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A B S T R A C T

The generation of hydrometeorological time series that exhibit a given probabilistic and stochastic behavior
across multiple temporal levels, traditionally expressed in terms of specific statistical characteristics of the ob-
served data, is a crucial task for risk-based water resources studies, and simultaneously a puzzle for the com-
munity of stochastics. The main challenge stems from the fact that the reproduction of a specific behavior at a
certain temporal level does not imply the reproduction of the desirable behavior at any other level of ag-
gregation. In this respect, we first introduce a pairwise coupling of Nataf-based stochastic models within a
disaggregation scheme, and next we propose their puzzle-type configuration to provide a generic stochastic si-
mulation framework for multivariate processes exhibiting any distribution and any correlation structure. Within
case studies we demonstrate two characteristic configurations, i.e., a three-level one, operating at daily, monthly
and annual basis, and a two-level one to disaggregate daily to hourly data. The first configuration is applied to
generate correlated daily rainfall and runoff data at the river basin of Achelous, Western Greece, which preserves
the stochastic behavior of the two processes at the three temporal levels. The second configuration disaggregates
daily rainfall, obtained from a meteorological station at Germany, to hourly. The two studies reveal the ability of
the proposed framework to represent the peculiar behavior of hydrometeorological processes at multiple tem-
poral resolutions, as well as its flexibility on formulating generic simulation schemes.

1. Introduction

Today, most water recourse studies employ Monte Carlo simula-
tions, by running deterministic models that are driven by synthetic
inputs, which are typically generated by stochastic models. In this
context, the key requirement for extracting statistically consistent
outcomes is the concise representation of the probabilistic behavior and
stochastic structure of the input hydrometeorological processes (e.g.,
rainfall, runoff, temperature). It is well-known that these exhibit a
significantly complex regime, the most prominent aspects of which are
non-Gaussianity, intermittency, auto- and cross-dependence, as well as
periodicity (Koutsoyiannis, 2005; Moran, 1970; Salas et al., 1980). All
the above peculiarities dictate the specifications of a good simulation
model.
Actually, the first two characteristics (non-Gaussianity and inter-

mittency) are directly associated with the marginal properties of the
process, and imply the need for a suitable probability distribution

model. On the other hand, auto- and cross-dependencies are associated
with the stochastic (joint) properties of the process, both in time and
space, and point out the need for stochastic simulation models per se. In
fact, if the physical processes to simulate were not (auto- or cross-)
correlated, the problem would be substantially simpler, as the pro-
duction of synthetic data would be trivially made by generating uni-
form numbers and then employing probability integral transformations.
Finally, periodicity introduces further complexity, since it implies re-
presenting the processes as cyclostationary, thus differentiating their
marginal and joint properties not only across different temporal scales
but also across seasons (or systematically repeated time intervals, in
general).
During more than a half century, the need for good synthetic data

generators, to be used within risk-aware decision-making frameworks
for design, assessment and operation of water resource systems (Celeste
& Billib, 2009; Feng et al., 2017; Giuliani et al., 2014; Haberlandt et al.,
2011; Koutsoyiannis & Economou, 2003; Paschalis et al., 2014;
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Tsoukalas et al., 2016; Tsoukalas & Makropoulos, 2015a,b) has trig-
gered numerous researchers for developing a plethora of stochastic
approaches and associated modelling tools. These can be primarily
classified into two broad categories, i.e., single-scale and multi-scale.
The former ensure the reproduction of a set of statistical and stochastic
properties at a unique time scale of interest, i.e., the time interval of
simulation, while the latter attempt to simultaneously represent the
desirable properties of the simulated data, as well as the properties of
the aggregated data at coarser temporal scales.
The numerous single-scale simulation schemes that have been de-

veloped so far can be further classified into: 1) linear stochastic models,
also known as time series generators (e.g., Bras & Rodríguez-Iturbe,
1985; Koutsoyiannis, 1999, 2000; Matalas & Wallis, 1976; Matalas,
1967; Salas et al., 1980; Thomas & Fiering, 1962); 2) point process
models (Bo et al., 1994; Burton et al., 2008; Evin & Favre, 2008;
Kaczmarska et al., 2014; Kilsby et al., 2007; Onof et al., 2000;
Tarpanelli et al., 2012); 3) two-part models, i.e., product models of
occurrence and amount that are represented as discrete and continuous
processes, respectively (e.g., Ailliot et al., 2015; Baigorria & Jones,
2010; Breinl et al., 2013, 2015; Katz, 1977; Khalili et al., 2009;
Richardson & Wright, 1984; Srikanthan & Pegram, 2009; Todorovic &
Woolhiser, 1975; Wilks, 1998); 4) resampling methods (Caraway et al.,
2014; Clark et al., 2004; Ilich, 2014; Ilich & Despotovic, 2008; Lall &
Sharma, 1996; Mehrotra et al., 2006; Mehrotra & Sharma, 2007;
Rajagopalan & Lall, 1999; Wójcik & Buishand, 2003); and 5) copula-
based models (e.g., Bárdossy & Pegram, 2009; Chen et al., 2015; Hao &
Singh, 2011, 2013; Jeong & Lee, 2015; Lee, 2017; Lee & Salas, 2011;
Serinaldi, 2009).
By design, single-scale simulation models attempt to reproduce the

desirable statistical and stochastic behavior within the synthetic data at
the scale of simulation, yet they provide limited control to the prop-
erties of the same process, when aggregated at higher (coarser) time
scales. It is well-known that the reproduction of the probabilistic and
stochastic behavior of a process, expressed either in terms of a dis-
tribution function or a set of statistical properties, at a certain time scale
does not ensure the reproduction of the associated characteristics of the
aggregated process at any other time scale.
The necessity for multi-scale consistency has been early recognized by

the hydrological community, through the pioneering work by Harms
and Campbell (1967). Actually, from the first steps of Monte Carlo
approaches in water resources it has been accepted that that the out-
comes of stochastic analyses are associated with the overall statistical
and stochastic behavior of the input hydrometeorological processes,
which may extend far beyond the time interval of the underlying (de-
terministic) simulation model (see, Klemeš, 1981; Koutsoyiannis,
2005). For instance, the design and operation of large reservoir systems
that employ overyear regulation, which are typically modelled in
monthly intervals, is strongly dictated by the probabilistic and sto-
chastic properties of the aggregated inflows, at the annual and even
over-annual scales. Similarly, the outputs of continuous flood simula-
tion models, driven by fine-time (e.g., hourly) rainfall series, are sub-
stantially affected by the sequence of accumulated rainfall, as the runoff
production strongly depends on the antecedent soil moisture condi-
tions. In this respect, multi-scale consistency in stochastic simulation
can be regarded as an operational sine qua non.
Furthermore, multi-scale consistency is directly linked with the so-

called issue of low-frequency variability or over-dispersion (i.e., the
deficiency to reproduce the process’ variance at higher time scales),
which is encountered in many popular daily weather-generation models
(e.g., Baigorria & Jones, 2010; Breinl et al., 2013, 2015; Brissette et al.,
2007; Katz & Parlange, 1998; Khalili et al., 2009; Lee, 2017; Mehrotra
et al., 2006; Mhanna & Bauwens, 2012; Serinaldi, 2009; Srikanthan &
Pegram, 2009; Wilks, 1998; Wilks & Wilby, 1999).
Multi-scale simulation schemes, with the exception of few specifi-

cally designed models (e.g., Langousis & Koutsoyiannis, 2006;

Rodriguez-Iturbe et al., 1987), is typically built upon the disaggregation
paradigm. The essential element of disaggregation is the additive prop-
erty, which enables the generation of multi-scale consistent time series
via the transfer of information among different temporal scales. This
implies that the sum of the generated variables at the lower level (e.g.,
monthly) at any period should add to the corresponding value at the
higher level (e.g., annual), which is assumed known, either from ob-
served or synthetic (simulated) data. This property distinguishes dis-
aggregation from downscaling (e.g., Cannon, 2008; Lombardo et al.,
2012; Wilks & Wilby, 1999), which focus on generating lower level time
series that statistically resemble the properties of higher level ones, and
not necessarily honor the additive constraint.
As already mentioned, the beginning of the quest (at least in hy-

drological domain) for multi-scale simulation models can be attributed
to Harms and Campbell (1967), who developed a two-level version of
the classical stochastic model by Thomas and Fiering (1962) that pre-
serves some key statistical properties of the observed data at both the
annual and monthly scale. A little later, the interest on such methods
reinforced with the theoretical research on disaggregation by Valencia
and Schakke (1973) and Mejia and Rousselle (1976). However, the
proposed methods were fully general only for normally distributed
variables, thus limiting their applicability to a relatively narrow range
of processes and scales.
The next generation approaches offered multi-scale schemes that

utilized the notion of the so-called adjusting procedures (Grygier &
Stedinger, 1988; Harms & Campbell, 1967; Koutsoyiannis, 2001;
Koutsoyiannis & Manetas, 1996; Stedinger & Vogel, 1984). These aimed
at coupling single-scale simulation models of any type, operating in-
dependently at different time scales. The rationale is generating low-
level synthetic data as auxiliary information, and next adjusting them to
the known higher-level values, by using relatively simple algebraic
transformations, such as the partial sums at the low level equal the
values of the higher level. Koutsoyiannis and Manetas (1996) and
Koutsoyiannis (2001) investigated several adjusting procedures, and
also standardized the concept of repetitive sampling (kind of Monte Carlo
approach), to ensure that the partial sums are close to the given values.
This can be regarded as an informal method of conditional sampling,
that can significantly improve the efficiency of such schemes (for an
early formulation of this idea see Glasbey et al., 1995).
Adjusting procedures of varying complexity have been implemented

within a number of disaggregation-based schemes, in order to couple
single-scale simulation models (such as the ones described above)
across various time scales. In particular, they were used within linear
stochastic models (e.g., Allard & Bourotte, 2015; Efstratiadis et al.,
2014; Koutsoyiannis et al., 2003; Lombardo et al., 2012; Segond et al.,
2006; Tsoukalas et al., 2018b), point processes (e.g., Glasbey et al.,
1995; Kossieris et al., 2015, 2016; Koutsoyiannis & Onof, 2001; Onof
et al., 2005), two-part models (Evin et al., 2018; Shao et al., 2016),
resampling methods (e.g., Breinl & Di Baldassarre, 2019; Lee et al.,
2010; Li et al., 2018) and copula-based models (e.g., Gyasi-Agyei, 2011;
Gyasi-Agyei & Melching, 2012). It is highlighted that the overall si-
mulation capabilities of adjusting-based schemes are determined by the
underlying simulation models, which consist the core data generation
mechanism.
In addition, several modern schemes for establishing multi-scale

consistency are built upon the concepts of scaling and multifractality
(Kantelhardt et al., 2006; Tessier et al., 1996; Veneziano et al., 2006).
Typically, these employ multiplicative random cascade models (Gupta
& Waymire, 1990, 1993) to generate multi-scale consistent (in terms of
typically high-order moments) realizations (Deidda et al., 1999;
Menabde et al., 1997; Molnar & Burlando, 2005; Müller & Haberlandt,
2015, 2018; Olsson, 1998; Rupp et al., 2009). Recent works by
Lombardo et al. (2012) and Pui et al. (2012) provide comparative
studies involving such models, as well as alternative downscaling or
disaggregation methods.
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Besides the vast effort made so far, the quest for full generality and
full consistency across multiple scales (herein the focus is on temporal
scales, but may also concern spatial ones) still remains a puzzle.
Recently, Tsoukalas et al. (2018a) highlighted that many of widespread
schemes, including linear stochastic models with non-Gaussian in-
novations, point-process models and resampling techniques, emphasize
the reproduction of a specific set of summary statistical characteristics,
which arguably cannot capture the full behavior of a random process.
As also shown, under some common conditions these may lead to
bounded dependence patterns, which are not realistic (Tsoukalas et al.,
2018d). On the other hand, two-part and copula-based models are ac-
tually able to explicitly account for the distributional properties of si-
mulated processes, yet they are mainly designed to represent specific
correlation structures. For instance, two-part models often neglect
temporal dependencies, while copula-based schemes typically account
for temporal dependencies spanning over only few time lags.
In this work, our focus is not on disaggregation per se, rather than

