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Abstract Inspired by reactions on a talk about climate change impacts on hydrological science, I 

am presenting detailed comparisons of second-order stochastic tools with particular emphasis 

on the relationship of the climacogram with the Allan variance and with the variogram. 

1 Introduction 

In 26 October 2018 I gave a presentation in Moscow, entitled “Climate change impacts on 

hydrological science: How the climate change agenda has lowered the scientific level of 

hydrology” (Koutsoyiannis, 2018b). This was part of the School for Young Scientists 

“Modelling and forecasting of river flows and managing hydrological risks: Towards a new 

generation of methods” organized by the Russian Academy of Sciences and the 

Lomonosov Moscow State University. I received interesting feedback, in particular by 

Professor A.1 Here I am replying in detail to a scientific comment related to the 

stochastic background of my presentation,2 namely Professor’s A statement about the 

climacogram, which I briefly discussed in my talk as the main stochastic tool necessary 

to follow my presentation.  

 In brief, Professor A stated that what I call climacogram is well known, is named Allan 

variance and is well studied since the 1960s. I perceived this statement as implying that 

my term climacogram is superfluous and that the best I did was to copy results known 

for decades. After the talk he also sent me a couple of papers and other material to see it. 

I replied orally that the climacogram is just a variance (applied to a stochastic process) 

and, apparently, I did not claim to have invented the concept of the variance.3 I could add 

that the concept of the variance of the time averaged process is not of course my 

invention as it is contained in stochastics books (e.g. Papoulis 1991; Beran, 1994). What 

I have done is that I demonstrated, after thorough studies, that this concept has very 

                                                        
1 I am publishing this comment by uploading it on ResearchGate without naming the professor (who was 
another invited speaker attending my talk). As ResearchGate allows comments from anyone interested, he 
can respond to this comment. If he responds that he wishes to be acknowledged by name, I will upload a 
corrected version with his name. In any case, my plan is to upload a next version once errors are spotted 
and corrected. 

2 This was the most polite of Professor’s A reactions. I am reluctant to further discuss his other, non-
scientific reactions, but if he repeats his comments in ResearchGate or in other forums, I will probably 
provide written replies. 

3 The variance, as a concept and a term, is in common use at least since 1918, after the paper by Fisher 
(1918) while its square root, the standard deviation, is an even older term, due to Pearson (1894), who 
attributes the concept to Gauss and Airy. 
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useful properties and advantages over other tools, and understood that it deserves a 

name—and I proposed the name climacogram. I also said that I do not like a term like 

Allan variance but if someone suggested a better term to replace climacogram, I would 

adopt it. 
However, a more detailed study presented below shows that the Allan variance is not 

the climacogram. Yet it is a second order characteristic of a stochastic process and as any 
other second-order characteristic, it is related to all others. Namely, other customary 
second-order characteristics are the autocovariance, the power spectrum, the variogram 
and some others. The relationships of the Allan variance with some other second-order 
characteristics are also given below along with the relationships of the climacogram 
with the variogram.4 

2 Basic concepts and definitions 

This comment is based on the theory and terminology of stochastics, whose possible 

ignorance may cause difficulties in reading it. When meeting terms not carefully founded 

on stochastics (as typically is the case in publications referring to the Allan variance, 

including internet sources, such as Wikipedia), I will try to translate them into the 

stochastics language. If my translation is found inaccurate or false, I will be happy to 

change it, and I am also willing to provide any clarification requested.  
I am sorry if the text that follows is found too didactic. However, I encourage anyone 

who has time, not to skip this section. In stochastics, overconfidence about our 
knowledge does not help, and reading elementary stuff a second or third time may be 
useful. Besides, those who know stochastics very well, may find errors in my exposition 
and correct me.  

2.1 Stochastic process, stationarity and ergodicity 

We recall that a stochastic process x(t) is a collection of (usually infinitely many) 

random variables x indexed by t, typically representing time. Time is a continuous 

variable (real number) but it is customary to discretize it using a time step D. In turn, a 

random variable, x, is an abstract mathematical entity, associated with a probability 

distribution function, 

𝐹(𝑥) ≔ 𝑃{𝑥 ≤ 𝑥} (1) 

where x is any numerical value (a regular variable), P denotes probability and the 

symbol “≔”means “is defined as”. A random variable x becomes identical to a regular 

variable x0 only if F(x) = H(x – x0), where H is the unit step function, or if its variance is 

zero (see reminder of the definition of the variance in subsection 2.2).  

The stochastic process x(t) represents the evolution of a system over time, along with 
its uncertainty expressed in the language of stochastics. A trajectory or sample function 
x(t) is a (single) realization of x(t). If this realization is known at certain points ti, it is a 
time series.  

                                                        
4 During the talk there was another comment by Professor B, about the variogram, which prompted me to 
try to clarify also the relationship of the climacogram with the variogram. 
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It is important to stress the fundamental difference of a random variable from a 
regular variable and of a stochastic process from a time series. To avoid the common 
practice of confusing the two items in each of the two pairs of concepts, I use a careful 
notation adopting the so-called Dutch convention (Hemelrijk 1966), i.e., underlining 
random variables and stochastic processes. Regular variables such as the time t or 
realizations of x are denoted by non-underlined symbols.  

Central to the notion of a stochastic process are the concepts of stationarity and 
nonstationarity, two widely misunderstood and misused concepts, whose definitions are 
only possible for (and applies only to) stochastic processes (thus, for example, a time 
series cannot be stationary, nor nonstationary). A process is called (strict-sense) 
stationary if its statistical properties are invariant to a shift of time origin, i.e. the 

processes x(t) and x(s) have the same statistics for any t and s (see further details, as 
well as definition of wide-sense stationarity, in Papoulis, 1991; see also further 
explanations in Koutsoyiannis, 2006, 2011 and Koutsoyiannis and Montanari, 2015). 
Conversely, a process is nonstationary if some of its statistics are changing in time and 
their change is described as a deterministic function of time. 

