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— 1. Abstract ~ 5, Investigation of response time vs. runoff Table 2: Correlations between power function parameters and key =
= . . . . ) _ o = ., . . . geomorphological characteristics of basins —
- The time of concentration, tc, has a crucial role in hydrological design, as an essential input of ~ Intensity relation across basins A L J k Mean b L/) :
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produced during the flood event. The proposed methodology is tested in a number of observed Fig. 6: Typical time of concentration-intensity relation =
flood events with very satisfying results in the majority of the cases. =

— rainfall-runoff modelling. In common practices it is considered as a characteristic property of the = At each basin, we ran the algorithm for six runoff depths (1,
= watershed, even t.ho.ugh theoretical.proof and ernpirical evidence irnply that it is a function ef flow, é 5, 10, 25, 50 and 100 mm), and estimated the corresponding B 021 0239 060 -030 -051  0.22 -‘:_,—Z
= and thus varies within the same basin. Here, we |mplem.ent a velocity-based appreach, nartlally = response times, t. (h), and runoff intensities, i (mm/h). 100.0 =
= |ntegrated in a §IS environment and show that the relation between tc and runoff |nten5|ty tor a = At each basin a power-type regression model of the form =
- basin is approximated almost perfectly by a power-law function. The coefficient of this relation = _ 4 B i . : —
= , == t. = t, i Pwasfit, yielding perfect regression (Fig. 6). =
~ depends on the length and mean slope of the main stream and the exponent shows a small — . .y . y =5.33x0% - -
= o o , . . . = = We computed the correlations between the multipliers, t,, < 10.0 RZ = 0.99 =
— variability within the study basins. Next, we propose a regional formula for the estimation of tcthat = ) ., . ¥ —
= . . . . . - : - and exponents, 6, against the basins’ geomorphological - -
~ is a function of runoff intensity, as well as key geomorphological characteristics of the basin, ) - - . : —
= ) : . : : . characteristics, to provide linear regression estimators of the —
- calibrated and validated in a number of Mediterranean river basins in Greece, Italy and Cyprus. = =
- . L . . ) = two parameters (Table 2). =
~ Lastly, we propose its adaptation in flood modelling, in the SCS-CN method, using a parametrised = Coeffici i | ated (R2= 0.8 b 1.0 s
- — | = . e
“= Synthetic Unit Hydrograph (SUH) whose shape is dynamically adjusted according to the runoff = SETEES i TWES %'gm |ca.nt y cor-re ated '_5) W't, /; el 08§ (mm/h) e SUS =
== = exponent 8 was mildly satisfactorily correlated with J (Fig. 7). =
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= 2 The tlme of concentratlon emgma The hydraulically most remote = __— ==
— point of the basin - RZ = 0.8943 ’_”,”’ s s e e s g
- = Definition: Longest travel time of surface runoff to the = - s e e =
~ outlet; surface runoff initially appears as overland flow . | | . — s e = =
— verland flow with P . —_— s —
= and next as channel flow (Fig. 1). velocity Voverland = 6 - =0 TooTrreccn ® =
~~ = Usually estimated through empirical approaches, on | b - L g ) -
~  the basis of geomorphological characteristics (e.g., i = :: =
= catchment area, channel slope/length), thus t_ s - 20 2o =
— considered as constant (Efstratiadis et al., 2014). o B =
?;;—_—_ . . . . Entrance point of water to s l 0.0 0.00 :
~— " Ea rly attempts to associate t_ to rainfall intensity are the hydrographic network Basin's outlet &8 0.0 20.0 40.0 60.0 80.0 0.000 5.000 10.000 15.000 20.000 -—
i o ; ] £ ;
] attributed to Izzard (1946)' Fig. 1: The time of concentration rationale = — -
—— . - - Flg 7 left C:o_e[f/c_/ent to as afunctlon of L/J right: e)rponent 6 c_rqufunctlon of/ - _E=
L R Grimaldiet al. (2012) _ so g— Meyersohn (2016) w Researchers revisited the concept of - GW:I'* d - b| h - Hl‘ p | }' . - - - =
' Il varying £, providing experimental (c.g. B owards establishing a regional formula for varying t_ =
= = \1:‘: T 3o nm_c.r:‘“*a.e Grimaldi et al., 2012) or theoretical — = t_can be expressed by a generalized power-type model, whose parameters t, and 8 are expressed as functions of
— =E= I [ G " = : C . _ =
= o \ S 1E| oo formulas (e.g., Meyersohn, 2016) for ~ each basin’s characteristics, i.e. tg = L J% and 8 = B, J F1.