we employ the flexibility provided by the concepts of repetitive sam-
pling and adjusting procedures to link individual multivariate (or uni-
variate) stochastic models, in order to represent the varying regime of
hydrometeorological processes across multiple temporal scales. Our
emphasis is to shift from the classical paradigm of describing a process
in terms of few summary statistics (in particular, moments up to third
order and low order correlation coefficients), to the explicit re-
presentation of its marginal and stochastic properties, in terms of dis-
tribution functions and theoretical correlation structures, respectively.
This is accomplished by building upon a recently introduced (in hy-
drology) class of stochastic models, the so-called Nataf-based models,
named after the contribution of Nataf (1962), and the further devel-
opments by Tsoukalas et al. (2017, 2018a, c), as well as by Papalexiou
(2018). These are able to simulate multivariate, stationary and cy-
clostationary processes with any marginal distributions and any cor-
relation structures. These properties allow for characterizing Nataf-
based models as good single-scale stochastic simulators, and thus ap-
propriate data generators within multi-scale adjusting-based schemes.
Taking advantage of the above concepts, we propose a scale-free dis-
aggregation approach for the pairwise coupling of Nataf-based models,
aiming to preserve the desirable marginal distributions and correlation
structures. The proposed approach is next referred to as Nataf-based
Disaggregation to Anything (NDA). Eventually, a chain configuration of
NDA allows for developing puzzle-type, i.e., modular, simulation
schemes that ensure consistent simulations across any sequence of
temporal scales. A sequence may involve any combination of stochastic
models, stationary or cyclostationary.
This paper is organized as follows: Section 2 discusses the core

generation procedure, through Nataf-based stochastic models, Section 3
describes the disaggregation-based coupling approach, i.e., NDA, de-
signed to maintain consistency across pairwise scales, and Section 4
presents the puzzle-type multi-level simulation scheme. Next two sec-
tions demonstrate two characteristic configurations of this puzzle.
Particularly, Section 5 presents a three-level multivariate scheme, ap-
plied for generating synthetic rainfall and runoff data at the river basin
of Achelous, Greece. On the other hand, the configuration of Section 6
aims at synthesizing hourly rainfall data from a given (i.e., observed)
daily record, thus illustrating the efficiency of the method against
challenging disaggregation problems. Finally, Section 7 summarizes the
overall modelling framework and discusses its potential applications
and future improvements.

2. Nataf-based stochastic models

In a recent work, Tsoukalas et al. (2018a) highlighted the need for
generalized generation schemes, which are able to represent processes
from any distribution and any correlation structure. This has been also
regarded as a shift in classical stochastic modelling, emphasizing on the

reproduction of a finite set of essential statistical characteristics (cf.
Matalas & Wallis, 1976), estimated from the historical data.
An effective and efficient handling of this requirement is offered by

the so-called Nataf-based models (Tsoukalas, 2019; Tsoukalas et al.,
2017, 2018a, 2018c) that use the notion of parent-Gaussian processes
(Papalexiou, 2018). As the name suggests, these are built upon a quite
old idea by Nataf (1962), who proposed the (non-linear) mapping of an
auxiliary multivariate Gaussian distribution in order to construct the
joint distribution of random variables with arbitrary marginal dis-
tributions (whose variance exists; an assumption implied throughout
this paper). Using a similar rationale, it is possible to establish sto-
chastic processes with any target marginal distribution and correlation
structure (expressed in terms of Pearson’s correlation coefficient)
through the mapping of an appropriately specified auxiliary (stationary
or cyclostationary) Gaussian process (Gp) with zero mean and unit
variance, to which an equivalent correlation structure is assigned (see
details below). The mapping operation is typically a non-linear func-
tion, often implemented through the inverse cumulative distribution
function (ICDF). These approaches can be viewed as Gaussian copula-
based schemes (since they rely on the mapping of a Gaussian process) or
non-linear versions of the classic (i.e., Gaussian) linear stochastic
schemes (Tsoukalas et al., 2018c). Nataf-based models have been
widely employed within the domain of operations research (e.g., Biller
& Nelson, 2003; Cario & Nelson, 1996) and probabilistic engineering
mechanics (e.g., Deodatis & Micaletti, 2001; Grigoriu, 1998), while
their application in hydrological modelling was, until recently, un-
known. Beyond the aforementioned works, see the work of Kossieris
et al. (2019), who for the first time, employed such models for the si-
mulation of water demand processes at fine time scales. Interestingly,
similar ideas can be revealed in several classical hydrological papers; cf.
review by Tsoukalas et al. (2018a) and Tsoukalas (2019). Beyond the
hydrological domain, more details about the Nataf’s model, as well as
its relationship with the Gaussian copula, are provided by Lebrun &
Dutfoy (2009).
Herein we briefly discuss the theoretical background and key im-

plementation steps of the proposed, Nataf-based, simulation approach,
also providing guidelines for its optimal use. For convenience, we first
present the most involved modelling case of multivariate cyclosta-
tionary processes, and next deal with the simpler case of stationary
processes. For demonstration, we also present a hypothetical study in-
volving the simulation of contemporaneous cross-correlated processes.
We remark that throughout the paper, the underbar notation (e.g., x) is
used to denote a random variable (RV), while the italic typeface (e.g.,
x) denotes a realization of it.

2.1. Cyclostationary processes

In general, cyclostationarity is regarded as a special type of non-
stationarity that implies a cyclic switching on the marginal and joint
characteristics of the process over a period (e.g., year). To elaborate, let
x{ }s n, be an m-dimensional multivariate cyclostationary process. Each
individual process x{ }s n

i
, is consisted of =s S1, , sub-periods (e.g.,

months), while >n , denotes the time index. The sub-period (i.e.,
season) that corresponds to a time step n may be recovered by

=s n Smod( ), while when = =n S Smod( ) 0 we get s . This process can
also be written as x s t, , where now >t , denotes the period (e.g.,
year). In this formulation, the period t is related with the time index n
and sub-period s by, = +t n s S1 ( ) . For convenience, the first for-
mulation will be employed in the following paragraphs. Due to cy-
clostationarity, each process x s n

i
, is characterized by seasonally varying

(herein referred to as target) marginal distributions =F P x x( )x s
i

s
i ,

while their correlation structure is expressed through the Pearson’s
correlation coefficient = x x: Corr[ ],s s

i j
s
i

s
j

,
, where denotes the time

lag (the index n is omitted for simplicity). Also let z{ }s n, denote an
auxiliary m-dimensional cyclostationary standard Gp with z (0, 1).s

i
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Due to cyclostationarity, the Gp is completely defined by its correlation
structure, which is expressed through the so-called equivalent correla-
tion coefficients = z z: Corr[ ]s s

i j
s
i

s
j

,
, . The target process x{ }s n, can be

established through the auxiliary process z{ }s n, via the mapping func-
tion:

=x F z( ( ))s n
i

x s n
i

,
1

,s
i (1)

where F
x

1
s
i denotes the ICDF of F xs

i and ( ) denotes the cumulative
density function (CDF) of the standard Gaussian distribution. This
mapping allow us to relate the target correlation coefficients s s

i j
,
, with

the equivalent correlation coefficients s s
i j
,
, of the auxiliary Gp

(Tsoukalas et al., 2017, 2018a). Specifically, they are related by:

=
F z F z z z z z x x

x x

( ( )) ( ( )) ( , ; )d d E[ ]E[ ]

Var[ ]Var[ ]
s s
i j x si

s
i

x s
j s

j
s
i s

j
s s
i j

s
i s

j
s
i s

j

s
i s

j,
,

1 1
2 ,

,

(2)

where E[ ], and Var[ ], denote the corresponding mean and variance
(known from the target distributions), while z z( , ; )s

i
s
j

s s
i j

2 ,
, stands

for the bivariate standard normal probability density function (PDF).
The relationship of Eq. (2) is abbreviated as:

= F F( | , )s s
i j

s s
i j

x x,
,

,
,

s s
ji (3)

2.2. Stationary processes

A similar relationship can be established between a target multi-
variate stationary process x{ }t and an auxiliary multivariate stationary
standard Gp z{ }.t Particularly, let x{ }t be comprised of m univariate
stationary processes x{ },t

i indexed using >t . Furthermore, let each
one be described by a target CDF, =F P x x( )x

ii and let their corre-
lation structure be expressed by = +x x: Corr[ ]i j

t
i

t
j, . Similarly, the pro-

cess z{ }t is a m-dimensional stationary standard Gp, with equivalent
correlation structure, = +z z: Corr[ ]i j

t
i

t
j, . Using a similar rationale to

the cyclostationary case, each target process is established by,
=x F z( ( ))t

i
x t

i1
i . In this case, the relationship between the target and

equivalent correlation coefficients reads (e.g., Biller & Nelson, 2003;
Tsoukalas et al., 2018c):

=
+ +F z F z z z z z x x

x x

( ( )) ( ( )) ( , ; )d d E[ ]E[ ]

Var[ ]Var[ ]
i j x t

i
x t

j
t
i

t
j i j

t
i

t
j i j

i j
,

1 1
2

,
i j

(4)

which is abbreviated as:

= F F( | , )i j i j
x x

, , i j (5)

Both Eqs. (3) and (5) imply that the correlation structure of the
target process depends on the target distributions and the equivalent
correlation structure of the auxiliary Gp. We underline that the term
equivalent is used to highlight the fact that the correlation coefficients of
the target process and those of the auxiliary Gp, rarely coincide (due to
the non-linear mapping operation; see Embrechts et al. (1999)). Parti-
cularly, it can be shown (Liu & Der Kiureghian, 1986) that for any pair
of correlated RVs xi, x j established through a pair of correlated Gaus-
sian RVs zi, z j using a mapping operation analogous to Eq. (1), i.e.,

=x F z( ( ))i
x

i1
i , we get | | | |i j i j, , , where i j, and i j, denote the target

and equivalent (i.e., in the Gaussian domain) correlation coefficients,
respectively (cf. Fig. 1 in Tsoukalas et al. (2018a)).

2.3. Estimation of equivalent correlation coefficients

Given Eqs. (3) and (5), it is possible to establish a variety of ap-
proaches to simulate processes with a priori specified (target) marginal
distributions and (target) correlation structures. This specification is
subject to several criteria, which are discussed in Sections 2.4–2.6.

Nevertheless, an essential step for ensuring the reproduction of
target correlations through Eq. (3) or Eq. (5) (for cyclostationary and
stationary processes, respectively) is the identification of the equivalent
correlation coefficients. This is implemented by establishing and then
inverting the corresponding ( ) relationships.
Among the available methods (e.g., Biller & Nelson, 2003; Cario &

Nelson, 1996, 1997; Liu & Der Kiureghian, 1986), herein we will em-
ploy the Monte-Carlo procedure by Tsoukalas et al. (2017, 2018a), due
to its efficiency and straightforward implementation, since it avoids the
use of integration methods (for a method comparison see, Tsoukalas
et al., 2018c).

