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Abstract.  A generalized framework for single-variate and multivariate simulation and 

forecasting problems in stochastic hydrology is proposed. It is appropriate for short-term or 

long-term memory processes and preserves the Hurst coefficient even in multivariate 

processes with a different Hurst coefficient in each location. Simultaneously, it explicitly 

preserves the coefficients of skewness of the processes. The proposed framework incorporates 

short memory (autoregressive – moving average) and long memory (fractional Gaussian 

noise) models, considering them as special instances of a parametrically defined generalized 

autocovariance function, more comprehensive than those used in these classes of models. The 

generalized autocovariance function is then implemented in a generalized moving average 

generating scheme that yields a new time symmetric (backward-forward) representation, 

whose advantages are studied. Fast algorithms for computation of internal parameters of the 

generating scheme are developed, appropriate for problems including even thousands of such 

parameters. The proposed generating scheme is also adapted through a generalized 

methodology to perform in forecast mode, in addition to simulation mode. Finally, a specific 

form of the model for problems where the autocorrelation function can be defined only for a 

certain finite number of lags is also studied. Several illustrations are included to clarify the 

features and the performance of the components of the proposed framework. 
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1 Introduction  

 Since its initial steps in the 1950s, stochastic hydrology, the application of theory of 

stochastic processes in analysis and modeling of hydrologic processes, has offered very 

efficient tools in tackling a variety of water resources problems, including hydrologic design, 

hydrologic systems identification and modeling, hydrologic forecasting, and water resources 

management. An overview of the history of stochastic hydrology has been compiled by 

Grygier and Stedinger [1990]. We mention as the most significant initial steps of stochastic 

hydrology the works by Barnes [1954] (generation of uncorrelated annual flows at a site from 

normal distribution); Maass et al. [1962] and Thomas and Fiering [1962] (generation of flows 

correlated in time); and Beard [1965] and Matalas [1967] (generation of concurrent flows at 

several sites). We must mention that the foundation of stochastic hydrology followed the 

significant developments in mathematics and physics in the 1940s, as well as the development 

of computers. Specifically, it followed the establishment of the Monte Carlo method which 

was invented by Stanislaw Ulam in 1946 (initially conceived as a method to estimate 

probabilities of solitaire success and soon after grown to solve neutron diffusion problems), 

developed by himself and other great mathematicians and physicists in Los Alamos (John von 

Neumann, N. Metropolis, Enrico Fermi), and first implemented on the ENIAC computer 

[Metropolis, 1989, Eckhardt, 1989]. 

 The classic book on time series analysis by Box and Jenkins [1970], was also originated 

from different, more fundamental scientific fields. However, it has subsequently become very 

important in stochastic hydrology and still remains the foundation of hydrologic stochastic 

modeling. Box and Jenkins developed a classification scheme for a large family of time series 

models. Their classification scheme distinguishes among autoregressive models of order p 

(AR(p)), moving average models of order q (MA(q)) and combinations of the two, called 

autoregressive-moving average (ARMA(p, q)).   
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 However, despite making a large family, all Box-Jenkins models are essentially of short 

memory type, that is, their autocorrelation structure decreases rapidly with the lag time. 

Therefore, such models are proven inadequate in stochastic hydrology, if the long-term 

persistence of hydrologic (and other geophysical) processes is to be modeled. This property, 

discovered by Hurst [1951], is related to the observed tendency of annual average 

streamflows to stay above or below their mean value for long periods. Other classes of models 

such as fractional Gaussian noise (FGN) models [Mandelbrot, 1965; Mandelbrot and Wallis, 

1969a, b, c], fast fractional Gaussian noise models [Mandelbrot, 1971], and broken line 

models [Ditlevsen, 1971; Mejia et al., 1972], are more appropriate to resemble long-term 

persistence (see also Bras and Rodriguez-Iturbe [1985, pp. 210-280]). However, models of 

this category have several weak points such as parameter estimation problems, narrow type of 

autocorrelation functions that they can preserve, and their inability to perform in multivariate 

problems (apart from the broken line model, see Bras and Rodriguez-Iturbe [1985, p. 236]). 

Therefore, they have not been implemented in widespread stochastic hydrology packages 

such as LAST [Lane and Frevert, 1990], SPIGOT [Grygier and Stedinger, 1990], CSUPAC1 

[Salas, 1993], and WASIM [McLeod and Hipel, 1978].  

 Another peculiarity of hydrologic processes is the skewed distribution functions observed 

in most cases. This is not so common in other scientific fields whose processes are typically 

Gaussian. Therefore, attempts have been made to adapt standard models to enable treatment 

of skewness [e.g. Matalas and Wallis, 1976; Todini, 1980; Koutsoyiannis, 1999a, b]. The 

skewness is mainly caused by the fact that hydrologic variables are non-negative and 

sometimes have an atom at zero in their probability distributions. Therefore, a successful 

modeling of skewness indirectly contributes at avoiding negative values of simulated 

variables; however, it does not eliminate the problem and some ad hoc techniques (such as 

truncation of negative values) are often used in addition to modeling skewness. 
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 The variety of available models either short memory or long memory, with different 

equations, parameter estimation techniques and implementation, creates difficulties in the 

model choice and use. Besides, the AR(p) or ARMA(p, q) models, which have been more 

widespread in stochastic hydrology, become more and more complicated, and the parameters 

to be estimated more uncertain, as p or q increases (especially in multivariate problems). 

Thus, in software packages such as those mentioned above, only AR(0) through AR(2), and 

ARMA(1, 1) models are available.  

 The reason for introducing several models and classifying them into different categories 

seems to be not structural but rather imposed by computational needs at the time when they 

were first developed. Today, the widespread use of fast personal computers allows a different 

approach to stochastic models. In this paper, we try to unify all the above-described models, 

both short memory and long memory, simultaneously modeling the process skewness 

explicitly. The unification is done using a generalized autocovariance function (section 2), 

which depends on a number of parameters, not necessarily greater than that typically used in 

traditional stochastic hydrology models. Specifically, we separate the autocovariance function 

from the mathematical structure of the generating scheme (or model) that implements this 

autocovariance function. Thus, the autocovariance function may depend on two or three 

parameters, but the generating scheme may include a thousand numerical coefficients 

(referred to as internal parameters), all dependent on (and derived from) these two or three 

parameters. The generating scheme used is of moving average type, which is the simplest and 

most convenient; in addition to the traditional backward moving average scheme, a new 

scheme with several advantages, referred to as symmetric (backward-forward) moving 

average model, is introduced (section 3). New methods of estimating the internal parameters 

of the generating scheme, given the external parameters of the autocorrelation function, are 

introduced (section 4); they are very fast even for problems including thousands of internal 

parameters. The proposed generating scheme can be directly applied for stochastic simulation. 
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In addition, the scheme can perform in forecast mode, as well, through a proposed 

methodology that makes this possible (section 5); it is a generalized methodology that can be 

used with any type of stochastic model. The framework, initially formulated as a single-

variate model, is directly extended for multivariate problems (section 6). A specific model 

form for problems where the autocorrelation function is defined only for a certain finite 

number of lags (e.g., in generation of rainfall increments within a rainfall event) is also 

studied (section 7). In its present form, the proposed framework is formulated for stationary 

processes; the possibility of incorporating seasonality in combination with seasonal models is 

also mentioned briefly (section 8, also including conclusions). Several sections of the paper 

include simple illustrations that clarify the features and the performance of the components of 

the proposed framework. Additional examples on the application of the generalized 

autocovariance function using synthetic and historical hydrologic data sets are given in 

Appendix A1 (available on microfiche). To increase readability, several mathematical 

derivations are excluded from the paper and given separately in Appendices A2-A4 (also 

available on microfiche).  

2 A generalized autocovariance structure and its spectral properties 

 Annual quantities related to hydrologic processes such as rainfall, runoff, evaporation, etc. 

or sub-monthly quantities of the same processes (e.g., fine scale rainfall depths within a 

storm) can be modeled as stationary stochastic processes in discrete time. We consider the 

stationary stochastic process Xi in discrete time denoted with i, with autocovariance  

 γj := Cov[Xi, Xi + j],   j = 0, 1, 2, … (1) 

The variables Xi are not necessarily standardized to have zero mean or unit variance, nor are 

they necessarily Gaussian; on the contrary, they can be skewed with coefficient of skewness 

ξX := E[(Xi – μX)
3
] / γ

0  

3/2
, where μX := E[Xi] is the mean and γ0 is the variance. The skewness 
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term, which is usually ignored in stochastic process theory, is essential for stochastic 

hydrology because hydrologic variables very often have skewed distributions. The parameters 

μX, γ0 and ξX determine in an acceptable approximation the marginal distribution function of 

the hydrologic variable of interest, whereas the autocovariances γj, if known, determine, again 

in an acceptable approximation, the stochastic structure of the process. However, as γj is 

estimated from samples x1, …, xn with typically small length n, only few foremost terms γj can 

be known with some acceptable confidence. Usually, these are determined by the (biased) 

estimator 

 γ̂j = 
 1 

n
 
i = 1

n – j

 (xi – x–) (xi + j – x–) (2) 

[e.g., Bloomfield, 1976, pp. 163, 182; Box and Jenkins, 1970, p.32; Salas, 1993. p. 19.10], 

where x– is the sample mean. In addition to the fact that the number of available terms of the 

sum in (2) decreases linearly with the lag j (which results in increasing estimation 

uncertainty), typically γj is a decreasing function of lag j. The combination of these two facts 

may lead us to consider that γj is zero beyond a certain lag m (i.e., for j ≥ m) which may be not 

true. In other words, the process Xi may be regarded as short memory, while in reality it could 

be long memory. However, the large lag autocovariance terms γj may affect seriously some 

properties of the process of interest and thus a choice of a short memory model would be an 

error as far as these properties are considered. This is the case, for example, if the properties 

of interest are the duration of droughts or the range of cumulative departures from mean 

values [e.g., Bras and Rodriguez-Iturbe, 1985, p. 210-211]. 

