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Abstract. Classical moments, raw or central, express important theoretical properties of 

probability distributions but can hardly be estimated from typical hydrological samples for 

orders beyond two. L-moments are better estimated but they all are of first order in terms of the 

process of interest; while they are effective in inferring the marginal distribution of stochastic 

processes, they cannot characterize even second order dependence of processes 

(autocovariance, climacogram, power spectrum) and thus they cannot help in stochastic 

modelling. Picking from both categories, we introduce knowable (K-) moments, which combine 

advantages of both classical and L-moments, and enable reliable estimation from samples and 

effective description of high-order statistics, useful for marginal and joint distributions of 

stochastic processes. Further, we extend recent stochastic tools by introducing the K-

climacogram and the K-climacospectrum, which enable characterization, in terms of univariate 

functions, of high-order properties of stochastic processes, as well as preservation thereof in 

simulations. 

Introduction 

In a hydrological decade that is featured by the Heraclitean aphorism «Πάντα ῥεῖ» (Panta rhei – 

everything flows; Montanari et al. 2013), the scientific field of stochastics offers a great deal of 

opportunities to study change (Koutsoyiannis 2013). In particular the theory of stationary 

stochastic processes, if understood, enables sophisticated yet simple characterization and 

modelling of hydrological processes in a framework of unceasing change (Montanari and 

Koutsoyiannis 2014; Koutsoyiannis and Montanari 2015).  

Statistical moments, studied at a multitude of time scales using observed data, constitute the 

basic tool of stochastic characterization of change and variability. They offer the option to 

describe probability distributions summarily in order to achieve reasonable simplicity (Feller 

1968). However, classical moments, raw or central, cannot be reliably estimated from typical 

samples for orders beyond two. Lombardo et al. (2014) expressed this fact in the title of their 

paper: “Just two moments!”. On the other hand, for non-normal distributions, which are the case 

in most hydrological and geophysical processes, two summary statistics are not enough to 

characterize the distributions. Also in stochastic synthesis of those processes, moments of order 

higher than two are necessary (Dimitriadis and Koutsoyiannis 2018; Koutsoyiannis et al. 2018).  
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L-moments (Hosking 1990) are better estimated but they all are of first order in terms of the 

process of interest. While they are effective in characterizing independent series or in inferring 

the marginal distribution of stochastic processes, they cannot characterize and model even 

second order dependence of processes (and hence change). For example, Hosking and Wallis 

(2005), while developing an approach for regional frequency analysis based on L-moments, 

resort to the classical second-order moments (variances and covariances) when they describe 

correlation.  

The classical definitions of raw (noncentral) and central moments of order p are:  

𝜇𝑝
′ ≔ E[𝑥𝑝], 𝜇𝑝 ≔ E[(𝑥 − 𝜇)

𝑝
] (1) 

respectively, where 𝜇 ≔ 𝜇1
′ = E[𝑥] is the mean of the random variable x and E[ ] denotes 

expectation; notice the notation of random variables (and hence stochastic processes) with 

underlined symbols, according to the Dutch convention (Hemelrijk 1966). The standard moment 

estimators from a sample 𝑥𝑖, i = 1, …, n, are: 

𝜇̂𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

, 𝜇̂𝑝 =
𝑏(𝑛, 𝑝)

𝑛
∑(𝑥𝑖 − 𝜇̂)

𝑝
𝑛

𝑖=1

 (2) 

where b(n, p) is a bias correction factor (e.g. for the variance μ2 =: σ2, b(n, 2) = n/(n – 1) if 𝑥𝑖 are 

uncorrelated). The estimators of the noncentral moments 𝜇̂𝑝
′  (or even the central ones if μ is 

known a priori) are in theory unbiased, but it is impractical to use them in estimation if p > 2 (cf. 

Lombardo et al. 2014).  

It is well known that for large p and positive xi (more generally, for xi satisfying the condition 

max1≤ 𝑖≤𝑛(𝑥𝑖) >  |min1≤ 𝑖≤𝑛(𝑥𝑖) |), the following approximate relationship holds: 

(∑ 𝑥𝑖
𝑝

𝑛

𝑖=1

)

1/𝑝

≈ max
1≤ 𝑖≤𝑛

(𝑥𝑖) (3) 

(This is related to the well-known mathematical fact that the maximum norm is the limit of the 

p-norm as p → ∞.) A numerical illustration of how fast the convergence of the left-hand side to 

the right-hand side of equation (3) is provided in Table 1. 

Table 1 Illustration of the fact that raising to a power and adding converges fast to the 
maximum value. 

Linear, p = 1 Pythagorean, p = 2 Cubic, p = 3 High order, p = 8 

3 + 4 = 7 32 + 42 = 52 33 + 43 = 4.53 38 + 48 ≈ 48 

3 + 4 +12 = 19 32 + 42 + 122 = 132 33 + 43 + 123 = 12.23 38 + 48 + 128 ≈ 128 

Therefore, for relatively large p the estimate of 𝜇𝑝
′  will be: 

𝜇̂𝑝
′ =

1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

≈
1

𝑛
( max

1≤ 𝑖≤𝑛
(𝑥𝑖))

𝑝

 (4) 
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(Note that for large p the term (1/n) in the right-hand side is sometimes omitted with a 

negligible error; see explanation in equation (15) below). Thus, for an unbounded variable x and 

for large p, we can conclude that 𝜇̂𝑝
′ , while theoretically is an unbiased estimator of 𝜇𝑝

′ , in 

practice it is more an estimator of an extreme quantity, i.e., the nth order statistic raised to 

power p, than an estimator of 𝜇𝑝
′ . (It is reminded that, by definition, the ith order statistic x(i) is 

equal to the random variable having the ith-smallest value in the sample of size n.) This happens 

because the convergence of 𝜇̂𝑝
′  to 𝜇𝑝

′  is very slow, while the convergence to the maximum value 

is fast. This is further illustrated in Figure 1 for the eighth moment of a process specified in the 

figure caption. While even for n as large as 64 000 the sample moment estimate continues to be 

smaller, by several moments of magnitude, than the theoretical value, the proximity of the 

moment estimate to the maximum value is evident even for n as small as 10. The jagged shapes 

of the curves are a clear indication of the dominance of maxima in the moment estimation: the 

steps occur when a new higher maximum value enters the sample, while the gradual decreases 

before those are  due to the increase of the sample size without a higher maximum value. The 

ensemble simulation results in the right panel show that the 99% prediction limits from 1000 

simulations are not able even to envelop the true value. 

As a result, unless p is very small, 𝜇𝑝
′  is not a knowable quantity: we cannot infer its value 

from a sample. This is the case even if n is very large as in Figure 1 (see also Figure 2 explained 

below). Also, the various 𝜇̂𝑝
′  are not independent to each other as they only differ on the power 

to which the maximum value is raised. 

