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Abstract: Determining the geophysical properties of rocks and geological formations is of high 10 

importance in many fields such as geotechnical engineering. In this study, we investigate the 11 

second-order dependence structure of spatial (two-dimensional) processes through the 12 

statistical perspective of variance vs. scale (else known as the climacogram) instead of 13 

covariance vs. lag (e.g. autocovariance, variogram etc.) or power vs. frequency (e.g. power 14 

spectrum, scaleogram, wavelet transform etc.) which traditionally are applied. In particular, we 15 

implement a two-dimensional (visual) estimator, adjusted for bias and for unknown process 16 

mean, through the (plot of) variance of the space-averaged process vs. the spatial scale. 17 

Additionally, we attempt to link the climacogram to the type of rocks and provide evidence on 18 

stochastic similarities in certain of their characteristics, such as mineralogical composition and 19 

resolution. To this end, we investigate two-dimensional spatial images of rocks in terms of their 20 

stochastic microstructure as estimated by the climacogram. The analysis is based both on 21 

microscale and macroscale data extracted from grayscale images of rocks. Interestingly, a 22 

power-law drop of variance vs. scale (or else known as long-term persistence) is detected in all 23 

scales presenting a similar power-exponent. Furthermore, the strengths and limitations of the 24 

climacogram as a stochastic tool are discussed and compared with the traditional tool in spatial 25 

statistics, the variogram. We show that the former has considerable strengths for detecting the 26 

long-range dependence in spatial statistics. 27 

Keywords: rock image analysis; climacogram; variogram; Hurst-Kolmogorov behaviour; 28 

stochastic modelling. 29 

1 Introduction 30 

Extracting information from image analysis is very important in many fields of science. 31 

Diagnostic images are used for stochastic analysis of diseases in the field of medicine, e.g. X-ray 32 

images are used in bone disease (Jennane, 2001) or Magnetic Resonance Image (MRI) for better 33 
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investigation and diagnosis of brain diseases (Vanitha, 2016). In geophysics, radar images are 34 

useful for the statistical analysis of geological structures, as for example to study the evolution of 35 

faults systems (Gloaguen, 2007), while air photos are examined for the investigation of the link 36 

between fault structure and earthquake rupture behaviour (Milliner et al., 2016). In hydrology 37 

and fluid mechanics the multi-scale investigation of an attribute, the inference of its statistical 38 

properties and its reconstruction through image processing, have been reported in many 39 

studies, e.g. in the reconstruction of a porous media from morphological information using 2D 40 

images of their microstructure (Talukdar et al. 2002), in the modelling of the pore space of rocks 41 

through three-dimensional micro-tomography images (Blunt et al., 2012; Rabbani et al., 2016), 42 

in the modelling of shale rock in multiple scales (Gerke et al., 2015 ) and others. 43 

The typical tool that is used for the stochastic analysis of geostatistical fields is the variogram 44 

which is defined to be the half of the variance of the field difference at two points, as a function 45 

of the distance between these points. A comprehensive presentation of the variogram in 46 

geostatistics can be found in Chilès and Delfiner (2012). One particular issue of high importance 47 

is the detection of some scaling laws in 2d images of rocks that however, cannot be easily 48 

identified by the variogram. In section 3, we attempt to highlight the advantages of the 49 

climacogram for detecting scaling laws within spatial scales, such as the Long-Term-Persistence 50 

(LTP) behaviour or else known as Long-Term Change or Hurst-Kolmogorov behaviour (Hurst, 51 

1951; Kolmogorov, 1941; Koutsoyiannis, 2002; 2016), where the autocovariance (or 52 

climacogram) of the stationary process decays as a power law function of lag (or scale). This is 53 

quite different from an exponential function of lag corresponding to the more well-known short-54 

term persistence, or else Markov behaviour. Note that similar analyses have been applied in 55 

porous medium for the identification of the LTP behaviour but using the (auto)covariance or 56 

variogram (e.g. Hamzehpour et al., 2007) instead of the climacogram. 57 

Here, we develop our model based on the climacogram at different spatial scales to detect such 58 

behaviours and to combine all scales to a single model (Stein et al., 2001). From this analysis, the 59 

identified LTP behaviour in the various examined rocks can perhaps explain a part of the large 60 

uncertainty intensively detected in the geological structures and soil formations (Heuvelink and 61 