2.4. Admissible marginal distributions

As already explained, Nataf-based models can be used for the si-
mulation of processes with arbitrary (continuous, discrete or mixed-
type) marginal distributions and valid correlation structures, provided
that their combination is feasible (i.e., leads to a positive definite cor-
relation structure) and the variance of the distributions is finite (which
is true when modelling hydrometeorological processes; Koutsoyiannis
(2016)). Regarding the marginal distributions, and in contrast to the
classical working paradigm of stochastic hydrology, it is stressed that by
design, Nataf-based models do not aim at resembling the process’s
moments; in fact, they aim to simulate processes with target, a priori
specified, distributions, in order to fully describe their marginal prop-
erties (cf. discussion by Tsoukalas et al. (2018a)). In this respect,
questions about skewness handling or “how many moments should be
reproduced for approximating the distribution of a specific process?” are
now out of interest.
For instance, within Nataf-based schemes, simulating a process

following a Gamma or Log-Normal distribution requires the identifi-
cation of just two parameters (shape and scale), which can be easily
determined by straightforward methods. Even the classical method of
product moments would ensure reliable estimations, since in these
specific cases it only requires computations up to second order
(Lombardo et al., 2014).
In a more general context, the Nataf-based approach offers the

flexibility to employ robust fitting methods for parameter estimation,
that rely on alternative notions, such as maximum-likelihood, prob-
ability weighted moments (Greenwood et al., 1979) or L-moments
(Hosking, 1990). In our view, this is a major advantage, since it can
avoid the data-driven estimation of high-order moments (e.g., kurtosis
or higher), since it is well known that they are prone to sample un-
certainties and bias (Lombardo et al., 2014; Matalas, 1967p. 945).
Appendix A summarizes all distribution models employed in this work,
which were generally fitted using the L-moments method.

2.5. Specific case: mixed distributions

Mixed distributions are often advocated within hydrological appli-
cations, either to better represent the tails of the understudy hydro-
meteorological variable (e.g., Evin et al., 2018; Foufoula-Georgiou &
Lettenmaier, 1987; Furrer & Katz, 2008; Li et al., 2013; Wilks, 1998), or
to simultaneously represent the dual character of intermittent processes
(e.g., Bárdossy & Pegram, 2016; Cannon, 2008; Papalexiou, 2018;
Serinaldi, 2009; Tsoukalas et al., 2018c; Williams, 1998). Herein we
briefly describe the second case, which can be accomplished using a
zero-inflated (also referred to as zero-augmented or discrete-continuous)
distribution model. This model is composed of both a discrete and a
continuous part, and its CDF is given by:

=
=

+ >F x
p x

p p G x x( )
, 0

(1 ) ( ), 0x
D

D D x (6)

The discrete part is represented by = =p P x: ( 0)D , and denotes the
probability of a zero value. The continuous part is given by
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= = >>G F P x x x: ( 0)x x x 0 , which denotes a continuous distribution
function for the non-zero data. For instance, within the context of in-
termittent hydrometeorological processes (e.g., rainfall), pD stands for
the probability of a dry interval (i.e., probability dry), andGx represents
the distribution of positive amounts. In real-world situations, the most
straightforward way to specify pD and Gx is through the available data.
Specifically, pD is estimated as the ratio of dry occurrences to the total
number of observations, while Gx can be identified by fitting a con-
tinuous distribution function to the positive amounts. For completeness,
the ICDF of the zero-inflated model, which can be used for RVs gen-
eration, is given by:

= <( )F u
u p

G p u( )
0, 0

, 1x

D

x
u p

p D

1
1 ( )

(1 )
D
D (7)

The implementation of Eq. (6) for simulating intermittent process,
in a context similar to Nataf-based models, has been recently justified
by Papalexiou (2018). See also the similarly constructed three-compo-
nent distribution function employed by Kossieris et al. (2019), aiming
to simultaneously describe both the discrete-continuous character (i.e.,
intermittent nature) and tail behavior of water demand processes at fine
time scales (up to 1 minute).

2.6. Admissible correlation structures

Classical stochastic modelling strategies are designed to reproduce a
limited number of low-order dependence metrics in space and time,
typically expressed in terms of Pearson’s correlation coefficients.
Actually, most of them still follow the specifications posed by Matalas
and Wallis (1976), thus aiming to reproduce just two dependencies, i.e.,
lag-1 autocorrelations and lag-0 cross-correlations. We remark that
herein, the term spatial correlation will denote any dependence be-
tween different processes, either referring to different geographical
locations or not.
More modern approaches suggest the use of theoretical models for

the mathematical description of the auto- and cross-dependence struc-
tures that span over any lag (e.g., Gneiting, 2000; Gneiting & Schlather,
2004; Koutsoyiannis, 2000, 2016; Papalexiou, 2018). These typically
concern stationary processes, and are based on the notions of correla-
tion, spectrum or variance over aggregated time scales, which are all
interrelated (see, Beran, 1994; Koutsoyiannis, 2016). The use of theo-
retical dependence models instead of sample statistics is mostly implied
from the significant uncertainties and biases of data-driven estimates.
Arguably, the most popular type of theoretical dependence models

are correlation-based ones. These can be further classified to full spa-
tiotemporal models (Chilès & Delfiner, 1999; Genton & Kleiber, 2015;
Gneiting et al., 2010), which simultaneously model the auto- and cross-
correlation structure of the process, and separable (e.g., Genton, 2007;
Mardia & Goodall, 1993; Rodríguez-Iturbe & Mejía, 1974), which de-
scribe the two correlation structures independently, as the product of
two functions (i.e., one for the spatial and one for the temporal com-
ponent).
Throughout this work, and without loss of generality (since alter-

native models can be used), we will employ the separable approach.
Specifically, we model directly the lag-0 contemporaneous cross-cor-
relations of the processes, while the auto-dependence structure of each
individual stationary process is modelled using the two-parameter
Cauchy-type autocorrelation structure (CAS), introduced by
Koutsoyiannis (2000):

= +( , ) (1 ) , 0CAS 1 (8)

where > 0 and > 0 are model parameters. The specific case = 0 is
also feasible, through the use of L’ Hôpital’s rule, and represents ARMA-
type processes (see, Koutsoyiannis, 2000). By construction, CAS can
resemble a wide spectrum of processes, characterized by both short-

and long-range dependence, i.e., SRD and LRD (e.g., Efstratiadis et al.,
2014; Tsoukalas et al., 2018c). SRD refers to a stochastic process with a
weak autocorrelation structure (e.g., exponential) that decays rapidly,
while LRD implies the exact opposite. In this case, the autocorrelation
structure is a slowly decreasing function (typically power-type) of the
time lag (Beran, 1994; Beran et al., 2013; Koutsoyiannis, 2002;
O’Connell et al., 2016). This type of auto-dependence is also associated
with the widely studied Hurst phenomenon (Hurst, 1951), nowadays
also referred to as Hurst-Kolmogorov (HK) dynamics (Koutsoyiannis,
2011; Koutsoyiannis & Montanari, 2007), as well as with the fractional
Gaussian noise process (e.g., Mandelbrot & Wallis, 1969). These prop-
erties and its parsimonious character (as the model has only two
parameters), make CAS a good candidate model for modelling hydro-
meteorological processes. Regarding parameter identification, the most
straightforward option is to fit CAS to the empirical estimates of au-
tocorrelation coefficients. However, this simple approach neglects the
estimator’s biases (e.g., Beran, 1994; Koutsoyiannis, 2016; Marriott &
Pope, 1954), which are considered to be significant in the presence of
LRD and for large time lags (due to small sample sizes). In such cases, it
may be advantageous to explicitly account for bias by using alternative
robust parameter identification procedures, such as the climacogram
(e.g., Dimitriadis & Koutsoyiannis, 2015; Koutsoyiannis, 2016), or even
through empirical approaches, accounting for regional information and
user expertise (Efstratiadis et al., 2014).
In summary, the combined use of Nataf-based models along with

theoretical distribution functions and theoretical correlation structures
(e.g., CAS), offers several advantages, such as:

• easy exploration of alternative scenarios (by perturbing the models
parameters);
• regional transferability (through spatial interpolation);
• improved model stability (since a valid correlation structure owes to
be positive definite; a fact guaranteed by a proper theoretical
model);
• decoupling of parameter identification (involving the parameters of
the distribution model and the theoretical correlation structure) and
generation mechanism.

2.7. The auxiliary Gaussian processes

In order to deploy a Nataf-based stochastic simulation scheme, it is
finally required to simulate realizations from an auxiliary Gaussian
process (Gp) model that preserves the equivalent correlation coeffi-
cients, which in turn, after the mapping procedure, reproduces the
target stochastic structure.
A convenient option is the use of Gaussian linear stochastic models

(often called time series models). Characteristic examples, adapted
from operations research, are, the works of Cario and Nelson (1996)
and Biller and Nelson (2003), who used as an auxiliary Gp, univariate
and multivariate stationary AutoRegressive (AR) processes, respec-
tively. The resulting Nataf-based models are termed AutoRegressive To
anything (ARTA) and Vector AutoRegressive To Anything (VARTA). A
notable difference of these works compared to our approach lies in the
fact that the previous works did not employ the notion of theoretical
correlation structures. This implies that the order p of the associated AR
model dictates the correlation structure of the process to simulate. This
may be also the reason for the typical use of low order models. On the
other hand, if the auto-correlation structure has been a priori specified
(e.g., using CAS), it is possible to employ high-order models (e.g., AR
(p)) without sacrificing parsimony. In this case, the order of the Gp
model solely controls the degree of resemblance of the correlation
structure up to the desired lag (since a higher order model provides
more flexibility), while the associated model’s parameters can be
viewed as internal coefficients (for a bivariate example, see Section
2.9).
In the water resources domain, a comprehensive treatment of
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multivariate and univariate Nataf-based schemes, based on stationary
and cyclostationary Gaussian linear stochastic models, is presented by
Tsoukalas et al. (2018c) and Tsoukalas et al. (2017, 2018a) respec-
tively, as well as by Papalexiou (2018). In this work, aiming to develop
a multi-scale consistent simulation scheme (see Section 4), we employ
(and couple in a pairwise basis) several Nataf-based models, which use
different Gp models (all of them also capable of multivariate simula-
tions; see the summary and the abbreviations of Table 1).
From the aforementioned models, SMARTA and CMARTA are de-

signed for stationary processes, while SPARTA for cyclostationary ones
(i.e., accounting for the season-to-season correlations). A common
characteristic of the three models is the direct reproduction of lag-0
cross-correlations coefficient among multiple contemporaneous pro-
cesses. SMARTA and SPARTA are fully described in the works cited in
Table 1, while a detailed description of the auxiliary Gaussian CMAR(p)
model is given in Appendix B. It is stressed that, regardless of the choice
of the auxiliary Gp model, in order to generate realizations with the
equivalent correlation structure, the model parameters have to be es-
timated using the equivalent correlation coefficients. For this reason,
within the description of CMAR(p) we employ the tilde notation (see
Appendix B).

