two of the ML forecasting methods on precipitation and temperature time series data 
respectively. As we observe, the results of the single-case studies vary significantly. We also 
observe that in every individual case examined the following applies. There is no best or worst 
forecasting method regarding all the criteria set simultaneously. In other words, none of the 
forecasting methods is uniformly better or worse than the rest. The former observations apply 
equally to the stochastic and the ML forecasting methods, while it is noteworthy that the Naïve 
benchmark is as competent as the forecasting methods regarding all the criteria set.  

The observations outlined above are particularly important, because they reveal that the 
forecasting quality is subject to limitations. Each forecasting method has some specific theoretical 
properties and, due to the latter, it performs better or worse than other forecasting methods 
regarding specific criteria and in specific cases. Thus, the conduct of a single-case study using 
fewer criteria would have led to a very different overall picture. We note that the metrics RMSE and 
NSE give almost the same information about the forecast quality regarding the multi-step ahead 
forecasting experiments, a fact that does not apply to any other pair of metrics.  

It is also interesting that the forecasting methods AR(1) and auto_ARFIMA are the least proper 
to use on precipitation data, while they are competent on the temperature time series data. This is 
actually a systematic pattern, which can be explained, when tracing back to the single-case studies 
using precipitation time series data. In more detail, those two forecasting methods predict zero 
precipitation in contrast to the rest, as a result to the zero precipitation observations in the summer 
months. 

Finally, by studying the numerical results we note that the forecasts for temperature are 
remarkably better than the forecasts for precipitation. This may be explained by the fact that the 
variability in temperature is more regular than that in precipitation. 

In Figures 2 and S2 we present the heatmaps formed for the sensitivity analysis on the time lags 
in time series forecasting using the NN and the SVM algorithms respectively. In both figures we 
observe significant variations in the results across the individual cases, in an extent that it is 
impossible to decide on a best or worst ML forecasting method among the single-case studies. 
Regarding the SVM algorithm (Figure S2), we observe no systematic patterns and the variations 
seem to be rather random, while for the case of the NN algorithm (Figure 2) we observe that the left 
parts of the heatmaps are smoother with no white cells. 
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Figure 1. Heatmaps for the comparison between stochastic and ML methods on temperature time series. 

(1)  one-step ahead forecasting - AE    (2)  multi-step ahead forecasting - RMSE    (3)  multi-step ahead forecasting - NSE 
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Figure 2. Heatmaps for the sensitivity analysis on the time lags in time series forecasting using the NN algorithm. 

In Figure 3 we present the heatmaps formed for the investigation of the effect of the 
hyperparameter optimization. The results vary across the single-case studies in a rather random 
manner, which indicates that the hyperparameter optimization does not necessary lead to better 
forecasts for the NN and SVM algorithms. 

4. CONCLUSIONS 

The multiple-case study conducted must be encountered as a contingent empirical evidence on 
several issues that have drawn the attention in the field of time series forecasting. The findings 
suggest that the stochastic and ML methods can perform equally well, but always under limitations. 
The best forecasting method depends on the case examined and the criterion of interest, while it can 
be either stochastic or ML. However, the ML methods are computationally intensive. Regarding the 
time lag selection, the best choice seems to depend mainly on the case, while the ML algorithm 
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might has also some effect. Finally, for the algorithms used in the present study hyperparameter 
optimization does not necessarily lead to better forecasts.  

Figure 3. Heatmaps for the investigation of the effect of hyperparameter optimization on the forecast quality. The 
symbol * in the name of a forecasting method denotes that the model’s hyperparameters have been optimized. 
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