Stationarity is also related to ergodicity, which in turn is a prerequisite to make 

inference from data, that is, induction. Without ergodicity inference from data would not 
be possible. While ergodicity is originally defined in dynamical systems (e.g. Mackey, 
1992, p. 48), the ergodic theorem (e.g. Mackey, 1992, p. 54) allows redefining ergodicity 
within the stochastic processes domain (Papoulis 1991 p. 427; Koutsoyiannis 2010) as 
will be detailed in the subsection 2.2. From a practical point of view, ergodicity can 

always be assumed when there is stationarity, while this assumption if fully justified by 
the theory if the system dynamics is deterministic. Conversely, if nonstationarity is 
assumed, then ergodicity cannot hold, which forbids inference from data. This 
contradicts the basic premise in geosciences, where data are the only reliable 
information in building models and making inference and prediction. 

2.2 Expectation and its estimation 

Functions of random variables, e.g. z = g(x) are random variables. Expected values of 

random variables are regular variables; for example E[x] and E[g(x)] are constants—

neither functions of x nor of x. That justifies the notation E[x] instead of E(x) or E(x) 

which would imply functions of x or x. Specifically, the expectation of a function g( ) of a 

continuous random variable x is defined as 

E[𝑔(𝑥)] ≔ ∫ 𝑔(𝑥)𝑓(𝑥)d𝑥

∞

−∞

 (2) 

where 𝑓(𝑥) is the probability density function, i.e.,  

𝑓(𝑥) ≔
𝑑𝐹(𝑥)

𝑑𝑥
 (3) 

For 𝑔(𝑥) = 𝑥 the expectation is the mean 

𝜇𝑥 ≡ E[𝑥] ≔ ∫ 𝑥𝑓(𝑥)d𝑥

∞

−∞

 (4) 
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while for 𝑔(𝑥) = (𝑥 − 𝜇𝑥)
2
 the expectation is the variance 

𝜎𝑥
2 ≡ var[𝑥] ≔ E [(𝑥 − 𝜇𝑥)

2
] = ∫(𝑥 − 𝜇𝑥)

2
𝑓(𝑥)d𝑥

∞

−∞

 (5) 

Likewise, for two (or more) random variables we can define their joint distribution 
function, e.g., 𝐹(𝑥, 𝑦) ≔ 𝑃{𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦}, joint density 𝑓(𝑥, 𝑦) ≔ 𝜕2𝐹(𝑥, 𝑦)/𝜕𝑥𝜕𝑦, and 

joint expectations. The simplest case of joint expectation is the covariance: 

𝜎𝑥𝑦 ≡ cov [𝑥, 𝑦] ≔ E [(𝑥 − 𝜇𝑥) (𝑦 − 𝜇𝑦)] = ∫ ∫(𝑥 − 𝜇𝑦) (𝑦 − 𝜇𝑦) 𝑓(𝑥, 𝑦)d𝑥

∞

−∞

∞

−∞

 (6) 

In a similar manner, we define expectations for a stochastic process. Assuming that the 
process 𝑥(𝑡) is stationary with mean 𝜇 = E[𝑥(𝑡)], the variance of the instantaneous 

process is  

𝛾0 ≔ var[𝑥(𝑡)] = E [(𝑥(𝑡) − 𝜇)
2
] (7) 

and the autocovariance for time lag h is  

𝑐(ℎ) ≔ cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] ≔ E[(𝑥(𝑡) − 𝜇)(𝑥(𝑡 + ℎ) − 𝜇)] (8) 

 It should be stressed that these expectations are not time averages. Sometimes to 

make it clearer they are called true or ensemble means, variances, covariances etc. For 

an ergodic process, they are related to time averages through the following relationship 

which can serve as a definition of an ergodic process: 

�̂�(∞)≔ lim
𝑇→∞

1

𝑇
∫𝑔 (𝑥(𝑡)) 𝑑𝑡 = E[𝑔(𝑥(𝑡))]

𝑇

0

=:𝐺 (9) 

We notice that the left-hand side �̂�(∞) is a random variable while the right-hand side G is 

a regular variable; their equality implies that the variance of �̂�(∞) is zero. 

 When dealing with data from a process 𝑥(𝑡) with a joint distribution function that is 

unknown, neither the left- nor the right-hand side of (9) can be known a priori. 

Assuming that we have a time series, at a time step D, with observations 𝑥𝜏 ≔ 𝑥(𝐷𝜏), τ = 

1, …, n, we can approximate the left-hand side by  

�̂� ≔
1

𝑛
∑𝑔(𝑥𝜏)

𝑛

𝜏=1

 (10) 

The regular variable �̂� is called an estimate of the true expectation G. Replacing in 
equation (10) the values 𝑥𝜏 with the random variables 𝑥𝜏 ≔ 𝑥(𝐷𝜏) we define  

�̂� ≔
1

𝑛
∑𝑔(𝑥𝜏)

𝑛

𝜏=1

 (11) 

The random variable �̂� is called an estimator of the true expectation G. This is typically 

biased (with few exceptions, the most notable being the estimator of the mean), 

meaning that  
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E[�̂�] ≠ 𝐺 (12) 

