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Senza probabilità (Without Probability): An example 
 Problem: study the storage and outflow of a (toy) water supply 

reservoir in discrete time with ridiculously simple assumptions. 

 Assumption 1 – the ideal hydrological model: The inflow I to the 
reservoir is constant for any time step, equal to 10 units. 

 Assumption 2 – the perfect socio-hydrological model: If there is 
plenty of water in the reservoir, people consume more, while the 
consumption is reduced when the storage is low. We assume that 
this behaviour is expressed precisely by an exponential function: 
Q  = φ(S) = 0.2 e 0.3 S, where Q is the outflow and S the storage. 

 Discrete time dynamics Qi = φ(Si – 1),   Si = Si – 1 + I – Qi 

 Question 1: Assume a specific initial storage S0 in the interval 
(5, 15) and find S1. 

 Question 2: With the same initial condition, find S50. 

 Question 3: Is the system dynamics deterministic or stochastic? 

 Question 4: Is the system predictable (i.e., deterministic) or 
unpredictable (i.e., stochastic, random)? 
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Impacts of the creation of a single electron 
somewhere at the limit of the known universe 
 Perturbation scale Cause Effect Time frame 

1. Microscopic An electron has been 
created at a distance of 1010 
light years from Earth and 
has exerted gravitational 
attraction on the molecules 
of the atmosphere 

After 50 collisions the 
trajectories of molecules 
would have changed 
(different molecules would 
collide) 

10 ns 
(justifiably 
assuming 
~1010 
collisions 
per second) 

2. Macroscopic Turbulence  Change in the fine structure 
of turbulence 

1 min 

3. Local Turbulence Change in the large (km) 
scale atmospheric turbulence 
(wind, clouds) 

1 h – 1 d 

4. Global Change in the general 
circulation of the atmosphere 
(depressions, fronts→ a storm 
that would not occur without 
that electron) 

1-2 weeks 
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Adapted from Ruelle (1979, 1991, p. 75); based on Berry (1978) and some ideas of 
E. Borel και B. V. Chirikov. 



So, who does not play dice? 
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Αἰών παῖς ἐστι παίζων πεσσεύων  
Time is a child playing, throwing dice 

(Heraclitus; ca. 540-480 BC; Fragment 52)  

Jedenfalls bin ich überzeugt, daß der nicht würfelt  
I, at any rate, am convinced that He [God] does not throw dice 

(Albert Einstein, in a letter to Max Born in 1926)  

Ἀνερρίφθω κύβος  Iacta alea est  
Let the die have been cast The die has been cast 
[Plutarch’s version, in Greek] [Suetonius’s version, in Latin] 

(Julius Caesar, 49 BC, when crossing Rubicon River) 



From old times dice games fascinated people—
but perhaps not scientists and teachers  
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 All these dice are of the period 580-570 BC from  
Greek archaeological sites: 
 Left, Kerameikos Ancient Cemetery Museum, Athens, photo by author 

 Middle: Bronze die (1.6 cm), Greek National Archaeological Museum, 
www.namuseum.gr/object-month/2011/apr/7515.png 

 Right: Terracotta die (4 cm) from Sounion, Greek National Archaeological 
Museum, http://www.namuseum.gr/object-month/2011/dec/dies_b.png 

 Much older dice (up to 5000 years old) have been found in 
Asia (Iran, India). 
 



Modern determinism and the clockwise universe  
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 Johannes Kepler (1571-1630), Galileo Galilei (1564-1642) and René Descartes 
(1596-1650) introduced mathematical concepts to natural philosophy (science). 

 They also introduced the idea of a clockwork universe, leading to the philosophical 
proposition of determinism, still widely accepted in science. 

 Determinism was perfected by the French mathematician and astronomer Pierre-
Simon Laplace (1749-1827; cf. Laplace's demon, a hypothetical entity that knows 
the precise location and momentum of every atom in the universe at present, and 
can deduce the future and the past using Newton’s laws.). 

 According to deterministic thinking, the roots of uncertainty about future are 
subjective, i.e. rely on the fact that we do not know exactly the present, or we do not 
have good enough methods and models. It is then a matter of time to eliminate 
uncertainty, with better data and better models.  



Newton’s awareness of the fragility of the universe 
(rejection of determinism) 

 Newton regarded the complexity and fragility of the universe 
as proof of the existence of God. 

 He rejected Leibniz’ thesis that God would necessarily make a 
perfect world which requires no intervention from the creator. 

 Newton simultaneously made an argument from design and 
for the necessity of intervention. 
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“For while comets move in very eccentric orbs in all 
manner of positions, blind fate could never make all the 
planets move one and the same way in orbs concentric, 
some inconsiderable irregularities excepted which may 
have arisen from the mutual actions of comets and planets 
on one another, and which will be apt to increase, till this 
system wants a reformation” (Newton, Opticks, Query 31). 