 The most typical stochastic models, belonging to the class of ARMA(p, q) models [Box 

and Jenkins, 1970] can be regarded as short memory models (although the ARMA(1, 1) 

model has been used to approximate long-term persistence for some special values of its 

parameters [O’Connell, 1974]) as they essentially imply an exponential decay of 
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autocovariance. Specifically, in an ARMA process, the autocovariance for large lags j 

converges either to 

 γj = a ρ
 j
 (3) 

if all terms γj are positive or to  

 γj = a ρ
 j
 cos(θ0 + θ1 j)  (4) 

if the terms alternate in sign, where a, ρ, θ0 and θ1 are numerical constants (with 0 ≤ ρ ≤ 1). 

The case implied by (3) is more common than (4) if the process Xi represents some hydrologic 

quantity like rainfall, runoff etc. 

 The inability of the ARMA processes to represent important properties of hydrologic 

processes, such as those already mentioned, have led Mandelbrot [1965] to introduce another 

process known as fractional Gaussian noise (FGN) process [see also Bras and Rodriguez-

Iturbe, 1985, p. 217]. This is a long memory process with autocovariance 

 γj = γ0 {(1/2) [(j – 1)
2Η

 + (j + 1)
2Η

] – j
 2Η

 },     j = 1, 2, … (5) 

where H is the so called Hurst coefficient (0.5  H  1). Apart from the first few terms, this 

function is very well approximated by 

 γj = γ0 (1 – 1/β) (1 – 1 / 2β) j
 –1/β

 (6) 

where β = 1 / [2(1 – H)]  1, which shows that autocovariance is a power function of lag. 

Notably, (5) is obtained from a continuous time process Ξ(t) with autocovariance Cov[Ξ(t), 

Ξ(t + τ)] = a τ
 –1/β

 (with constant a = γ0 (1 – 1/β) (1 – 1 / 2β)), by discretizing the process using 

time intervals of unit length and taking as Xi the average of Ξ(t) in the interval [i, i + 1].  

 The autocovariances of both ARMA and FGN processes for large lags can be viewed as 

special cases of a generalized autocovariance structure (GAS) 



8 

 γj = γ0 (1 + κ β j)
–1/β

 (7) 

where κ and β are constants. Indeed, for β = 0, (7) becomes (using de l’Hospital’s rule) 

 γj = γ0 exp (–κ j) (8) 

which is identical to (3) if κ = –ln ρ. For β > 1 and large j, (7) yields a very close 

approximation of (6) if 

 κ =1 / {β [(1 – 1/β) (1 – 1 / 2β)]
 β
} =: κ0 (9) 

For other values of κ or for values of β in the interval (0, 1), (7) offers a wide range of feasible 

autocovariance structures in between, or even outside of, the ARMA and the FGN structures, 

as demonstrated in Figure 1(a), where we have plotted several autocovariance functions using 

different values of β, but keeping the same γ0, γ1 and γ2 for all cases. The meaning of the 

different values of β will be discussed later, in the end of this section. Here it may suffice to 

explain that GAS is more comprehensive than the FGN scheme as the latter, with its single 

parameter H, cannot model explicitly even the lag-one autocovariance. And it is also more 

comprehensive than ARMA schemes as it can explicitly model long-term persistence yet 

being parameter parsimonious.  

 If the autocovariance is not everywhere positive but alternates in sign, (7) can be altered in 

agreement with (4) to become 

 γj = γ0 (1 + κ β j)
–1/β

 cos(θ0 + θ1 j) (10) 

 In the form of (7) or (10), GAS has three or five parameters, respectively, one of which is 

the process variance γ0 (thus, the corresponding autocorrelation structure has two or four 

parameters, respectively). Although parameter parsimony is most frequently desired in 

stochastic modeling [e.g., Box and Jenkins, 1970, p. 17], GAS can be directly extended to 

include a greater number of parameters. Specifically, it can be assumed that the initial m + 1 
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terms γj (j = 0, …, m) have any arbitrary values (e.g. estimated from available records) and 

then (7) (or (10)) is used for extrapolating for large j. Essentially, this introduces m additional 

model parameters at most. Thus the total number of independent parameters is m + 1 if both κ 

and β are estimated in terms of γ0, …, γm, or m + 2 if β is estimated independently; even in the 

latter case κ cannot be regarded as an independent parameter because continuity at term γm 

demands that 

 κ = 





1

β m
 












γ0

γm

β

 – 1 ‚ β > 0

1

m
  ln 





γ0

γm
‚ β = 0

 (11) 

 Parameter estimation can be based on the empirical autocovariance function. In the most 

parameter parsimonious model form (7), parameter γ0 is estimated from the sample variance 

and parameters κ and β can be estimated by fitting GAS to the empirical autocovariance 

function. There are several possibilities to fit these parameters: (a) We can chose to have a 

good overall fit to a number of autocovariances without preserving exactly any specific value. 

(b) Alternatively, we may choose to preserve exactly the lag-one autocovariance γ1 in which 

case (11) holds for m = 1. Still we have an extra degree of freedom (one more independent 

parameter), which can be estimated so as to get a good fit of GAS to autocovariances for a 

certain number of lags higher than one. (c) Finally, we may chose to preserve the lag-one and 

lag-two autocovariances exactly. Case (c) is the easiest to apply, as parameters κ and β are 

directly estimated from (7) in terms of γ0, γ1 and γ2. However cases (a) and (b) are preferable 

because they take into account the autocovariances of higher lags and, thus, the long memory 

properties of the process. A least squares method is a direct and simple basis to take into 

account more than two autocovariances in cases (a) and (b). Note that linearization of (7) by 

taking logarithms is not applicable as some empirical autocovariances may be negative. 

Therefore, the application of least squares requires nonlinear optimization, which is a rather 
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simple task as there are only two parameters in case (a) (κ and β) and one in case (b) (only β 

because of (11)). Results of applications of method (a) on synthetic and historical hydrologic 

data sets are given in Appendix A1. Apparently, parameter estimation is subject to high 

uncertainty, and this is particularly true for β, which is related to the long-term persistence of 

the process. Therefore, if the record length is small, it may be a good idea to assume a value 

of β after examining other series of nearby gauges, rather than to estimate it directly from the 

available small record. 

 Similar parameter estimation strategies can be applied for the richer in parameters forms of 

GAS that were described above, in which case several values γj are preserved. We must 

emphasize that not any arbitrary sequence γj can be a feasible autocovariance sequence. 

Specifically, γj is a feasible autocovariance sequence if it is positive definite [Papoulis, 1991, 

pp. 293-294]. This can be tested in terms of the variance-covariance matrix h of the vector of 

variables [X1, …, Xs]
T
, which has size s  s and entries  

 hij = γ|i – j| (12) 

If h is positive definite for any s then γj is a feasible autocovariance sequence. Normally, if the 

model autocovariances are estimated from data records, positive definiteness is satisfied. 

However, it is not uncommon to meet a case that does not satisfy this condition. The main 

reason is the fact that autocovariances of different lags are estimated using records of different 

lengths either due to the estimation algorithm (e.g., using (2)) or due to missing data. Another 

reason is the fact that, high lag autocovariances are very poorly estimated, as explained above. 

 An alternative way to test that γj is a feasible autocovariance sequence is provided by the 

power spectrum of the process, which should be positive everywhere. The power spectrum of 

the process is the discrete Fourier transform (DFT; also termed the inverse finite Fourier 

transform) of the autocovariance sequence γj [e.g., Papoulis, 1991, pp. 118, 333; Bloomfield, 

1976, pp. 46-49; Debnath, 1995, pp. 265-266; Spiegel, 1965, p. 175], that is  
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 sγ(ω) := 2 γ0 + 4 
j = 1

∞

 γj cos (2 π j ω) = 2 
j = –∞

∞

 γj cos (2 π j ω) (13) 

Because γj is an even function of j (i.e., γj = γ–j), the DFT in (13) is a cosine transform; as 

usually we have assumed in (13) that the frequency ω ranges in [0, 1/2], so that γj is 

determined in terms of sγ(ω) by 

 γj = 



0

1/2

 
 sγ(ω) cos (2 π j ω) dω (14) 

 If autocovariance is given by the generalized relation (7) for all j, then it is easily shown 

that the power spectrum is  

 sγ(ω) = 2 γ0 








–1 + 2 




1

β κ

1/β

 Re






Φ






e
 2 i π ω

‚ 
1

β
‚ 

1

β κ
  (15) 

where i := –1, Re[ ] denotes the real part of a complex number, and Φ( ) is the Lerch 

transcendent Phi function defined by 

 Φ(z, b, a) := 
j = 0

∞

 
z

 j

(a + j)
 b (16) 

In the specific case that β = 0, where (8) holds, (15) reduces to 

 sγ(ω) = 2 γ0 
 (1 – e

–2κ
)

1 + e
–2κ

 – 2 e
–κ 

cos (2 π ω)
  (17) 

This gives a characteristic inverse S-shaped power spectrum (Figure 1(b)) that corresponds to 

a short memory process.  

 Numerical investigation shows that for any β > 1 and κ = κ0 (given in (9)), (15) becomes 

approximately a power function of the frequency ω with exponent approaching 1/β – 1. (More 
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accurately, the exponent is by an amount δ smaller than 1/β – 1, where δ is about 0.03 for β ≥ 

2.5 and decreases almost linearly to zero as β approaches 1. The exponent becomes almost 

equal to 1/β – 1 if κ is set equal to [1 + 0.71 ((1  1/β) (1 – 1 / 2β)] κ0; however in the latter 

case the departure of the power spectrum from the power law is greater). This case indicates a 

typical long memory process, similar to a FGN process (see Figure 1(b) where the power 

function appears as a straight line on the log-log plot). Generally, the power spectrum tends to 

infinity as ω tends to zero, regardless of the value of κ, if β ≥ 1. For β < 1 the power spectrum 

cannot be a power law of the frequency but approaches that given by (17) (inverse S-shaped) 

as β decreases, taking a finite value for ω = 0.  