2.8. Brief overview via a step-by-step procedure

For a given stochastic process (univariate case) or a set of processes
(multivariate case) to simulate, the required methodological steps of
any Nataf-based model are:

Step 1. Identify the type (i.e., stationary or cyclostationary) of the
processes, accounting for process properties and the time scale of
simulation.
Step 2. Based on the available information (e.g., historical data), as
well as the user expertise, assign appropriate target marginal dis-
tributions to all processes and identify the target correlation struc-
ture, in time and (case of multivariate simulation) space.
Step 3. Select a suitable linear stochastic model to simulate the
auxiliary Gp.
Step 4. Estimate the equivalent correlation coefficients for all pairs
of variables that are required by the parameter estimation procedure
of the auxiliary model, i.e., Gp.
Step 5. Estimate the parameters of the Gp model through the
equivalent correlation coefficients.
Step 6. Generate a synthetic time series by employing the Gp (i.e.,
z zort s n, ).
Step 7. Map the auxiliary (i.e., Gaussian) time series to the actual
domain in order to attain a realization of the target process (i.e.,
x x, ort s n, ).

The methodology and simulation models described in section 2, as
briefly summarized by the above-described step-by-step procedure, has
been implemented in the anySim R package (Tsoukalas and Kossieris,
2019) which enables the straightforward and easy generation of syn-
thetic time series with any distribution and correlation structure.

2.9. A hypothetical simulation example

To enhance readability, we employ CMARTA(p) and setup three
bivariate hypothetical simulation experiments (hereafter termed A, B
and C) that regard the simulation of two contemporaneously cross-
correlated stationary processes, xt

1 and xt
2, with either zero-inflated or

discrete marginal distributions.
For convenience, the three experiments share some common as-

sumptions which are: 1) the order of the auxiliary Gaussian CMAR(p)
model, which is set to be =p 100; 2), the length of the synthetic time
series to simulate, i.e., 100 000 steps; 3), the target lag-0 cross-corre-
lation coefficient, i.e., = 0.700

1,2 ; and 4) the target auto-dependence
structure of each process, which is provided by CAS (i.e., Eq. (8)), i.e.,

= =x ( 0, 0.67)t
CAS1 ;1 and = =x ( 1.2, 1)t

CAS2 ;2 . As briefly
mentioned earlier, and since the autocorrelation structure of the pro-
cesses is already specified, the use of a high-order Gp model (i.e., CMAR
(p) in this example) does not introduces additional parameters, but
solely controls the degree of resemblance of the target correlation
structure. Particularly, by setting =p 100, the model will resemble the
target CAS up to time lag 100, while for > 100 it will reduce according
to its theoretical properties. Similarly, if we employed a higher-order
model, e.g., =p 1000, we would resemble the target CAS up to time lag

= 1000, without needing more parameters for the description of the
autocorrelation structure.
The three simulation studies differ in terms of target marginal dis-

tributions of the individual processes. More specifically, in case A it is
assumed that the marginal distribution is provided by a zero-inflated
model (i.e., Eq. (6)) with =p 0.80D and =p 0.75D for xt

1 and xt
2 re-

spectively; while the continuous part is given by the Gamma ( ) and
Log-Normal ( ) distribution (Eq. (A.1) and Eq. (A.2)) respectively.
Particularly, they are: for xt

1 by = =a b( 0.20, 0.15) and for xt
2 by

= =a b( 1, 1). In case B the target distributions are regarded to be
discrete, and given by the Poisson distribution ( ; see also, Eq. (A.5)).
Particularly we assume that, =x ( 1)t

1 and =x ( 2)t
2 .

Finally, in case C we assigned a discrete-type Bernoulli distribution
( ; see Eq. (A.6)). Specifically, =x p( 0.8)t

1 and
=x p( 0.75)t

2 .
Case A can be considered as the most common simulation scenario,

since it involves the multivariate simulation of intermittent processes
with zero-inflated (non-Gaussian) marginal distributions. For instance,
it could represent fine-time rainfall processes at two locations. On the
other hand, cases B and C can arise in practice when aiming to model
counting (e.g., number of drought events in a given year) or occurrence
(e.g., sequences of wet and dry transitions) processes, respectively.
Regarding CMARTA(p) implementation and evaluation for case

studies A-C, let us focus on the first case, since the simulation proce-
dure, as well as the results, are similar for all three cases. Given that the
target distributions (red line in Fig. 1c,d), auto-correlation structure
(red line in Fig. 1h,i) and lag-0 cross-correlation (red line for = 0 in
Fig. 1j), are already known, we begin by estimating the required ( )
relationships (Fig. 1e–g). These are subsequently inverted to estimate
the corresponding equivalent correlation coefficients, and the para-
meters of the auxiliary Gp model, i.e., CMAR(p). Next a bivariate rea-
lization of the Gp process, i.e., =z z z[ , ]t t t

1 2 T, with the desired length
(in this case, 100 000), is generated. The final step involves the

Table 1
Summary of employed Nataf-based models of order p.

Auxiliary Gp model Associated Nataf-based model Type References

SMA(p) SMARTA(p) Stationary (Tsoukalas et al., 2018c)
CMAR(p) CMARTA(p) Stationary This work (Appendix B)
PAR(p) SPARTA(p) Cyclostationary (Tsoukalas et al., 2017, 2018a)

Abbreviations: SMA (Symmetric Moving Average), CMAR (Contemporaneous Multivariate AutoRegressive), PAR (Periodic AutoRegressive), SMARTA (Symmetric
Moving Average neaRly To Anything), CMARTA (Contemporaneous Multivariate AutoRegressive neaRly To Anything), SPARTA (Stochastic Periodic AutoRegressive
To Anything).
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mapping of the Gaussian process, to attain a realization of the target
one, i.e., =x x x[ , ]t t t

1 2 T, using the corresponding ICDF, i.e.,
=x F z( ( ))t

i
x t

i1
i . The validity of the model is verified by the plots of

Fig. 1 (case A), Fig. C.1 (case B) and Fig. C.2 (case C), which illustrate
that CMARTA is able to accurately reproduce the probabilistic and
stochastic structure of the target processes, regardless if the marginal
distributions are zero-inflated or discrete.

3. Addressing multi-scale consistency

The above simulation framework, although fulfilling the require-
ments of a good stochastic model, i.e., the explicit reproduction of any
distribution and any correlation structure, it does not account for multi-
scale consistency. Since the problem is independent of the generation
procedure and the time scale of simulation, we first provide a global
overview and then propose a generic solution for Nataf-based models,
herein referred to as Nataf-based Disaggregation To Anything (NDA).

3.1. Problem description

Let us begin from the univariate case, denoting by >{ }n n a dis-
crete-time, stationary or cyclostationary (the season indicator s is
omitted for simplicity), stochastic process at time scale =k 1, where n is
a time index. Let also define the aggregated process l

k( ) at a higher
time scale k 2, obtained by:

=
= +

l
k

n l k

kl

n
( )

( 1) 1 (9)

where l is the time index of the aggregated process. Alternatively (e.g.,
if n refers to an instantaneous quantity), we can define the averaged
process, also denoted by l

k( ), by, = = + kl
k

n l k
kl

n
( )

( 1) 1 . Apparently,
the properties of { }n at scale =k 1 are related with those of the ag-
gregated (or averaged) process at a higher time scale k 2.
Herein, without loss of generality, we focus on the aggregated case.

To simplify, we first remark that the operations implied by Eq. (9), can

Fig. 1. Case A – Zero-inflated marginal distributions. Simulated realization of process a) xt
1 and b) xt

2. Comparison of non-zero, simulated and theoretical distribution
function for process c) xt

1 and d) xt
2. The established relationships between the equivalent, , and target, , correlation coefficients given the marginal distribution of

each process; e) xt
1, f) xt

2, as well as their g) interaction. Simulated and theoretical autocorrelation function (ACF) for process h) xt
1 and i) xt

2, as well as j) the cross-
correlation function (CCF) among xt

1 and xt
2, i.e., = +x xCorr[ , ]t t

1,2 1 2 .
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be viewed as a sum of k RVs. Thus, if we were interested in the dis-
tribution of { }l

k( ) , it would be the same as solving an aggregated dis-
tribution problem. If the process { }n is stationary at =k 1, then at any
higher scale k we would have the sum of k identical RVs. On the other
hand, if { }n is cyclostationary at the lower scale =k 1, at any higher
scale k we would have the sum of k non-identical RVs (their marginal
and dependence properties depend on the season =s S1, , , implied
by the time index n; see Section 2.1).
Arguably, the problem of identifying the distribution of l

k( ) at >k 1
is particularly challenging, since there is no general method (without
resorting to simulation) to identify the distribution of the sum of k RVs,
especially in the presence of dependence, which is typical for hydro-
meteorological processes. Furthermore, apart from some low order
moments (i.e., mean, variance, autocovariance and autocorrelation),
higher order moments of the aggregated process are also particularly
difficult to estimate, either analytically or theoretically. Analogously, it
is also challenging to specify a process { }n that has the desirable (for
this time scale) marginal and stochastic properties, when it is ag-
gregated at a higher scale >k 1.
The problem becomes even harder when multiple processes are

involved, in the context of multivariate simulation problems. Let
= [ , , ]t t t

m1 Tand = [ , , ]n n n
m1 T be two m-dimensional vectors

of two discrete-time processes t
i and n

i , indexed using >t and
>n , respectively. Furthermore, let assume that t

i and n
i represent

the same process at two different temporal scales, higher and lower,
respectively, with time units denoted by and , respectively (i.e.,

> ).
Similarly to Eq. (9), when = =k k: (e.g., 1 year/1

month= 12, or 1month/1 hour=28×24, 30× 24, 31×24; de-
pending on the number of days of the month), we obtain an aggregated
process at the same temporal level of t

i, i.e.,

= = =
= +

l t: , ( )t
i

l
i k

n l k

lk

n
i;( )

( 1) 1 (10)

Evidently, when n
i is simulated without reference to the higher-

level process t
i, then t

i
t
i
. Hence, for each process =i m1, .., , our

target is to generate a k -dimensional random sequence,
= +[ , , ]t k

i
t k
i

tk
i

;( ) ( 1) 1 , of the low-level process ( =k 1), with the

desirable properties, which honors the equality, =t
i

t
i
, when ag-

gregated to the time scale k . The multivariate formulation of the
problem is written as:

= =
+

+

[ , , ] , andt k t k t k
m

t k tk

t k
m

tk
m

;( ) ;( )
1 T

;( )
T T

( 1) 1
1 1

( 1) 1

= … = …
= + = +

[ , , ] , ,t t t
m

n t k

tk

n
n t k

tk

n
m1 T

( 1) 1

1

( 1) 1

T

(11)

3.2. The NDA approach: step-by-step implementation

In order to address the problem, we develop the Nataf-based
Disaggregation To Anything (NDA) approach, which combines Nataf-
based models, considered as data generation mechanisms, with a cou-
pling procedure that encompasses the notions of repetitive sampling
and adjusting procedures. These two key notions are thoroughly dis-
cussed by Koutsoyiannis and Manetas (1996).
The NDA procedure starts from a given realization, t , of a

process t, at a specific time scale, aiming to produce a consistent rea-
lization, n, at a lower scale. The given realization t is known either
from observations or already generated by another model (determi-
nistic or stochastic). In the second case, if a Nataf-based model is

employed, the synthesized higher-level realization would have the de-
sirable marginal distributions and correlation structure, hence the
problem would reduce to generating a lower-level realization with the
target properties, which when aggregated to the higher-level honors the
additive property. Fulfilling both conditions allows preserving the
properties of the process at both temporal levels, given that the reali-
zation at the higher level is kept as is.
Therefore, given the realization t , and assuming a temporary Nataf-

based lower-level process, denoted by n, with properties identical to
those of the target process n (i.e., n = n), the following steps are
applied for all time indices t.