From the almighty determinism of the 17th century to 
the probabilistic world of the 20th century 
 Statistical physics (cf. Boltzmann) used the probabilistic concept of 

entropy (which is nothing other than a quantified measure of uncertainty 
defined within the probability theory; see below) to explain fundamental 
physical laws (most notably the Second Law of Thermodynamics), thus 
leading to a new understanding of natural behaviours and to powerful 
predictions of macroscopic phenomena. 

 Dynamical systems theory (cf. Poincare) has shown that uncertainty can 
emerge even from pure, simple and fully known deterministic (chaotic) 
dynamics, and cannot be eliminated. 

 Quantum theory  
(cf. Heisenberg) has  
emphasized the  
intrinsic character  
of uncertainty and the  
necessity of probability  
in the description of  
nature. 
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From the almighty determinism of the 17th century to 
the probabilistic world of the 20th century (2) 
 Developments in mathematical logic, and particularly 

Gödel’s incompleteness theorem, challenged the 
almightiness of deduction (inference by mathematical proof). 
Ironically, Kurt Gödel anticipated by one day (in 1930) David 
Hilbert who pronounced the opposite with his famous 
aphorism (also inscribed in his tombstone at Göttingen) “Wir 
müssen wissen, wir werden wissen” (“We must know, we will 
know”). 

 Developments in numerical mathematics (cf. Nicholas 
Metropolis) highlighted the effectiveness of stochastic 
methods in solving even purely deterministic problems, such 
as numerical integration in high-dimensional spaces and 
global optimization of non-convex functions (where 
stochastic techniques, e.g. evolutionary algorithms or 
simulated annealing, are in effect the only feasible solution in 
complex problems that involve many local optima). 

 Advances in evolutionary biology emphasize the importance 
of stochasticity (e.g. in selection and mutation procedures and 
in environmental changes) as a driver of evolution. 

D. Koutsoyiannis, A brief introduction to probability and stochastics 9 



Indeterminism vs. determinism 
 In indeterminism, a philosophical belief contradictory to determinism, uncertainty may be a 

structural element of nature and thus cannot be eliminated.  

 Indeterminism has its origin in the Greek philosophers Heraclitus (ca. 535–475 BC), Aristotle 
(384 – 322 BC) and Epicurus (341–270 BC).  

 Its relationship with modern science was theorized by the Austrian-British philosopher Karl 
Popper (1902-1994). 

 In science, indeterminism largely relies on the notion of probability, which according to 
Popper is the extension (quantification) of the Aristotelian idea of potentia (dynamis). 
Practically, the idea is that several outcomes can be produced by a specified cause, while in 
deterministic thinking only one outcome is possible (albeit difficult to predict which one). 
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The meaning of probability (by examples) 
(1) A fair coin has a probability of 0.5 of heads, and likewise 0.5 of tails; so 

the probability of tossing two heads in a row is 0.25. 

(2) There is a 10% probability of rain tomorrow. 

(3) There is a 10% probability of rain tomorrow according to the weather 
forecast. 

(4) Fortunately there is only a 5% probability that her tumor is 
malignant, but this will not be known for certain until the surgery is 
done next week. 

(5) Smith has a greater probability of winning the election than does 
Jones. 

(6) I believe that there is a 75% probability that she will want to go out 
for dinner tonight. 

(7) I left my umbrella at home today because the forecast called for only a 
1% probability of rain. 

(8) Among 100 patients in a clinical trial given drug A, 83 recovered, 
whereas among 100 other patients given drug B, only 11 recovered; 
so new patients will have a higher probability of recovery if treated 
with drug A. 

Source of examples: Gauch (2003).  
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The utility of probability  
 Commonly, probability is regarded to be a branch of applied mathematics 

that provides tools for data analysis (and also theorizes games of chance).  

 Historically, as modern science was initiated from deterministic views of 
the world, probability had a marginal role for peculiar unpredictable 
phenomena.  

 Nonetheless, probability is a more general concept that helps shape a 
consistent, realistic and powerful view of the world.  

 Probability has provided grounds for philosophical concepts such as 
indeterminism and causality, as well as for extending the typical 
mathematical logic, offering the mathematical foundation of induction.  

 In typical scientific and technological applications, probability provides 
the tools to quantify uncertainty, rationalize decisions under uncertainty, 
and make predictions of future events under uncertainty, in lieu of 
unsuccessful deterministic predictions.  