 If we fix γ0 and γ1 (the variance and the lag-one autocovariance) at some certain values, 

and vary β (and κ accordingly), we observe that there exists a combination of β = β
*
 ≥ 1 and κ 

= κ0(β
*
) (given by (9)) resulting in a power spectrum s

*
(ω) approximately following a power 

law. For β > β
*
 the power spectrum exceeds s

*
(ω) for low frequencies (that is, it departs from 

the straight line and becomes inverse J-shaped in the log-log plot). Τhe opposite happens if β 

< β
*
 (the spectrum tends to the inverse S-shaped). This is demonstrated in Figure 1(b) where, 

in addition, γ2 has been also fixed; the power spectra of Figure 1(b) are those resulting from 

the autocovariances of Figure 1(a). Note that the power spectra of Figure 1(b) have been 

calculated numerically from (13) rather than from (15) because the three fixed 

autocovariances γ0, γ1 and γ2 do not allow a single instance of (7) to hold for all j.  

The case β = β
*
 (straight line on log-log plot) that corresponds to the FGN process has been 

met in many hydrological and geophysical series. The case β = 0 (inverse S-shaped line on 

log-log plot) that corresponds to ARMA processes has been widely used in stochastic 

hydrology. In addition to these cases, the GAS scheme allows for all intermediate values of β 

in the range (0, β
*
), as well as for values β > β

*
 (inverse J-shaped line on log-log plot, or very 

“fat” tail of autocovariance). The case 0 < β < β
*
 implies a long-term persistence weaker than 

the typical FGN one. The case β > β
*
 characterizes processes with strong long-term 
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persistence but not very strong lag-one correlation coefficient. Both these cases can be met in 

hydrologic series (see examples in Appendix A1).  

 In Section 4.1 we will see how we can utilize the power spectrum of the process to 

determine the parameters of a generalized generating scheme, that will be introduced in the 

following section 3. 

3 Description of the generating scheme 

 It is well known [Box and Jenkins, 1970, p. 46] that, for any autocovariance sequence γj, Xi 

can be written as the weighted sum of an infinite number of iid innovations Vi (also termed 

auxiliary or noise variables), that is, in the following form, known as (backward) moving 

average (BMA) form (where we have slightly modified the original notation of Box and 

Jenkins) 

 Xi = 
j = –∞

0

 a–j Vi + j = … + a2 Vi – 2 + a1 Vi – 1 + a0 Vi (18) 

where aj are numerical coefficients that can be determined from the sequence of γj. 

Specifically, coefficients aj are related to γj through the equation [Box and Jenkins, 1970, pp. 

48, 81] 

 
j = 0

∞

 aj ai + j = γi,    i = 0, 1, 2, … (19) 

Although in theory Xi is expressed in terms of an infinite number of innovations, in practice it 

suffices to use a finite number of them for two reasons: (a) because the number of variables to 

be generated in any simulation problem is always a finite number, and (b) because terms a–j 

decrease as j → –∞ so that beyond a certain number j = –s all terms can be neglected without 

significant loss of accuracy. We must clarify that in our perspective, the number of non-
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negative terms s + 1 is larger, by orders of magnitude, than p or q typically used in ARMA(p, 

q) models. Also, the number s is totally unrelated to the number of essential parameters m + 2 

of the autocovariance function, discussed in section 2, as coefficients aj are internal 

parameters of the computational scheme. By contrast, the number s could be regarded as a 

large number of the order of magnitude 100 or 1000, depending on the decay of 

autocovariance, the desired accuracy, and the simulation length. In this respect, (18) and (19) 

can be approximated by  

 Xi = 
j = –s

0

 a–j Vi + j = as Vi – s + … + a2 Vi – 2 + a1 Vi – 1 + a0 Vi (20) 

 
j = 0

s – i

 aj ai + j = γi,    i = 0, 1, 2, … (21) 

respectively, for a sufficiently large s.  

 Extending this notion, we can write Xi as the weighted sum of both previous and next 

(theoretically infinite) innovation variables Vi, that is, in the following backward-forward 

moving average (BFMA) form 

 Xi = 
j = –∞

∞

 aj Vi + j = … + a–1 Vi – 1 + a0 Vi + a1 Vi + 1 + … (22) 

where now the coefficients aj are related to γj through the almost obvious equation  

 
j = –∞

∞

 aj ai + j = γi,    i = 0, 1, 2, … (23) 
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In section 5 we will see that the introduction of forward innovation terms (that is Vi + 1, Vi + 2, 

etc.) does not create any inconvenience even if the model is going to be used as a forecast 

model.  

 The backward-forward moving average model (22) is more flexible than the typical 

backward moving average model (18). Indeed, the number of parameters aj in model (22) is 

double that of model (18) in order to represent the same number of autocovariances γj. 

Therefore, in model (22) there exists an infinite number of sequences aj satisfying (23).  

 One of the infinite solutions of (23) is that with aj = 0 for every j < 0, in which case the 

model (22) is identical to the model (18). Another interesting special case of (22) is that with  

 aj = a–j,       j = 1, 2, … (24) 

For reasons that will be explained below, the latter case will be adopted as the preferable 

model throughout this paper and will be referred to as the symmetric moving average (SMA) 

model (although the BMA model will be considered as well). In this case, (22) can be written 

as 

 Xi = 
j = –s

s

 a|j| Vi + j = as Vi – s + … + a1 Vi – 1 + a0 Vi + a1 Vi + 1 + … + as Vi + s (25) 

where we have also restricted the number of innovation variables to a finite number, for the 

practical reasons already explained above. That is, we have assumed aj = 0 for |j| > s. The 

equations relating the coefficients aj to γj become now  

 
j = –s

s – i

 a|j| a|i + j| = γi,      i = 0, 1, 2, …   (26) 

 Given that the internal model parameters aj are s + 1 in total, the model can preserve the 

first s + 1 terms of the autocovariance γj of the process Xi, if aj are calculated so that (26) is 

satisfied for i = 0, …, s. (In the next section we will discuss how this calculation can be done). 
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As we have already discussed, the number s can be chosen so that the desired accuracy can be 

achieved. The model implies non-zero autocovariance for a number of subsequent time lags. 

Thus, for the subsequent s terms (j = s + 1, …, 2s) the autocovariance terms are given by  

 γi = 
j = i – s

s

 aj ai – j,     i = s + 1, …, 2s (27) 

(a consequence of (26) for i > s), whereas for even larger lags the autocovariance vanishes off.  

 Apart from the parameters aj that are related to the autocovariance of the process Xi two 

more parameters are needed for the generating scheme, which are related to the mean and 

skewness of the process. These are the mean μV := E[Vi] and the coefficient of skewness ξV := 

E[(Vi – μV)
3
] of the innovations Vi (note that by definition Var[Vi] = 1). They are related to the 

corresponding parameters of Xi by  

 









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
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
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 
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j
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 ξV = ξΧ γ

0  

3/2
 (28) 

for the BMA model and 
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j = 1

s

 a
j

3
 ξV = ξΧ γ

0  

3/2
 (29) 

for the SMA model, which are direct consequences of (20) and (25), respectively. 

 To provide a more practical view of the behavior of the SMA model, also in comparison 

with the typical BMA model, we demonstrate in Figure 2 two examples in graphical form. In 

the first example, we have assumed that the process Xi is Markovian with autocovariance (3) 

and γ0 = 1 and ρ = 0.9. In case of the BMA model with infinite aj terms, a theoretical solution 

of (19) is  

 aj = γ0 (1 – ρ
2
) ρ

 j
 (30) 
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as it can be easily verified by substituting (30) to (19). If we choose to preserve the first 101 

autocovariance terms γj assuming that aj = 0 for j > s = 100, we can numerically estimate from 

(21) the first 101 nonzero terms aj (in a manner that will be described in the next section). The 

numerically estimated aj are depicted in Figure 2(a); practically, they equal those given by 

(30), apart from the last three values which depart from theoretical values due to the effect of 

setting the high terms aj = 0 (the departure is clear in Figure 2(a)). The same autocovariance γj 

can be also preserved by the SMA model. The theoretical solution for infinite aj terms, and 

the approximate solution, again using 101 nonzero aj terms, are calculated from (23) and (26), 

respectively (using techniques that will be described in section 4), and are also shown in 

Figure 2(a). We observe that all aj values of the SMA model (apart from a0) are smaller than 

the corresponding aj values of the BMA model; for large j near 100, aj of the SMA model 

become one order of magnitude smaller than those of the BMA model. Apparently, this 

constitutes a strong advantage of the SMA model over the BMA one: the smaller the 

coefficients aj for large j, the smaller is the introduced error due to setting aj = 0 for j > s.  

 In a second example we have assumed that Xi is a FGN process with autocovariance (5), 

and γ0 = 1 and H = 0.6 that corresponds to β = 1.25. This autocovariance is shown graphically 

in Figure 2(b) along with the resulting sequences of aj assuming again that the first 101 terms 

are nonzero. Once more we observe that the aj sequence of the SMA model lies below that of 

the BMA model. In addition to the approximate solution for 101 nonzero aj terms, a 

theoretical solution for infinite aj terms, also shown in Figure 2(b), is possible for the SMA 

model, as it will be described in section 4.1. We will also see in section 4.1 and Appendix A2 

that a closed analytical solution is possible for the SMA model for any autocovariance γj, but 

not for the BMA model. This certainly constitutes a second advantage of the SMA model over 

the BMA one. 

 As we have already mentioned above, the SMA model implies a nonzero autocovariance 

even for lags above the assumed numerical limit s, i.e., for j = s + 1 up to j = 2s, given by 
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(27). On the contrary, the BMA model implies that all autocovariance terms above s are zero. 

In Figure 3 we have plotted the resulting autocovariance of the above-described Markovian 

example for lags j up to 200. We observe that this structure may be an accepted 

approximation of the Markovian structure for lags 101 to 200 (at least it is better than the zero 

autocovariance implied by the BMA model). As this is achieved by no cost at all (no 

additional parameters are introduced), it can be regarded as an additional advantage of the 

SMA model over the BMA model. 