Therefore, sometimes bias correction factors are used to deal with bias. These factors 

depend on the stochastic model assumed for the process and are not of general use. For 

example, the estimator of variance, 

𝛾0 ≡
1

𝑛
∑(𝑥𝜏 − �̂�)

2
𝑛

𝜏=1

 (13) 

is well known to be biased. Some think that if we replace n with n – 1 in the denominator 

of the right-hand side, it becomes unbiased. While this is true for uncorrelated samples, 

this is hardly the case for stochastic processes describing natural phenomena, where 

this slight change does not make the estimator unbiased and a more sophisticated 

procedure is required to deal with bias (see Koutsoyiannis 2003, 2016 about a correct 

assessment of the bias). 
Summarizing, there are four different concepts, with slightly different names but very 

different meaning and content. Unfortunately, these are often confused in the literature 

and the same symbol and name are used for all, which creates confusion and may result 
in wrong conclusions. Table 1 clarifies the four different concepts using the variance as 
an example. Notice in the table that the data can be used only with one of the variance 
variants, namely the variance estimate, while a theoretical model is necessary to 
determine any of them. 

Table 1 Different variants of the variance. 

Name Symbol Type of variable Type of determination 

Variance 

(true) 

𝛾0 Regular variable Theoretical calculation from 

model (by integration) 

Variance 

estimate 

𝛾0 Regular variable Estimation from data—but 

model is also necessary (e.g. 

to calculate the estimation 

bias and uncertainty) 

Variance 

estimator 

𝛾0 Random variable Theoretical calculation from 

model 

Variance 

estimator 

limit 

𝛾0
(∞)

 Random variable, which for ergodic 

processes has zero variance and 

becomes a regular variable  

Theoretical calculation from 

model 

3 The climacogram 

Let 𝑥(𝑡) be a stationary and ergodic stochastic process in continuous time t, with 

variance γ0 and let  

𝑋(𝑡) ≔ ∫𝑥(𝑢)𝑑𝑢

𝑡

0

 (14) 
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be the cumulative process, which is obviously nonstationary (with stationary 
increments). The two processes 𝑥(𝑡) and 𝑋(𝑡) are illustrated through some realizations 

thereof in Figure 1, where 𝑋(𝑡) represents the area under the curve 𝑥(𝑡). The figure also 

illustrates the discretization of the process for a time step (or time scale) D, which 

results in the discrete-time process 

𝑥𝜏
(𝐷) ≔

1

𝐷
∫ 𝑥(𝑢)𝑑𝑢

𝜏𝐷

(𝜏−1)𝐷

=
𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷)

𝐷
 (15) 

which is the time average of 𝑥(𝑡) over the time interval [(𝜏 − 1)𝐷, 𝜏𝐷]. 

 Let 

𝛤(𝑡) ≔ var[ 𝑋(𝑡)] (16) 

be the variance of the cumulative process, which is a function of the time t, because the 

process 𝑋(𝑡) is nonstationary. Obviously, the variance of the averaged process at any 

time scale k (e.g., at k = D, as shown in Figure 1), is  

𝛾(𝑘) ≔ var [
𝑋(𝑡 + 𝑘) − 𝑋(𝑡)

𝑘
] =

𝛤(𝑘)

𝑘2
 (17) 

Notice that, while time t appears in the above term in square brackets, 𝛾(𝑘) is not a 

function of t because of stationarity. The variance of the discrete-time process shown in 

Figure 1 is 

var[𝑥𝜏
(𝐷)] = 𝛾(𝐷) (18) 

and does not depend on time τ because the discrete-time process 𝑥𝜏
(𝐷) is also stationary. 

 
Figure 1 Explanatory sketch for a stochastic process in continuous time and in discrete time. 
Note that the graphs display a realization of the process (it is impossible to display the process 
as such) while the notation is for the process per se (from Koutsoyiannis 2017). 

 I call Γ(t) and γ(k), as functions of time t and time scale k, the cumulative climacogram 

and the climacogram of the process, respectively. As already said, these concepts are not 

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

t0 D 2D … (τ – 1)D τD (averaged at time scale D)
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new: for example Papoulis (1991) describes the latter as “variance [symbol] of the time 

average [symbol]” which is an accurate phrase but not a name. Also Beran (1994) uses 

the former concept (e.g. in his Theorem 2.2) using symbolic representation and not a 

name. Since the 1990s in some publications the term “aggregated variance” has been 

used, but it is a misnomer because the variance is not aggregated at all—just the time 

scale varies. As I thought each of the two concepts deserves a proper name but does not 

have one, in Koutsoyiannis (2010) I coined the Greek5 term “climacogram” emphasizing 

the link of the concept to time scale.6 I still use it as I found no better term.7 

The climacogram is the second central moment of the process, as a function of time 

scale, and thus it is a second-order characteristic of the process. It is related by simple 

one-to-one transformations to any other second-order characteristic of the process. For 

example, the transformations relating it to the autocovariance function, defined in (8), 

are (Koutsoyiannis, 2017): 

𝛾(𝑘) = 2∫(1 − 𝜒)𝑐(𝜒𝑘)d𝜒

1

0

, 𝑐(ℎ) =
1

2

d2(ℎ2𝛾(ℎ))

dℎ2
 (19) 

and those relating it to the power spectrum are 

𝛾(𝑘) = ∫ 𝑠(𝑤)sinc2(π𝑤𝑘) d𝑤

∞

0

, 𝑠(𝑤) = 2∫
d2(ℎ2𝛾(ℎ))

dℎ2
cos(2π𝑤ℎ) dℎ

∞

0

 (20) 

where the power spectrum is defined as 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2𝜋𝑤ℎ) 𝑑ℎ

∞

0

 (21) 

Other transformations relating customary second-order characteristic to each other, as 

well as those relating continuous-time with discrete-time characteristics thereof, can be 

found in Koutsoyiannis (2017).  