See more details in Koutsoyiannis (2008).  
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Deduction and induction 
 In mathematical logic, determinism can be paralleled to the premise that all truth can be revealed 

by deductive reasoning or deduction (the Aristotelian apodeixis). This type of reasoning consists of 
repeated application of strong syllogisms such as: 

 If A is true, then B is true;    If A is true, then B is true; 

 A is true;    B is false; 

 Therefore, B is true.   Therefore, A is false. 

 Deduction uses a set of axioms to prove propositions known as theorems, which, given the axioms, 
are irrefutable, absolutely true statements. It is also irrefutable that deduction is the preferred 
route to truth; the question is, however, whether or not it has any limits.  

 David Hilbert’s belief “Wir müssen wissen, wir werden wissen”, more formally known as 
completeness, according to which any mathematical statement could be proved or disproved by 
deduction from axioms, has been proved to be invalid. 

 In everyday life, however, we use weaker syllogisms of the type: 

 If A is true, then B is true;    If A is true, then B is true; 

 B is true;    A is false; 

 Therefore, A becomes more plausible.  Therefore, B becomes less plausible. 

 The latter type of syllogism is called induction (the Aristotelian epagoge). It does not offer a proof 
that a proposition is true or false and may lead to errors. However, it is very useful in decision 
making, when deduction is not possible.  

 An important achievement of probability is that it quantifies (expresses in the form of a number 
between 0 and 1) the degree of plausibility of a certain proposition or statement. The formal 
probability framework uses both deduction, for proving theorems, and induction, for inference 
with incomplete information or data. 
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Definition of probability 
 According to Kolmogorov’s (1933) axiomatization, probability theory is based on 

three fundamental concepts and four axioms.  

 The concepts, i.e., the triplet (Ω, Σ, P) called probability space, are:  

1. A non-empty set Ω, sometimes called the basic set, sample space or the certain 
event whose elements ω are known as outcomes or states. 

2. A set Σ known as σ-algebra or σ-field whose elements E are subsets of Ω, 
known as events. Ω and Ø are both members of Σ, and, in addition, (a) if E is in 
Σ then the complement Ω – E is in Σ; (b) the union of countably many sets in Σ 
is also in Σ.  

3. A function P called probability that maps events to real numbers, assigning 
each event E (member of Σ) a number between 0 and 1.  

 The four axioms, which define the properties of P, are: 

I. Non-negativity: For any event A, P(A) ≥ 0. 

II. Normalization: P(Ω) = 1.   

III. Additivity: For any events A, B with AB = Ø, P(A + B) = P(A) + P(B). 

IV. Continuity at zero: If A1  A2  …  An  … is a decreasing sequence of 
events, with A1A2…An… = Ø, then limn→∞P(An) = 0. 

[Note: In the case that Σ is finite, axiom IV follows from axioms I-III; in the 
general case, however, it should be put as an independent axiom.]  
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The concept of a random variable 

 A random variable x is a function that maps outcomes to numbers, i.e. quantifies 
the sample space Ω.  

 More formally, a real single-valued function x(ω), defined on the basic set Ω, is 
called a random variable if for each choice of a real number a the set {x < a} for all 
ω for which the inequality x(ω) < α holds true, belongs to Σ.  

 With the notion of the random variable we can conveniently express events using 
basic mathematics. In most cases this is done almost automatically. For instance a 
random variable x that takes values 1 to 6 is intuitively assumed when we deal 
with a die through.  

 We must be attentive that a random variable is not a number but a function. 
Intuitively, we could think of a random variable as an object that represents 
simultaneously all possible outcomes and only them.  

 A particular value that a random variable may take in a random experiment, else 
known as a realization of the variable, is a number.  

 We can denote a random variable by an underlined letter, e.g. x and its realization 
with a non-underlined letter x (another convention is to use an upper case letter, 
e.g. X, for the random variable and a lower case letter, e.g. x, for its realization. In 
any case, random variables and values thereof two should not be confused).  
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Probability distribution function 
 Distribution function is a function of the real variable x defined by 

 F (x) := P{x ≤ x} 

where x is a random variable.  

 The random variable with which this function is associated is not an argument of the function. If 
there risk of confusion (e.g. there are many random variables), the random variable is usually 
denoted as a subscript (e.g. Fx(x)). Typically F(x) has a mathematical expression depending on 
some parameters. The domain of F(x) is not identical to the range of the random variable x; rather 
it is always the set of real numbers.  

 The distribution function is a non-decreasing function obeying the relationship 

 0 = F(–∞) ≤ F(x) ≤ F(+∞) = 1 

 For its non-decreasing attitude, in the English literature the distribution function is also known as 
cumulative distribution function (cdf) – though “cumulative” is not necessary. In practical 
applications the distribution function is also known as non-exceedence probability. Likewise, the 
non-increasing function 

 𝐹(x) = P{x > x} = 1 – F(x)  

is known as exceedence probability (or survival function, survivor function, tail function).  