 A fourth advantage of the SMA model is related to the preservation of skewness, in cases 

of skewed variables, which are very common in stochastic hydrology. It is well known 

[Todini, 1980; Koutsoyiannis, 1999a] that if the coefficient of skewness of the innovation 

variables becomes too high, it is impossible to preserve the skewness of the variables Xi. 

Therefore, the model resulting in lower coefficient of skewness of the innovation variables is 

preferable. In all cases examined, this was the SMA model. For instance, in the above-

described Markovian example, the SMA model resulted in ξV = 2.52 ξΧ whereas in the BMA 

model ξV = 3.27 ξΧ (by applying equations (29) and (28), respectively). 

4 Computation of internal parameters of the generating scheme 

 We will present two methods for computing the sequence of terms aj given the 

autocovariance γj. The first method results in closed analytical solution of (23) for the case 

that (24) holds; this is applicable to the SMA model for an infinite number of aj terms. The 

second method is a numerical solution of (21) or (26) that determines a finite number of aj 

terms and is applicable to both the BMA and the SMA models.  

4.1 Closed solution 

 Denoting sa(ω) the DFT of the aj series and utilizing the convolution equation (23) and the 

fact that in the SMA model aj is an even function of j (equation (24)), we can show (see 

Appendix A2) that sa(ω) is related to the power spectrum of the process sγ(ω) by 
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 sa(ω) = 2 sγ(ω) (31) 

This enables the direct calculation of the DFT of the aj series if the power spectrum of the 

process sγ(ω) (or equivalently, the autocovariance γj) is known. Then aj can be calculated by 

the inverse transform, i.e., 

 aj = 



0

1/2

 
 sa(ω) cos (2 π j ω) dω (32) 

Apart for few special cases, the calculations needed to evaluate aj from γj can be performed 

only numerically. However they are simple and non-iterative. In addition, all calculations can 

be performed using the fast Fourier transform (FFT, e.g., Bloomfield [1976, pp. 61-76]), thus 

enabling the building of a fast algorithm. 

 For the BMA model, the fact that aj is not an even (nor an odd) function of j results in a 

complex DFT of aj. Therefore, the corresponding relation between sa(ω) and sγ(ω) becomes 

(see Appendix A2) 

 |sa(ω)| = 2 sγ(ω) (33) 

where |sa(ω)| is the absolute value of sa(ω). Given that sa(ω) is complex, (33) does not suffice 

to calculate sa(ω) (it gives only its amplitude, not its phase). Therefore, the method cannot 

work for the BMA model. In addition, it is shown in Appendix 1 that there does not exist any 

other real valued transformation, different from DFT, that could result in an equation similar 

to (31) to enable a direct calculation of aj for the BMA model. However, the iterative method 

presented in section 4.2 can be applied to both the SMA and the BMA models. 



20 

4.2 Iterative solution 

 The equations relating the model internal parameters aj to the autocovariance terms γj, i.e., 

equations (21) and (26) for the BMA and SMA model, respectively, may be written 

simultaneously for j = 0, …, s in matrix notation as 

 p ζ = θ  (34) 

where ζ = [a0, …, as]
T
, θ = [γ0, …, γs]

T
 (with the exponent T denoting the transpose of a matrix 

or vector) and p is a matrix with size (s + 1)  (s + 1) and elements 

 pij = (1/2) [aj – i U(j – i) + ai + j – 2 U(s – i – j + 1)] (35) 

for the BMA model and  

 pij = a|j – i| + ai + j – 2 U(j – 2) U(s – i – j + 1) (36) 

for the SMA model. Here U(x) is the Heaviside’s unit step function, with U(x) = 1 for x  0 

and U(x) = 0 for x < 0. It can be easily verified that (35) and (36) (along with (34)) are 

equivalent to (21) and (26), respectively. Other expressions equivalent to (35) and (36) and 

simpler than them can be also derived, but (35) and (36) are the most convenient in 

subsequent steps.  

 Clearly, each single equation of the system (34) includes second order products of 

unknown terms aj. Therefore, (34) may have one or more solutions in case of a positive 

definite autocovariance or no solution otherwise. Generally, we need to determine one single 

solution if it exists; otherwise, we may need to find the best approximation to (34). To 

accomplish these in a common manner, we reformulate the parameter estimation problem as a 

minimization problem, demanding to  

 minimize f(ζ) = f(a0, …, as) := ||p ζ – θ||
2
 + λ (p1 ζ – γ0)

2
 (37) 
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where p1 is the first row of p, λ is a weighting factor and ||.|| denotes the Euclidean norm of a 

vector. The meaning of first term of the right hand side of (37) becomes obvious from (34). 

The second term denotes the square error in preserving the model variance γ0, multiplied by 

the weighting factor λ. Although, apparently, the second term is also contained in the first 

term, its separate appearance in the objective function enables its separate treatment. In case 

of a feasible autocovariance sequence, the minimum of f(ζ) will be zero, whatever the value of 

λ. However in case of an inconsistent autocovariance sequence the minimum of f(ζ) will be a 

positive number. In such a case the preservation of the variance γ0 is more important than that 

of autocovariance terms. Assigning a large value to λ (e.g., λ = 10
3
), we force (p1 ζ – γ0)

2
 to 

take a value close to zero. Alternatively, λ could be considered as a Lagrange multiplier (an 

extra variable of the objective function (37)) but this would complicate the solution 

procedure.  

 The task of minimization of f(ζ) is facilitated by determining its derivatives with respect to 

ζ. After algebraic manipulations it can be shown that d(p ζ) / dζ = 2 p (for both BMA and 

SMA schemes) so that  

 
d f(ζ)

dζ
 = 4 (p ζ – θ)

T
 p + 4 λ (p1 ζ – γ0) p1 (38) 

 Clearly, the problem we have to solve is an unconstrained nonlinear optimization problem 

with analytically determined derivatives. This can be easily tackled by typical methods of the 

literature such as the steepest descend and Fletcher-Reeves conjugate gradient methods [e.g., 

Mays and Tung, 1996, p. 6.12; Press et al., 1992, p. 422]. These are iterative methods, 

starting with an initial vector, which in our case can be taken as ζ
[0]

 = [ γ0, 0, 0, …, 0]
T
, and 

iteratively improving it until the solution converges.  

 The algorithm has been proven very quick and efficient in all cases examined, involving 

problems even with more than 1000 ai parameters. Examples of applying the algorithm for 

consistent autocovariances, Markovian and fractional Gaussian, have been already discussed 
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(Section 2 and Figure 2). An example of applying the algorithm to an inconsistent 

autocovariance is shown in Figure 4. The autocovariance of this example is identical to that of 

the Markovian example of Figure 2(a), apart from the values γ2 and γ3 that were both set equal 

to γ1; this creates a covariance matrix h not positive definite. As shown in Figure 4, the 

algorithm resulted in a very good approximation of the assumed autocovariance. 

 In comparison with an earlier numerical procedure by Wilson [1969] (see also Box and 

Jenkins [1970, p. 203]) for determining the parameters of the BMA process, the above 

described algorithm is more general (it also covers the SMA case), faster (it does not involve 

matrix inversion, whereas Wilson’s algorithm does) and more flexible and efficient (can 

provide approximate solutions for inconsistent autocovariances, whereas Wilson’s algorithm 

cannot).  

5 The generation scheme in forecast mode 

 Equations (20) and (25) are directly applicable for simulation (unconditional generation) of 

the process Xi. However, it is quite frequent the case where some of the variables Xi (past and 

present) are known and we wish either to generate other (future) variables, or to obtain best 

predictions of these (future) variables. As we will see, both problems can be tackled in a 

common simple manner, applicable for both the BMA and SMA models. 

  We will assume that the vector consisting of the present and k past variables Z := [X0, X–1, 

…, X–k]
T
 is known and its value is z = [x0, x–1, …, x–k]

T
. We wish either to generate any future 

variable Xj for j > 0, or to predict its value, under the condition Z = z. These can be done 

utilizing the following proposition, whose proof is given in Appendix 2: 

Proposition: Let X
 ~

i (i = –k, …, 0, 1, 2, … ) be any discrete time stochastic process with 

autocovariance γj (j = 0, 1, …) and let Z
~

 := [X
 ~

0, X
 ~

–1, …, X
 ~

–k]
T
. Let also Z := [X0, X–1, 

…, X–k]
T
 be a vector of stochastic variables independent of X

 ~
i with mean and 

autocovariance identical to that of X
 ~

i. Then, the stochastic process 
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 Xi = X
 ~

i + ηi
T
 h

–1
 (Z – Z

~
),   i = 1, 2, … (39) 

where ηi
T
 := Cov[X

 ~
i, Z

~
] and h := Cov[Z

~
, Z

~
], has identical mean and autocovariance 

with those of X
 ~

i. In addition, the conditional variance of Xi given Z = z, is 

 Var[Xi | Z = z] = γ0 – ηi
T
 h

–1
 ηi (40) 

and is identical to the least mean square prediction error of Xi from Z. 

 Note that h is a symmetric matrix with size (k + 1)  (k + 1) and elements given by (12) 

whereas ηi is a vector with size k + 1 and elements 

 (ηi)j = γ|i + j – 1| (41) 

Also, note that the proposition is quite general and it can be applied to any type of linear 

stochastic model (not only to those examined in this paper).  

 This proposition enables the following procedure for the forecast mode of the model: 

1. Determine the matrix h using (12) for the given number (k + 1) of known (present and 

past) variables, and then calculate h
–1

. 

2. Generate a sequence of variables X
 ~

i (i = –k, …, 0, 1, …), using the adopted model (20) or 

(25) without any reference to the known variables Z. Form the vectors Z and Z
~

, and 

calculate the vector h
–1

 (Z – Z
~

). 

3. For each i > 0 determine the vector ηi from (41) and calculate the final value of the 

variable Xi, conditional on Z, from (39). 