The climacogram, like the autocovariance function, is a positive definite function 

(Koutsoyiannis, 2017) but of the time scale k, rather than the time lag h. It is not as 

popular as the other tools but it has several good properties due to its simplicity, close 

relationship to entropy, and more stable behaviour, which is an advantage in model 

identification and fitting from data. In particular, when estimated from data, the 

climacogram behaves better than all other tools, which involve high bias and statistical 

variation (Dimitriadis and Koutsoyiannis, 2015; Koutsoyiannis, 2016). 

                                                        
5 Prior to it, I also tried English terms and in particular the scale(o)gram, thinking that the international 
community would be less reluctant to use it, but I found that it is reserved for another concept 
(https://en.wikipedia.org/wiki/Scaleogram), so my next though is to compose a Greek term. 

6 Climacogram < Greek Κλιμακόγραμμα < [climax (κλίμαξ) = scale] + [gramma (γράμμα) = written, 
drawn].  

7 Here I reiterate my willingness to discuss and adopt a better term, if someone suggests one. I have 
already rejected an initial thought to call it gammogram (from the letter γ used to denote it) mostly 
because of possible weird connotations in the Greek language. 
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4 The Allan variance  

The Allan variance is named after Allan (1966), who defined the concept (but did not use 

that name) as seen in the extract shown in Figure 2, while Figure 3 gives an example of 

more recent use of the concept from Witt (2001). The general setting and terminology 

used in both these publications (and other ones investigated) belong to the time series 

literature. Here I am trying to translate the definition into the language of stochastics. 

 

Figure 2 Extract from Allan (1966) introducing what was later called the Allan variance. 
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Figure 3 Extract of the definition of Allan variance from Witt (2001). 

 First it is important to inspect whether or not the definition refers to a stationary 

stochastic process or another type of process, such as the cumulative process defined 

above, which is a nonstationary process with stationary intervals. Neither of the two 

publications shown in Figure 2 and Figure 3 clarifies this, but as will be further 

illustrated in section 5, the information about stationarity is crucial to proceed. From 

equation (1) in Allan (1966) one may think that𝜙(𝑡) corresponds to the cumulative 

process, so that 𝛺𝜏(𝑡), which is named average (angular frequency) correspond to a 

stationary process. If this was the case, by comparing equation (48) below 

(corresponding to equation (1) of Allan (1966)) with equations (15) and (17), one 

would conclude that the climacogram and the Allan variance are identical.  

However, the subsequent content suggests otherwise, i.e. that 𝜙(𝑡) corresponds to a 

stationary process as detailed in Appendix A. In Witt’s (2001) definition, shown in 

Figure 3, this is clearer as he speaks about “adjacent segments of duration τ” and defines 

�̅�𝑘 as “the average value of in the kth interval”.  

 Having clarified the stationarity of the related processes in Allan and Witt, I use my 

notation on Witt’s variant and replace Witt’s τ with my k, k with my τ, and �̅�𝑘 with my 

𝑥𝜏
(𝑘). Thus, Witt’s variant of the Allan variance, which I will denote 𝛾Α(𝑘), is  

𝛾Α(𝑘) ≔
1

2
var[𝑥𝜏+1

(𝑘)
− 𝑥𝜏

(𝑘)
] =

1

2
E [(𝑥𝜏+1

(𝑘)
− 𝑥𝜏

(𝑘)
)
2

] (22) 

This can be determined in terms of the climacogram γ(k) as follows:  
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𝛾Α(𝑘) =
1

2
var[𝑥𝜏+1

(𝑘) − 𝑥𝜏
(𝑘)] =

1

2
var[𝑥𝜏+1

(𝑘) ] +
1

2
var[𝑥𝜏

(𝑘)] − cov[𝑥𝜏+1
(𝑘) , 𝑥𝜏

(𝑘)] (23) 

On the other hand we have 

2𝛾(2𝑘) =
1

2
var[𝑥𝜏+1

(𝑘) + 𝑥𝜏
(𝑘)] =

1

2
var[𝑥𝜏+1

(𝑘) ] +
1

2
var[𝑥𝜏

(𝑘)] + cov[𝑥𝜏+1
(𝑘) , 𝑥𝜏

(𝑘)] (24) 

Using the stationarity assumption and adding the two last equations by parts, we find  

𝛾Α(𝑘) + 2𝛾(2𝑘) = 2𝛾(𝑘) (25) 

and finally 

𝛾Α(𝑘) = 2(𝛾(𝑘) − 𝛾(2𝑘)) (26) 

 Hence the Allan variance is not the climacogram, but is twice the difference of the 

climacogram at two time scales, k and 2k. Coincidentally, I have shown in Koutsoyiannis 

(2017) that the very right-hand side of (26) is related to the conditional entropy of a 

Markovian process for the condition that the past is known. I tried to generalize 

(approximately) this result for non-Markovian processes and also introduced the 

quantity  

𝜁(𝑘) ≔
𝑘(𝛾(𝑘) − 𝛾(2𝑘))

ln 2
 (27) 

as a transformation of the climacogram𝛾(𝑘), and derived the inverse transformation, 

giving 𝛾(𝑘) if 𝜁(𝑘) is known. Interestingly, 𝜁(𝑘) resembles the power spectrum (namely, 

its graph plotted versus the frequency w ≔ 1/k has an area precisely equal to the 

variance γ0 of the instantaneous process and its asymptotic slopes on a log-log plot are 

equal to those of the power spectrum), and thus I have termed 𝜁(𝑘) the 

climacospectrum. 