  

Figure 1 Illustration of the slow convergence of the sample estimate of the eighth noncentral 
moment to its true value, which is depicted as a thick horizontal line and corresponds to a 
lognormal distribution LN(0,1) where the process is an exponentiated Hurst-Kolmogorov 
process (Koutsoyiannis 2016) with Hurst parameter H = 0.9. (Left) The sample moments are 
estimated from a single simulation of that process with length 64 000, where parts of this time 
series with sample size n from 10 to 64 000 are used for the estimation. Subsetting of the time 
series to sample size n was done either from the beginning to the end (thicker lines) or from the 
end to the beginning (finer lines). Continuous lines in the two cases represent the eighth 
moment estimates, ∑ 𝑥𝑖

𝑝𝑛
𝑖=1 /𝑛, and dashed lines represent maximum values, (max1≤ 𝑖≤𝑛(𝑥𝑖))𝑝/𝑛. 

(Right) Sampling distribution of the eighth moment estimator ∑ 𝑥𝑖
8𝑛

𝑖=1 /𝑛 estimated from 1000 
simulated series of length 1000 each and visualized by the 99% prediction limits (percentiles), 
the median and the average, plotted as ratios to the true value. Theoretically, the ratio should be 
1, but it is smaller by many orders of magnitude, and the convergence to 1 is very slow. The ratio 
to (max1≤ 𝑖≤𝑛(𝑥𝑖))8/𝑛, also plotted, is close to 1.  
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Picking from both concepts of classical and L-moments, below we introduce a general 

category of knowable or K-moments, which combine advantages of (and virtually contain) both 

categories, classical and L-moments. They enable reliable estimation from samples (in some 

cases even more reliable than L-moments) and effective description of statistics of high order, 

useful for marginal and joint distributions of stochastic processes. They also allow multiscale 

characterization of high-order properties of stochastic processes using univariate functions, thus 

avoiding the common multivariate functions expressing joint high-order moments. This is made 

possible by extending the notion of climacogram (variance of the averaged process vs. time scale 

of averaging; Koutsoyiannis 2010, 2016) and climacospectrum (transformation of the 

climacogram; Koutsoyiannis 2017). Specifically, using K-moments we introduce the K-

climacogram and the K-climacospectrum, which in addition to characterization, in terms of 

univariate functions, of high-order properties of stochastic processes, enable preservation 

thereof in simulations. Overall, the manuscript discusses all these issues, from the definition and 

rationale of K-moments, K-climacogram and K-climacospectrum, to their use in characterizing 

hydrological time series (with some case studies) as well as in stochastic simulation of 

processes.  

Definition and rationale of K-moments 

To derive knowable moments for high orders p, in the expectation defining the pth moment we 

raise (𝑥 – μ) to a low power q < p and for the remaining (p – q) multiplicative terms we replace 

(𝑥 – μ) with (2F(x) – 1), where F(x) is the distribution function. This leads to the following 

definition of central K-moments: 

𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)
𝑞

], 𝑝 ≥ 𝑞  (5) 

The usefulness of the factor (𝑝 − 𝑞 + 1) will be explained in a while. Likewise, we define 

noncentral K-moments as: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))

𝑝−𝑞
𝑥𝑞] , 𝑝 ≥ 𝑞 (6) 

The quantities (𝐹(𝑥))
𝑝−𝑞

 and (2𝐹(𝑥) − 1)
𝑝−𝑞

 are estimated from a sample without using 

powers of 𝑥, thus making the estimation more reliable. Specifically, for the ith element of a 

sample x(i) of size n, sorted in ascending order, F(x(i)) is estimated as 

𝐹̂(𝑥(𝑖)) =
𝑖 − 1

𝑛 − 1
 (7) 

thus taking values from 0 to 1 precisely and irrespective of the values x(i); likewise, 2F(x(i)) – 1 is 

estimated as 

2𝐹̂(𝑥(𝑖)) − 1 =
2𝑖 − 𝑛 − 1

𝑛 − 1
 (8) 

taking values from –1 to 1 precisely and irrespective of the values x(i). Hence, the estimators are:  
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𝐾̂𝑝𝑞
′ =

𝑝 − 𝑞 + 1

𝑛
∑ (

𝑖 − 1

𝑛 − 1
)

𝑝−𝑞

𝑥(𝑖)
𝑞

𝑛

𝑖=1

, 𝐾̂𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑ (

2𝑖 − 𝑛 − 1

𝑛 − 1
)

𝑝−𝑞

(𝑥(𝑖) − 𝜇̂)
𝑞

𝑛

𝑖=1

 (9) 

We note that to form these estimators our main provision was simplicity while unbiasedness 

was not given priority. Hence these estimators can be biased, particularly for high p. The study 

of the estimation bias and the possible adjustment of the estimators to become unbiased are 

interesting problems, but they fall out the scope of this paper (see also the Conclusions section). 

To illustrate the rationale of the definition of K-moments, we assume that the distribution 

mean is close to the median, so that F(μ) ≈ ½. This equality is precise for a symmetric 

distribution. The quantity whose expectation is taken in (5) is: 

𝐴(𝑥) ≔ (2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)𝑞 = 𝐵(𝑥)(𝑥 − 𝜇)𝑞 , 𝐵(𝑥) ≔ (2𝐹(𝑥) − 1)
𝑝−𝑞

 (10) 

Now the mth derivative of 𝐵(𝑥) for m < p – q will be a sum of terms, each one of which will 

contain (2𝐹(𝑥) − 1) to some positive power. Thus, if we evaluate this derivative at the point 𝑥 = 

μ, by virtue of the assumption F(μ) ≈ 1/2, we will get zero. For m ≥ p – q this is no longer the 

case, and therefore the Taylor expansion of 𝐵(𝑥) will have nonzero terms for powers ≥ p – q. 

Hence the Taylor expansion of 𝐴(𝑥) will have nonzero terms for powers ≥ p only. More 

specifically, under the assumption F(μ) = 1/2, it can be verified that the Taylor expansion is: 

𝐴(𝑥) = (2𝑓(𝜇))
𝑝−𝑞

(𝑥 − 𝜇)𝑝 + (𝑝 − 𝑞)(2𝑓(𝜇))
𝑝−𝑞−1

𝑓′(𝜇)(𝑥 − 𝜇)𝑝+1 + 𝑂((𝑥 − 𝜇)𝑝+2) (11) 

where f(x) is the probability density function of x. Clearly then, 𝐾𝑝𝑞 depends on 𝜇𝑝 as well as 

classical central moments of x of order higher than p. The independence of 𝐾𝑝𝑞 from classical 

moments of order < p means that the information contained in each 𝐾𝑝𝑞 is free of information 

related to classical moments 𝜇𝑖  of order i < p, and this makes 𝐾𝑝𝑞 a good knowable surrogate of 

the unknowable 𝜇𝑝. We note that the assumption F(μ) ≈ 1/2 is only used for the explanation of 

the rationale and is not necessary for the precise definition. 