1) Using a Nataf-based model (cf. Table 1), generate N temporary
realizations n of the lower level process n, of length k , thus
obtaining N sets of matrices = … N{ ( ); 1, , }t k;( ) .

2) For each of the N matrices t k;( ), estimate the corresponding
vector t and obtain a set of vectors = … N{ ( ); 1, , }t .

3) Calculate the difference between v( )t and the known t using a
distance metric, =e D( ) ( ( ), )t t t .

4) Formulate the set =e N{ ( ); 1, , }t and select the realization
v( )t k;( ) with the minimum value of e ( )t , hereafter denoted t k;( )

'

(the breve notation has been omitted for simplicity). Under this
premise, by aggregating t k;( )

' to time scale k , thus obtaining the

corresponding sum t , its difference with the target values of t will
be the minimum over the simulated set.

5) Produce the final values of t k;( ) by adjusting the remaining dif-
ference between t and t , by employing a specific adjusting pro-
cedure.

We remark that since we employ Nataf-based models, in order to
ensure a proper sequential generation procedure, it is essential to
maintain an archive of the realizations generated by the auxiliary Gp
model. These are needed to condition the generation mechanism on the
required number of previous values. For instance, if we employ
CMARTA(p) for generating the temporary realizations n, p previous
values of the auxiliary Gaussian realization are needed to condition the
generation of +n 1.

3.3. Computational details

For convenience, within repetitive sampling (step 3), we employ as
a distance metric the following quantity, also used by Koutsoyiannis
and Manetas (1996):

= =
=

e D
m

( , ) 1 | | Var[ ]t t t
i

m

t
i

t
i

t
i

1 (12)

On the other hand, all available adjusting procedures (APs) that are
found in the literature (see, Grygier & Stedinger, 1988; Harms &
Campbell, 1967; Koutsoyiannis, 2001) are compatible with the pro-
posed approach. Here we employ the so-called proportional AP that can
be implemented independently for each t k

i
;( ) and reads as:

=t k
i

t k
i

t
i

t
i

;( ) ;( ) (13)

Apart from its simplicity, key advantage of this AP is the preserva-
tion of the sign of each realization t k

i
;( ) . For instance, in case of

rainfall, where the underlying Nataf-based model is combined with a
mixed-type distribution to represent intermittency (see Section 2.5), the
proportional adjustment not only prohibits the generation of negative
rainfall values but also preserves the sequence of zero and non-zero
values, as explicitly foreseen by the auxiliary Nataf model.
A final technical issue involves the termination criteria for repetitive

sampling. Here, we consider that the iterative procedure terminates
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when reaching a maximum number of allowable iterations, N . An
alternative option would imply the use of a convergence criterion, by
means of a similarity metric between t and t . Nevertheless, the
stopping criteria should be carefully assigned, since they control both
the accuracy and computational efficiency of NDA, which are in-
herently conflicting. In our examples, we set =N 250 to 350, which
was heuristically identified as a fair conciliation for multivariate pro-
blems involving up to five processes. We remark that for the univariate
case per se, Papalexiou et al. (2018) addressed the challenge of a priori
determining the required number of iterations within disaggregation
through Bernoulli trials.
We remark that in contrast to other disaggregation schemes, where

repetitive sampling had an optional role (cf. Koutsoyiannis & Manetas,
1996), in our approach its role is pivotal, since it allows the preserva-
tion of the advantages of Nataf-based models, and hence generate
lower-level realizations with the target probabilistic and stochastic
properties.

4. Modular framework for developing multi-temporal simulation
schemes

4.1. Multi-temporal stochastic simulation as a puzzle game

As already discussed, there does not exist a general, bottom-up so-
lution to the problem of multi-scale consistency, by means of a gen-
eration procedure that provides consistent synthetic data at a time scale
of interest, and simultaneously captures the scale-varying stochastic-
probabilistic behavior of the aggregated process at higher time scales.
In a practical context, the generally accepted requirement for a good
stochastic model is to reproduce the desirable probabilistic and de-
pendence properties across specific temporal scales that have opera-
tional interest. Typically, these follow the standard resolutions of hy-
drometeorological time series, i.e., annual, monthly, daily, hourly, etc.
In this context, we propose a puzzle-type implementation of NDA, to

address multi-scale simulation problems of any complexity. Essentially,
this can be done by coupling, in a pairwise manner, multiple Nataf-
based models, which operate independently of each other. Thereby, one
can establish a modular, top-down approach, starting from the first
level, which corresponds to the highest time scale of interest, and
subsequently moving to next levels, until reaching the lowest scale,
which is dictated by the simulation problem at hand. As shown in
Fig. 2, each individual coupling of subsequent scales through NDA can
be considered as the pieces of a puzzle. The generic design of NDA
ensures flexibility regarding the combination of temporal scales, while
at the same time, the robustness of the underlying Nataf-based ap-
proach ensures the preservation of the desirable process properties.
For demonstration, we next present a typical configuration of this

puzzle, by means of a three-level scheme for annual to daily simulation,
which is of significant interest for a wide range of operational hydro-
logical problems. In Section 5, we explore the capacities of this con-
figuration, in the context of a real-world case study, involving the
generation of synthetic daily rainfall and runoff series. Moreover, in
Section 6, we present another useful configuration, this time for

handling a classical disaggregation problem, i.e., the generation of
hourly rainfall from a given daily time series.

4.2. Three-level configuration for annual to daily simulation

In this configuration we couple three Nataf-based models, shown in
Table 1, to provide a multivariate three-level simulation scheme. This
modular scheme (i.e., puzzle) aims to preserve the probabilistic and
dependence properties of typical hydrometeorological processes at the
annual, monthly, and daily scales.
Let =y y y[ , , ]t t t

m1 T be a vector of m stationary stochastic process
at the annual time scale (where t Ty denotes the time index, i.e., year,
over the set Ty). In the context of this configuration we model the an-
nual processes using SMARTA, in order to preserve:

• the distribution function of yt
i, i.e., F y( )yi ;

• its autocorrelation structure, = +y yCorr[ , ]y
i

t
i

t
i

; ;

• the lag-0 cross-correlations among processes yt
i and yt

j, i.e.,
= y yCorr[ , ]y

i j
t
i

t
j, .

On the other hand, the standard hypothesis for the monthly time
scale is cyclostationarity. Let the monthly process be represented
by an m dimensional vector =x x x[ , , ]s n s n s n

m
, ,

1
,

T, where
=s ( 1, ,12, 1 ,12, ) denotes the month and n Tx is the time index.

The index t of the annual process (i.e., the year) may be recovered by
= +t n s1 ( ) 12. For monthly simulation we employ SPARTA in order
to resemble:

• the seasonally-varying marginal distribution of x s n
i
, , i.e.,

= +F x F x( ) ( )x xs s 12 ;
• the lag-1 month-to-month correlation coefficients

= x xCorr[ , ]x s s
i

s
i

s
i

; , 1 1 ;

• the lag-0 cross-correlations among processes x s
i and x s

j for each
season s, i.e., = x xCorr[ , ]x

i j
s
i

s
j,

s
.

Finally, the hydrometeorological processes at sub-monthly time
scales (e.g., daily) are typically regarded to be stationary within in each
month s. In this respect, let =w w w[ , , ]s d s d s d

m
; ;

1
;

T be an m-dimensional
vector of stationary processes at month s, where d Tws, denotes the
time index. We remark that in this case, =k x ws s, where xs and

wsdenote the time units of x s n
i
, and ws d

i
; respectively. For instance, if

ws d
i
; represents the process of month s, at the daily temporal level,
=k Ds, where Ds stands for the days of a month s (i.e., 28, 30 or 31,

excluding leap years; similarly, if ws d
i
; denotes an hourly process, then

= ×k D 24s ). Nonetheless, for the simulation of daily temporal level,
we employ CMARTA model, and aim to reproduce:

• the seasonally varying marginal distribution of ws n
i
; , i.e.,

=F w F w( ) ( )w ws s n; ;

• the within-month autocorrelation structure =w
i

;s +w wCorr[ , ]s d
i

s d
i

; ; ;

• the lag-0 cross-correlation coefficients among processes ws
i and ws

j

for each season s, i.e., = w wCorr[ , ]w
i j

s
i

s
j,

S
.

Fig. 2. The stochastic simulation framework as a puzzle, involving a chain implementation of individual NDA pieces.
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Provided that the parameters of the individual models have been
identified (see Section 2.8 for a general overview, as well as Appendix D
for a model-specific description), the simulation procedure starts with
generating a realization of the annual processes, using the SMARTA
model, and subsequently, moves to the monthly and daily level,
through the NDA approach. The overall procedure is organized as fol-
lows:

4.2.1. Generation of annual synthetic time series
Using SMARTA synthesize an m-dimensional realization of the an-

nual process yt with =t T1, , , where T denotes the desirable simu-
lation length. The synthesized realization is represented by a ×m T
matrix Y , i.e.,

=Y
y y

y y

T

m
T
m

1
1 1

1

4.2.2. Generation and adjustment of monthly synthetic time series
By construction, the realization yt fulfils the specifications of the

annual level, hence the next step is to generate T realizations of the
monthly multivariate process x s n, , each of length 12 (i.e., equal to the
number of months). These realizations have to reproduce the specifi-
cations implied for the monthly time scale, and, additionally, when
aggregated to the annual temporal level, to honor the additive property,
i.e., = = +y xt

i
n t

t
s n
i

( 1)12 1
12

, .
Therefore, for each year =t T1, , we employ NDA with the

SPARTA model as the generation mechanism (by setting = yt t and
= xn s n, ), and obtain T matrices X1, X, ,t …, XT , which contain the

final adjusted monthly realizations. Each matrix has the form:

=
+

+

X
x x

x x
t

t t

t
m

t
m

1,( 1)12 1
1

12, 12
1

1,( 1)12 1 12, 12

Finally, the matrices are concatenated in =X X X X[ , , , , ].t T1

4.2.3. Generation and adjustment of daily synthetic time series
For the disaggregation of monthly generated values to the daily

temporal level, and given the previous matrix organization, it is con-
venient to refer to the obtained, adjusted, monthly realization with
reference to season s and year t (not time index n), i.e., xs t, , where

=s 1, ,12 and =t T1, , . For instance, in this notation, x3,2, refers

to the third month of the second year. At this point we have at our
disposal, a realization at the monthly level of length × T12 , and seek to
generate an equal number of realizations of the daily time scale, each
one with length Ds (i.e., 30, 31 or 28). Similarly, to the previous level
and for the same reasons, we want the realizations of ws d; to resemble
the specifications of the sub-monthly time scale, and fulfil the additive
property, i.e., = = +x ws t

i
d t D
D t

s d
i

, ( 1) 1 ;s
s . In this vein, for each month

=s 1, ,12 and year =t T1, , employ NDA using CMARTA for data
generation (by setting = xt s t, and = wn s d; ), and obtain × T12 ma-
trices W ,s t, which contain the final adjusted daily realizations, i.e.,

=
+

+

W
w w

w w
s t

s t D s tD

s t D
m

s tD
m

,

;( 1) 1
1

;
1

;( 1) 1 ;

s s

s s

Finally, the matrices are concatenated in
=W W W W W[ , , , , , , ]T T1,1 12,1 1, 12, , which contains the complete se-

quence of the daily realization.