Webster, 2001) and thus, help towards a better understanding of the related processes and the 62 

construction of corresponding prediction and generation algorithms. The uncertainty of a 63 

natural process can be quantified by, for example, its variability through second-order statistics, 64 

and it is highly correlated to the temporal or spatial window under which the prediction is being 65 

made for specified statistical error and confidence level. Within this window the process can be 66 

considered predictable and outside of this unpredictable in the sense that we can predict the 67 

process’ confidence limits and expected value with the specified error. Evidently, the uncertainty 68 
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or, equivalently, variability in natural processes depends on the length of predictability window 69 

for various time scales (Dimitriadis et al., 2016a) or of spatial scales as in this study. Naturally, as 70 

the prediction error increases, so will the length measured in time or space units of the 71 

predictability window. 72 

The climacogram, that we use to investigate the stochastic properties of two-dimensional (2d) 73 

images of rock samples, has been extensively used in one-dimensional (1d) stochastic processes 74 

(for a review see, e.g., Koutsoyiannis, 2010; O’Connell et al., 2016; Dimitriadis, 2017), and in 75 

other 2d processes (Koutsoyiannis et al., 2011; Dimitriadis et al., 2013). It is defined to be the 76 

(plot of) variance of the space-averaged process vs. the spatial scale (Koutsoyiannis, 2016). It 77 

can provide a powerful option for process identification and estimation, alternative to more 78 

classical methods such as the method of moments, Bayesian methods, maximum likelihood and 79 

graphical methods (Elogne et al., 2008). Also, the climacogram can serve as an alternative way of 80 

viewing a natural process through the concept of scale as opposed to the more traditional ones, 81 

i.e., those of lag through the autocovariance and frequency through the power-spectrum. In fact, 82 

although the climacogram is mathematically equivalent to the aforementioned estimators of the 83 

second-order dependence structure, it exhibits smaller statistical uncertainty, and an easier way 84 

to handle the statistical bias and to generate synthetic timeseries (Dimitriadis and 85 

Koutsoyiannis, 2015). Recently (Dimitriadis and Koutsoyiannis, 2018), it has been implemented 86 

to higher-order structures exhibiting similar advantages as in the lower ones. 87 

In our applications, we examine several images of rocks extracted from a Scanning Electron 88 

Microscope (SEM), from a polarising microscope and from field samples. Also, we compare the 89 

use of the climacogram for the LTP identification to that of the variogram through benchmark 90 

examples. Finally, we discuss the influence of the scale length and type of rock on the statistical 91 

estimation and we propose a stochastic process that adequately preserves the observed LTP 92 

behaviour in the examined 2d images of rocks. 93 

2 Data 94 

We use characteristic images of rocks in different scales obtained through open internet data 95 

bases, which are shown in Figs. 1 to 3 along with their source information. The coloured 8-bit 96 

images are first converted to grayscale shade (Fig. 4), with the black colour corresponding to 97 

zero intensity (minimum) and the white colour to one (maximum). Therefore, a number from 98 

zero to one is assigned to every single pixel of the image. In this way, we can measure the colour 99 

difference between pixels and use it as a rough estimation for the distinction of various groups 100 

of minerals, appearing with different colour intensity, that the rock is comprised of. For 101 

convenience, we use the upper left pixel of each image as the zero-initial point of the field in the 102 

Cartesian system. Also, all pictures have quite similar resolution (see Table 1) to enable a direct 103 
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comparison of their stochastic properties and to avoid any errors introduced by the different 104 

content information (e.g. Gommes et al., 2012). 105 

In order to examine the stochastic behaviour of the rock samples through climacogram we select 106 

samples of rocks at spatial resolution of μm, mm, cm and m and we analyze them based on the 107 

following samples: 108 

a) Sample images from different rocks but in the same rock category are selected. In Fig. 1, we 109 

depict an image of limestone and one of sandstone. Both limestone and sandstone belong to the 110 

category of sedimentary rocks. Limestone is composed mainly of one mineral (calcite) while 111 

sandstone is composed of multiple minerals (e.g. quartz, feldspar, kaolinite, muscovite). 112 

b) For a second application, we select images of rocks with similar mineral composition but from 113 

a different rock category. For example, in Fig. 1, we analyze a sample image from marble, which 114 

is a metamorphic rock consisting predominantly of calcite or dolomite and is formed when a 115 

sedimentary carbonate rock, such as limestone (CaCO3) or dolomite (Ca,Mg)(CO3)2, is 116 

metamorphosed by natural rock-forming processes, so that the grains are recrystallized. 117 

Additionally, we analyze a sample image from limestone, which is a sedimentary rock composed 118 

of calcite (CaCO3) that is converted to marble by the recrystallization of the calcite having the 119 

same mineralogical and chemical composition with marble. 120 

c) Moreover, we select sample images from an igneous rock, i.e. rhyolite at moderate (mm) and 121 

meso (cm) scales (Fig. 2). 122 

d) Finally, we compare sample images of a sandstone rock in four different scales (Fig. 3). 123 

Particularly, we compare images of sandstones in microscale (μm) using an image from the 124 

