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How much does the Athens’ raw water cost?

Two companies are involved in Metropolitan Athens’ water:

a public company (Assets EYDAP) for its production and transportation up to
the water treatment plants (external water supply system);

a private company (EYDAP S.A.) for the distribution of drinking water to
consumers (~ 3.5 million) and wastewater treatment (internal system).

Why this question?
m Water cost assessment and retrieval is an obligation by WFD2000/60/EC;

m The two companies need to assess a fair cost of raw water in order to regulate
their legal agreements.

Breakdown of raw water cost:
m Existing infrastructure cost;

m Operational and maintenance cost; [ Supply cost

m Labour and administrative cost; —
m Environmental cost;
m Resource cost.

In the water supply system of Athens, key component of the operational cost is the
energy cost, due to pumping, which is not a constant quantity but depends on the
time-varying inflows and demands and the water management policy.
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Contrasting the cost of a water bottle to its content

Raw material: plastic or glass

Production fully controllable by
the industrial power (assuming
unlimited raw material)

Minimal risk of producing faulty
products

Steady production cost for a
certain amount of bottles

Unit cost decreases as the
production of bottles increases
(economies of scale)

Unit cost is fully known, at least
for a medium-term horizon

Raw material: rainfall and other
meteorological drivers

Production depends on rainfall and its
transformation to runoff, which are
subject to major uncertainties at all
temporal scales

Risk of production also depends on
complex human drivers, i.e. water uses,
constraints and the management policy

The total production cost is expected to
increase with demand, particularly
when the water is retrieved and
transferred via pumping
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Providing water to Athens: Evolution of annual
demand, population, GDP and infrastructure
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The water supply system of Athens (~4000 km?)

Evinos (2000) :
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Management challenges and complexity issues

Conflicting objectives
m Energy cost due to pumping (to be minimized)
m Long-term reliability (to be maximized)
Multiple hydrosystem operation options
m Four reservoirs (total useful capacity 1360 hm3, mean annual inflow 820 hm?3)
m ~100 boreholes, used as emergency resources (estimated safe yield 50 hm?)
m Multiple water conveyance paths, some of them through pumping
Multiple water uses
m Drinking water to Athens (today ~400 hm?)
m Local water uses across the water conveyance network (~70 hm?3)
m Environmental flows through Evinos dam (30 hm?)
Multiple sources of uncertainty
m Non-predictable inflows (hydroclimatic uncertainty)
m Uncertain demands, subject to uncertain socio-economic conditions
m Uncertain losses due to reservoir (Mornos, Ylike) and conveyance leakages
|

Uncertain technical characteristics of pumps (capacity, efficiency), resulting in
approximate estimation of energy consumption
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Stochastic simulation-optimization framework for
energy cost assessment
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System parameterization

Since inflows are projected through simulation, the target releases are easily
estimated, on the basis on the actual storages and the total water demand.

The rules are mathematically expressed using two parameters per reservoir, thus
ensuring a parsimonious parameterization of the related optimization problem,
where their values depend on the statistical characteristics of inflows.
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Task 1: Schematization of the hydrosystem
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Representation of the water resource system in the graphical environment of Hydronomeas
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Task 2: Generation of hydrological inputs
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Task 3: Establishment of the long-term control
policy for reservoirs and boreholes
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Task 4: Optimal allocation of actual fluxes
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Task 5: Evaluation and optimization of the
hydrosystem operation policy
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Hydronomeas Workflow
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Scenarios & Results

Four annual demand scenarios: Current state (400 hm?3/year) & three future
projections (415, 420, 425 hm3/y)

Three sets of optimization weights (management policy): Prioritization of cost,
equal importance of cost and reliability and cost double more important than
reliability

Results confirm the great effect of management policy to annual reliability and
energy cost

As demand increases it is more expensive to provide the same reliability level, thus
unit cost of raw water increases too
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Scenarios & Results

Four annual demand scenarios: Current state (400 hm?3/year) & three future
projections (415, 420, 425 hm3/y)

Three sets of optimization weights (management policy): Prioritization of cost,

equal importance of cost and reliability and cost double more important than
reliability

Results confirm the great effect of management policy to annual reliability and
energy cost

As demand increases it is more expensive to provide the same reliability level, thus
unit cost of raw water increases too
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Conclusions

Economic evaluations and energy assessments are essential elements in the design
and management of water resource systems.

Similarly to water and energy fluxes, economic quantities across hydrosystems
should also be handled as random variables, since they are driven by uncertain
hydrometeorological processes as well as uncertain human-induced demands and
constraints.

The cost of raw water of Athens is subject to multiple complexities and
uncertainties, and its varies significantly according to the water abstraction and
water transfer policy.

In contrast to classical economics, the unit cost of Athens's water does not decrease
with the increase of production, since in that case it is essential to activate auxiliary
resources requiring pumping, in order to maintain an acceptable reliability level.

The stochastic simulation-optimization framework implemented within the
Hydronomeas software allows providing long-term management practices that
ensure the minimal energy cost, for a given demand and a given reliability level.
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