 The distribution function is always continuous on the right; however, if the basic set Ω is finite or 
countable, F(x) is discontinuous on the left at all points xi that correspond to outcomes ωi, and it is 
constant between them (staircase-like). Such random variable is called discrete. If F(x) is a 
continuous function, then the random variable is called continuous. A mixed case is also possible; 
in this the distribution function has some discontinuities on the left, but is not staircase-like.  

 For continuous random variables, the inverse function F–1( ) of F( ) exists. Consequently, the 
equation u = F(x) has a unique solution for x, called u-quantile of the variable x, that is:  

 xu = F–1(u) 
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Probability density (or mass) function 
 In continuous variables any particular value x has zero probability to occur. However, we 

can still tell which of two outcomes is more probable by examining the ratio of the two 
probabilities. As this is a 0/0 expression, having in mind l’Hôpital’s rule, we need to examine 
the ratio of derivatives of probabilities.  

 The derivative of the distribution function is called the probability density function: 

𝑓 𝑥 ≔
d𝐹 𝑥

d𝑥
 

 The basic properties of f (x) are 

  𝑓 𝑥 ≥ 0,   𝑓 𝑥 d𝑥 = 1 
∞

−∞
 

 Obviously, the probability density function does not represent a probability; therefore it can 
take values higher than 1. Its relationship with probability is described by the following 
equation:  

𝑓 𝑥 = lim
Δ𝑥→0

𝑃{𝑥 ≤ 𝑥 ≤ 𝑥 + Δ𝑥}

Δ𝑥
 

 The distribution function can be calculated from the density function by 

 𝐹(𝑥)= 𝑓 𝑦 d𝑦 
𝑥

−∞
 

 In discrete random variables, the density is a sequence of Dirac δ functions. It is thus more 
convenient to use the so-called probability mass function Pj ≡ P(xj) = P{x = xj}, j = 1,…,w, 
where w is the number of possible outcomes (which can be infinite). 
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Some common distributions 

Name Probability density function Distribution function 

Uniform in [0, 1] 𝑓(𝑥)  =   
1 for 0 ≤ 𝑥 ≤ 1
0 otherwise

 
  

F(x) = max(0, min(x, 1)) 

Exponential 𝑓(𝑥)  =   
e–x/μ 

/ μ for 𝑥 ≥ 0
0 for 𝑥 < 0

 
  𝐹(𝑥)  =   

1 − e–x/μ for 𝑥 ≥ 0
0 for 𝑥 < 0

 
  

Normal  
 𝑓 𝑥 =

1

2𝜋𝜎
exp −

𝑥 − 𝜇 2

2𝜎2  
𝐹 𝑥 = 

 
1

2𝜋𝜎
 exp −

𝑢 − 𝜇 2

2𝜎2 d𝑢
𝑥

−∞
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Independent and dependent events, conditional 
probability 
 Two events A and B are called independent (or stochastically independent), if 

   𝑃 𝐴𝐵 = 𝑃 𝐴 𝑃(𝐵) 

 Otherwise A and B are called (stochastically) dependent.  

 The definition can be extended to many events. Thus, the events A1, A2, …, are independent if 
for any finite set of distinct indices i1, i2, …, in: 

 𝑃 𝐴𝑖1𝐴𝑖2 …𝐴𝑖𝑛 = 𝑃 𝐴𝑖1) 𝑃(𝐴𝑖2)…𝑃(𝐴𝑖𝑛   

 The handling of probabilities of independent events is thus easy. However, this is a special 
case because usually natural events are dependent. In the handling of dependent events the 
notion of conditional probability is vital. 

 By definition (Kolmogorov, 1933), conditional probability of the event A given B (i.e. under 
the condition that the event B has occurred) is the quotient  

 𝑃 𝐴 𝐵 ≔
𝑃 𝐴𝐵

𝑃 𝐵
  

 Obviously, if P(B) = 0, this conditional probability cannot be defined, while for independent 
A and B, P(A|B) = P (A). It follows that 

 𝑃 𝐴𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)  

 From this it follows the Bayes theorem: 

 𝑃 𝐵 𝐴 = 𝑃(𝐵)
𝑃 𝐴|𝐵

𝑃 𝐴
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Random number generation  
 Sequence of random numbers is a sequence of numbers xi whose every one statistical 

property is consistent with that of a sample from a sequence of independent identically 
distributed random variables xi (adapted from Papoulis, 1990).  

 Random number generator is a device (typically computer algorithm) which generates a 
sequence of random numbers xi with given distribution F(x). As most algorithms are purely 
deterministic, sometimes the numbers are called pseudorandom—but this in not necessary.  