Scanning Electron Microscope (SEM), in moderate scale (mm) using an image from the 125 

polarizing microscope, in mesoscale using an image from a hand specimen (cm) and in 126 

macroscale using a field outcrop (m). 127 

In Table 1, we estimate the marginal statistics of all sample images (Figs. 1 to 3) such as mean, 128 

standard deviation, and the coefficients of skewness and kurtosis, from which we can conclude 129 

that there is only a mild deviation from normality of the spatial data and therefore, no action of 130 

normalization is required. Note that a strong deviation from normality could impair the 131 

variogram structure (Varouchakis et al., 2016 and references therein). 132 
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 133 

Figure 1: Images (from left to right) of limestone, marble and sandstone, with dimensions 134 

between five to ten centimetres across. 135 

Source: www.geo.auth.gr/106/theory/pet_sed_limestone_01.jpg 136 

www.geo.auth.gr/courses/gmo/gmo106y_lab/photo/metamorphic/marble_2.jpg 137 

http://geology.com/rocks/pictures/sandstone.jpg. 138 

 139 

Figure 2: Images of rhyolite as seen from a thin section under polarizing microscope with 6 mm 140 

length (left) and from a hand specimen with 3 cm length (right). 141 

Source: www.geo.auth.gr/317/photos_macro.htm 142 

www.earth.ox.ac.uk/~oesis/micro/ 143 

 144 
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(a)  (b)  145 

(c)  (d)  146 

Figure 3: Images of sandstone as seen from (a) the SEM (50 μm), (b) a polarizing microscope, 147 

(3.5 mm), (c) a hand specimen (with length approximately 5 cm) and (d) a field outcrop (1 m).  148 

Source: http://sandia-exploration.com/high_porosity_photos.html 149 

www.earth.ox.ac.uk/~oesis/micro/ 150 

http://blogs.cedarville.edu/christian-geology/2015/02/two-new-papers-on-the-coconino-151 

sandstone 152 

 153 

3 Methodology 154 

3.1 Climacogram 155 

Assuming that x(ξ1, ξ2) is a 2d spatial stochastic process or field, the climacogram, as introduced 156 

by Koutsoyiannis (2010) for a one-dimensional  process and expanded by Koutsoyiannis et al. 157 

(2011), is defined as the variance at a rectangular area k1 × k2, i.e. (Dimitriadis et al., 2013): 158 

����, ���: = 
�� � � ����, ��������� ������ ���  �1� 
where the underline is used to distinguish a random variable from a regular one, � ≔ ����� is 159 

the geometric mean of the continuous spatial scales ��, ��, each with dimensions of length, and 160 

Var[] denotes variance. 161 

The climacogram is shown to have smaller statistical bias and variability (i.e. smaller 162 

standardized mean-square-error), zero discretization error as well as other properties more 163 

useful in stochastic model identification, building and generation than other stochastic tools 164 

such as (auto)covariance (or correlation) and power spectrum (Dimitriadis and Koutsoyiannis, 165 
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2015). As explained by Koutsoyiannis (2016) for 1d processes and Dimitriadis et al. (2013) for 166 

higher d dimensional processes, the dth covariance is related to the 2dth derivative of the dth 167 

climacogram and since estimation of derivatives from data is too uncertain it makes a very 168 

rough graph. In addition, its estimation is highly biased compared to the climacogram, as 169 

explained in Koutsoyiannis (2003), where the expectation of the latter, i.e. E[γ], is much closer to 170 

its true value γ for large lags and LTP processes,. Furthermore, discretization (i.e. block 171 

averaging) of a process affects the covariance, which is different from that of the original 172 

process. The climacogram however is the same in both cases, and therefore, remains unaffected 173 

from the nugget effect. In practice discontinuities/jumps at scale zero can be avoided if a proper 174 

model for the climacogram is constructed and, hence, regularization becomes unnecessary, as 175 

opposed to the case of modelling based on the covariance; e.g. Chiles and Delfiner, (2012, ch. 176 

2.4). 177 

Assuming that our sample is an area nΔ × nΔ, where n is the number of intervals (e.g. pixels) 178 

along each spatial direction and Δ is the discretization unit (determined by the image resolution, 179 

e.g. pixel length), the empirical classical estimator of the climacogram for a 2d process can be 180 

expressed as: 181 

�����, ��� = 1��/�� − 1 ! ! "�#,$�%� − �&�'/%�
$(�

'/%�
#(�  �2� 

where the “^” over γ denotes estimation, � ≔ √���� is the geometric mean of the discrete scales 182 ��, ��, with �� = ��/+ and �� = ��/+ the dimensionless spatial scales, 183 