 Equation (40) shows that the conditional variance of Xi is smaller than the unconditional 

one (γ0), as expected. The fact that this conditional variance is identical to the least mean 

square prediction error of Xi from Z, ensures us that no further reduction is possible by any 

type of linear prediction model. Thus, the combination of model (20) or (25) with the 
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transformation (39) allows preservation of the stochastic structure of the process, whatever 

this structure is, and simultaneously reduces the conditional variance to its smallest possible 

value, in the sense that no other linear stochastic model could reduce it further. Notably, the 

same generating model (20) or (25) is used in both modes, simulation and forecast. 

 Theoretically, the procedure can be applied to negative values of i, as well. In this case, if 

k ≤ i ≤ 0, it is easy to show that (39) reduces to the trivial case Xi = Xi, as it should (see 

Appendix 2).  

 The above steps are appropriate if the forecast is done in terms of conditional simulation. If 

it must be done in terms of expected values rather than conditionally simulated values, then in 

step 2 of the above procedure, X
 ~

i are set equal to their (unconditional) expected values rather 

than generated. In this case, if confidence limits are needed, they can be calculated in terms of 

the conditional variance given by (40). 

6 Multivariate case 

 The model studied in the previous sections is a single variate model but can be easily 

extended to the multivariate case. In this case the model, apart from the temporal covariance 

structure, should consider and preserve the contemporaneous covariance structure of several 

variables corresponding to different locations.  

 Let Xi = [X i
 1
, X i

 2
, …, X i

 n
]

T
 be the vector of n stochastic variables each corresponding to 

some location specified by the index l = 1, , n, at a specific time period i. Let also g be the 

variance-covariance matrix of those variables with elements  

 g
lk
 := Cov[X i

 l
, X i

 k
],   l, k = 1, 2, …, n (42) 

We assume that each of the variables X i
 l
 can be expressed in terms of some auxiliary variables 

V i
 l
 (again with unit variance) by using either  
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 X i
 l
 = 

r = –s

0

 a–r
l
 Vi + r

 l
, (43) 

for the BMA model, or 

 X i
 l
 = 

r = –s

s

 a|r|
l
 Vi + r

 l
 (44) 

for the SMA model. These equations are similar to (20) and (25), respectively.  

 The auxiliary variables V i
 l
 can be assumed uncorrelated in time i (i.e., Cov[V i

 l
, Vm

 k
] = 0 if i 

≠ m) but correlated in different locations l for the same time i. If c is the variance-covariance 

matrix of variables V i
 l
, then each of its elements  

 c
lk
 := Cov[V i

 l
, V i

 k
],   l, k = 1, 2, …, n (45) 

can be expressed in terms of g
lk
 and the series of ai

l
 and ai

k
 by 

 c
lk
 = g

lk
 / 

r = 0

s

  ar
l
 ar

k
 (46) 

for the BMA model and  

 c
lk
 = g

lk
 / 

r = –s

s

  a|r|
l
 a|r|

k
 (47) 

for the SMA model. These equations are direct consequences of (43) and (44), respectively. 

The theoretically anticipated lagged cross-covariance for any lag j = 0, 1, ..., is then 

 Cov[X i
 l
, Xi + j

 k
] = g

lk
 
r = 0

s – j

  ar
l
 aj + r

k
 / 

r = 0

s

  ar
l
 ar

k
   (48) 

for the BMA model and  
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 Cov[X i
 l
, Xi + j

 k
] = g

lk
 
r = –s

s – j

  a|j + r|
l

 a|r|
k
 / 

r = –s

s

  a|r|
l
 a|r|

k
 (49) 

for the SMA model. 

 Given the variance-covariance matrix c, the vector of variables Vi = [V i
 1
, V i

 2
, …, V i

 n
]
T
 can 

be generated using the simple multivariate model  

 Vi = b Wi  (50) 

where Wi = [W i
 1
, W i

 2
, …, W i

 n
]

T
 is a vector with innovation variables with unit variance 

independent both in time i and in location l = 1, …, n, and b is a matrix with size n  n such 

that 

 b b
T
 = c (51) 

The methodology for solving (51) for b given c (also known as taking the square root of c) 

will be discussed in section 7 below. The other parameters needed to completely define model 

(50) are the vector of mean values μW and coefficients of skewness ξW of W i
 l
. These can be 

calculated in terms of the corresponding vectors μV and ξV of V i
 l
, already known from (28) or 

(29), by 

 μW = b
–1

 μV,      ξW = (b
(3)

)
–1

 ξV (52) 

which are direct consequences of (50). In (52), b
(3)

 is the matrix whose elements are the cubes 

of b and the exponent –1 denotes the inverse of a matrix.  

 To illustrate the method we have applied it to a problem with two locations with statistics 

given in Table 1. To investigate the method’s ability to preserve long-term memory properties 

such as the Hurst coefficient in multiple dimensions we have assumed the FGN structure with 

exponents β equal to 1.25 and 1.667 for locations 1 and 2, respectively, corresponding to 

Hurst coefficients 0.6 and 0.7 for locations 1 and 2, respectively. We generated a synthetic 
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record with 10 000 data values using the SMA scheme with 2 000 nonzero aj terms, which 

were evaluated by the closed solution described in section 4.1. The last (2000
th

) term of the 

series of aj was 610
–5

 a0 for location 1 and 310
4

 a0 for location 2; these small values 

indicate that the error due to neglecting the higher aj terms (beyond term 2000) is small. The 

required computer time on a modest (300 MHz) Pentium PC was about 10 seconds for the 

computation of internal parameters (when the fast Fourier transform was implemented in the 

algorithm; otherwise it increased to about 2 minutes) and other 10 seconds for the generation 

of the synthetic records. As shown in Table 1, the preservation of all statistics was perfect. In 

addition, Figure 5 shows that the autocorrelation and cross-correlation function, the power 

spectrum, and the rescaled range as a function of record length were very well preserved, as 

well. 

7 Finite length of autocorrelation sequence 

 In all above sections it was assumed that the autocovariance γj is defined for any arbitrarily 

high lag j. However, there are cases where only a finite number of autocovariance terms can 

be defined. For example in a stochastic model describing rainfall increments at time intervals 

δ within a rainfall event with certain duration d = q δ (where q is an integer), the 

autocovariance has no meaning for lags greater than q – 1 (see the application in the end of 

this section). Such cases can be tackled in a different, rather simpler, way.  

 An appropriate model for this case is 

 X = b V (53) 

where X = [X1, …, Xq]
T
 is the vector of variables to be modeled with variance-covariance 

matrix h given by (12), V = [V1, …, Vq]
T
 is a vector of innovations with unit variance, and b is 

a square matrix of coefficients with size q  q. The main difference from the models of 

previous sections is that the number of innovations V equals the number q of the modeled 
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variables X (the length of the synthetic record). In this case the distributions of innovations V 

cannot be identical. Each one has different mean and coefficient of skewness, given by  

 μV = b
–1

 μX,      ξV = (b
(3)

)
–1

 ξX (54) 

 which are direct consequences of (53). The matrix of coefficients b is given by  

 b b
T
 = h (55) 

which again is a direct consequence of (53).  

 It is reminded that (55) has an infinite number of solutions b if h is positive definite. 

Traditionally, two well-known algorithms are used which result in two different solutions b 

(see. e.g., Bras and Rodriguez-Iturbe [1985, p. 96]; Koutsoyiannis [1999a]). The first and 

simpler algorithm, known as triangular or Cholesky decomposition, results in a lower 

triangular b. The second, known as singular value decomposition, results in a full b using the 

eigenvalues and eigenvectors of h.  A third algorithm has been proposed by Koutsoyiannis 

[1999a] which is based on an optimization framework and can determine any number of 

solutions, depending on the objective set (for example, the minimization of skewness, or the 

best approximation of the covariance matrix, in case that it is not positive definite).  

 We can observe that the lower triangular b is directly associated to the BMA model 

discussed above, but with different number of innovations Vi for each Xi. Thus, if b is lower 

triangular, then apparently X1 = b11 V1, X2 = b21 V1 + b22 V2, etc. Likewise, a symmetric b is 

associated to the SMA model. An iterative method for deriving a symmetric b can be 

formulated as a special case of the methodology proposed by Koutsoyiannis [1999a]. This can 

be based on the minimization of  

 f(b) := ||b b
T
 – h||

2
 (56) 

where we have used the notation ||b b
T
 – h|| for the norm (more specifically, we adopt the 

Euclidean or standard norm here; see, e.g., Marlow [1993, p. 59]), as if b b
T
 – h were a vector 
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in q
2
 space rather than a matrix. The derivatives of f(b) with respect to b are easy to determine 

(see Appendix 3). Using the notation dα / db =[∂α / ∂bij] for the matrix of partial derivatives 

of any scalar a with respect to all bij (this is an extension of the notation used for vectors, e.g., 

Marlow [1993, p. 208]) and considering that b is symmetric we find that 

 
d f(b)

db
 = 8 e – 4 e

*
 (57) 

where e := (b b
T
 – h) b and e

*
 = diag(e11, e22, …, eqq), that is a diagonal matrix containing the 

diagonal elements of e.  

 As in the similar case of section 4.2, the problem here is an unconstrained nonlinear 

optimization problem with analytically determined derivatives, which can be easily tackled by 

typical methods such as the steepest descend and the Fletcher-Reeves conjugate gradient 

methods. As initial solution for the iterative procedure we should use a symmetric one; a good 

choice is b
[0]

 = γ0 I, where I is the identity matrix.  