5. Case study A: multi-temporal simulation of daily rainfall and
runoff processes

To assess the performance of the aforementioned three-level con-
figuration scheme, we selected a case study that regards the con-
temporaneous synthesis of daily rainfall and runoff data, at the river
basin of Achelous, Western Greece, upstream of Kremasta dam,
draining an area of 3570 km2 (Fig. 3a and b). The evaluation of the
model is performed at all time scales of interest (daily, monthly, an-
nual), by comparing the empirical, simulated and theoretical (i.e.,
target) marginal and stochastic characteristics of both the daily and
aggregated data. The time horizon of simulation is 2 000 years (i.e.,
∼730 000 days; Fig. 3c and d).
Regarding the model parameterization, we employed a theoretical

autocorrelation model, i.e., Cauchy-type (CAS; Eq. (8)) for describing
the auto-dependence structure of the processes, at the annual and daily
time scales. It is noted that at the daily scale, the parameters of CAS
were varied on a monthly basis. Furthermore, the target distribution
functions were varied according to the time scale of simulation, the
season and the type of processes (i.e., runoff or rainfall). In all cases, the
parameters of the distribution functions have been identified on the
basis of historical data, using the L-moments method. Particularly, in
the case of runoff, we modeled the data using either the three-para-
meter Log-Normal ( ; Eq. (A.2)), the Generalized Gamma ( ; Eq.

Fig. 3. a-b) Historical daily rainfall-runoff time series (1 January 1970 to 31 December 2008). c-d) Synthetically generated time series (randomly selected window of
40 years).
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(A.3)) or the Burr type-XII ( XII; Eq. (A.4)) distribution. On the hand,
for the daily rainfall process, which is characterized by intermittent
behavior, we employed the zero-inflated distribution model of Eq. (6),
using for the continuous component one of the aforementioned dis-
tributions.
Starting from the annual temporal level, Fig. 4, summarizes the

ability of the highest-level model to preserve both the target distribu-
tion function and the autocorrelation structure of each process. Fur-
thermore, the model resembled the lag-0 cross-correlation among the
two processes with high accuracy (the historical and simulated values
are 0.813 and 0.815 respectively; the high values are physically ex-
plained by the significantly rich hydrological conditions of the basins).
It is noted that the parameters of CAS have been manually fine-tuned in
order to increase the degree of annual long-range dependence and
stress-test the capabilities of the associated simulation scheme.
Figs. 5 and 6a provides a quick outlook of the results obtained at the

monthly time scale, preserving with high accuracy, the empirical L-
moments, the seasonality, expressed by means of month-to-month

correlation coefficients, as well as the lag-0 cross-correlations.
Beyond summary statistics, a more challenging test is the re-

production of the monthly target marginal distributions. Figs. 7 and 8,
compare the empirical distribution of the historical and synthetic data
with the target theoretical model (the fitted distribution, as well as its
parameters are shown in the title of each sub-plot). In all cases, the
model resembled the target distribution with notable accuracy.
The previous figures, illustrate the ability of the integrated model,

to generate cyclostationary realizations that are also consistent with the
specifications of the annual temporal level. As an additional diagnostic,
and to test the model for envelope behavior we employed scatter plots,
and depicted the established dependence patterns. An example is given
in Fig. 9, which depicts the lag-1month-to-month dependence patterns
of runoff series. The scheme does not exhibit the aforementioned be-
havior, yet more interestingly, it was found capable of creating a
variety of dependence forms, which are also in accordance with the
historical ones. The results obtained for other time scales (or rainfall)
are similar, hence not shown herein.

Fig. 4. Rainfall-runoff series: (a-b) Historical annual time series. (c-d) Empirical, simulated and theoretical distribution functions (using the Weibull’s plotting
position). (e-f) Empirical, simulated and theoretical ACFs. (g-h) Synthetic annual time series (randomly selected window of 1 000 years). Abbreviations: Generalized
Gamma distribution (GG), Cauchy-type autocorrelation structure (CAS).
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Regarding the lowest level of simulation, that is the daily time scale,
the comparison among summary statistics of Figs. 10 and 6b (depicting
the lag-0 cross-correlations at daily scale), as well as the empirical, si-
mulated and theoretical distribution functions depicted in Figs. 11 and
12, underline the ability of the model to generate consistent realizations
with the higher levels, and also preserve the target distribution func-
tions of the daily process, which at this time scale, are characterized by
considerably heavier tails. Notice that for daily runoff, and for the
months, February to May, we selected the XII model, which is a
heavy-tailed distribution with power-type tail. Recall, that the rth-mo-
ment of the XII exist only if <a a r1 2 . Remarkably, NDA accurately
simulated even February’s daily runoff, which is characterized by

<a a 2.901 2 ; implying that it only has finite mean and variance.
Furthermore to this, Figs. 13 and 14 depict a monthly-based com-

parison of the empirical, simulated and theoretical autocorrelation
function (ACF) of the daily process, which in most cases deviates from
the typical AR(1) ACF, that most daily stochastic models are capable of

simulating. Inspection of this figure, reveals that the integrated model
can resemble the theoretical auto-dependence structure with high
precision. This result stems from the combination, within NDA, of two
modelling components; the CMARTA and the use of theoretical auto-
dependence structure (e.g., CAS).
An additional assessment of model’s performance concerns its cap-

abilities regarding the reproduction of statistical characteristics that are
not explicitly modelled by the method. These may involve marginal
properties at intermediate temporal scales, as well as a plethora of other
features, such as transition probabilities, dry/wet spells, and asymptotic
properties, associated with the reproduction of extremes.
In this context, in order to evaluate the model’s behavior at the

intermediate time scales between daily and monthly, we aggregated the
historical and synthetic daily series at several scales k D{2, .., }s and
compared, on a monthly basis, the L-mean L( ),k

1
( ) L-scale L( )k

2
( ) , L-

Skewness L( )Cs
k( ) coefficients and the probability dry P( )D

k( ) at each scale
k. This analysis is presented in the Supplementary material (Figs.

Fig. 5. Comparison of monthly empirical and simulated L-Mean, L-Scale and L-Skewness, as well as historical and simulated lag-1month-to-month correlations.

Fig. 6. Comparison of historical and simulated lag-0 cross-correlations at (a) monthly and (b) daily scale.
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Fig. 7. Monthly rainfall - monthly-based comparison of empirical, simulated and theoretical distribution functions (using the Weibull’s plotting position). The title of
each subplot provides the selected distribution and its parameters, as well as the historical (pD) and simulated (pD) values of probability dry. Abbreviations:
Generalized Gamma distribution (GG).

Fig. 8. Monthly runoff - monthly-based comparison of empirical, simulated and theoretical distribution functions (using the Weibull’s plotting position). The title of
each subplot provides the selected distribution and its parameters, as well as the historical (pD) and simulated (pD) values of probability dry. Abbreviations:
Generalized Gamma distribution (GG), Log-Normal distribution (LN).
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S1–S8). As shown, although the intermediate time scales
k D(i.e., {1, })s are not explicitly modelled neither by the three-level

scheme or NDA, the arguably good agreement with historical data, can
be attributed to the accurate simulation of the process at daily and
monthly time scales.

In the Supplementary material, we further explore the inter-
mittency-related features of daily rainfall, by comparing the dry and
wet spell distributions (Fig. S9), as well as the transition probabilities
between dry-dry and wet-wet sequences (Fig. S10). In this case, also,
the synthetic data exhibit a satisfactory agreement with the historical

Fig. 9. Monthly runoff (mm) month-to-month scatter plots of historical and simulated series. The title of each subplot provides the lag-1 month-to-month target
( )s s, 1 and simulated ( )s s, 1 correlation coefficients.

Fig. 10. Comparison of daily empirical and simulated L-Mean, L-Scale, L-Skewness, as well as probability dry.
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ones, which is mainly attributed to the reproduction of the auto-de-
pendencies, in combination with the flexibility provided by the mixed-
type distributions.
However, in our view, an even more important evidence of the

model's success involves the reproduction of the extremes. In this vein,
Fig. 15 depicts the empirical and simulated daily annual maxima, as
well as the fitted (using the L-moments method), to the historical data,
Generalized Extreme Value (GEV ) distribution (i.e., Eq. (A.7)). As

Fig. 11. Daily non-zero rainfall - monthly-based comparison of empirical, simulated and theoretical distribution functions (using the Weibull’s plotting position). The
title of each subplot provides the selected distribution and its parameters, as well as the historical (pD) and simulated (pD) values of probability dry. Abbreviations:
Generalized Gamma distribution (GG), Burr type-XII distribution (BrXII).

Fig. 12. Daily non-zero runoff - monthly-based comparison of empirical, simulated and theoretical distribution functions (using the Weibull’s plotting position). The
title of each subplot provides the selected distribution and its parameters, as well as the historical (pD) and simulated (pD) values of probability dry. Abbreviations:
Generalized Gamma distribution (GG), Log-Normal distribution (LN), Burr type-XII distribution (BrXII).
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shown, in both cases the model manages to resemble the distributional
form of the identified GEV distribution, characterized by an arguably
heavy-tailed behavior, which is expressed through the Fréchet dis-
tribution (since >a 0). Reasonably, this behavior is attributed to the
concise reproduction of the distributions at the daily time scale, which

was modelled using either the power-type XII or the distribution
(we recall that at each month we applied different distribution models,
based on empirical criteria and hydrological evidence).

Fig. 13. Daily rainfall - monthly-based comparison of empirical, simulated and theoretical autocorrelation function (ACF); the parameters of the Cauchy-type
autocorrelation structure (CAS) are given on the title of each subplot.

Fig. 14. Daily runoff - monthly-based comparison of empirical, simulated and theoretical autocorrelation function (ACF); the parameters of the Cauchy-type au-
tocorrelation structure (CAS) are given on the title of each subplot.
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6. Case study B: disaggregation of daily rainfall to hourly scale

To demonstrate the flexibility provided by NDA, as well the po-
tential to extend the three-level scheme of Section 4 for even lower
temporal levels, we now provide a two-level configuration for dis-
aggregating a univariate daily sequence to the hourly scale. This
scheme is applied to an hourly rainfall dataset at Oberstdorf, Germany,
provided from the German Weather Service (Deutscher Wetterdienst;
station ID 3730). The historical data extend over the period 01/09/
1995 to 31/12/2017 (Fig. 16).

In this example, we do not aim to generate synthetic data that re-
presents the actual process across multiple time scales of interest (such
as in case study A). In contrast, our goal is to provide a synthetic hourly
realization, under the following requirements:

• the synthetic data at the hourly scale reproduces the probabilistic
and stochastic properties of the historical sample;
• the additive property is preserved between the aggregated hourly
( =k 1) synthetic data and the corresponding historical ones
( =k 24).