�#,$�%� = �%� ∑ ∑ �-,.%�#-(%��#/��0�%�$.(%��$/��0�  is the sample average of the space-averaged process at 184 

scale �, and � = ∑ �#,$'#,$(� /�� is the sample average. Note that the maximum available scale for 185 

this estimator is n/2. 186 

A variety of processes exhibit LTP behaviour (e.g. Dimitriadis, 2017), the simplest one being the 187 

isotropic Hurst-Kolmogorov (HK) process, i.e. power-law decay of variance as a function of scale, 188 

and defined for a 1d or 2d process as: 189 

���� = 1��/+��2��/3� �3� 
where 1 is the variance at scale k = κΔ (�� = �� = �+), d is the dimension of the process/field 190 

(i.e., for a 1d process d = 1, for a 2d field d = 2, etc.), and H is the Hurst parameter (0 < H < 1).  191 

The HK behaviour can be easily identified through the log-log slope (e.g. Dimitriadis et al., 192 

2016b) �#��� ≔ d�log �����/d�log �� of the climacogram at large scales k, which is also linked 193 

to the Hurst parameter by lim�→=�#��� = 2��> − 1�. Particularly, the HK behaviour corresponds 194 
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to a slope milder than –d, where equality, i.e. lim�→=�#��� = −�, indicates a Markov or a white 195 

noise process, (the proof for a 1d field can be seen Dimitriadis and Koutsoyiannis, 2015), and 196 

can be similarly expanded to an isotropic field of any dimension. In other words, if the slope is 197 

smaller (milder) than –d then the physical process is more likely to behave as a positively 198 

correlated process (or else persistent), whereas for slopes steeper than –d as an anti-correlated 199 

process (or else anti-persistent). For example, in Fig. 4, an example of a positively correlated 2d 200 

process is depicted and compared to a white noise process and to an anti-correlated one (for H 201 

→ 0). 202 

 203 

Figure 4: Climacograms of a gneiss shown in grayscale (2d HK process with H = 0.92), a white-204 

noise process (H = 0.5) and the lower limit of an anti-persistent processes (H → 0). 205 

Source of image within the figure: http://www.geo.auth.gr/106/theory/pet_met_gneiss_01.jpg 206 

An important remark is that our analysis depends only on the investigation of the second-order 207 

statistics (i.e. variance of the averaged process vs. scale with an unknown mean of the process) 208 

and therefore, since it is generic, it can be applied to any type of marginal distribution. For 209 

example, let us consider the isotropic d-dimensional fractional-Gaussian-noise process (fGn) 210 

based on scale, i.e. ����� − ?� =@ ��/A�2�3/�����B� − ?�, where =@ denotes equality in 211 

distribution, μ is the mean of the process and A, � are the d-dimensional scales defined through 212 

their geometric mean, i.e. � = ����� … �2��/2 and similarly for l (Dimitriadis et al., 2013; for the 213 

1d and 2d cases see also Mandelbrot and Van Ness, 1968; Qian et al., 1998; Koutsoyiannis et al., 214 

2011). While the process marginal distribution is an isotropic Gaussian one N(μ, √1), its 215 

dependence structure can be (separately to the marginal distribution) described by Eqn. (3), 216 

without loss of generality. 217 

1.E-01

1.E+00

1.E+00 1.E+01 1.E+02

γ
(k

)

k

γ# = -1/3 

(H = 0.92)

γ# = -2 

(H = 0.5)

γ# = -4

(H = 0)
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3.2 Variogram 218 

The variogram is one of the basic tools in the field of geostatistics since it describes the 219 

spatiotemporal correlation of a process. The original term semi-variogram is coined by 220 

Matheron (1963) who expanded D.G. Krige’s theory of regionalized variables and incorporated 221 

them into the theoretical framework of geostatistics. The variogram is introduced by 222 

Kolmogorov (1941), as the first-order structure function, in the study of the atmospheric 223 

turbulence and weather. Later, Jowett (1952) used the term mean-squared difference (Cressie 224 

1989, pp. 197-202; Cressie and Wikle, 2011, p. 588). Earlier studies using the variogram are 225 

presented in the field of agriculture and particularly, in the yields of crops by Mercer and Hall 226 

(1911), in the soil survey by Youden and Mehlich (1937), in the field of the meteorology by 227 

Gandin (1965), in the forestry field by Matérn (1960) and in mine valuation by Krige (1966); 228 

further information can be found in Webster and Oliver (2007). 229 

Modelling and estimation of the variogram is one of the most crucial steps for the kriging 230 

interpolation method (Boogaart, 2003). Beyond the numerous applications of the variogram in 231 

spatial modelling in mining engineering, it is also extensively used in geology and especially in 232 

hydrogeology, e.g. in spatial modelling of geological attributes for groundwater modelling, for 233 

the selection of the optimum grid size of the model size of an aquifer (Mohammadi, 2012), for 234 

estimating the groundwater quality parameters (Tirzo, 2014), for detecting discontinuous faults 235 