The Allan’s (1966) variant of Allan variance is slightly different from Witt’s as Allan 

does not use the factor ½ in his definition. On the other hand, denoting the 

autocovariance at time scale k and discrete time lag η := h/k as 𝑐𝜂
(𝑘) ≔ cov[𝑥𝜏

(𝑘), 𝑥𝜏+𝜂
(𝑘) ] 

and observing that var[𝑥𝜏
(𝑘)] =  𝑐0

(𝑘)
 and cov[𝑥𝜏+1

(𝑘) , 𝑥𝜏
(𝑘)] = 𝑐1

(𝑘)
 we can write (23) in terms 

of covariances as 

𝛾Α(𝑘) = 𝑐0
(𝑘) − 𝑐1

(𝑘) (28) 

which is the equivalent with Allan’s equation (5). Here I note that, in contrast to the 

climacogram, which has the convenient property that its values are identical for the 

continuous- and discrete-time representation, the autocovariance values in discrete 

time, 𝑐𝜂
(𝑘), are different from those in continuous time, c(kη). Namely, the former are 

determined from the climacogram and not the continuous-time autocovariance 

(Koutsoyiannis, 2017), i.e. from: 
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𝑐𝜂
(𝑘) =

1

𝑘2
(
𝛤(|𝜂 + 1|𝑘) + 𝛤((|𝜂 − 1|𝑘)

2
− 𝛤(|𝜂|𝑘))

=
(𝜂 + 1)2𝛾(|𝜂 + 1|𝑘) + (𝜂 − 1)2𝛾((|𝜂 − 1|𝑘)

2
− 𝛾(|𝜂|𝑘) 

(29) 

Hence for η = 0 and 1,  

𝑐0
(𝑘) =

1

𝑘2
𝛤(𝑘) = 𝛾(𝑘), 𝑐1

(𝑘) =
1

𝑘2
(
𝛤(2𝑘)

2
− 𝛤(𝑘)) = 2𝛾(2𝑘) − 𝛾(𝑘) (30) 

and combining equations (28) and (30) we recover (and thus verify) equation (26). 

5 The variogram  

For a stochastic process 𝑥(𝑡), stationary or nonstationary, the variogram (also known as 

semivariogram or structure function) is defined to be  

𝑣(𝑡, 𝑢) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑢)] ≡

1

2
(Var[𝑥(𝑡)] + Var[𝑥(𝑢)]) − Cov[𝑥(𝑡), 𝑥(𝑢)] (31) 

In this definition, it is clear that the variogram is a function of two time variables, t and u. 

However, it is commonly used in applications as a function of a single variable, the time 

lag h = u – t, i.e., 

𝑣(ℎ) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)]

≡
1

2
(Var[𝑥(𝑡)] + Var[𝑥(𝑡 + ℎ)]) − Cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] 

(32) 

Apparently, the latter form is legitimate for a stationary process but it is also used 

indiscriminately for nonstationary ones. As will be shown below this is legitimate for 

some types of nonstationary stochastic processes but not for any case of a nonstationary 

stochastic process. The fact that it can be used in the same form, as a function of a single 

variable, for stationary and nonstationary processes, has been regarded as an advantage 

of the tool. However, I contend the opposite, i.e. that it is a disadvantage for these 

reasons: 

 Inference from data is possible only for ergodic processes and ergodic processes 

are necessarily stationary. Therefore, to make inference we must first transform 

the nonstationary to a stationary process. Even if we missed that, there should 

exist such a transformation behind the scene and it is much better, in terms of 

transparency and validity of mathematical derivations and calculations, if we are 

conscious about which the underlying stationarity is. 

 A theoretically consistent model cannot be developed without clarifying whether 

the process is stationary or not, and if not, without defining the type of 

nonstationarity and proposing a model for it. 



12 

 In particular for the variogram, if we clarify the underlying process, it turns out 

that the relationship of the variogram to other second-order characteristics of the 

process is different for stationary and nonstationary process (see next 

subsections), and it is important to be aware of the differences.  

 The indiscriminate and unaware use of certain hypotheses, which in fact are valid 

for certain conditions, entails a risk of using them while the conditions do not 

hold and draw false conclusions. 

For these reasons I study below some cases where it is or it is not legitimate to use 

the variogram as a function of lag, i.e., 𝑣(ℎ) as in equation (32), noting that it is always 

legitimate (albeit inconvenient and ineffective) to use the variogram as a function of two 

variables, i.e., 𝑣(𝑡, 𝑢) as in equation (31). I also derive, in each of the cases, the 

variogram’s relation with other stochastic tools and, in particular, the climacogram, 

which I propose as the benchmark tool for many reasons, among which is its unique 

property not to be affected by discretization, while all other second-order tools are 

affected.  

5.1 Stationary processes 

Apparently, in a stationary process (even a wide-sense stationary one), time translations 

do not affect second-order properties and thus (31) for lag h ≔ u – t entails (32), which 

can be written as 

𝑣(ℎ) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)] ≡ Var[𝑥(𝑡)] − Cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] (33) 

and, considering (8) and (19), it takes the form 

𝑣(ℎ) ≔ 𝛾0 − 𝑐(ℎ) = 𝛾(0) −
1

2

d2(ℎ2𝛾(ℎ))

dℎ2
 (34) 

 This is the continuous-time representation. In discrete type, by replacing 𝑥(𝑡) with 

𝑥𝜏
(𝐷) and using (29) we find 

𝑣𝜂
(𝐷)

≔ 𝛾(𝐷) − 𝑐𝜂
(𝐷)

= 𝛾(𝐷) −
(𝜂 − 1)2

2
𝛾((|𝜂 − 1|𝐷) + 𝜂2𝛾(|𝜂|𝐷) −

(𝜂 + 1)2

2
𝛾(|𝜂 + 1|𝐷) 

(35) 

Notable is the difference of the latter expression from the continuous-time one. As a 

particular case, for η = 1 we easily find that 

𝑣1
(𝐷)

≔ 𝛾(𝐷) − 𝑐1
(𝐷) = 2𝛾(𝐷) − 2𝛾(2𝐷) (36) 

and comparison with (26) shows that the discrete-time variogram for lag 1 is identical 

to the Allan variance. 