 To illustrate the method and the differences among the three different solutions discussed, 

we have considered a stochastic model of a rainfall event with duration d = 20 h using a half-

hour time resolution δ, so that the number of variables is q = 20 / 0.5 = 40. We denote Xi (i = 

1, …, 40) the half-hour rainfall increments and assume that the covariance structure of Xi is as 

in the Scaling Model of Storm Hyetograph [Koutsoyiannis and Foufoula-Georgiou, 1993], 

that is 

 γ|i – j| = Cov[Xi, Xj] = [(c2 + c1
2
) φ(|j – i|, β) q

 1/β
 – c1

2
] (d

 2(κ + 1)
 / q 

2
) (58) 

where c1, c2, κ and β are parameters and  

 φ(m, β) := (1/2) [(m – 1)
2 – 1/β

 + (m + 1)
 2 – 1/β

] – m
2 – 1/β

,    m > 0 (59) 

whereas φ(0, β) = 1. This is apparently a long memory autocorrelation structure similar to the 

FGN structure. It always results in consistent (positive definite) autocovariance if it is 
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evaluated within the duration d of the event; however for certain combinations of parameters 

it can result in inconsistent autocovariance values if it is attempted to evaluate it outside of the 

event (i.e., for lags greater than q – 1).  

 For the example presented here we have assumed that the model parameters are c1 = 8.74, 

c2 = 85.68, κ = –0.45 and β = 10 (units mm and h). The statistics of Xi, determined from 

equations given by Koutsoyiannis and Foufoula-Georgiou [1993], are μX = 1.14 mm, γ0 = 

2.68 mm
2
 and ξX = 2.88 (the latter is determined assuming two parameter gamma distribution 

for Xi). The matrix b is 40  40 (1600 elements). We have calculated all three solutions of the 

matrix b described above (triangular, singular value, and symmetric) which are shown 

schematically in Figure 6. We observe a regular pattern with a strong diagonal and a strong 

first column for the triangular solution, a strong first column and an irregular pattern for other 

columns for the singular value solution, and a regular pattern with a strong diagonal for the 

symmetric solution. 

 An appropriate means to compare the three solutions is provided by the resulting 

coefficients of skewness of innovations Vi, given by (54). These are shown in Figure 7. The 

singular value solution resulted in coefficients of skewness ranging from –40 to +62, which 

apparently are computationally intractable at generation. More reasonable are the values of 

the triangular solution, with a maximum coefficient of skewness equal to about 10. The 

symmetric solution resulted in the smallest, among the three cases, maximum coefficient of 

skewness, slightly exceeding 6. Notably, this value is the smallest possible value among all 

possible (infinite) b solutions of (55) [Koutsoyiannis, 1999b]. This enhances further the 

already discussed feature of the SMA model, that symmetric solutions result in smaller 

coefficients of skewness of innovations, a feature quite expedient in stochastic hydrology. 

 The finite length scheme described in this section can be a preferable alternative even in 

cases where the autocovariance is defined for any j, but the length q of the synthetic record is 

very small. Specifically, the scheme of the present section 7 uses q
2
 internal parameters. In 
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case that the process exhibits long memory, the required number of parameters s of the 

schemes of section 3 may be greater than q
2
, and, thus, the scheme of section 7 could be 

preferable.  

8 Summary, conclusions and discussion 

 The main topics of the proposed framework can be summarized in the following points: 

1. A generalized autocovariance function is introduced which unifies in a simple 

mathematical expression both short memory (ARMA) and long memory (FGN) models, 

considering them as special instances in a parametrically defined continuum, more 

comprehensive than these classes of models. 

2. A moving average stochastic generation scheme is proposed that can implement the 

generalized autocovariance function (or any other autocovariance function). In addition to 

the traditional backward moving average scheme, a new time symmetric (backward-

forward) moving average scheme is proposed. It is computationally more convenient and 

also results in better treatment of processes with skewed distributions. 

3. Two methods of determining the internal parameters of the generating scheme are 

proposed. The first is a closed method based on the power spectrum of the process and 

applicable to the symmetric moving average scheme. The second is an iterative method 

based on convolution equations and applicable to both instances of the generating scheme. 

4. The proposed stochastic generation scheme is directly adaptable so as to perform in 

forecast mode. To this aim a generalized adaptation methodology is studied, applicable to 

any type of stochastic model.  

5. The model can perform in single-variate as well as in multivariate problems.  

6. A specific form of the model for problems where the autocorrelation function can be 

defined only for a certain finite number of lags (e.g., in generation of rainfall increments 

within a rainfall event) is also studied. An incidental contribution of this study is a method 



32 

for determining a symmetric square root of a symmetric matrix; this symmetric square 

root is the direct analogue of the symmetric moving average generating scheme and, as 

demonstrated by an example, it outperformed non-symmetrical solutions.  

 Thus, the proposed framework is a generalized tool for any kind of single-variate and 

multivariate simulation and forecasting problems in stochastic hydrology involving stationary 

stochastic processes. We emphasize its appropriateness for modeling long memory processes 

and its ability for preserving the Hurst coefficients in multivariate processes, even if each 

location has a different Hurst coefficient. Simultaneously, it enables explicit preservation of 

the skewness of the processes (at no computational or other cost, apart from generating 

skewed rather than Gaussian random numbers), a feature that is of major concern in stochastic 

hydrology. Owing to the proposed fast algorithms for computation of internal parameters, the 

required computing time is small, even for problems including thousands of such parameters. 

 In traditional stochastic models, three different issues, i.e., the type of the generation 

scheme, the number of model parameters, and the type of autocovariance, are merged in one. 

For example, if we choose the AR(1) model as a generation scheme, we simultaneously 

choose to use two second order parameters (variance and lag-one autocovariance), and 

assume that the autocovariance is an exponential function of the lag. In our approach, we have 

separated these three issues. The autocovariance function has a single mathematical 

expression of power type. The number of parameters can be decided separately, depending on 

the desired parsimony or non-parsimony of parameters and the length of the available record. 

The minimum number of parameters is three, one being the variance and another one the 

exponent of the power type autocovariance function. This exponent equals zero for the model 

with the shortest possible memory, and becomes greater than one for a long memory model. 

Coming then to the generation scheme, this has a mathematical expression independent of the 

autocorrelation function. What we have to decide here is the number of innovation terms, 



33 

which depends on the length of the synthetic record to be generated, the desired accuracy, and 

the adopted decay of autocorrelation.  

 In its present form, the proposed framework is formulated for stationary processes. 

Therefore, it can be directly used, for modeling of annual flows or short time scale problems 

(e.g., rainfall generation within a rainfall event) that are not affected by seasonality. Thus, it is 

not appropriate for problems involving periodic processes (e.g., seasonal flows). However, it 

can be directly linked to seasonal short memory models such as the PAR(1) single-variate or 

multivariate model to simulate seasonal processes, as well. Such a linkage of annual to 

seasonal models has been studied elsewhere [Koutsoyiannis and Manetas, 1996]. The 

combination of an annual long memory model and a seasonal model will preserve both the 

long term memory properties, which will be indirectly transferred from the annual time scale 

into the seasonal time scale, and the seasonal properties. In addition, any other annual-to-

seasonal disaggregation model [Salas et al., 1980; Stedinger and Vogel, 1984; Grygier and 

Stedinger, 1988, 1990; Lane and Frevert, 1990] could also be combined with the annual 

model in this respect.  
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Table 1 Theoretical and empirical statistics of the application of section 6. 

 Theoretical Empirical 

 Location 1 Location 2  Location 1 Location 2 

Mean 1.00 2.00 1.00 1.97 

Standard deviation 0.50 1.20 0.51 1.21 

Coefficient of skewness 1.00 1.20 1.03 1.14 

Hurst coefficient 0.60 0.70 0.61 0.71 

Cross correlation coefficient 0.70 0.70 
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Figure 1 (a) Examples of autocovariance sequences of the proposed generalized type for several values of the 
exponent β, in comparison with the fractional Gaussian noise and ARMA types; (b) corresponding power 
spectra.  
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Figure 2 Two examples of theoretical autocovariance sequences and resulting sequences of internal parameters 
aj for BMA and SMA schemes: (a) a Markovian autocovariance sequence; (b) a Fractional Gaussian noise 
autocovariance sequence. The obtained autocovariance sequences by either of the BMA or SMA schemes are 
indistinguishable from the theoretical ones. 
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Figure 3 Obtained autocovariance structure from the SMA scheme using 100 aj terms, for lags 0-200; the 
theoretical autocovariance structure is that of Figure 2(a).  
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Figure 4 An example of an inconsistent γj sequence approximated with a consistent sequence achieved by the 
SMA scheme using 100 aj terms; the latter are also plotted, in comparison with the corresponding terms of the 
BMA scheme.  
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Figure 5 Preservation of statistical properties by the simulated records of the application of section 6: (a) 
autocovariance; (b) power spectra; (c) rescaled range and Hurst coefficients; (d) cross-covariance. 
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Figure 6 Comparison of three different solutions of parameter matrices b (3-D plots of their elements) of the 
application of section 7: (a) triangular solution; (b) singular value solution; (c) symmetric solution. 
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Figure 7 Comparison of the resulting coefficients of skewness of the 40 innovations of the application of section 
7 for the three different solutions of parameter matrices b.  



A generalized mathematical framework for stochastic simulation and 

forecast of hydrologic time series 

Demetris Koutsoyiannis 

Department of Water Resources, Faculty of Civil Engineering, 

National Technical University, Athens  

Heroon Polytechneiou 5, GR-157 80 Zographou, Greece 

(dk@hydro.ntua.gr) 

Appendix (Supplement on microfiche)  

A1 Some examples for comparison of the generalized autocovariance 

structure to fractional Gaussian noise models 

 In this Appendix, we demonstrate the generalized autocovariance structure (GAS; 

Equation (7)) using synthetic and historical data records, also comparing it with the stochastic 

structure implied by the fractional Gaussian noise (FGN) model. We give five examples with 

record lengths between 44 and 100. The first two of them are synthetic samples generated by 

stochastic models. In this case the theoretical autocovariance function is known and, 

consequently, we can test the ability of model to capture this stochastic structure, and the 

appropriateness of the fitting method. The other three examples are annual streamflow and 

rainfall records of gauges at Greece and USA. In this case our purpose is to compare the 

appropriateness of each of the GAS and FGN models for fitting the data and investigate the 

model parameters. 