To further explain the rationale we discuss the inclusion of the multiplicative term 

(𝑝 − 𝑞 + 1) in definitions (5) and (6). A first reason for the inclusion is that, as a rule for positive 

x, it makes K-moments increasing functions of p, which is intuitive and consistent to the 

behaviour of classical moments. Another, more important, reason is that, as p becomes large, by 

virtue of this multiplicative term, 𝐾𝑝𝑞
′  shares similar asymptotic properties with 𝜇̂𝑝

′𝑞/𝑝
 (the 

estimate, not the true 𝜇𝑝
′𝑞/𝑝

). To illustrate this for q = 1 and for independent variables 𝑥𝑖, we 

consider the variable 𝑧𝑝 ≔ max1≤𝑖≤𝑝 𝑥𝑖 and denote f( ) and h( ) the probability densities of 𝑥𝑖 and 

𝑧𝑝, respectively. Then (Papoulis 1990, p. 209): 

ℎ(𝑧) = 𝑝𝑓(𝑧)(𝐹(𝑧))
𝑝−1

 (12) 

This is none other than the derivative of (𝐹(𝑧))
𝑝

, while for independent variables this latter, i.e., 

the product of p instances of 𝐹(𝑧), is the probability distribution of 𝑧𝑝.Thus, according to (6),  

E[𝑧𝑝] = 𝑝E [(𝐹(𝑥))
𝑝−1

𝑥] = 𝐾𝑝1
′  (13) 
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On the other hand, because of equation (4), for positive x and large p → n, 

(E [𝜇̂𝑝
′ ])

1/𝑝
= (E [(

1

𝑛
∑ 𝑥𝑖

𝑝

𝑛

𝑖=1

)])

1/𝑝

≈ (E [
1

𝑛
max

1≤ 𝑖≤𝑛
(𝑥𝑖

𝑝
)])

1/𝑝

≈ 𝑛−1/𝑝E [ max
1≤ 𝑖≤𝑛

𝑥𝑖] ≈ E[𝑧𝑛] (14) 

because for large n and p → n, 𝑛−1/𝑝 → 1. In other words, as p → n, 

(E [𝜇̂𝑝
′ ])

1/𝑝
≈ 𝐾𝑝1

′  (15) 

This property reconciles theoretical and sample moments, as it reflects the fact that 

asymptotically 𝜇̂𝑝
′  is indeed an estimator of a theoretical quantity that surprisingly can be closer 

to 𝐾𝑝1
′𝑝

 than to 𝜇𝑝
′ . 

Illustration of the above remarks is provided in Figure 2, where theoretical moments for the 

normal distribution N(0,1) and lognormal distribution LN(0,1) are plotted and compared with 

sample estimates from synthetic series generated for these distributions with sample sizes ten 

times higher than the maximum p shown in graphs, i.e., 1000. It is evident in the figure that for 

the lognormal distribution and for p > 3 the sample estimates are irrelevant to (are smaller by 

orders of magnitudes than) the theoretical quantities they are supposed to estimate. Evidently, 

classical moments and their estimates do not describe the same thing. For the normal 

distribution the estimates of classical moments are impressively close to the theoretical K-

moments and far from the theoretical classical moments. For the lognormal distribution, the 

proximity is less impressive yet the asymptotic tendency described by equation (15) is evident 

as is the divergence of 𝜇̂𝑝
′  from 𝜇𝑝

′ . All in all, Figure 2 provides a graphical justification of the 

notion of unknowable vs. knowable (this will also be verified in Figure 7 with real-world data). 

Summarizing, as p becomes large (approaching n), estimates of both classical and K-

moments, central or noncentral, become estimates of expressions involving extremes (like 

(max1≤𝑖≤𝑝(𝑥𝑖))
𝑞

, (max1≤𝑖≤𝑝(𝑥𝑖 − 𝜇))𝑞 , etc., where the exponents q should be replaced with p for 

classical moments). (For negatively skewed distributions these quantities may involve 

minimum, instead of maximum quantities; this can be understood considering that if x is 

negatively skewed, then –x is positively skewed, while min1≤𝑖≤𝑝(−𝑥𝑖) =  − max1≤𝑖≤𝑝 𝑥𝑖). For the 

K-moments this behaviour is consistent with their theoretical definition. For the classical 

moments and cumulants this is an inconsistency.  

A common property of both classical and K-moments is that symmetrical distributions have 

all their odd central moments equal to zero.  

In geophysical processes we can justifiably assume that the variance μ2 ≡ σ2 ≡ K22 is finite: an 

infinite variance would presuppose infinite energy to materialize, which is absurd. Hence, high 

order K-moments Kp2 will be finite too, even if classical moments μp diverge to infinity beyond a 

certain p (i.e., in heavy tailed distributions). 

It is worthwhile to note that the problem of unknowability appears also in cumulants, which, 

as will be seen below, are quite useful in stochastic synthesis, but cannot be estimated from data 

reliably. In particular, the cumulant generating function is: 
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Figure 2 Illustration of agreement and disagreement of moment estimates with theoretical 
moments for: normal distribution N(0,1) (left) and lognormal distribution LN(0,1) (right), where 
the K-moments correspond to q = 1 (upper row) and q = 2 (lower row). Note that in the normal 
distribution theoretical moments of odd order are zero (and thus not shown in the logarithmic 
plots) and that points corresponding to 𝜇𝑝

′  are (almost) indistinguishable from those 
corresponding to 𝜇𝑝. In the lognormal distribution the moments of odd order are depicted by the 

lower blue lines and series of points (circles), while the upper ones depict even moments.  