(Mohammad et al., 2015), and for detecting periods of change in a river flow time series, 236 

(Chiverton et al, 2015). For a stationary and isotropic 2d random field �D where s is any point in 237 

the process domain, the 2d (semi) variogram in continuous space is defined as (e.g. Witt and 238 

Malamud, 2013): 239 


�E� ≔ 12 F "�G − �G0E&�� �4� 
where G = �I�, I�� is the continuous spatial vector of the process, with I� and I� the distances 240 

from origin in each direction with units of length, E = �J�, J�� is the continuous spatial lag 241 

vector, with J� and J� corresponding to the lag in each direction with units of length, and E[] 242 

denotes expectation. 243 

In 2d discrete space the variogram is similarly defined as: 244 


�ℎ�, ℎ�� ≔ 12 E "�#,$ − �#0M�,$0M�&�� �5� 
where ℎ� = J�/+ and ℎ� = J�/+ are the dimensionless spatial lags, and xi,j is the space-245 

discretized process. 246 

It can be shown that the 2d variogram is directly linked to the 2d autocovariance function: 247 
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�ℎ�, ℎ�� = 12 "EO�#,$�P + EO�#0M�,$0M� �P& − EO�#,$�#0M�,$0M�P = R�0,0� − R�ℎ�, ℎ�� �6� 
where R�ℎ�, ℎ�� is the 2d discrete autocovariance function and R�0,0� the discrete variance of the 248 

2d process with grid resolution Δ×Δ. Note that the 2d climacogram is directly linked to the 2d 249 

autocovariance and thus, the 2d variogram, as (Dimitriadis et al., 2013): 250 

R�ℎ�, ℎ�� ≔ U� Vℎ��ℎ����ℎ�, ℎ��W "4Uℎ��Uℎ��&X  �7� 
A common classical unbiased estimator of the 2d variogram can be expressed as (e.g., Witt and 251 

Malamud, 2013): 252 


Z�ℎ�, ℎ�� = 12� ! "�#,$ − �#0M�,$0M�&�'
#,$(�  �8� 

Note that the maximum available lag for this estimator is n-1 (as in the autocovariance function). 253 

Despite the extensive use of the variogram in many fields several of its limitations are often 254 

disregarded. As shown above the variogram is directly linked to the autocovariance function and 255 

therefore it carries along some of the autocovariance strengths, such as providing estimations 256 

for a large range of lags, as well as limitations, such as discretization error (Dimitriadis et al., 257 

2016b). Other difficulties related to the variogram include the estimation of the sill, the kriging 258 

error for non-Gaussian processes, erratic behaviours of computed variograms when data are 259 

skewed or contain extremely high or low values and are discussed by Boogaart (2003) and 260 

Gringarten and Deutsch (2001). To this end, many solutions and transformations are 261 

recommended, such as to transform the data to the Gaussian space through implicit (or 262 

transformation-based) schemes before performing variogram calculations. However, it is noted 263 

that when the preservation of the LTP behaviour is of interest the selection of the appropriate 264 

implicit scheme should be done in caution and the choice of an explicit scheme is often 265 

preferable (see discussion of explicit vs. implicit schemes in Dimitriadis and Koutsoyiannis, 266 

2018). 267 

3.3 Climacogram vs. variogram for LTP identification 268 

3.3.1 Background information 269 

As explained in previous sections, the variogram, i.e. V(h), is based on the covariance as a 270 

function of spatiotemporal lag and it is the arithmetic distance (or else separation or residual) 271 

between two positions in the two-dimensional spatiotemporal field, whereas the climacogram, 272 

i.e. γ(k), is the variance of the averaged process as a function of spatiotemporal scale k (or else 273 

the block covariance as a function of support size; Stein et al., 2001). Variance and covariance 274 

are not identical except for γ(0) = c(0) in continuous time/space or γ(Δ) = cΔ(0) in discrete 275 
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time/space where discretization/regularization is at time/space scale equal to Δ. In general, the 276 

concepts of climacogram, variogram (or autocovariance) and power spectrum are all 277 

mathematically equivalent since they all contain the same information of the second-order 278 

dependence structure but expressed as a function of scale, lag and frequency, respectively 279 

(Dimitriadis et al., 2016b). In other words, they can be all constructed and express the second-280 

order dependence structure provided that the mathematical expression of either one is given 281 

(Koutsoyiannis, 2016). 282 

Here, we compare the climacogram and the variogram estimators in terms of identification of 283 

LTP processes. For comparison between additional methods and benchmark investigations of 284 