5.2 Cumulative process 

The cumulative process 𝑋(𝑡) is nonstationary and thus the analysis of subsection 5.1 

does not hold. However, its definition from equation (14) suggests that its derivative 
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𝑥(𝑡) = d𝑋(𝑡)/d𝑡 exits8 and is a stationary process. Thus, in this case the transformation 

that makes the nonstationary process 𝑋(𝑡) stationary is differentiation. So, we can base 

our further analyses on the stationarity (and ergodicity) of the derivative.  

For the cumulative process we start our analysis from the general definition (31) 
replacing 𝑥(𝑡) with 𝑋(𝑡): 

𝑣(𝑡, 𝑢) =
1

2
Var[𝑋(𝑡) − 𝑋(𝑢)] (37) 

As 𝑋(𝑡) has stationary intervals, time translation does not affect the second order 

structure of the difference 𝑋(𝑡) − 𝑋(𝑢), and we can write 

𝑣(𝑡, 𝑢) =
1

2
Var[𝑋(𝑡 − 𝑡) − 𝑋(𝑢 − 𝑡)] =

1

2
Var[𝑋(𝑢 − 𝑡)] (38) 

(because by definition 𝑋(0) ≡ 0). Noticing that the rightmost part is indeed a function of 

the time lag h ≔ u – t, and using (16) and (17) we get  

𝑣(ℎ) =
𝛤(ℎ)

2
=
ℎ2𝛾(ℎ)

2
 (39) 

The difference of (39) from (34) or (35) is spectacular. 

5.3 Nonstationary processes  

Here I illustrate the non-legitimate use of the univariate form of the variogram in the 

general case of a nonstationary process. As a simple example, I assume a nonstationary 
process 𝑥(𝑡) with time varying mean μ(t) and variance σ2(t), where μ(t) and σ(t) are 

deterministic functions of time t.  

In this case the transformation  

𝑦(𝑡) ≔
𝑥(𝑡) − 𝜇(𝑡)

𝜎(𝑡)
 (40) 

makes a process 𝑦(𝑡) that can be assumed (wide-sense) stationary, with 𝐸 [𝑦(𝑡)] = 0, 

var [𝑦(𝑡)] = 1, and covariance 𝑐𝑦(ℎ); this latter is any arbitrary function of the lag h 

only, provided that it is positive definite. The question is, can the covariance or the 
variogram of 𝑥(𝑡) also be univariate functions of the time lag?   

 To study the first part of the question, from (40) we easily find that 

cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] = cov[𝜎(𝑡)𝑦(𝑡), 𝜎(𝑡 + ℎ)𝑦(𝑡 + ℎ)]

= 𝜎(𝑡)𝜎(𝑡 + ℎ) E [𝑦(𝑡), 𝑦(𝑡 + ℎ)] =𝜎(𝑡)𝜎(𝑡 + ℎ)𝑐𝑦(ℎ) 
(41) 

If the function on the left-hand side was a function of h, c(h), then 

𝑐(ℎ) = 𝜎(𝑡)𝜎(𝑡 + ℎ)𝑐𝑦(ℎ) (42) 

For h = 0, noticing that 𝑐𝑦(0) = var [𝑦] = 1, we find 

                                                        
8 Note that not all stochastic processes are differentiable or integrable; see conditions of existence in 
Papoulis (1991). 
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𝑐(0) = 𝜎(𝑡)2 (43) 

which entails that 𝜎(𝑡) = constant, a result that contradicts the assumption of a time 

varying variance. 

 Now we will make a similar analysis for the variogram, assuming that it can be 

expressed as a univariate function 𝑣(ℎ) as in equation (32). This means that 

𝑣(ℎ) =
1

2
(Var[𝑥(𝑡)] + Var[𝑥(𝑡 + ℎ)]) − Cov[𝑥(𝑡), 𝑥(𝑡 + ℎ)] (44) 

which results in 

𝑣(ℎ) =
𝜎2(𝑡) + 𝜎2(𝑡 + ℎ)

2
− 𝜎(𝑡)𝜎(𝑡 + ℎ)𝑐𝑦(ℎ) (45) 

Clearly, this has the solution 𝜎(𝑡) = 𝜎 = constant; in this case 

𝑣(ℎ) = 𝜎2(1 − 𝑐𝑦(ℎ)) (46) 

but this solution contradicts the assumption that the variance is time varying. Except for 

the trivial solution 𝜎(𝑡) = 𝜎, (45) cannot hold for an arbitrary function 𝜎(𝑡), as 

demonstrated in Appendix B. 

 Thus, neither the autocovariance, nor the variogram can be functions of a single 

variable in the general case of a nonstationary process. However, if nonstationarity 

holds only for the mean, then both the autocovariance and the variogram become 

functions of a single variable because none of the above results depends on the function 

μ(t). In this respect, even if we regarded as an advantage the applicability of the same 

tool to stationary and nonstationary processes indistinguishably (which I do not) the 

variogram would not have an advantage over the autocovariance (or the climacogram). 