 Random number generation is also known as Monte Carlo sampling. 

 The basis of practically all random generators is the uniform distribution in [0,1]. A typical 
procedure is the following: 

 We generate a sequence of integers qi from the recursive algorithm 

  qi = (k qi - 1 + c) mod m  

 where k, c and m are appropriate integers (e.g. k = 69 069, c = 1, m = 232 = 4 294 967 296 
or k = 75 = 16 807, c = 0, m = 231 - 1 = 2 147 483 647; Ripley, 1987, p. 39). 

 We calculate the sequence of random numbers ui with uniform distribution in [0,1] by  

  ui = qi / m 

 A more recent and better algorithm is the so-called Mersenne twister 
(en.wikipedia.org/wiki/Mersenne_twister). It is available in most languages and software 
packages. For example, for Excel (which by default includes the function rand) the Mersenne 
twister algorithm, called NtRand, can be found in www.ntrand.com/download/. 

 A direct (but sometimes time demanding) algorithm to produce random numbers xi from 
any F(x) given random numbers ui with uniform distribution in [0,1] is provided by: 

 xi = F–1(ui) 
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Exercise 1 

Let 𝑥 and 𝑦 represent the outcomes of each of two dice. What is 

the probability of the following cases? 

 𝑥 < 𝑦  

 𝑥 < 𝑦  

 𝑥 < 𝑦  

 𝑥 < 𝑦  

 

Verify the results by Monte Carlo simulations. 
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Exercise 2 
 Assume that in a certain place on earth (specifically in the United 

Kingdom) and a certain period of the year a dry and a wet day are 
equiprobable and that in the different days the states (wet/dry) are 
independent. What is the probability that two consecutive days are wet 
under the following conditions? 

 Unconditionally. 

 If we know that the first day is wet. 

 If we know that the second day is wet. 

 If we know that one of the two days is wet. 

 If we know that one of the two days is dry. 

 Verify the results by Monte Carlo simulations. 

 Plot the distribution function of one day’s state (wet/dry) (after 
introducing an appropriate random variable). 

 Assuming that in a wet day the probability density function of the rainfall 
depth x (expressed in mm) is f(x|wet) = e–x, plot the probability 
distribution function F(x). 

 

D. Koutsoyiannis, A brief introduction to probability and stochastics 22 



Exercise 3 
 Three engineers A, B and C are biding for a 1 000 000 € project and the evaluation 

committee, in order to make the fairest possible selection, decided to throw a die, 
instead of evaluating the proposal, the experience of engineers, etc.. If the 
outcome is 1 or 2 the projects goes to A, if it is 3 or 4, then B wins and if it is 5 or 
6, then C wins. The dice is cast, but the announcement of the winner is going to be 
done the next day by the minister. 

 Engineer A approaches the chairman of the committee and offers him 1000 € to 
accept his following request: “I know you are not allowed to tell me who wins; 
however, two of the three will lose. Therefore, B or C or both will lose. Please tell 
me just one of these two will lose”. The committee member accepts and says that 
C will lose. Then engineer A offers another 1000 € to swap him with B.  

 Prove that the strategy of engineer A is consistent with awareness of probability.  

 Compare this strategy with another one, in which engineer A offers the same 
amount to convince the chairman to re-decide on A and B by tossing a coin. 

 Verify your result with Monte Carlo simulation. 

 

Note: A different utterance of this problem is known as the “three prisoners problem” 
(http://en.wikipedia.org/wiki/Three_Prisoners_problem), which has puzzled many. For 
example, Ben-Naim, 2008, devotes several pages in his book about entropy (including a whole 
appendix) to solve this problem. However, its solution can be done in two lines. 
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Expectation 
 For a discrete random variable x, taking on the values x1, x2, …, xw (where w could 

be ∞) with probability mass function Pj ≡ P(xj) = P{x = xj}, if g(x) is an arbitrary 
function of x (so that g(x) is a random variable per se), we define the expectation 
or expected value or mean of g(x) as 

 E 𝑔 𝑥 ≔  𝑔 𝑥𝑗 𝑃(𝑥𝑗)
𝑤
𝑗=1  

 Likewise, for a continuous random variable x with density f(x), the expectation is 

 E 𝑔 𝑥 ≔  𝑔 𝑥 𝑓 𝑥 d𝑥
∞

−∞
  

 For certain types of functions g(x) we get very commonly used statistical 
parameters, as specified below: 

1. For g(x) = xr, where r = 0, 1, 2, …, the quantity μ΄r := Ε[xr ] is called the rth 
moment (or the rth moment about the origin) of x. For r = 0, obviously the 
moment is 1.  