 For the GAS case, the most parameter parsimonious form was adopted for all examples, 

using the parameters γ0, β and κ only. The fitting of β and κ was done by the least squares 

method on the empirical autocorrelation function (see section 2) for lags 0-20. The same 

method was used for the FGN case as well (symbolically, FGN/A). Fitting by means of the 

Husrt coefficient was also performed as an alternative for the FGN case (symbolically, 

FGN/H). The results are presented in graphical form in terms of autocorrelation functions and 

power spectra in Figure A1 through Figure A5. 

AR(1) example. 100 data values were generated using a Gaussian AR(1) process with unit 

variance and lag-one autocorrelation coefficient equal to 0.5. In this case, the theoretical 

autocovariance function has the form (8). The fitted parameters for the GAS case are β = 0.01 
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(very close to the theoretical value 0) and κ = 0.66. The resulting autocorrelation function and 

power spectrum are almost identical to the theoretical ones. Apparently, the FGN model is not 

appropriate for this case since we know that the process is not long memory at all. Had we 

only the data record available, without knowing the theoretical autocorrelation, we possibly 

attempt to fit the FGN model. Then, applying the least squares method (FGN/A) we would 

find β = 1.31 (H = 0.62), which clearly underestimates the autocorrelation for small lags and 

overestimates it for large lags. Applying the Hurst coefficient method we would find H = 0.44 

which would interpret as H = 0.5 (values smaller than 0.5 are not allowed by FGN) and we 

would assume that the process is white noise, which is not correct. 
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Figure A1 Comparison of theoretical, empirical and fitted model autocorrelation functions (a) 

and power spectra (b) for a synthetic data set generated by an AR(1) process with 100 values. 
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FGN example. 100 data values were picked from the synthetic record generated in the 

application of section 6 (location 2). In this case, the theoretical autocovariance function has 

the form (5) with H = 0.7. The fitted parameters for the GAS case are β = 1.48 (>1, close to 

the theoretical value β = 1 / [2(1 – H)] = 1.67) and κ = 3.28. The resulting autocorrelation 

function and power spectrum are almost identical to the theoretical ones. The fitted parameter 

for the FGN/A case is β = 1.67 (H = 0.70), which is identical to the theoretical ones. 

However, applying the Hurst coefficient method we find H = 0.98, which is too high and 

results in autocorrelation function and power spectrum extremely departing from both the 

theoretical and empirical ones. 
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Figure A2 Comparison of theoretical, empirical and fitted model autocorrelation functions (a) 

and power spectra (b) for a synthetic data set generated by a FGN process with 100 values. 
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Kremasta streamflow example. In this example we used a 44-year annual streamflow record 

of Acheloos River at Kremasta dam (Western Greece; overyear annual discharge 117.9 m
3
/s). 

The estimated Hurst coefficient of the series is as high as 0.94, indicating a long memory. The 

fitted parameters for the GAS case are β = 2.43 and κ = 12.6, and, indeed, indicate a very long 

memory. Note that for empirical lag-one autocorrelation ρ1 = 0.22, the characteristic 

parameter β
*
 defined in section 2 is 1.54 and thus β > β

*
. The fitted parameter for the FGN/A 

case is β = 1.75 (H = 0.71 < 0.94). Both GAS and FGN/A schemes agree well with the 

empirical autocorrelations and power spectra, the former outperforming the latter as better 

approaching the lag-one autocorrelation, which is important. The FGN/H scheme again results 

in autocorrelation function and power spectrum extremely departing from the empirical ones. 
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Figure A3 Comparison of empirical and fitted model autocorrelation functions (a) and power 

spectra (b) for the 44-year annual streamflow record of Acheloos River at Kremasta (Western 

Greece). 



5 

Coshocton runoff example. In this example we used a 56-year annual runoff record at 

Coshocton, Ohio (for a catchment of 303 acres; overyear annual runoff 397.4 mm). The 

estimated Hurst coefficient of the series is as high as 0.89, indicating a long memory. 

However, the fitted parameters for the GAS case are β = 0.16 (< 1) and κ = 0.90, which do not 

correspond to very long memory). The fitted parameter for the FGN/A case is β = 1.39 (H = 

0.64 < 0.89). Here the GAS scheme agrees well with the empirical autocorrelations and power 

spectra. The FGN/A scheme underestimates significantly the lag-one autocorrelation 

coefficient, whereas the FGN/H scheme again overestimates all autocorrelation coefficients. 
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Figure A4 Comparison of empirical and fitted model autocorrelation functions (a) and power 

spectra (b) for the 56-year annual streamflow record of Coshocton, Ohio. 
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Aliartos rainfall example. In this example we used an 86-year annual rainfall record at 

Aliartos, Eastern Greece (overyear annual rainfall 660.2 mm). The estimated Hurst coefficient 

of the series is as high as 0.93, indicating a long memory, and corresponding to lag-one 

autocorrelation coefficient equal to 0.82, although the empirical value of the latter is only 

0.12. The fitted parameters for the GAS case are β = 3.75 (corresponding to H = 0.87, close to 

0.93) and κ = 300. As in the Kremasta example, β > β
*
 = 1.27 (for ρ1 = 0.12). Indeed, these 

parameters indicate long memory and simultaneously result in low autocorrelation for small 

lags (e.g. 0.15 for lag-one, which agrees well with the empirical value). Generally, the GAS 

scheme agrees well with the empirical autocorrelations and power spectra. The fitted 

parameter for the FGN/A case is β = 1.53 (H = 0.67 < 0.93). The FGN/A scheme 

overestimates the lag-one autocorrelation coefficient (0.27 versus 0.12), whereas the FGN/H 

scheme again overestimates all autocorrelation coefficients. 
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Figure A5 Comparison of empirical and fitted model autocorrelation functions (a) and power 

spectra (b) for the 86-year annual rainfall record at Aliartos (Eastern Greece). 
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Conclusion of Appendix 1. From the examples with synthetic data, where the actual 

(theoretical) autocorrelation function and power spectrum are known, we may conclude that 

the GAS scheme is appropriate for both short and long memory processes, and the fitting 

method of least squares over the autocorrelation function results in reasonable fits, which are 

almost identical to the theoretical autocorrelation functions. The FGN scheme performs well 

if the underlying process is long memory and the scheme is fitted by the least squares method, 

but fails to resemble the actual process either if it is short memory or the fitting is done using 

the Hurst coefficient. 

 In all three examples with historic hydrologic data, a long memory structure emerges, as 

indicated by the high Hurst coefficients. However, the FGN scheme fitted in terms of the 

Hurst coefficient departs significantly from the empirical autocorrelation functions and power 

spectra. Better is its behavior if fitted by the least squares method. The GAS scheme fitted by 

the least squares method outperformed the FGN scheme in all cases. Interestingly, these three 

examples reveal that the two cases theoretically foreseen by the GAS scheme, but not by the 

ARMA of FGN schemes, may exist in reality. Thus, in the examples presented we have the 

cases: (a) β < 1 (Coshocton example) that indicates not too strong long-term persistence, and 

(b) β > β
*
 (Kremasta and Aliartos examples) that indicates strong long-term persistence and 

simultaneously not too strong autocorrelation for small lags.  

 We must emphasize that the examples are presented here just to give some initial 

indications of the performance of the proposed generalized autocovariance function, also in 

comparison to that of the fractional Gaussian noise model. Before drawing final conclusions, 

more statistical research is needed about the model fitting method and more hydrological data 

sets must be investigated.  

Acknowledgments of Appendix 1. The Coshocton runoff record is made available on the Internet by the 

Agricultural Research Service (ARS) research organization. The Kremasta streamflow record was compiled by 

data of the Public Power Corporation of Greece and the Aliartos rainfall record was compiled by data of the 

Hellenic National Meteorological Service raingauge and the earlier Kopais Organization raingauge operated at 

the same location. Both the Kremasta and Aliartos records were published in the reports of the project 

Evaluation and Management of the Water Resources of Sterea Hellas commissioned by the Greek Ministry of 

Environment, Regional Planning and Public Works to the National Technical University of Athens. 
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A2 Closed solution of the internal parameter series  

 The complex form of the inverse finite Fourier transform of the series γj is (in accordance 

to (13)) 

 sγ(ω) = 2 
j = –∞

∞

 γj exp (2 i π j ω) (A1) 

where i := –1. Using the BFMA model that incorporates as special cases both the BMA and 

the SMA models, and substituting γj from (23) in (A1) we get 

 sγ(ω) = 2 
j = –∞

∞

  
l = –∞

∞

 al aj + l exp (2 i π j ω) (A2) 

Interchanging the summations and setting n = j + l we have 

 sγ(ω) = 2 
l = –∞

∞

 al 
j = –∞

∞

  aj + l exp (2 i π j ω) = 2 
l = –∞

∞

 al 
n = –∞

∞

  an exp [2 i π (n – l) ω] (A3) 

or 

 sγ(ω) = 2 
l = –∞

∞

 al exp (–2 i π l ω) 
n = –∞

∞

  an exp (2 i π n ω) (A4) 

which results in 

 sγ(ω) = sa
*
(ω) sa(ω) / 2 = |sa(ω)|

2
/ 2 (A5) 

where sa
*
(ω) is the complex conjugate of sa(ω).  

 (A5) shows that (33) holds for any arrangement of the series of aj and consequently it 

holds for the BMA model as well. In case of the SMA model, since aj = a–j, the imaginary 

(sine) terms in its inverse finite Fourier transform vanish, so that sa(ω) is a real function of ω. 

Therefore, (A5) becomes 

 sγ(ω) = [sa(ω)]
2
/ 2 (A6) 

which proves (31). 