= == £, J J ol o ] estimating t. as a negative power = The proposed regional formula contains four global parameters, i.e. a{, a,, Bo and B4, that have been calibrated
— 01 1 10 100 1000 10000 : i = . . ) . . . . —
N o . | (@) cooses Ramar oy, £ en function of flow (Fig. 2). — by fitting the model to the already derived time of concentration-intensity relations. =
m o 1 10 T o) 10 | = . ) ) . : . . . =
~  Fig. 2: Literature examples of plotting varying t. against excess rainfall intensity or peak discharge — = Conclusively, the time of concentration for given runoff intensity can be estimated as a function of two key —
~ | * t.may change up to an order of magnitude during and between flood events, affecting key ~ geomorphological characteristics, i.e. the main stream length (km) and slope (%). =
== hydrological design components (e.g. unit hydrograph). 10509 0226 -
= . . L . : = = —— 70286477 =
~ " Treating t_as variable rather than constant implies a radical change to the philosophy of everyday lc = 70300 l =
— flood engineering — - e
= L ., & 17.«Tinkering» the Synthetic Unit Hydrograph and the SCS-CN method . G e =
: o] o . = . Fig. 8: Modified SUH
= 3 GIS based hvbrld approach for assouatmg basm S CLLABER 2 Fig, 5: Flowchart g ’ . =
- ) of the algorithm &= : : : 59 —
— response time to runoff (T f J ~— = The UH allows implementing the concept of varying t, y =
— . Pz RBunoff height [.‘.i.-_lu::-l : . . . bl . R
E 'G'J-V P | Kinematic approaCh’ employed along the pa— . '.I "I.If 11..__._]$Ft of [||“'.:i|:]:mrll E Wlthln fIOOd mOdeIIIng- N 50 QP E
— ;4‘} main stream of the basin, discretized into a f_@ y [:‘” - = Alinear rising limb and an exponential recession limb; E =
— “ = . . . @ (t) = Qpe Xt -
= =" relatively small number of segments -] = parametrized time to peak and base time t,, = b * t, + & N P = =
= according to a user-specified flow - Busio'srpone ___’_ L = d/2andty, = cxt.+d,/2, where d, is the unit rainfall 2, =
| e o accumulation threshold (Fig. 3). -~ duration (Fig. 8). ; —
— _/? * Flow evolves from upstream to downstream ~ " t.was considered varying at each time step of every ; —
- e et following key assumptions of the rational event, estimated from the power-law function, for each 0 20 0 60 80 100 S
- L = : . ] — . o . . ——Time to peak t, Time step Rage it _:_-
= method., i.e. a constant runoff depth, P, is = individual runoff intensities of the event. meh B
S o assigned, uniformly distributed over sub- = = The initial losses parameter of the SCS-CN method (% of o Fig. 9: Example of varying SUH against runoff intensities. - L.
= |i_ \ie basins. = max. retention capacity) was also considered varying 160 =
== = across events. A =
== P ﬁm} -— | = : , w 120 -
= S & (] = = The dynamically adjusted hydrographs can change T 100 =
= o - — = dramatically in different events of the same basin (Fig. 9). e <0 —
— e : = s 60 —
— L T = For given channel geometry, we = & o ==
—] 7Y Ciimnck i = — = ——— 2 -~
= = compute the travel time along the ESubled Geonorhologieal a 20
— — Li__ channel, thus the response time so far = characteristics of study basins ' 0 40 e s 100 120 140 =
— £ is the sum of all upstream travel times. ~Basin (outlet) "A (km?) L (km) J (%) Time step =
= o . _ _ ERaflna 123 30 3.1 e e —— ——— —— ——— — —— —— ———— —— ———— —————— —
N (et = By repeating calculations for different ~sara/potamos 144 32 38 3. Model validation =
~ "= Fig. 3: ArcGIS model for river runoff depths, we can establish a t_vs. P | Xerias 112 34 45§ ™= —_
~ [ A segment delineation and relation. - Nedontas 115 22 74 = 00 ” = Calibration of initial =
— #Q spatial calculations in Model  Fig. 4: Model results along Ebaganza 125 33 36l W Observed Observed loss, time to peak =
== ~ Scoltenna 130 15 11.9; - v . . ’ P —
“ loutputspltedtsp Bu:/der Nedontas r/ver for P= 10 mm — - S Simulated s Simulated . ——
" a . P S A— e o i S €11 O 329 38 39 = wE Eu .= and base time =
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== ‘B sl &= 3 arameters in 70 =
— 4 Study basms and mput data - 139 35 32 = wi §x . P e fu —-
— , & =8 events of various
~ = 24 small to medium-sized Mediterranean basins from Italy, Greece and Cyprus (Table 1). = :Eosse””a 13873 ig 168'59 N basins, considering  —
== - . . ~=leo 9 | . =
~ = Foreach basin, the drainage area, A (km?), main stream length, L (km) and slope, J (%). . Mesohora 639 41 9.0 | . i r s =
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= For each.stream segment a rectangular cross-section was assumed, estimating its width b from BlViontone 236 47 a2 | ime step Time step event dependingon =
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~® Manning’s coefficient n of each segment was assigned by accounting for the bed material - 29432 581 7 — . W e intensity of each =
5 = For the upstream overland flow a roughness coefficient k was assigned using the CORINE land ~ Mella (1) 130 20 88 . =" smdae) =, simulated _ time step. —
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