2. For g(x) = x, the quantity μ := μ΄1 =Ε[x] (that is, the first moment) is called the 
mean of x.  

3. For g(x) = (x – μ)r where r = 0, 1, 2, …, the quantity μr := Ε[(x – μ)r] is called 
the rth central moment of x. For r = 0 and 1 the central moments are 
respectively 1 and 0. For  

4. For g(x) = (x – μ)2 the quantity γ ≡ σ2 := μ2 = Ε[(x – μ)2] is called the variance 
of x (also denoted as var[x]); its square root σ (also denoted as std[x] is called 
the standard deviation of x. 
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Entropy 
 For a discrete random variable x, taking on the values x1, x2, …, xw (where w could be ∞) 

with probability mass function Pj ≡ P(xj) = P{x = xj}, the entropy is defined as the expectation 
of the minus logarithm of probability (Shannon, 1948), i.e.: 

 Φ[x] := E[–ln P(x)] = – P
j
ln P

j

w
j = 1  

 Extension of the above definition for the case of a continuous random variable x with 
probability density function f(x), is possible, although not contained in Shannon’s (1948) 
original work. This extension involves a (so-called) ‘background measure’ with density h(x), 
which can be any probability density, proper (with integral equal to 1) or improper 
(meaning that its integral does not converge); typically it is an (improper) Lebesgue density, 
i.e. a constant with dimensions [h(x)] = [f(x)] = [x–1], so that the argument of the logarithm 
function that follows be dimensionless. Thus, the entropy of a continuous variable x is (see 
e.g. Jaynes, 2003, p. 375): 

 Φ[x] :=E – ln
f x
h x

 = –  ln
f x
h x

f x dx
∞
−∞  

 It is easily seen that for both discrete and continuous variables the entropy Φ[x] is a 
dimensionless quantity.  

 The importance of the entropy concepts relies in the principle of maximum entropy 
(Jaynes, 1957); it postulates that the entropy of a random variable x should be at maximum, 
under some conditions, formulated as constraints, which incorporate the information that is 
given about this variable. 

 This principle can be used for logical inference as well as for modelling physical systems; 
for example, the tendency of entropy to become maximal (Second Law of thermodynamics) 
can result from this principle.  
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Exercise 4 

 Find the mean, variance and entropy of the variable x 
representing the outcome of a fair die. Show that the entropy 
of a fair die is greater than in any loaded die.  

 Find the mean, variance and entropy of a variable x with 
uniform distribution in [0,1]. Show that this entropy is the 
maximum possible among all distributions in [0,1]. 

 Find the mean, variance and entropy of a variable x with 
exponential distribution. Show that this entropy is the 
maximum possible among all distributions in [0,∞) which 
have specified mean. 

 Find the mean, variance and entropy of a variable x with 
normal distribution. Show that this entropy is the maximum 
possible among all distributions in (–∞,∞) which have 
specified mean and variance. 
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Two variables: joint distribution and joint moments 
 Here we provide definitions referring to a pair of two random variables (x, y). 

 Joint probability distribution function: Fxy(x, y) := P{x ≤ x, y ≤ y} 

 Joint probability density function : 𝑓𝑥𝑦 𝑥, 𝑦 ≔
𝜕2𝐹𝑥𝑦(𝑥,𝑦) 

𝜕𝑥 𝜕𝑦
  

 Marginal probability distribution functions : Fx(x) := P{x ≤ x}, Fy(y) := P{y ≤ y} 

 Joint raw moment of order p + q: 𝜇𝑝𝑞
′ ≔  E[𝑥𝑝 𝑦𝑞]  =  𝑥𝑝𝑦𝑞∞

−∞
 𝑓𝑥𝑦(𝑥, 𝑦) d𝑥 d𝑦 

 Marginal first moments (means): μx ≔ 𝜇10
′ , μy ≔ 𝜇01

′  

 Joint raw moment of order p + q: 

 𝜇𝑝𝑞 ≔  E 𝑥 − 𝜇𝑥
𝑝

𝑦 − 𝜇𝑦

𝑞
=  𝑥 − 𝜇𝑥

𝑝
𝑦 − 𝜇𝑦

𝑞
𝑓𝑥𝑦 𝑥, 𝑦 d𝑥 d𝑦

∞

−∞
 

 Variances: var 𝑥 ≔ E 𝑥 − 𝜇𝑥
2

≡ 𝜇20 ≡ 𝛾𝑥 ≡ 𝜎𝑥
2; var 𝑦 ≔ 𝜇02 ≡ 𝛾𝑦 ≡ 𝜎𝑦

2 

 Covariance: cov 𝑥, 𝑦 ≔ E 𝑥 − 𝜇𝑥 𝑦 − 𝜇𝑦 ≡ 𝜇11 ≡ 𝜎𝑥𝑦 = E 𝑥 𝑦 − E 𝑥 E 𝑦  

 Correlation coefficient: 𝑟𝑥𝑦 ≔
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 