𝐾(𝑡) ≔ ln E[𝑒𝑡𝑥] (16) 

and its standard estimator is (Ghosh and Beran 2006): 

𝐾̂(𝑡) = ln
∑ e𝑡𝑥𝑖𝑛

𝑖=1

𝑛
 (17) 

Considering that one form of the generalized (Kolmogorov) mean of variables 𝑥1, 𝑥2, …, 𝑥𝑛 is 

precisely the estimator 𝐾̂(𝑡), as well as the fact that (Lange et al. 2014): 

lim
𝑡→∞

1

𝑡
ln

∑ e𝑡𝑥𝑖𝑛
𝑖=1

𝑛
= lim

𝑡→∞

1

𝑡
ln (∑ e𝑡𝑥𝑖

𝑛

𝑖=1

) − lim
𝑡→∞

ln 𝑛

𝑡
≈ max

1≤𝑖≤𝑛
𝑥𝑖 (18) 

we conclude that, for large t and independent variables 𝑥𝑖, 

1

𝑡
E[𝐾̂(𝑡)] ≈ E [ max

1≤ 𝑖≤𝑛
𝑥𝑖] = E[𝑧𝑛] = 𝐾𝑛1

′  (19) 

In other words, again the estimate can be closer to 𝐾𝑛1
′ 𝑡 than to 𝐾(𝑡). The cumulants κp, are 

obtained from a power series expansion of the cumulant generating function, i.e.,  
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𝐾(𝑡) =  ∑ 𝜅𝑝

𝑡𝑝

𝑝!

∞

𝑝=1

 (20) 

and are related to moments of similar order (see equation (27) below). Since for large t the 

estimator 𝐾̂(𝑡) is in fact estimator not of 𝐾(𝑡) but of an extreme quantity, again cumulants, 

similar to standard moments, are unknowable for large p.  

Relationships among different moment types 

The classical moments can be recovered as a special case of K-moments: 

𝐾𝑝𝑝
′ ≡ 𝜇𝑝

′ , 𝐾𝑝𝑝 ≡ 𝜇𝑝 (21) 

while other interesting special cases are 

𝐾𝑝0
′ = 1, 𝐾𝑝0 =

(−1)𝑝 + 1

2
= {

1 𝑝 even
0 𝑝 odd

, 𝐾11
′ ≡ 𝜇, 𝐾22 ≡ 𝜎2 (22) 

A particular case where classical and K-moments almost coincide (more precisely, are 

proportional to each other) is the uniform distribution, in which: 

𝐾𝑝𝑞
′ ≔ (𝑝 − 𝑞 + 1)𝜇𝑝

′ , 𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)𝜇𝑝 (23) 

The probability weighted moments (PWM; Greenwood et al. 1979) are also closely related to 

the (noncentral) K- moments. In particular, the most common PWM form 𝛽𝑝 ≔ E [𝑥 (𝐹(𝑥))
𝑝

] is 

the proportional to the noncentral K- moment corresponding to q = 1: 

𝐾𝑝1
′ = 𝑝𝛽𝑝−1 (24) 

The L-moments are defined by (Hosking 1990): 

𝜆𝑝 ≔
1

𝑝
∑(−1)𝑘 (

𝑝 − 1
𝑘

) E[𝑥(𝑝−𝑘):𝑝]

𝑝−1

𝑘=0

 (25) 

where 𝑥𝑘:𝑝 denotes the kth order statistic in an independent sample of size p. L-moments are 

also related to PWM and through them to K-moments. In particular, the relationships for the 

different types of moments for the first four orders are: 

𝐾11
′ = 𝜇 = 𝛽0, 𝐾11 = 0 

𝐾21
′ = 2𝛽1, 𝐾21 = 2(𝐾21

′ − 𝜇) = 4𝛽1 − 2𝛽0 = 2𝜆2 

𝐾31
′ = 3𝛽2, 𝐾31 = 4(𝐾31

′ − 𝜇) − 6(𝐾21
′ − 𝜇) = 12𝛽2 − 12𝛽1 + 2𝛽0 = 2𝜆3 

𝐾41
′ = 4𝛽3,  𝐾41 = 8(𝐾41

′ − 𝜇) − 16(𝐾31
′ − 𝜇) + 12(𝐾21

′ − 𝜇) 

= 32𝛽3 − 48𝛽2 + 24𝛽1 − 4𝛽0 =
8

5
𝜆4 +

12

5
𝜆2 

(26) 
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Finally, the cumulants are related to the classical noncentral moments by the following 

recursive relationships (Smith 1995): 

𝜇𝑝
′ = ∑ (

𝑝 − 1
𝑖

)

𝑝−1

𝑖=0

𝜅𝑝−𝑖𝜇𝑖
′, 𝜅𝑝 = 𝜇𝑝

′ − ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=1

𝜅𝑝−𝑖𝜇𝑖
′ (27) 

In the above moment categories, the initial values (necessary for recursive relationships) are: 

𝜅0 = 𝜇1 = 𝐾11 = 𝐾2𝑝+1,0 = 0, 𝜇0 = 𝜇0
′ = 𝐾𝑝0

′ = 𝐾2𝑝,0 = 1, 𝜅1 = 𝜇1
′ = 𝐾11

′ = 𝛽0 = 𝜇. Relationships 

between central and noncentral moments are given in the Appendix. 

Basic characteristics of marginal distribution  

Within the framework of K-moments and according to the rule of thumb “Just two moments” we 

may assume that the power of x, i.e. q, should be taken q = 1 or 2 and obtain knowable statistical 

characteristics for much higher order p. In this manner, for p > 1 we have two alternative 

options to define statistical characteristics related to moments of the distribution, the most 

customary of which are shown in Table 2. Which of the two options is preferable depends on the 

statistical behaviour and in particular, the mean, mode and variance of the estimator. For 

completeness, Table 2 contains also as Option 3 the classical case but this is not recommended 

for the fitting phase of a distribution. 

For illustration of the numerical values of the statistical characteristics resulting from the 

various options of Table 2, Table 3 provides some comparisons for distribution functions of 

common use. These values are for theoretical (not sample) moments and have been calculated 

analytically (by integration) or numerically (by numerical integration). Numerical calculation of 

theoretical moments, when analytical integration is infeasible, is an easy matter and involves no 

difficulty; thus the existence of an analytical solution of theoretical moments of a certain 

distribution should not be regarded as an important criterion for choosing that distribution. The 

important issue for model fitting is whether the moments are knowable or not, in the sense of 

their estimation from a sample; their theoretical values are always knowable once the 

distribution parameters have been specified.  

Table 2 Typical marginal statistical characteristics of distributions using different moment 
categories. 

Characteristic Order p Option 1 Option 2 Option 3*  

Location 1 𝐾11
′ = 𝜇 (the classical mean) 

Variability 2 𝐾21 = 2(𝐾21
′ − 𝜇) = 2𝜆2 𝐾22 = 𝜇2 = 𝜎2  

(the classical variance) 
Skewness 
(dimensionless) 

3 
𝐾31

𝐾21
=

𝜆3

𝜆2
 

𝐾32

𝐾22
 

𝐾33

𝐾22
3/2

 
=

𝜇3

𝜎3
 

Kurtosis 
(dimensionless) 

4 
𝐾41

𝐾21
=

4

5

𝜆4

𝜆2
+

6

5
 

𝐾42

𝐾22
 

𝐾44

𝐾22
2  

=
𝜇4

𝜎4
 

* Not recommended for distribution fitting.  
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Table 3 Numerical illustration of the variation of typical marginal statistical characteristics for 
some customary distributions. 