LTP processes see also Witt and Malamud (2013). A major advantage of the climacogram is that 285 

both Markov and white noise processes exhibit the same behaviour in terms of their 286 

climacogram at large scales, i.e., H = 0.5, whereas the variogram is bounded by R�0� at large lags, 287 

a characteristic originating from its definition, i.e. limM→="R�0� − R�ℎ�& = R�0�. Additionally, it 288 

can be easily shown that the log-log derivative of the (1d, 2d, etc.) variogram always tends to 289 

zero for an LTP process: 290 

limM→=
d Vlog"
�ℎ�&Wd�logℎ� = − limM→=

ℎR�0� dR�ℎ��ℎ ~ limM→=
1R�0�ℎ�2��/3� = 0 �9� 

where R�ℎ� is the continuous-space autocovariance of the isotropic HK process, with 291 

ℎ = �ℎ�� + ℎ�� the isotropic lag, and h1 and h2 the spatial lags ).  292 

3.3.2 Methodology 293 

As explained above, the LTP behaviour cannot be easily estimated from the variogram. For 294 

illustration, we estimate the climacogram and variogram and assess the difference in estimation 295 

uncertainty for LTP processes through the variance of the estimator. Particularly, we apply a 296 

Monte-Carlo analysis for a HK process with various Hurst parameters by generating 102 spatial 297 

fields with n = 102 each and estimate their climacograms and variograms. For the generation 298 

scheme we use the Symmetric-Moving-Average (SMA) algorithm introduced by Koutsoyiannis 299 

(2000) and applied in 2d spatial precipitation fields by Koutsoyiannis et al. (2011) and in 300 

various other 2d processes (Dimitriadis et al., 2013). In the SMA scheme, the simulated process 301 

is expressed through the sum of products of coefficients �$ and white noise terms vi,: 302 

�# = ! �|$|_#0$
B

$(/B  �10� 
where the summation bound A theoretically equals infinity but a finite number can be used for 303 

preserving the dependence structure up to lag l. Also, for simplicity and without loss of 304 
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generality we assume that EO�P = EO_P = 0 and EO_�P = VarO_P = 1. This scheme can be used for 305 

stochastic generation of any type of second-order process structure represented by functions 306 

such as the climacogram, power spectrum or variogram, and it exhibits several advantages over 307 

other widely used schemes (Dimitriadis and Koutsoyiannis, 2018).  308 

For an HK process with H > 0.5 the SMA coefficients can be estimated analytically 309 

(Koutsoyiannis, 2016): 310 

�$ = c d|e + 1|30�� + |e − 1|30��2 − |e|30��f �11� 
where c = g2Γ�2i + 1�sin�π>���+�/Γ� Vi + ��W "1 + sin�π>�&, Γ( ) is the gamma function and 311 

Δ the spatial resolution. 312 

The employment of an uncertainty analysis in this task of spatial model identification and 313 

building is rather important (Heuvelink, 1998). Here, we perform a sensitivity analysis on the 314 

variogram and climacogram estimator to highlight each one’s pros and cons, while a similar 315 

analysis for the same estimators in 1d processes can be seen in Dimitriadis et al. (2016b). 316 

3.3.3 Results 317 

In Fig. 5, we show the results from this analysis by focusing on the variance of each estimator θ, 318 

i.e. VarOmZP, for each process and for each scale and lag. 319 

  320 

Figure 5: [left] Variance of the variogram estimator (i.e. Var[
Z(h)]) and [right] of the 321 

climacogram estimator, i.e. Var[��(k)], for various synthetic 2d spatial fields corresponding to HK 322 

processes. Note that we plot the variogram vs. h+1 so that all lags (including zero lag) is depicted 323 

in the graph as in the case of scales in the climacogram. 324 
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In Fig. 5, we observe that although the variance of both variogram and climacogram respectively 325 

increase monotonically due to the increasing uncertainty at higher lags/scales, they exhibit a 326 

different behaviour at small and large lags/scales. Particularly, the variogram has a smaller 327 

variance at small lags, whereas the climacogram has smaller variance at large scales. Therefore, 328 

an important conclusion is that the variogram can more validly identify process behaviour at 329 

small lags, i.e. estimation of local properties, such as fractal dimension as described in Gneiting 330 

and Schlather (2004), while the behaviour at large scales, such as in case of an LTP process, can 331 

be better identified and quantified by the climacogram. Similar results are also expected for 332 

generalized HK processes as well as for higher dimensions (e.g. Dimitriadis et al., 2013). 333 

4 Application of the climacogram at different types of rock and scales 334 

In this section, we estimate the climacogram and the variogram for each rock sample. For the 335 

current analysis we estimate solely the isotropic stochastic properties of each rock and we do 336 

not take into consideration any anisotropic and/or inhomogeneous characteristics. For this 337 

latter type, investigations should apply the climacogram (or the autocovariance, variogram etc.) 338 

by testing different rotation angles into the anisotropic sample/image or by identifying several 339 

homogeneous regions in the inhomogeneous sample/image (Gerke et al., 2014; Karsanina et al., 340 