 Independent variables: Fxy(x, y) = Fx(x) Fy(y); fxy(x, y) = fx(x) fy(y) 

 Uncorrelated variables: σxy = 0, rxy = 0, E[x y] = E[x] E[y] 
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Correlation and climacogram  
 Linear combinations of random variables: E 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑎1E 𝑥1 +𝑎2E 𝑥2 , 

var 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑎1
2var 𝑥1 + 𝑎2

2var 𝑥2 + 2𝑎1𝑎2cov 𝑥1, 𝑥2  

 It follows that: Var
1

2

𝑥1

𝜎1
+

𝑥2

𝜎2
=

1

4
Ε

𝑥1−𝜇1

𝜎1
+

𝑥2−𝜇2

𝜎2
 

2

=
1

2
+

1

2
Cov

𝑥1

𝜎1
,
𝑥2

𝜎2
 

 Likewise: Var
1

2

𝑥1

𝜎1
−

𝑥2

𝜎2
=

1

4
Ε

𝑥1−𝜇1

𝜎1
−

𝑥2−𝜇2

𝜎2
 

2

=
1

2
−

1

2
Cov

𝑥1

𝜎1
,
𝑥2

𝜎2
  

 Thus, 𝑟12 =
Cov 𝑥1,𝑥2

𝜎1𝜎2
= cov

𝑥1

𝜎1
,
𝑥2

𝜎2
= 2 var

1

2

𝑥1

𝜎1
+

𝑥2

𝜎2
− 1 = 1 − 2 var

𝑥1

𝜎1
−

𝑥2

𝜎2
  

 As the variance is by definition non-negative, it follows that −1 ≤ 𝑟12 ≤ 1; the 
value r12 =0 corresponds to uncorrelated variables, while positive or negative r12 
corresponds to positively or negatively correlated variables,  respectively. 

 The same information as in r12 is provided by the quantity 𝜌12 ≔ var
1

2

𝑥1

𝜎1
+

𝑥2

𝜎2
, 

for which it is easily seen that 0 ≤ 𝜌12 ≤ 1 ; the value ρ12 =1/2 corresponds to 
uncorrelated variables, while values of ρ12 greater or less than ½ correspond to 
positively or negatively correlated variables, respectively. 

 The notion of ρ12 could be readily expanded to many variables. Assuming that all 
variables are identically distributed and multiplying by the common variance σ2, 
we define the so-called climacogram, 𝛾𝜅 ≔ var 𝑋𝑘/𝑘 , where 𝑋𝑘 ≔ 𝑥1 + ⋯+ 𝑥𝜅 
and 0 ≤ 𝛾𝜅 ≤ 𝜎2. 
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Many variables and stochastic processes 
 A stochastic process is a family of infinitely many random variables indexed by a 

(regular) variable, which takes values from an index set T, typically representing 
time. We distinguish between: 

 A continuous-time stochastic process x(t), when time is continuous, e.g. T = 
[0, ). 

 A discrete-time stochastic process xi, when time is discrete, e.g., T = {0, 1, 2, 
…}. 

 Time series or sample function: a realization, xi, of a stochastic process, xi or x(t), 
at a finite set of discrete time instances i (or ti). (Caution: A stochastic process is a 
family of random variables, infinitely many for discrete time processes and 
uncountably infinitely many for continuous time processes. On the other hand, a 
time series is a finite sequence of numbers).  

 First order distribution function of the process: F(x; t) := P{x(t) ≤ x}  

 Second order distribution function : F(x1, x2; t1, t2) := P{x(t1) ≤ x1, x(t2) ≤ x2}  

 nth order distribution function: F(x1, …, xn; t1, …, tn) := P{x(t1) ≤ x1, …, x(tn) ≤ xn}  

 Mean: μ(t) := E[x(t)]  

 Autocovariance: c(t; h) := Cov[x(t), x(t + h)] = E[(x(t) – μ(t)) (x(t + h) – μ(t + h))]  

 Cross-covariance of two processes x(t) and y(t): cxy(t; h) := cov[x(t), y(t + h)]  
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Stationarity 
 Central to the notion of a stochastic process are the concepts of stationarity and 

nonstationarity, two widely misunderstood and misused concepts (see 
Koutsoyiannis and Montanari, 2014), whose definitions apply only to stochastic 
processes (thus, e.g., a time series cannot be stationary, nor nonstationary).  