Characteristic Variability Skewness Kurtosis 

Distribution 

function* 

𝐾21 (1)† 𝐾22 (2) 
𝛫31

𝐾21
 (1) 

𝛫32

𝐾22
 (2) 

𝛫33

𝐾22
3/2

 (3) 
𝛫41

𝐾21
 (1) 

𝛫42

𝐾22
 (2) 

𝛫44

𝐾22
2  (3) 

U(0,1) 0.3333 0.08333 0 0 0 1.2 1.8 1.8 

Ν(0,1) 1.128 1 0 0 0 1.465 2.103 3 

LN(0, 1/2)  0.6262 0.3647 0.2409 0.8146 1.750 1.335 2.239 8.898 

LN(0, 1) 1.716 4.671 0.4625 1.455 6.185 1.434 2.548 113.9 

LN(0, 2) 12.45 2926.4 0.7909 1.965 414.4 1.712 2.961 9.2×106 

GP(1,1/6) 0.2181 0.06 0.4118 1.273 3.810 1.386 2.406 38.67 

GP(1,1/4) 0.3810 0.2222 0.4545 1.429 7.071 1.418 2.522 ∞ 

GP(1,1/3) 0.6  0.75 0.5 1.6 ∞ 1.455 2.657 ∞ 
* U: Uniform; N: Normal; LN: Lognormal; GP: Generalized Pareto with lower bound zero; the 
numbers in parentheses are the parameter values of the distributions. 
† The numbers in parentheses refer to the Options defined in Table 2. 

It is seen in Table 3 that the values of the classical statistical measures of skewness and 

particularly kurtosis (Option 3) can be extraordinarily high and impractical, even though they 

are by definition nondimensionalized (a fortiori, the respective moments are even higher by 

orders of magnitude). On the contrary, both Options 1 and 2 provide reasonable and intuitive 

values while keeping the consistency in terms of their variation (increasing/decreasing 

behaviour with respect to change of distribution parameters and order of moments). Finally, as 

already explained, the results from Options 1 and 2 are finite (provided that mean and variance 

are finite) even when those of Option 3 are infinite. 

It is useful to explore the variability of the sample estimates of these characteristics. Figure 3 

illustrates this for two of the cases of Table 3, namely the normal distribution Ν(0,1) and the 

lognormal distribution LN(0, 2). The estimates from the three options are compared in terms of 

the resulting probability density functions of the empirical statistics corresponding to a sample 

with size 100, where the density functions are estimated by Monte Carlo simulations with 1000 

repetitions. For a fair comparison of the statistics of different options, all of them were first 

transformed into the same “units” with the mean μ and then standardized by the respective 

parameter of variability, again with same units; the latter equals 𝐾21 for Option 1 (q = 1) and 

𝜎 ≡ √𝐾22 for Options 2 (q = 2) and 3 (classical statistics). The exact definitions in each case are 

shown in the caption of Figure 3.  

First of all, the plot indicates that the classical statistics have always worse performance, 

sometimes extraordinarily worse, than the K-statistics, as the spread of their density is wider 

and its peak smaller. Second, for the skewed distribution case (LN; right column) the statistics of 

Option 2 (q = 2) have the best performance. There is one exception though, the upper right 

panel, where Option 1 clearly outperforms Option 2, both in terms of the spread and bias. The 
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high bias of this statistic results from that in the estimation of the variance. For the case of the 

symmetric distribution (N; left column) K-statistics are better than classical and L ones, and 

Option 1 outperforms Option 2 in terms of skewness estimation. These results are quite relevant 

for distribution fitting but certainly additional and more systematic analyses are needed in order 

to shape an optimal fitting procedure. 

 

 

 

Figure 3 Illustration of the probability density function of: (upper) variability index (𝐾11/𝐾21, 

𝜇/𝜎 ≡ 𝐾11/√𝐾22; note that the latter is inverse of the common coefficient of variation); (mid-

dle), skewness index (𝜇3
1/3

/𝜎, 𝐾31/𝐾21, sign(𝐾32)√|𝐾32|/𝐾22); (lower) kurtosis index (𝜇4
1/4

/𝜎, 

𝜆4/𝜆2, 𝐾41/𝐾21, √𝐾42/𝐾22). The panels of the left column correspond to the normal distribution 
Ν(0,1) and those of the right column to the lognormal distribution LN(0, 2). The L-statistics, also 
plotted, differ from the K-statistics only for p = 4 (see Table 2). The densities are depicted after 
shifting to zero mean, while the bias (difference of the simulated mean from the theoretical 
value of Table 3, as a percentage of the latter) is also given in the legend of each panel. 
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High order moments for stochastic processes: the K-climacogram and the 

K-climacospectrum 

Second order properties of stationary stochastic processes are most typically expressed by the 

autocovariance function: 

c(h) := cov[x(t), x(t + h)] (28) 

whereas an equivalent description is its Fourier transform, i.e. the power spectrum: 

𝑠(𝑤) ≔ 4 ∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ

∞

0

 (29) 

 While autocovariance and its equivalent standardized form, i.e., autocorrelation, have been 

the most customary tools to characterize dependence, they are neither the only nor the most 

effective ones. Instead, the variance of the process averaged at a specified time scale k provides a 

mathematically equivalent but statistically more advantageous means to this aim. To see this, let 

us consider the second-order dependence of any two random variables 𝑥1 and 𝑥2 with means 𝜇𝑖  

and standard deviations 𝜎𝑖, i = 1, 2. The variance of the average of the two variables contains the 

same information as the covariance thereof. We note, though that if the variables denote 

different physical quantities, it is necessary to make them compatible before taking the average, 

which can be made by standardizing with their standard deviations. In other words, we define: 

𝜌12 ≔ var [
1

2
(

𝑥1

𝜎1
+

𝑥2

𝜎2
)] (30) 

which can be expanded to yield:  

𝜌12 =
1

4
Ε [(

𝑥1 − 𝜇1

𝜎1
+

𝑥2 − 𝜇2

𝜎2
 )

2

] =
1

2
+

1

2
cov [

𝑥1

𝜎1
,
𝑥2

𝜎2
] =  

1

2
+

1

2
𝑟12  (31) 

Here 𝑟12 is the classical (Pearson) correlation coefficient, i.e., 

𝑟12 ∶=
cov[𝑥1, 𝑥2]

𝜎1𝜎2
= cov [

𝑥1

𝜎1
,
𝑥2

𝜎2
] (32) 

satisfying −1 ≤ 𝑟12 ≤ 1 with the values –1, 0, 1 representing fully anti-correlated, uncorrelated 

and fully correlated variables, respectively. Obviously, the same information as in r12 is provided 

by ρ12, which satisfies 0 ≤ 𝜌12 ≤ 1 with the values 0, 1/2, 1 representing fully anti-correlated, 

uncorrelated and fully correlated variables, respectively.  