6 Discussion and conclusion 

When dealing with stochastics, overconfidence and certainty in assertions are not 

useful9 because stochastic concepts and tools are delicate. For this reason, I am posting 

this document for discussion, hoping that possible errors or wrong assertions would be 

spotted and corrected. 

 The above discourse indicates some of the virtues of the climacogram but it has more. 

To refer to just one additional, it is readily expandable beyond a second-order 

representation of a stochastic process, still providing characterization of high-order 

properties of processes in terms of univariate functions of time scale (Dimitriadis and 

Koutsoyiannis, 2018; Koutsoyiannis, 2018a; Koutsoyiannis et al., 2018).  

 Because of its virtues, I am using the climacogram as benchmark for comparison with 

other stochastic tools. Here comparisons showed that the climacogram is not identical to 

Allan variance and to the variogram, but, evidently, it is related to them and the 

relationships have thoroughly been studied above. In particular it has been shown that 

                                                        
9 I believe they did not even benefit Professor A in this particular case. 
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the Allan variance is twice the difference of the climacogram at scales k and 2k; also, it 

equals the variogram for lag one in a discrete time scale representation. 

 The fact that stochastics deals with uncertainty should not mislead us to think that 

stochastic concepts are, or need to be, uncertain per se.10 In this respect, we owe a lot to 

the Moscow school of mathematics, for its substantial contribution for the solid and 

rigorous foundation of probability (e.g., Kolmogorov, 1933) and stochastic processes 

(e.g., Kolmogorov, 1931, 1937, 1938, 1947; Khintchine, 1933, 1934). However, I must 

admit that clarity is not appreciated by everyone in the scientific community. In my 

other talk in the same event (Koutsoyiannis, 2018c) I referred to this fact using the 

following quotations, suggesting the existence of two opposite schools of thought.  

Each definition is a piece of secret ripped from Nature by the human spirit. I insist on 

this: any complicated thing, being illumined by definitions, being laid out in them, 

being broken up into pieces, will be separated Into pieces completely transparent 

even to a child, excluding foggy and dark parts that our intuition whispers to us while 

acting, separating into logical pieces, then only can we move further, towards new 

successes due to definitions . . . 

Nikolai Luzin (from Graham and Kantor, 2009)  

Let me argue that this situation [absence of a definition] ought not create concern 

and steal time from useful work. Entire fields of mathematics thrive for centuries 

with a clear but evolving self-image, and nothing resembling a definition. 

Benoit Mandelbrot (1999, p. 14) 

My clear preference is for Luzin’s school.  

Appendix A 

To demonstrate that 𝜙(𝑡) in Allan (1966) corresponds to a stationary process, we 
assume the opposite, i.e. we consider a stochastic process 𝜙(𝑡) that is nonstationary 

with stationary intervals, so that the intervals 𝜙(𝑡 + 𝜏) −𝜙(𝑡) form a stationary process 

for a fixed τ and t = τ, 2τ, 3τ, …. Obviously, in this case,  

 E [𝜙(𝑡 + 𝜏) −𝜙(𝑡)] = 𝜇𝜏 (47) 

where μ denotes average (e.g., 𝜇 = E[𝜙(2𝜏) −𝜙(𝜏)], so that if the process were 

stationary, then μ = 0).  

In accord with Allan (1966) we define 

𝛺𝜏(𝑡) ≔
1

𝜏
(𝜙(𝑡 + 𝜏) −𝜙(𝑡)) (48) 

for which  

Ε[𝛺𝜏(𝑡)
2] =

1

𝜏2
(Ε [𝜙(𝑡 + 𝜏)2] − 2Ε [𝜙(𝑡 + 𝜏)𝜙(𝑡)] + Ε [𝜙(𝑡)2]) (49) 

                                                        
10 I would not write this document if I believed otherwise. 
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and thus 

var[𝛺𝜏(𝑡)] = Ε[𝛺𝜏(𝑡)
2] − E[𝛺𝜏(𝑡)]

2

=
1

𝜏2
(Ε [𝜙(𝑡 + 𝜏)2] − 2Ε [𝜙(𝑡 + 𝜏)𝜙(𝑡)] + Ε [𝜙(𝑡)2]) − 𝜇2𝜏2 

(50) 

Furthermore, from (48) we get 

𝜙(𝑡 + 𝜏) = 𝜙(𝑡) + 𝜏𝛺𝜏(𝑡) (51) 

and hence 

E [𝜙(𝑡 + 𝜏)2] = E [𝜙(𝑡)2] + 2𝜏E [𝜙(𝑡)𝛺𝜏(𝑡)] + 𝜏2E[𝛺𝜏(𝑡)
2] ≠ E [𝜙(𝑡)2] (52) 

as it cannot be supported that the nonstationary process 𝜙(𝑡) is such that 

2E [𝜙(𝑡)𝛺𝜏(𝑡)] + 𝜏E[𝛺𝜏(𝑡)
2] ≡ 0 for any t and τ (and such an assumption, which 

practically would not be different from the simpler assumption of wide-sense 

stationarity, would be stated in the paper if it was the case). 

 Now, noting that the equations derived here in terms of expectations should 

correspond to the equations of Allan (1966), which are given in terms of time average 

limits, we observe that:  

(a) Equation (50) differs from Allan’s equation (4) in the term −𝜇2𝜏2 (which would 

be zero if the process was stationary). 

(b) Allan’s note that “a time translation has no effect on the autocovariance function” 

contradicts inequality (52), because E [𝜙(𝑡)2] equals the autocovariance 

according to Allan’s definition for τ = 0. 