Fig. 15. Empirical ( ) and simulated ( ) daily annual rainfall-runoff maxima, as a function of the return period. The solid red line ( ) depicts the fitted to
historical data Generalized Extreme Value (GEV ) distribution (parameters: location (c), scale (b) and shape (a)). The dashed blue lines ( ) represent the 95%
confidence intervals (estimated using the parametric bootstrap method). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 16. Historical a) daily and b) hourly rainfall series. c) Synthetic (disaggregated) hourly rainfall realization. d-f) Comparison of distribution function of non-zero
amounts for hourly historical and disaggregated series for February, June and October respectively (the fitted theoretical model is shown with red line). g-i)
Comparison of autocorrelation function (ACF) for hourly historical and disaggregated series for February, June and October respectively (the fitted theoretical model
is shown with the red line). Abbreviations: Generalized Gamma distribution (GG), Cauchy-type autocorrelation structure (CAS).
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By definition, in disaggregation problems, the synthetic sequence
has the same length as the given data.
To cope with the effect of seasonality, we employ the typical as-

sumption for fine-time scale rainfall processes (e.g., daily, hourly or
finer), that of cyclical stationarity with annual period and monthly sub-
period (see also Section 4). Assuming that the sequence w{ }s d; denotes
the observed daily records for month s, we simulate an hourly process,
e.g., >{ }s h h; , which is also considered stationary within month s. This
implies that the distribution function, F

s, of the process, as well as its
auto-correlation structure, i.e., = +Corr[ , ]s h s h; ; ;s

remain in-
variant within the month s. Furthermore, to account for temporal
consistency we impose the requirement of generating realizations
of the process { }s h; constrained by, =w ws d s d; ; , where

= =
= +

W :s d s l
h l

l

s h; ;
(24)

( 1)24 1

24

; (analogous to Eq. (10)).

In order to simulate the hourly rainfall, we employ as generation
mechanism the univariate version of CMARTA, which is known as
ARTA (Cario & Nelson, 1996). We recall that this model uses, as an
auxiliary Gp, a Gaussian AR process (see Appendix B.1). The generation
scheme is employed on a monthly basis, since the hourly process
properties are reasonably considered seasonally varying.
Regarding the parameterization of ARTA, the marginal distribution

of hourly rainfall of each month is modelled using the zero-inflated
model of Eq. (6). In this case, for the continuous part we fitted (using L-
moments) the distribution (i.e., Eq. (A.3); the parameters of the
model are shown in Fig. 16d–f). For the autocorrelation structure of the
hourly rainfall, we fitted monthly-varying CAS models (Eq. (8)) to the
corresponding empirical autocorrelation coefficients (red line in
Fig. 16g–i). Eventually, each individual hourly process is modeled using
five parameters (three for the marginal distribution and two for the

Fig. 17. Comparison of empirical and disaggregated, a-c) L-mean (L k
1
( )), d-f) L-scale (L k

2
( )), g-i) L-skewness (LCs

k( )), j-l) probability dry (p k
0
( )) and m-o) lag-1 auto-

correlation coefficient ( k
1
( )), as a function of aggregation scale k, for February, June and October.
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autocorrelation structure).
In Fig. 16c are shown the synthetic (i.e., disaggregated to hourly

scale) rainfall data. In Fig. 16d-e and g–i we show for three re-
presentative months (February, June, October) that the model re-
sembles with good accuracy the target distributions and autocorrelation
structures, respectively. Similarly good performance is achieved for the
rest of the months (see Supplementary material; Figs. S11 and S12).
Furthermore, in order to investigate the behavior of the model at the

intermediate time scales ( < <k1 24), in Fig. 17, we depict for three
characteristics months (February, June and October), both the histor-
ical and synthetic series, the L-mean, L k

1
( ), L-scale, L k

2
( ), L-skewness,

LCs
k( ), probability dry, pD

k( ), and lag-1 autocorrelation coefficient, k
1
( ), as

a function of the aggregation level k (the rest of the months are shown
in Figs. S13–S17 of Supplementary material). Inspection of these plots
reveals the potential of the NDA approach to preserve the empirical
scaling properties of rainfall, without requiring the use of cascading of
techniques and direct simulation of rainfall at intermediate temporal
levels.

7. Conclusions

In order to address the puzzle of multi-temporal simulation of hy-
drometeorological processes, we developed a puzzle-type approach,
employing chain implementation of a novel generation procedure,
called Nataf-based Disaggregation to Anything (NDA). This is built
upon recent advances in stochastics by means of Nataf-based models,
coupled with the concepts of repetitive sampling and adjusting.
This coupling allows taking advantage of the primary ability of

Nataf-based models to represent stationary processes that exhibit any
distribution and any correlation structure. The recent extension of
Nataf-based models to simulate cyclostationary as well as multivariate
processes, offered the essential generality to handle challenging single-
scale hydrometeorological simulation problems.
However, as widely discussed, the reproduction of a target’s prob-

abilistic and stochastic behavior at a single temporal scale does not
guarantee similarly consistent performance at higher temporal scales.
In this work, the issue of consistency across any pair of scales is handled
via the NDA approach, while the general puzzle-type framework en-
ables the transition to multi-scale simulations. We recall that NDA uses
Nataf-based models at two independent scales as underlying data gen-
erators, and coupling mechanisms to adjust the lower-level data to the
higher one.
The above approach ensures significant flexibility, since it allows

establishing any configuration of scale-consistent simulators, through
pairwise link of NDAs. This flexibility and the advantages of NDA itself
have been mainly revealed by configuring a multivariate simulation
scheme that reproduces the probabilistic and stochastic properties of
the processes of interest at three characteristic temporal scales (i.e.,
annual, monthly and daily). In this configuration, we integrated dif-
ferent Nataf-based models for each scale, i.e., SMARTA for the annual,
SPARTA for the monthly, and CMARTA (and incidental contribution of
this work) for the daily one.
The multi-temporal simulation capabilities of the integrated scheme

were evaluated on the basis of a long-term bi-variate simulation study,
aiming at the generation of synthetic rainfall and runoff data. As shown,
the model reproduced with accuracy the characteristics of the under-
lying hydrometeorological processes, which exhibit substantial differ-
ences among the two processes and across scales and seasons. Key re-
quirements in this study were:

• the reproduction of a wide range of target distribution functions,
varying across processes, scales and seasons;
• the simultaneous simulation of intermittent and continuous pro-
cesses (i.e., daily rainfall and runoff), exhibiting significant corre-
lations;
• the preservation of target short-term and long-term auto-dependence
structures, at the annual scale, as well as the daily scale, on seasonal
basis;
• the preservation of target season-to-season correlations at the
monthly scale;
• the preservation of target lag-0 cross-correlations at all scales.
One can observe that in the above bucket list we make repeated use

of term target, in order to highlight the multidimensional role of the
user. Actually, before employing simulations, there are several critical
modelling decisions to make, regarding the assignment of suitable
distribution functions and correlation structures to the processes of
interest (this also involves the selection of time scales to represent, thus
the configuration of the puzzle). This flexibility may offer significant
advantages. For instance, in this specific study, the careful selection of
the daily distribution models resulted in reproducing the heavy-tailed
behavior of the observed daily extremes. We recall that the reproduc-
tion of extremes was not set as an explicit requirement of the model,
thus making this surprising outcome a promising topic for further re-
search.
The model performance at even finer temporal scales (i.e., hourly)

was demonstrated through a disaggregation example, where we em-
ployed NDA for the synthesis of hourly rainfall realizations that are
consistent with the observed daily data. Similarly to the first study, the
model faithfully reproduced the target behavior of the hourly process,
simultaneously ensuring consistency with the daily scale. Moreover, it
reproduced with accuracy important statistical properties of rainfall
(expressed in terms of L-moments) at intermediate scales. Above all,
this study highlighted the scale-free character of NDA, as well as its
ability to handle hydrological disaggregation problems.
Arguably, the potential applications of our puzzle-type approach

extend beyond the realm of hydrometeorological time series generation
(or disaggregation). Essentially, it is a general-purpose stochastic si-
mulation scheme. Depending on the synthesis of the puzzle pieces (i.e.,
chain of NDAs), as well as the underlying decisions of each NDA (in
terms of target marginal distributions and correlation structures), it is
possible to apply the method for the simulation of a widely extended
range of processes, geophysical and socioeconomic.
Beyond simulation, other applications of NDA may concern down-

scaling or disaggregation problems, which require: a) replacing the
corresponding higher-level simulation model with the realizations
provided by global or regional climate models, and b) identifying the
marginal and stochastic properties of the lower-level model, using, e.g.,
in-situ gauging stations, regional information, and/or scaling laws.
Eventually, the proposed approach can be employed within broader

Monte Carlo experiments, to provide long synthetic input data to de-
terministic simulation models. Given that the type and number of
processes to simulate, as well as their temporal resolution, is dictated by
the deterministic model, a major computational challenge arises. In
particular, the repetitive sampling within NDA imposes a bottleneck,
when applied to high-dimensional multivariate problems and/or long-
term simulations at fine time scales. Potential remediation to this
technical problem may be the use of parallel computing or the model
implementation in low-level programming languages.
Regarding the modelling framework per se, potential future

I. Tsoukalas, et al. Journal of Hydrology 575 (2019) 354–380

372



research may focus on two interesting aspects that have been revealed
in the two case studies. The first involves the reproduction of non-ex-
plicitly preserved statistical features, with emphasis to extremes, while
the second is the validation of the model behavior at intermediate time
scales. Another interesting research target is the comparison with al-
ternative synthetic generation schemes, to assess the practical impacts
of stochastic model selection in problems that typically rely on syn-
thetic inputs, such as water resources planning and management, hy-
drological simulations, and flood risk assessment. Since each problem is
influenced by different statistical aspects of the input processes, the
generality and flexibility of the proposed method makes it favorable for
a wide range of applications.
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Appendix A:. Distribution functions

The probability density function (PDF) of the Gamma distribution ( ) is given by,

= >f x a b
b a

x
b

x
b

x( ; , ) 1
| | ( )

exp , 0
a 1

(A.1)

where >a 0, b 0, are shape and scale parameters respectively, while ( ) stands for the gamma function.
The PDF of the 3-parameter Log-Normal distribution ( ) is given by,

= >f x a b c
x c a

x c b
a

x c( ; , , ) 1
( ) 2

exp 1
2

log( ) ,
2

(A.2)

where >a 0, b , and c denote the shape, scale and location parameters respectively.
The PDF of the Generalized Gamma ( ) distribution is given by (Stacy, 1962),

= >f x a a b a
b a a

x
b

x
b
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exp , 0
a a
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2

1 2

11 2

(A.3)

where ( ) denotes the gamma function, while, >a 01 , >a 02 are shape parameters and >b 0 is a scale parameter.
The PDF of the Burr type-XII distribution ( XII) is (Burr, 1942; Tadikamalla, 1980),

= + >f x a a b a a
b

x
b

x
b

x( ; , , ) 1 , 0XII

a a a

1 2
1 2

1 11 1 2

(A.4)

where >a a, 01 2 are shape parameters and >b 0 is a scale parameter. It is noted that, the rth moment of the XII distribution is finite, if and only if,
<a a r1 2 .
The probability mass function (PMF) of the Poisson distribution ( ) is given by,

= =P x x x( ; ) (exp( ) ) !, 0, 1, 2,x (A.5)

where > 0 is the distribution parameter; and has the meaning of average number of occurrences within a time interval.
The PMF of the Bernoulli distribution ( ) is given by,

=
=
=f x p

p x
p x( ; )

1 , 0
, 1 (A.6)

where p [0, 1].
The CDF of the Generalized Extreme Value (GEV ) distribution is given by,

=
+

=( )
( )

( )
F x a b c

a a

a
( ; , , )

exp 1 , 0

exp exp , 0

x c
b

x c
b

a
1

GEV

(A.7)

where a c, and >b 0 are shape, location and scale parameters respectively. GEV encompasses three distributions, the Fréchet
( > +a x c b a0 with [ , )), the Gumbel ( = +a x0 with ( , )) and the reversed Weibull ( <a x c b a0 with ( , ]); the latter case
is not considered herein, since it regards upper bounded RVs.
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Appendix B:. The auxiliary Gaussian AutoRegressive (AR) model

B.1 The univariate AR model

A particularly popular model for stationary processes is the autoregressive model of order p (i.e., AR(p)). A standard Gaussian AR(p) process with
zero mean and unit variance can be simulated by,

= +
=

z a zt l

p
l t l t1 (B.1)

where p denotes the order of the model, and al are the model’s parameters, while ( )0,t
2N . The parameters l can be obtained by solving the

Yule-Walker system. Specifically, given a p-dimensional vector of correlation coefficients, = [ , , ]p p1
T, the parameter vector =a a a[ , , ]p p1

T, can
be obtained by,

=a Pp p p
1

(B.2)

where, Pp
1 denotes the inverse of ( ×p p) matrix Pp whose ith and jth element are =P[ ]p i j i j, | | . After the specification of al, 2 is obtained by,

= = a1 l
p

l l
2

1 . A stationary AR(p) process reproduces the autocorrelation structure of the process up to lag p, while for +p 1 its correlation
structure is given by,

= + + + =
=

p p
l

p

l l1 1 2 2
1 (B.3)

As a side note, let us provide an additional relationship that will be subsequently used within the parameter estimation procedure of the auxiliary
Gaussian Contemporaneous Multivariate AutoRegressive (CMAR) model (Appendix B.2). According to Wold’s representation theorem, any covar-
iance stationary causal process can be written as a general linear process, i.e., as a weighted linear combination of past and present i.i.d. random
variables wt.