Unlike 𝑟12, the notion of ρ12 could be readily expanded to many variables. Assuming that the 

variables 𝑥1, … , 𝑥𝜅 are identically distributed with common variance σ2, so that standardization 

is no longer needed before taking the variance, we define the so-called climacogram, 

𝛾𝜅 ≔ var[𝑋𝜅/𝜅], where 𝑋𝜅 ≔ 𝑥1 + ⋯ + 𝑥𝜅, and so 𝑋𝜅/𝜅 is the average, satisfying 0 ≤ 𝛾𝜅 ≤ 𝜎2. 

 Furthermore, the climacogram is readily adapted to a continuous-time stochastic process 

𝑥(𝑡), namely,  
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𝛾(𝑘) ≔  var[𝑋(𝑘)/𝑘], 𝑋(𝑘) ≔ ∫ 𝑥(𝑡)d𝑡
𝑘

0

 (33) 

The climacogram provides a description fully equivalent to that of autocovariance as for a 

continuous-time stochastic process the two tools are connected by: 

𝛾(𝑘) = 2 ∫(1 − 𝜒)𝑐(𝜒𝑘)d𝜒

1

0

, 𝑐(ℎ) =
1

2
 
d2(ℎ2𝛾(ℎ))

dℎ2
 (34) 

As shown by Dimitriadis and Koutsoyiannis (2015) and Koutsoyiannis (2016) the climacogram 

offers several advantages over autocovariance and power spectrum. A surrogate of the power 

spectrum, again with several advantages over it, is the climacospectrum (Koutsoyiannis 2017) 

defined as 

𝜁(𝑘) ≔
𝑘(𝛾(𝑘) − 𝛾(2𝑘))

ln 2
 (35) 

The climacogram can be further expanded to describe the dependence of different processes, 

replacing the concept of cross-correlogram of two stationary processes 𝑥(𝑡) and 𝑦(𝑡) by the 

standardized cross-climacogram (SCC) for scale k and lag h: 

𝜌𝑥𝑦(𝑘, ℎ) ≔ var [
𝑋(𝑘)

2√𝛤𝑥(𝑘)
+

𝑌(𝑘 + ℎ) − 𝑌(ℎ)

2√𝛤𝑦(𝑘)
] = var [

𝑋(𝑘)/𝑘

2√𝛾𝑥(𝑘)
+

(𝑌(𝑘 + ℎ) − 𝑌(ℎ)) /𝑘

2√𝛾𝑦(𝑘)
] (36) 

where 𝑌(𝑘) is defined in a similar manner with 𝑋(𝑘). Likewise, we could replace the cross-

covariance by the cross-climacogram (CC) and the cumulative cross-climacogram (CCC): 

𝛾𝑥𝑦(𝑘, ℎ) ≔ 𝜌𝑥𝑦(𝑘, ℎ)√𝛾𝑥(𝑘)𝛾𝑦(𝑘),    𝛤𝑥𝑦(𝑘, ℎ) ≔ 𝜌𝑥𝑦(𝑘, ℎ)√𝛤𝑥(𝑘)𝛤𝑦(𝑘)  (37) 

Now, coming to high-order properties of a stationary stochastic process, we observe that full 

description thereof requires functions of many variables. For example, the third-order 

properties are expressed in terms of a function of two time lags h1 and h2: 

c3(h1, h2) := E[(x(t) – μ) (x(t + h1) – μ) (x(t + h2) – μ)] (38) 

Such a description is not parsimonious and its accuracy holds only in theory because, as we have 

seen, sample estimates of classical high-order moments are not reliable. Therefore we introduce 

single-variable descriptions for any order p, expanding the idea of the climacogram and 

climacospectrum based on K-moments. Specifically we define the K-climacogram as: 

𝛾𝑝𝑞(𝑘) ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑋(𝑘)/𝑘) − 1)
𝑝−𝑞

(𝑋(𝑘)/𝑘 − 𝜇)𝑞] (39) 

and the K-climacospectrum as: 

𝜁𝑝𝑞(𝑘) ≔
𝑘 (𝛾𝑝𝑞(𝑘) − 𝛾𝑝𝑞(2𝑘))

ln 2
 (40) 
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where 𝛾22(𝑘) ≡ 𝛾(𝑘) and 𝜁22(𝑘) ≡ 𝜁(𝑘). Even though for q > 2 the K-moment description is no 

longer equivalent to the multivariate high-order one (the former is a function of a scalar variable 

while the latter is a function of a vector variable), it suffices to fully define the marginal 

distribution at any scale k. 

To illustrate these two tools we use some examples with real world data. In the first example 

shown in Figure 4 the data originate from turbulence measurements. Specifically 60 000 values 

of turbulent velocity along the flow direction from a grid-turbulence experiment are used. The 

original series (described in Kang 2003; see also Koutsoyiannis 2017, and Dimitriadis and 

Koutsoyiannis 2018) was upscaled (averaged) so that time scale 1 corresponds to 0.5 s. It is 

impressive to see that all K-climacogram plots for all moment orders are similar and parallel to 

each other while there is full correspondence of slopes at q = 1 and q = 2 (in the latter the 

asymptotic slope is twice that in the former, as theoretically expected because q = 2 entails 

squaring). A deviation from the rule of parallelism appears for very large moment order (p = 20), 

and very large time scale (>1000) but only for q = 1. Whether this signifies some real behaviour 

(e.g. in terms of large-scale extremes) or is a pure statistical effect needs to be explored further. 

Another interesting behaviour shown is the small skewness of the distribution (see details about 

skewness in Dimitriadis and Koutsoyiannis 2018), reflected by the slightly positive values of the 

odd-order moments for small scales. As theoretically expected (due to the central limit theorem) 

the skewness disappears at large scales (>100). 

The K-climacograms highlight the process behaviour on large time scales; in particular the 

persistence, quantified by the Hurst parameter H (which equals the Κ-climacogram slope for q = 

1, plus one; see Koutsoyiannis, 2017, for further explanation of the Hurst parameter). On the 

other hand, they tend to mask it for small ones, because for finite variance the plot, for 

theoretical reasons (Koutsoyiannis 2017), should be (and actually is) a horizontal line as time 

scale k → 0. Visibility at small time scales is regained by the K-climacospectra. These are shown 

in the right column of Figure 4 and verify an impressive agreement with Kolmogorov’s “5/3” law 

at small scales, notably the same for all K-moment orders. 