Furthermore, Allan’s reference [4], i.e. Searle et al. (1964), clearly speaks about “a 

stationary time function.”  
 This analysis proves that Allan’s process 𝜙(𝑡) is stationary as the opposite would be 

contradictory.  

Appendix B 

Writing (45) after replacing t with t + h and h with −ℎ we get 

𝑣(−ℎ) =
𝜎2(𝑡 + ℎ) + 𝜎2(𝑡)

2
− 𝜎(𝑡 + ℎ)𝜎(𝑡)𝑐𝑦(ℎ) (53) 

Comparing the last equation with (45) we get 𝑣(−ℎ) = 𝑣(ℎ), which means that 𝑣(ℎ), if it 

exists, will be an even function. Now, we write again (45) without replacing t but 

replacing h with −ℎ and get 

𝑣(−ℎ) =
𝜎2(𝑡) + 𝜎2(𝑡 − ℎ)

2
− 𝜎(𝑡)𝜎(𝑡 − ℎ)𝑐𝑦(ℎ) (54) 

Subsequently, we subtract (45) and (54) by parts and find 

0 =
𝜎2(𝑡 + ℎ) − 𝜎2(𝑡 − ℎ)

2
− 𝜎(𝑡)𝑐𝑦(ℎ)(𝜎(𝑡 + ℎ) − 𝜎(𝑡 − ℎ)) (55) 
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In the trivial case of constant variance we have 𝜎(𝑡 + ℎ) − 𝜎(𝑡 − ℎ) = 0 and equation 

(55) holds true. Otherwise, i.e., if 𝜎(𝑡 + ℎ) − 𝜎(𝑡 − ℎ) ≠ 0, we divide (55) by 

𝜎(𝑡 + ℎ) − 𝜎(𝑡 − ℎ) and get 

0 =
𝜎(𝑡 + ℎ) + 𝜎(𝑡 − ℎ)

2
− 𝜎(𝑡)𝑐𝑦(ℎ) (56) 

or  

𝜎(𝑡 + ℎ) + 𝜎(𝑡 − ℎ) = 2𝜎(𝑡)𝑐𝑦(ℎ) (57) 

As in the right-hand side the function is separable in terms of t and h, for the left-hand 

side we try the same, i.e., a solution of the form 𝜎(𝑡 + ℎ) = 𝐴(𝑡)𝐵(ℎ). Interchangeability 

of t and h implies that 𝐴(𝑡)𝐵(ℎ) = 𝐴(ℎ)𝐵(𝑡), which entails 𝐵(ℎ) = 𝐴(ℎ), so that (57) is 

written as 

𝐴(𝑡)(𝐴(ℎ) + 𝐴(−ℎ)) = 2𝜎(𝑡)𝑐𝑦(ℎ) (58) 

so that necessarily 𝐴(𝑡) = 𝐶𝜎(𝑡) for some constant C. Hence 

𝐶2(𝜎(ℎ) + 𝜎(−ℎ)) = 2𝑐𝑦(ℎ) (59) 

and setting h = 0 in the above and noticing that 𝑐𝑦(0) = 1 we conclude that C = 1/√𝜎(0) 

and 𝐴(𝑡) = 𝜎(𝑡)/√𝜎(0). 

Writing (57) for t = h we get 

𝜎(ℎ + ℎ) + 𝜎(0) = 2𝜎(ℎ)𝑐𝑦(ℎ) (60) 

or 

(𝜎(ℎ))
2
/𝜎(0) + 𝜎(0) − 2𝜎(ℎ)𝑐𝑦(ℎ) = 0 (61) 

This is a quadratic equation in terms of 𝜎(ℎ) and its discriminant is 4(𝑐𝑦(ℎ)
2 − 1). As 

𝑐𝑦(ℎ), being autocovariance, is a positive definite function with 𝑐𝑦(0) = 1, the 

discriminant is negative and thus there is no solution of the quadratic equation for 𝜎(ℎ). 

 For further illustration I provide two specific examples, in which I do not use the 

above theoretical results. In the first one I consider the case 𝜎(𝑡) = 𝑎𝑡𝑏 , in which 

𝑣(ℎ) =
𝑎2𝑡2𝑏

2
(1 + (1 +

ℎ

𝑡
)
2𝑏

) − 𝑎2𝑡2𝑏 (1 +
ℎ

𝑡
)
𝑏

𝑐𝑦(ℎ)

=
𝑎2𝑡2𝑏

2
(1 + (1 +

ℎ

𝑡
)
2𝑏

− 2(1 +
ℎ

𝑡
)
𝑏

𝑐𝑦(ℎ)) 
(62) 

where the right-hand side is a function of t (not only of h), unless b = 0, which 

corresponds to constant variance. The linear case, b = 1, and the square-root case, b = 

1/2, do not eliminate dependence on t.  

In the second example I assume 𝜎(𝑡) = 𝑎e𝑏𝑡 in which 

𝑣(ℎ) =
𝑎2e2𝑏𝑡(1 + e2𝑏ℎ)

2
− 𝑎2e2𝑏𝑡+ℎ𝑐𝑦(ℎ) =

𝑎2e2𝑏𝑡

2
(1 + e2𝑏ℎ − 2eℎ𝑐𝑦(ℎ)) (63) 
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where again the right-hand side is a function of t (not only of h), except in the trivial case 

of constant variance (b = 0). Interestingly, in this case the dependence of the right-hand 

side on t is separable from the dependence on h, while in the previous example this 

happens only when h/t → 0. 
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