= + + + =
=

z w w w wt t t t t0 1 1 2 2
0 (B.4)

where are weight coefficients. This representation is also known as infinite moving average representation, i.e., MA(∞). It can be shown that
are related with the coefficients a of AR(p) model by (e.g., Cryer & Chan, 2008; Shumway & Stoffer, 2017),

=
=

= +

= + + ++

a
a a

a a a

1

p p p p

0

1 1

2 2 1 1

1 1 1 1 (B.5)

or more compactly,

= =
=

a , for 1, 2,
l

l l
1 (B.6)

where = 10 and = >a p0 for . It is also noted that a similar relationship exists for ARMA-type models. Nevertheless, since j decay with
increasing and approach zero after some large value of we can truncate Eq. (B.4) at some q to read,

=
=

z wt

q

t
0 (B.7)

B.2 The multivariate AR model

The univariate AR(p) model can been extended for multivariate processes (e.g., Bras & Rodríguez-Iturbe, 1985; Cryer & Chan, 2008; Kottegoda,
1980; Pegram & James, 1972; Shumway & Stoffer, 2017), and it is often referred to as Multivariate or Vector Autoregressive (MAR(p) or VAR(p))
model. Assuming that we wish to model an m-dimension vector of Gaussian processes =z z z[ , .., ]t t t

m1 T with zero and unit variance, its generating
equation is given by,

= +
=

z A zt
l

p

l t l t
1 (B.8)

where p denotes the order of the model, Al are ( ×m m) parameter matrices and = [ , .., ]t t t
m1 T is a vector of m Gaussian variates with zero mean

and covariance matrix =G : Cov[ , ]t t (whose ith jth element is denoted by g i j, ). The correlation (since we assume a standard Gaussian model) matrix
of time lag , is denoted by =R z z: Corr[ , ]t t , and is related with the parameter matrices Al by,

= =
>

R A R A R G if 0
0 if 0p p1 1

(B.9)
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Specifically, for = 0, the system reads,

= =
=

G R A R A R R A Rp p
l

p

l l0 1 1
T T

0
1

T

(B.10)

Furthermore, Eq. (B.9) can be written in matrix notation as follows ( = pfor 1, , ),

=R R R A A A

R R R

R R R

R R R

[ , , , ] [ , , , ]p p

p

p

p p

1 2 1 2

0 1 1

1
T

0 2

1
T

2
T

0 (B.11)

where =R R T. Eq. (B.11) is also known as the multivariate Yule-Walker system of the MAR(p) model. Provided that the matrices R R R, , , p1 2 are
known and non-signular, Eq. (B.11) can be solved for A A A, , , p1 2 , i.e.,

=A A A R R R

R R R

R R R

R R R

[ , , , ] [ , , , ]p p

p

p

p p

1 2 1 2

0 1 1

1
T

0 2

1
T

2
T

0

1

(B.12)

Arguably, this is a complex system of equations that requires the specification of p matrices Rp. The overall parameter estimation procedure can
be significantly simplified if we assume that the parameter matrices A A A, , , p1 2 are diagonal, i.e.,

= =A A
a

a

0 0
0 0
0 0

[ ]l

l

l m m

l i j

[1,1]

[ , ]

,

(B.13)

Thereby formulating the so-called Contemporaneous Multivariate Autoregressive model of order p (i.e., CMAR(p); see, the work of Pegram and
James (1972)). This simplification apart from the reproduction of the autocorrelation structure of the process up to time lag p (as in the case of full
matrices Al), implies the direct reproduction of the lag-0 cross-correlation coefficients, i.e., correlation matrix R0. Using the contemporaneous
formulation, the model can be decomposed into m univariate AR(p) models, which are contemporaneously cross-correlated at lag 0, i.e.,

= + + + + + +

= + + + + + +

z a z a z a z a z

z a z a z a z a z

t t t l t l p t p t

t
m

m m t
m

m m t
m

l m m t l
m

p m m t p
m

t
m

1
1[1,1] 1

1
2[1,1] 2

1
[1,1]

1
[1,1]

1 1

1[ , ] 1 2[ , ] 2 [ , ] [ , ] (B.14)

Alternatively, and assuming that, =B B GT , where B is a ×m m matrix that denotes the square root matrix of G (typically identified using
standard matrix decomposition methods; e.g., Cholesky), then, Eq. (B.8) can be rewritten as,

= +
= =

z a z b wt
i

l

p

l i i t l
i

j

m

i j t
j

1
[ , ]

1
[ , ]

(B.15)

where wt
j are i.i.d. standard Gaussian variates, i.e., w (0, 1)t

j .
In this form, assuming that the autocorrelation structure of each process is known (e.g., specified by a theoretical model such as CAS) the

parameters l ( =l p1, .., ) as well as the variance ( )2 of t , can be easily computed through the univariate Yule-Walker system. Hence it is possible to
fully estimate the matrices A A A, , , p1 2 as well as the diagonal elements of G , which are, = =g Var[ , ]i i

t
i

t
i, 2

i.

According to Pegram and James (1972), in order to estimate the off-diagonal elements of G one can resort to iterative methods or solve a
complicated system of equations. Both solutions experience significant difficulties, especially when implemented in a computer software. Herein, we
propose an alternative technique. It is recalled that according to Eq. (B.4) each individual process zt

i can be represented in terms of an MA(∞)
process, which can be truncated at some high value of q, i.e.,

=
=

z wt
i

q
i

t
i

0 (B.16)

The elements i can be easily computed for each process zt
i using Eq. (B.5) or (B.6). Provided that the i quantities have been estimated, the off-

diagonal ith jth elements (for =i j m, 1, , and i j; since the diagonal elements are known) of matrix G are identified as follows,

= =
= =

g
R[ ]i j o i j

q i j

i j

q i j
, ,

0

0
,

0 (B.17)
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It is also noted that the elements i can be used for the estimation of any cross-correlation value for lag = 0, 1, 2 through,

= = =+
= +

=

= +

= =
+z z R gCorr[ , ] [ ]t

i
t
j

o i j

q i j

q i j
i j

q i j

q i j
i j

q
i j

,
0

0
0

, 0

0

,

0 (B.18)

Appendix C:. Additional figures for the simulation examples of Section 2.7

Fig. 18. Case B – Poisson marginal distributions. Simulated realization of process a) xt
1 and b) xt

2. Comparison of simulated and theoretical distribution function for
process c) xt

1 and d) xt
2. The established relationships between the equivalent, , and target, , correlation coefficients given the marginal distribution of each

process; e) xt
1, f) xt

2, as well as their g) interaction. Simulated and theoretical autocorrelation function (ACF) for process h) xt
1 and i) xt

2, as well as j) the cross-
correlation function (CCF) among xt

1 and xt
2, i.e., = +x xCorr[ , ]t t

1,2 1 2 .

I. Tsoukalas, et al. Journal of Hydrology 575 (2019) 354–380

376



Appendix D:. Parameter estimation of individual Nataf-based models

The parameter estimation procedure is organized according to the temporal scale of simulation.

Annual scale (SMARTA model)

Step1: Specify a target distribution function F yi for each process yt
i =i m( 1, .., ).

Step 2: Identify a target theoretical auto-dependence structure for each process yt
i =i m( 1, .., ). For instance, by fitting the Cauchy autocorrelation

structure (CAS; Eq. (8)) to the empirical estimates of autocorrelation coefficients, i.e., specify the target = +y yCorr[ , ]y
i

t
i

t
i

; .
Step 3: Specify the target annual lag-0 cross-correlation coefficients = =y y i j m( Corr[ , ]; 1, , )y

i j
t
i

t
j, . For instance, using the empirical es-

timates of historical annual data.
Step 4: On the basis of the information provided by step 3, estimate the equivalent correlation coefficients, as well as the parameters of SMARTA
model (Tsoukalas et al., 2018c).

Monthly scale (SPARTA model)

Step 1: Specify a target distribution function F xs
i for each season and process x s n

i
, = =i m s( 1, .., ; 1, , 12).

Step 2: Specify the target lag-1month-to-month-correlation coefficients of each process = = =x x i m s( Corr[ , ]; 1, , ; 1, , 12)x s s
i

s
i

s
i

; , 1 1 . For
instance, using the empirical estimates of historical monthly data.
Step 3: Specify the target monthly lag-0 cross-correlation coefficients = = =x x i j m s( Corr[ , ]; 1, , ; 1, ,12)x s

i j
s
i

s
j

;
, . For instance, using the

empirical estimates of historical monthly data.

Fig. 19. Case C – Bernoulli marginal distributions. Simulated realization of process a) xt
1 and b) xt

2. Comparison of simulated and theoretical distribution function for
process c) xt

1 and d) xt
2. The established relationships between the equivalent, , and target, , correlation coefficients given the marginal distribution of each

process; e) xt
1, f) xt

2, as well as their g) interaction. Simulated and theoretical autocorrelation function (ACF) for process h) xt
1 and i) xt

2, as well as j) the cross-
correlation function (CCF) among xt

1 and xt
2, i.e., = +x xCorr[ , ]t t

1,2 1 2 .
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Step 4: On the basis of the information provided by step 3, estimate the equivalent correlation coefficients, and the parameters of SPARTA model
(Tsoukalas et al., 2017, 2018a).

Daily scale (CMARTA model)

Step 1: Specify a target distribution function F ws
i for each season and process ws d

i
; = =i m s( 1, .., ; 1, , 12).

Step 2: Identify a target theoretical auto-dependence structure each process ws d
i
; =i m( 1, .., ). For instance, by fitting CAS (i.e., Eq. (8)), on a

monthly basis, to the daily empirical estimates of autocorrelation coefficients, i.e., specify the target = +w wCorr[ , ]w
i

s d
i

s d
i

; ; ;s
.

Step 3: Specify the target daily lag-0 cross-correlation coefficients = = =w w i j m s( Corr[ , ]; 1, , ; 1, , 12)w s
i j

s d
i

s d
j

;
,

; ; . For instance, using the
empirical estimates of historical daily data.
Step 4: On the basis of the information provided by step 3, estimate the equivalent correlation coefficients, and the parameters of CMARTA model
(see Section 2.8, and Appendix B).

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2019.05.017.
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