In the second example, shown in Figure 5, we use rainfall rate data at Iowa measured every 

10 s. A sample of 29 542 values of rainfall at temporal resolution of 10 s was formed by merging 

measurements of seven events at Iowa by Georgakakos et al. (1994), which was also 

investigated in several other studies (e.g., Lombardo et al. 2012).  

The K-climacograms show prominent persistence with Hurst parameter H ≈ 1 – 0.1 = 0.9,  

while the very large order K-climacogram for q = 1 indicates an effect similar to that of the 

turbulence data discussed above. The skewness is also prominent almost for the entire range of 

time scales. The K-climacospectra suggest a slope of about 4/3 for small scales, so that according 

to the classification by Koutsoyiannis (2017) the process is rough-persistent, like turbulence.  
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Figure 4 K-climacograms (left) and K-climacospectra (right) of turbulent velocity measured 
every 0.5 s, where the K-moments correspond to q = 1 (upper row) and q = 2 (lower row). Plot 
(2*) is constructed from the variance and (2**) corresponds to standard deviation. 

 

 

Figure 5 K-climacograms (left) and K-climacospectra (right) of rainfall rate at Iowa measured 
every 10 s, where the K-moments correspond to q = 1 (upper row) and q = 2 (lower row). Plot 
(2*) is constructed from the variance and (2**) corresponds to standard deviation. 
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Figure 6 K-climacograms (left) and K-climacospectra (right) of daily rainfall at Padova, where 
the K-moments correspond to q = 2.  

 

 

 

Figure 7 K-moments vs. moment order for: (upper) turbulence velocity data; (middle) synthetic 
data with same mean and variance as the turbulence data; (lower) daily rainfall data at Padova. 
Note that each curve is in fact a series of connected points whose shape is smooth by itself (not 
artificially smoothed). 
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The last example, shown in Figure 6, is the exploration of daily rainfall data at Padova; this is 

the longest rainfall record existing worldwide (Marani and Zanetti 2015), starting at 1725 and 

containing 100 442 values. For large time scales the K-climacograms for q = 2 indicate a Hurst 

behaviour with a slope of –0.65 > –1, corresponding to a Hurst parameter H = 1 – 0.65/2 = 0.68, 

consistent with findings in Iliopoulou et al. (2018). At the daily and multi-daily scale the process 

appears to be closer to white noise with climacogram slope –0.83 (against –1 of white noise) and 

climacospectrum close to constant. However, these are artefacts because, as seen in the previous 

example, at scales finer than daily the behaviour is far different from white noise. The general 

shape of the climacogram in Figure 6, with decreasing slope as we go to larger scales, is 

consistent with a behaviour observed by Markonis and Koutsoyiannis (2016). 

Finally, the fact that the noncentral K-moments reflect well the behaviour of maxima in a 

process is illustrated in Figure 7, where moments are plotted against their order p for the 

turbulence and Padova rainfall series. In addition to K-moments, the sample estimate of the 

maximum for a time window of length p, i.e., E[max(𝑥1, … , 𝑥𝑝)], is also plotted. The latter plot 

generally agrees with those of 𝐾𝑝1
′  and √𝐾𝑝2

′ . Some deviations are due to the temporal 

dependence in the process because E[max(𝑥1, … , 𝑥𝑝)] reflects the joint distribution, while 𝐾𝑝1
′  

reflects the marginal one. This is further illustrated in the middle panel of the figure, which is 

constructed from uncorrelated synthetic data with same mean and variance as the turbulence 

data. It is clearly seen that, because of independence, the plot corresponding to 

E[max(𝑥1, … , 𝑥𝑝)] has been shifted up and now coincides with 𝐾𝑝1
′ . Even the plot of the classical 

𝜇𝑝
′1/𝑝

 is not far from the other ones, because it again asymptotically reflects maxima as explained 

above. In the last panel of the Padova rainfall series the central moment √𝐾𝑝2 has also been 

plotted and it is seen that, because of the high skewness of the distribution, it does not differ 

substantially from √𝐾𝑝2
′ . Furthermore, because the temporal dependence in these rainfall data is 

weak, the plot corresponding to E[max(𝑥1, … , 𝑥𝑝)] is very close to that corresponding to 𝐾𝑝1
′ . 

Stochastic simulation 

Monte Carlo (stochastic) simulation is an important numerical method for resolving problems 

that have no analytical solution. Obviously, simulation is performed in discrete time, at a 

convenient discretization step. The so-called symmetric moving average (SMA) method 

(Koutsoyiannis 2000, 2016) can exactly simulate any Gaussian process, with any arbitrary 

autocovariance function (provided that it is mathematically feasible). It can also approximate, 

with controlled accuracy, any non-Gaussian process with an arbitrary autocovariance function 

and any marginal distribution function. In particular, the approximation up to fourth order 

moments has been studied in Dimitriadis and Koutsoyiannis (2018) and Koutsoyiannis et al. 

(2018), while in the former work it was shown that the method can perform for even higher 
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orders. Here we provide a more general formulation based on cumulants, which can handle 

explicitly moments of arbitrarily high order.  

The SMA scheme can directly generate time series from any process 𝑥𝑖 with any type of 

dependence by: 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙

𝑟

𝑙=−𝑟

 (41) 

where 𝑎𝑙  are coefficients calculated from the autocovariance function and 𝑣𝑖 is (generally non-

Gaussian) white noise averaged in discrete-time. In theory, the limit r should be ∞ but in 

practice a truncation to a specific finite r is made (see Koutsoyiannis 2016 for methods to handle 

the truncation error). 

It should be stressed that the weights 𝑎𝑙  are not model parameters estimated from data but 

internal coefficients determined by theoretical calculations. Assuming that the power spectrum 

𝑠d(𝜔) of 𝑥𝑖 in discrete time is known (from the climacogram or equivalently, from the 

autocovariance function, i.e., from (29) and (34) whose discrete-time versions can be found in 

Koutsoyiannis 2016, 2017), the Fourier transform 𝑠d
𝑎(𝜔) of the 𝑎𝑙  series of coefficients has been 

shown (Koutsoyiannis 2000) to be:  

𝑠d
𝑎(𝜔) = √2𝑠d(𝜔) (42) 

Thus, to calculate 𝑎𝑙  we first determine 𝑠d
𝑎(𝜔) from the power spectrum of the process and then 

we invert the Fourier transform to estimate all 𝑎𝑙 .  