2015; Dimitriadis et al., 2017). We can then apply climacogram-based methods to adjust for the 341 

statistical bias but also to identify other properties of the process (Dimitriadis and 342 

Koutsoyiannis, 2016b). Finally, in case an HK behaviour is identified, we can estimate the Hurst 343 

parameter by several algorithms with a variety of such algorithms including two versions of the 344 

1d climacogram (named LSSD and LSV method) is presented in Tyralis and Koutsoyiannis 345 

(2011, and references therein). Note that here we use a version of the LSV method but for two-346 

dimensions. 347 

4.1 Comparison among categories of rocks 348 

4.1.1 Comparison of climacograms among rocks of different category 349 

We compare the climacograms of two rocks which comprised of the same minerals but from 350 

different category (Fig.1), namely a limestone and a marble (i.e. metamorphosed limestone). In 351 

Fig. 6, we observe that the climacograms of these two rocks behave quite similar, mostly due to 352 

the fact that limestone and marble have the same mineral composition, i.e. calcite and 353 

recrystallized calcite, both consist of one mineral (calcite) and are both light coloured rocks. The 354 

statistical characteristics of their minerals indicate an LTP behaviour, since the log-log slope of 355 

the climacogram for both rocks lies within the interval (-2, 0), indicating a Hurst parameter 356 

within the interval (0.5, 1). The characteristics of the dependence structure of limestone are 357 

approximately (see also in Table 1): σ = 0.05 and H = 0.85, and of marble are: σ = 0.04, H = 0.82, 358 
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where σ is the sample standard deviation. Note that the climacogram of a grayscale image is 359 

dimensionless. 360 

 361 

Figure 6: Climacograms of sample images from limestone and marble and the corresponding 362 

variograms for illustration purposes. 363 

 364 

4.1.2 Comparison of climacograms among different rocks of same category 365 

A comparison of climacograms for rocks of the same category, namely a limestone and a 366 

sandstone (Fig. 1), at the same spatial scale (hand specimen, i.e., in cm) is shown in Fig.7. 367 

Comparing the two estimated climacograms, we notice that the range of the variance at scale 1 368 

varies significantly since the limestone is a mono-mineralic rock compared to sandstone. Again, 369 

the statistical characteristics of their components indicate LTP behaviour. The characteristics of 370 

the dependence structure of sandstone are approximately (see also in Table 1): σ = 0.14 and H = 371 

0.61. 372 
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 373 

Figure 7: Climacograms of a limestome and a sandstone sampe image, and the corresponding 374 

variograms for illustration purposes. 375 

 376 

4.2 Comparison among scales of rocks 377 

4.2.1 Comparison of climacograms among different scales 378 

We analyze sample images from an igneous rock, i.e. rhyolite (Fig.2), at moderate scale (mm) 379 

and mesoscale (cm). In Fig. 8, both climacograms exhibit approximately the same LTP behaviour 380 

(Table 1) with a spatial displacement of the climacogram in mesoscale one order of magnitude 381 

as much as the difference in image resolution of the two rocks. The characteristics of the 382 

dependence structure of rhyolite at moderate scale are approximately (Table 1): σ = 0.21 and H 383 

= 0.77, and of rhyolite at mesoscale: σ = 0.12, H = 0.77. Note that the Hurst parameter is the same 384 

in both cases. 385 
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 386 

Figure 8: Climacograms of a rhyolite rock at moderate scale (mm) and mesoscale (cm), and the 387 

corresponding variograms for illustration purposes. 388 

 389 

4.2.2 Comparison of climacograms at multiple scales  390 

In Fig. 9, we combine climacograms from images of sandstone at four different scales. 391 

Particularly, we analyze sample images (Fig. 3) with resolution of microscale (μm and cm), 392 

mesoscale (cm) and macroscale (m). Here, LTP behaviour is more evident and the overall Hurst 393 

parameter is estimated approximately equal to 0.85, when the bias is taken into account through 394 

the unbiased estimator of the 2d climacogram for HK processes, i.e. (Dimitriadis et al., 2013) 395 �����, ����1 − ����/��� + ����, based on Eqn. 2 and 3. 396 

Note that the quick drop of each climacogram at large scales is due to low statistical sampling at 397 

large scales (observe that on average the estimated Hurst parameter is increasing with sample 398 

length.) This can be roughly removed by following the rule of thumb of fitting the climacogram 399 

to a stochastic model up to the 10% of the extent of available scales (Dimitriadis and 400 