 A process is called (strict-sense) stationary if its statistical properties are 
invariant to a shift of time origin, i.e. the processes x(t) and x(t΄) have the same 
statistics for any t and t΄ (see further details in Papoulis, 1991; see also further 
explanations in Koutsoyiannis, 2006, 2011 and Koutsoyiannis and Montanari, 
2015). Conversely, a process is nonstationary if some of its statistics are changing 
through time and their change is described as a deterministic function of time. 

 A stochastic process is called wide-sense stationary if its mean is constant and its 
autocovariance depends on time difference only, i.e. 
 E[x(t)] = μ = constant,    Ε[(x(t) – μ) (x(t + τ) – μ)] = c(τ) 

 Convenient tools for a stationary process, which can replace auto- and cross-
covariance, are the following: 

 Climacogram: γ(k) := var[X(k)/k], where X(k) ≔  𝑥 𝑡 d𝑡
𝑘

0
. 

 Cross-climacogram of two stationary processes x(t) and y(t):  

𝛾𝑥𝑦
𝜂

𝑘 ≔ 𝜎𝑥𝜎𝑦 var
𝑋(𝑘)

𝑘𝜎𝑥
+

𝑌 (𝜂+1)𝑘 −𝑌(𝜂𝑘)

𝑘𝜎𝑦
, where Y(k) ≔  𝑦 𝑡 d𝑡

𝑘

0
 and η is lag. 
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Ergodicity 
 Stationarity is also related to ergodicity, which in turn is a prerequisite to make inference 

from data, that is, induction. Without ergodicity inference from data would not be possible. 
Ironically, several studies use time series data to estimate statistical properties, as if the 
process were ergodic, while at the same time what they (cursorily) estimate may falsify the 
ergodicity hypothesis (see example on p. 22). 

 While ergodicity is originally defined in dynamical systems (e.g. Mackey, 1992, p. 48), the 
ergodic theorem (e.g. Mackey, 1992 p. 54) allows redefining ergodicity within the stochastic 
processes domain (Papoulis 1991 p. 427; Koutsoyiannis 2010) in the following manner: A 
stochastic process x(t) is ergodic if the time average of any (integrable) function g(x(t)), as 
time tends to infinity, equals the true (ensemble) expectation E[g(x(t))], i.e., 

lim
𝑇→∞

1

𝑇
 𝑔 𝑥 𝑡 𝑑𝑡 = E[g(𝑥(t))]
𝑇

0
. 

 If the system that is modelled in a stochastic framework has deterministic dynamics 
(meaning that a system input will give a single system response, as happens for example in 
most hydrological models) then a theorem applies (Mackey 1992, p. 52), according to which 
a dynamical system has a stationary probability density if and only if it is ergodic. Therefore, 
a stationary system is also ergodic and vice versa, and a nonstationary system is also non-
ergodic and vice versa.  

 If the system dynamics is stochastic (a single input could result in multiple outputs), then 
ergodicity and stationarity do not necessarily coincide. However, recalling that a stochastic 
process is a model and not part of the real world, we can always conveniently device a 
stochastic process that is ergodic (see example in Koutsoyiannis and Montanari, 2015).  

 In conclusion, from a practical point of view ergodicity can always be assumed when there is 
stationarity. 
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A note on statistical estimation 
 Models are human inventions and not part of the real world. They are characterized by 

their mathematical structure and their parameters. The field of stochastics allows both 
testing the model structure and estimating the parameters, based on observation data. 
This is induction in practice and it is made possible by virtue of the ergodic theorem. 

 We should be aware of the differences between three concepts related to a single 
parameter θ: 

 The true but unknown value θ (often called “population” parameter) . 

 The estimator 𝜃 , which is a random variable depending on the stochastic process 
of interest x(t). 𝜃  is a model per se, not a number. 

 The estimate 𝜃  which is a number calculated by using the observations and the 
estimator. 

 Characteristic statistics of the estimator 𝜃  are its bias, E 𝜃 − 𝜃, and its variance 
var 𝜃 . When E 𝜃 = 𝜃 the estimator is called unbiased.  

 As an example, the standard estimator of the mean from a finite set of random 
variables xi (sample of size n), taken from a stochastic process  x(t) at discrete time 

instances i, is 𝜇 ≔
1

𝑛
 𝑥𝑖

𝑛
𝑖=1 ; it is easy to show that it is unbiased. 

 However, the the standard estimator of the variance from the same set of random 

variables xi is 𝛾 ≔
1

𝑛−1
  𝑥𝑖 −  𝜇 

2
𝑛
𝑖=1 ; even though it is often called unbiased, it is 

biased, unless 𝑥𝑖 are independent, which is rarely the case in geophysics (see 
Koutsoyiannis, 2016). 
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