With respect to the preservation of moments with order > 2, we utilize the properties of 

cumulants of independent variables, and particularly homogeneity and additivity. For the pth 

cumulant, 𝜅𝑝 of 𝑥𝑖, by virtue of (41), these properties result in 

𝜅𝑝 = ∑ 𝑎|𝑙|
𝑝

 𝜅𝑝
𝑣

𝑟

𝑙=−𝑟

 (43) 

where 𝜅𝑝
𝑣 is pth cumulant of 𝑣𝑖. Observing that the zeroth cumulant is zero, we can estimate 𝜅𝑝

𝑣 

from 𝜅𝑝 by  

𝜅𝑝
𝑣 =

𝜅𝑝

2 ∑ 𝑎|𝑙|
𝑝

 𝑟
𝑙=1

 
(44) 

 Based on the above discourse, we can formulate the following steps of a general simulation 

strategy, starting from the observed data (noting that alternative modelling strategies can be 

seen in a series of references provided by Dimitriadis and Koutsoyiannis 2018): 

1. We estimate K-moments for q = 1 and 2, and we choose a marginal distribution for the 

process based on K-moments and possibly relevant theoretical considerations (e.g. 

entropy maximizing distribution). 

2. We construct the climacogram and climacospectrum, and we choose a suitable model of 

second-order dependence (see a repertoire of models in Koutsoyiannis 2016, 2017). 



19 

3. We estimate the marginal and joint distribution parameters of the model (with 

appropriate provision for fitting issues, such as bias, e.g., as in Koutsoyiannis 2016). 

4. Based on the model parameters we calculate theoretically (and not estimate from data) 

the classical moments of the process of interest.  

5. From equation (27) we calculate the cumulants of the process of interest.  

6. From equation (44) we calculate the cumulants of the white noise process and from (27) 

we calculate its moments. 

7. We choose an appropriate distribution for the white noise, calculate its parameters 

theoretically from its moments and generate a random sample with the required length. 

8. Filtering with equation (41) we synthesize the simulated series for the process of 

interest. 

9. We construct K-climacograms from the original and synthetic data and compare for 

relevant moment orders > 2. 

10. If a disagreement is found in step 9, then we repeat the process separating the entire 

range of relevant scales to parts, building different models for each part, and coupling 

the separate models using a model coupling (disaggregation) scheme such as that in 

Koutsoyiannis (2001) (see also Lombardo et al. 2012, 2017). 

Even though a full presentation of a case study with all these steps is out of the scope of this 

theoretical paper, a proof of concept for the feasibility and effectiveness of simulation for high-

order moments using several data sets has been already made in Dimitriadis and Koutsoyiannis 

(2018), albeit without using the K-climacograms and indirectly using the cumulants (i.e. by 

finding direct relationships between moments of the process of interest and white noise). The 

agreement of simulated and original moments at all scales was impressive, so that step 10 was 

not necessary.  

Conclusions and discussion 

The concept of knowable (K-)moments introduced here resolves the well-known (e.g. Lombardo 

et al. 2014) problem of inability to estimate high-order moments from typical (or even large) 

samples, thus complementing the idea of L-moments in a manner that can also model joint (not 

only marginal) distributions of stochastic processes and describe the dependence. 

 The concept of K-climacogram, also introduced here, provides an effective and knowable 

means to parsimoniously characterize the dependence structure of a process for moments 

higher than 2 and detect possible scaling behaviours for large scales (i.e. persistence) and the 

possible change of the scaling laws with moment order. It is noted though that the data sets 

studied here support a rather single scaling law for all orders. 

 The complementary concept of K-climacospectrum, is another effective tool again to 

characterize the dependence structure of a process for high-order moments, particularly at the 

opposite (lower) end of time scales. It can also detect possible scaling behaviours (i.e. 



20 

smoothness or fractality), with exponents varying with moment order (multifractality). It is 

noted though that the data sets studied here support a rather unique scaling law for all orders. It 

is thus interesting to further study potential multifractality of geophysical processes and in 

particular isolate from the real behaviour of the processes the effect of using inappropriate 

estimators, as implied in Lombardo et al. (2014) and Koutsoyiannis et al. (2018). 

 The well-known concept of cumulants, if combined with the other tools described above, can 

streamline the generation of skewed white noise and in turn simulate any non-Gaussian 

distribution by preserving its high-order moments. 

One can imagine a great deal of further work to explore, organize and exploit the tools 

introduced here. This includes: (a) detecting and characterizing natural behaviours (such as 

scaling, persistence, roughness/fractality, intermittence); (b) exploiting the use of the 

framework in studying extremes on multiple scales (such as in constructing ombrian, also called 

IDF, relationships); (c) compiling a set of analytical or numerical results/tables for customary 

distribution types; (d) statistically characterizing the bias and variability of the tools; (e) 

standardizing an optimal model fitting procedure; (f) studying the entire scheme in 

disaggregation mode; and (g) extending the framework to multivariate processes, represented 

by vectors of random variables (cf. Koutsoyiannis, 2000) and multidimensional stochastic fields 

(cf. Koutsoyiannis et al. 2011). 

Appendix: Relationships of central and noncentral moments 

It is reminded that classical central and noncentral moments are related to each other by 

𝜇𝑝
′ = ∑ (

𝑝
𝑖

)

𝑝

𝑖=0

𝜇𝑝−𝑖𝜇𝑖 , 𝜇𝑝 = ∑ (
𝑝
𝑖

)

𝑝

𝑖=0

(−𝜇)𝑝−𝑖𝜇𝑖
′ (45) 

Similar relationships can be obtained between central and noncentral K-moments. In particular, 

for q = 1 and 2 the following relationships hold (their proof is not too difficult): 

𝐾𝑝1
′ = (

1

2
)

𝑝−1

∑ (
𝑝
𝑖

)

𝑝−1

𝑖=0

𝐾𝑝−𝑖,1 + 𝜇 

𝐾𝑝1 = ∑ (
𝑝
𝑖

)

𝑝−1

𝑖=0

(−1)𝑖2𝑝−1−𝑖(𝐾𝑝−𝑖,1
′ − 𝜇) 

𝐾𝑝2
′ = (

1

2
)

𝑝−2

∑ (
𝑝 − 1

𝑖
)

𝑝−2

𝑖=0

(𝐾𝑝−𝑖,2 + 2𝜇𝐾𝑝−𝑖−1,1) + 𝜇2 

𝐾𝑝2 = ∑ (
𝑝 − 1

𝑖
)

𝑝−2

𝑖=0

(−1)𝑖(2)𝑝−2−𝑖 (𝐾𝑝−𝑖,2
′ − 2𝜇𝐾𝑝−𝑖,1

′ + 𝜇2) 

(46) 
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