Koutsoyiannis, 2015). 401 

It is interesting to see that all examined rock formations exhibit LTP behaviour, with Hurst 402 

parameters ranging from 0.6 to 0.85 (not adjusted for bias) and an overall 0.85 (adjusted for 403 

bias). Therefore, the uncertainty/variability of these rocks seems to be much larger than that 404 

emerging from a white noise or a Markov process. 405 
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 406 

Figure 9: Climacograms of images from sandstone at four different ranges of scales and the 407 

corresponding variograms for illustration purposes. 408 

 409 

Table 1: Marginal statistical characteristics of 2d rock samples. 410 

Type of rock n× n σ σ/μ Cs Ck H 

limestone (Fig. 1) 141 376 0.048 0.092 -0.527 3.016 0.847 

marble (Fig. 1) 176 400 0.035 0.051 0.241 3.538 0.818 

sandstone (Fig. 1) 81 225 0.135 0.246 -0.278 3.061 0.612 

rhyolite thin section (Fig. 2) 202 500 0.210 0.322 -0.846 3.313 0.766 

rhyolite hand-specimen (Fig. 2) 207 936 0.123 0.208 -0.146 3.607 0.773 

sandstone microscale (Fig. 3) 67 081 1.000* 0.355 0.128 2.418 0.765 

sandstone moderate scale (Fig. 3) 202 500 0.232 0.404 -0.398 2.115 0.772 

sandstone mesoscale (Fig. 3) 81 225 0.135 0.246 -0.278 3.061 0.713 

sandstone macroscale (Fig. 3) 272 484 0.072 0.155 -0.419 3.237 0.754 

*the variance of the SEM sample is arbitrarily set to 1 since it cannot be directly compared to the other samples due to the completely different 411 

sampling method 412 
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5 Summary and discussion 414 

The aim of this study is to examine the stochastic similarities of rocks in terms of second-order 415 

dependence structure expressed through the climacogram and in particular, whether they 416 

exhibit long-term persistence for a wide range of scales and rock formations. The presented 417 

analysis may be useful for gaining insight and making inference at scales in which data 418 

acquisition is difficult or costly. 419 

A common characteristic drawn from the current research and the analysis in all the rock 420 

formations and scales is the power-law decay of climacogram, i.e. variance of the scaled 421 

averaged process. This structure signifies a long-term-persistent, or else known as Hurst-422 

Kolmogorov (HK) behaviour, as the Hurst parameter ranges within 0.5 and 1, signifying a 423 

difference from a white noise process (i.e. absence of autocorrelation) or Markov behaviour (i.e. 424 

exponential decay of autocorrelation). This result can be useful towards a more realistic 425 

reconstruction of rock images through appropriate stochastic models that take into account the 426 

long-term-persistence, such as the proposed 2d HK one (Eqn. 3), which is a two parameter 427 

model entirely based on the climacogram. Also, this large variability introduced by a rock 428 

formation may give insight on how a low variability often observed in precipitation at large 429 

scales (e.g. Tyralis et al, 2017 and references therein) is translated, through a non-linear rainfall-430 

runoff system (e.g. Manfreda, 2008), to sometimes larger variability for the same range of scales 431 

in river stage/discharges (e.g. Hurst, 1951; Koutsoyiannis et al., 2008). 432 

An additional result is that images of the same rock type at different scales, from micro to macro, 433 

suggest similar type of clustering, i.e. with a similar scaling parameter. In particular, the Hurst 434 

parameter is estimated (on average) around 0.75 in most cases (Table 1) when the bias is not 435 

taken into account and 0.85 from the combination of all climacograms adjusted for bias (Fig. 9). 436 

This result suggests that the examined rock formations and range of scales exhibit a similar 437 

power-law decay of the second-order dependence structure, with a similar Hurst parameter 0.5 438 

< H < 1. In other words, this behaviour is characterized by high statistical uncertainty (here 439 

quantified through variability) which, for the examined range of scales, is larger than the one 440 

corresponding to  a white noise or a Markov process Interestingly, similar Hurst parameters 441 

have been estimated in various other processes (Dimitriadis, 2017) of completely different 442 

nature from the ones analyzed here. For example, for an isotropic turbulence timeseries of 443 

massive length, H is estimated at 0.83 (Dimitriadis and Koutsoyiannis, 2018), while a global 444 

analysis from thousand of stations of atmospheric wind and temperature also indicated similar 445 

values (Koutsoyiannis et al., 2018). 446 

A final remark is that while the variogram seems to be more appropriate for investigating the 447 

local behaviour in small-scale structures of a process, the climacogram is shown to perform 448 
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more robustly in estimating large-scale properties, especially when a possible HK behaviour is of 449 

interest. This result is based on the variability quantification of both in several benchmark tests 450 

on HK processes using Monte-Carlo techniques. 451 
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