 To show that there does not exist any other real valued transformation, different from DFT, 

that could result in an equation similar to (31) to enable a direct calculation of aj for the BMA 

model we use a counterexample. Specifically, we consider the simple autocovariance 

structure with all terms zero apart from the first two γ0 and γ1. This autocovariance is positive 
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definite if 2 |γ1| < γ0. From (19) we can verify that a solution for the series of aj is that with all 

terms zero apart from the first two a0 and a1, which are given by 

 a0 = (1/2) ( γ0 + 2 γ1 + γ0 – 2 γ1),   a1 = (1/2) ( γ0 + 2 γ1 – γ0 – 2 γ1)  (A7) 

and satisfy 

 a0

2

 + a1

2

 = γ0,    a0 a1 = γ1 (A8) 

Generally, we are seeking for some transformations pγ(ω) and pa(ω) of γj and aj, respectively, 

in the general form of (A1) but real valued, i.e.,  

 pγ(ω) = 
j = –∞

∞

 γj gj(ω),   pa(ω) = 
j = –∞

∞

 aj fj(ω) (A9) 

where gj(ω) and fj(ω) are sequences of orthogonal real functions of the real variable ω, so that 

a relation similar to (A6) holds, i.e., 

 pγ(ω) = [pa(ω)]
2
 (A10) 

Note that such a relation is justified by dimensional analysis considerations, as well. The 

condition for orthogonality of the sequences gj(ω) and fj(ω) is needed because otherwise it 

will be not possible to invert the transformation, so that to derive γj from gj(ω) or aj from 

fj(ω). The factors 2 in the right-hand sides of (A9) and (A10) are neglected for simplicity. 

 In our simple counterexample with two nonzero terms, the combination of (A9), (A10) and 

(A8) results in 

 (a0

2

 + a1

2

) g0(ω) + a0 a1 g1(ω) = [a0 f0(ω) + a1 f1(ω)]
2
 (A11) 

or  

 (a0

2

 + a1

2

) g0(ω) + a0 a1 g1(ω) = a0

2

 f0

 2

(ω) +a1

2

 f1

 2

(ω)+ 2 a0 a1 f0(ω) f1(ω) (A12) 

From the condition that (A12) must hold for any couple of a0 and a1 we find that 

 f0(ω) = f1(ω) =  g0(ω) ,    g1(ω) = 2 g0(ω) (A13) 

which violates the orthogonality assumption for both gj(ω) and fj(ω). Therefore, no real 

valued transformation with the desired properties exists. 
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A3 Proof of the proposition of section 5 

 Firstly, we will prove that (39) preserves means and autocovariances. Taking average 

values in both sides of (39) we find that E[Xi] = E[X
 ~

i] (because by definition of Z, E[Z] = 

E[Z
~

]), which proves preservation of means. Subtracting means from both sides of (39) we get  

 (Xi – E[Xi]) = (X
 ~

i – E[X
 ~

i]) + ηi
T
 h

–1
 {(Z – E[Z]) – (Z

~
 – E[Z

~
])},   i = 1, 2, … (A14) 

Writing (A14) for Xj and then multiplying it with (A14) and taking expected values we get 

 Cov[Xi, Xj] = Cov[X
 ~

i, X
 ~

j] – Cov[X
 ~

i, ηj
T
 h

–1
 Z
~

] – Cov[X
 ~

j, ηi
T
 h

–1
 Z
~

]  

  + Cov[ηi
T
 h

–1
 Z
~

, ηj
T
 h

–1
 Z
~

] + Cov[ηi
T
 h

–1
 Z, ηj

T
 h

–1
 Z] (A15) 

where we have omitted covariance terms among Z and Z
~

 or X
 ~

i, because Z is independent of 

X
 ~

i and consequently of Z
~

. Observing that h is a symmetric matrix and Cov[Z
~

, Z
~

] = Cov[Z, Z] 

by definition, we can write (A15) as 

 Cov[Xi, Xj] = Cov[X
 ~

i, X
 ~

j] – Cov[X
 ~

i, Z
~

] h
–1

ηj – Cov[X
 ~

j, Z
~

] h
–1

ηi  

  + 2 ηi
T
 h

–1
 Cov[Z

~
, Z

~
] h

–1
ηj  (A16) 

and using the definitions of ηi
T
 := Cov[X

 ~
i, Z

~
] and h := Cov[Z

~
, Z

~
], 

 Cov[Xi, Xj] = Cov[X
 ~

i, X
 ~

j] – ηi
T
 h

–1
ηj – ηj

T
 h

–1
ηi + 2 ηi

T
 h

–1
 h h

–1
ηj (A17) 

We note that ηi
T
 h

–1
ηj is scalar, so that ηi

T
 h

–1
ηj = (ηi

T
 h

–1
ηj)

T
 = ηj

T
 h

–1
ηi. Besides, the last 

term of (A17) equals 2 ηi
T
 h

–1
 ηj. Thus (A17) is reduced to 

 Cov[Xi, Xj] = Cov[X
 ~

i, X
 ~

j] (A18) 

which proves our claim about preservation of covariances. 

 Secondly, we will prove (40). If we get covariances as above but conditionally on Z = z, 

the last term Cov[ηi
T
 h

–1
 Z, ηj

T
 h

–1
 Z | Z = z] of (A15) will now be zero. The other terms are 

not affected by the condition because of independence from Z. Thus, setting i = j and writing 

(A15) for Z = z, we get 

 Var[Xi | Z = z] = Var[X
 ~

i] – 2 Cov[X
 ~

i, ηi
T
 h

–1
 Z
~

] + Cov[ηi
T
 h

–1
 Z
~

, ηj
T
 h

–1
 Z
~

] (A19) 

which in a similar manner as previously takes the form 
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 Var[Xi | Z = z] = Var[X
 ~

i] – 2 ηi
T
 h

–1
ηi + ηi

T
 h

–1
 h h

–1
ηi (A20) 

thus resulting in (40). 

 Next, we will show that Var[Xi | Z = z] coincides with the least mean square prediction 

error of Xi from Z. To this aim, we consider the linear prediction model  

 Xi = κ
Τ
 Ζ + U (A21) 

where κ is a vector of parameters and U is a random variable whose deviation from mean 

represents the prediction error. We seek for the vector κ that minimizes Var[U]. Taking 

expected values in both sides of (A21) and subtracting from (A21) we get 

 (U – E[U]) = (Xi – E[Xi]) – κ
Τ
 (Ζ – E[Z]) (A22) 

so that 

 Var[U] = Var[Xi] – 2 Cov[Xi, κ
Τ
 Ζ] + Var[κ

Τ
 Ζ]  (A23) 

or equivalently, 

 Var[U] = γ0 – 2 Cov[Xi, Ζ] κ + κ
Τ
 Cov[Ζ, Z] κ (A24) 

Since by definition Cov[Xi, Z] = ηi
T
 and Cov[Z, Z] = h,  

 Var[U] = γ0 – 2 ηi
T
 κ + κ

Τ
 h κ (A25) 

To find κ that minimizes Var[U] we take the derivative of the right-hand side of (A25) with 

respect to κ and equate it to 0. This results in  

 – 2 ηi
T
 + 2 κ

Τ
 h = 0 (A26) 

or 

 κ = h
–1

 ηi (A27) 

Substituting this result in (A25) we get 

 Var[U] = γ0 – ηi
T
 h

–1
 ηi (A28) 

Thus, Var[U] is identical to Var[Xi | Z = z] given by (40).  

 Finally, we consider the case of application of (39) for one of the known X0, …, X–k in its 

left-hand side (i.e., for –k ≤ i ≤ 0). Apparently, in this case ηi will be equal to the ith column 

of h. Since h h
–1

 = I, ηi
T
 h

–1
 will be equal to ith row of the identity matrix, i.e., a row vector 

with all elements zero apart from the ith element which will be one. Therefore, (39) becomes 

Xi = X
 ~

i + (Xi – X
 ~

i) = Xi, as it should. This proves that (39) remains consistent even when 

applied to the known present and past variables. 
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A4 Proof of equation (57) 

Let d := b b
T
 – h so that f(b) := ||d||

2
. The (k, l)th element of d is  

 dkl = 
r = 1

n

  bkr blr – ckl  (A29) 

so that 

 
dkl

bij
 = 

r = 1

n

  bkr 
blr

bij
 + 

r = 1

n

  
bkr

bij
 blr  (A30) 

Because b, is symmetric, blr / bij equals 1 if the element blr coincides with bij or its 

symmetric bji; otherwise equals zero. Symbolically, 

 
blr

bij
 = δli δrj + δlj δri – δlr δij δli (A31) 

where 

 δij := 


0 i  j

1 i = j
 (A32) 

Therefore, 

 
r = 1

n

  bkr 
blr

bij
 = 

r = 1

n

  bkr δli δrj + 
r = 1

n

  bkr δlj δri – 
r = 1

n

  bkr δlr δij δli  (A33) 

or 

 
r = 1

n

  bkr 
blr

bij
 = bkj δli + bki δlj – bkl δij δli  (A34) 

Likewise, 

 
r = 1

n

  blr 
bkr

bij
 = blj δki + bli δkj – blk δij δki  (A35) 

so that 

 
dkl

bij
 = (bkj δli + bki δlj – bkl δij δli) + (blj δki + bli δkj – blk δij δki) (A36) 
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 The partial derivative of ||d||
2
 with respect to bij will be 

 
||d||

2

bij
 = 

k = 1

n

  
l = 1

n

 2 dkl 
dkl

bij
   

  = 2 
k = 1

n

  
l = 1

n

 dkl (bkj δli + bki δlj – bkl δij δli + blj δki + bli δkj – blk δij δki) (A37) 

or 

 
||d||

2

bij
 = 2 

k = 1

n

 (dki bkj + dkj bki – dki bki δij) + 2 
l = 1

n

 (dil blj + djl bli – dil bli δij) (A38) 

and, because both d and b are symmetric, 

 
||d||

2

bij
 = 4 

k = 1

n

 dki bkj + 4 
k = 1

n

 dkj bki – 4 
k = 1

n

 dki bki δij (A39) 

We observe that each of the first and the second sums in the right-hand side of (A39) is the 

(i, j)th and (j, i)th element of the matrix d b = e, which are equal due to symmetry. The sum in 

the third term equals the (i, i)th diagonal element of e if i = j; otherwise it is zero. This proves 

(57).  
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