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3. CastaliaR package 

4. Evaluation of sample uncertainty within stochastic simulation n 

N × n 
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series (stationarity) 

Split of long synthetic data to N 

sub-sets of same length n with  

the (short) historical sample 
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Generation of synthetic time 

series of length S, preserving the 

statistics of short synthetic data 

There are many difficulties in quantifying the sample uncertainty of the essential statistical characteristics 

(marginal statistics: average, standard deviation, skewness; joint-statistics: lag-one auto- and zero-lag cross-

correlations) of time series, that are typically reproduced through stochastic simulation.  

Our goal is the evaluation of sample uncertainty induced by the use of statistical characteristics that are 

empirically estimated from short samples.  

In this context, we developed a Monte Carlo based  approach aiming to generate “pseudo-historic” 

realizations comprising the following steps: 

 Step 1: Generation of long synthetic time series with length N × n, that reproduce the statistical and 

dependence properties of the historical data, where n is the length of historical sample and N is the 

selected number of Monte Carlo analyses. In this way, stationarity is established. 

 Step 2: Split of long time series to N sub-sets with same length with the historical sample (n years), using a 

moving time-window approach. These short synthetic time series represent the multiple possible samples 

(“pseudo-historic” realizations).  

 Step 3: Generation of N synthetic time series of length S, where S is the years of simulation. These time 

series reproduce the statistical and dependence properties of another short synthetic time series each time. 

5. Case study: Stochastic analysis of inflow time series at Kremasta reservoir (Western Greece) 

Modelling assumptions 

Reservoir 

simulation model 

Derive the storage-yield-reliability relationship for: 

 Design purposes (estimation of reservoir capacity) 

 Water management purposes (estimation of reliability for a given demand 

and vice versa) 

Stochastic 

simulation models  

Long synthetic 

time series 

Historical data 
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What would be the response of the system, if we 

use another random sequence with the same 

length as the historical sample in use? 

2. Problem statement 
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Sample size (n): 

Monte Carlo analyses (N): 100 

Simulation (S): 1000 years 

Hurst coefficient (H): • H=0.5 

• H=0.7 

• H=0.9 

• 28 years (historical sample) 

• 20 years 

• 50 years 

Total scenarios: 9 (3×3) 

Mean monthly inflow, as estimated 

from the historical data (28 years) 

May May May May 

May 

Quantiles (5%, 25%, 50%, 75%, 95%) of statistical characteristics of generated time series (pseudo-historic), based on historical sample size n = 28 years, for H = 0.70: 

(a) mean; (b) standard deviation; (c) skewness coefficient; (d) lag-1 autocorrelation coefficient. All statistics exhibit significant variability (even for the mean). 

(a) (c) (b) (d) 
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May 

Coefficient of variation comparisons for the 

essential statistical characteristics of mean 

inflow (n = 28, H = 0.70). Significantly 

higher value for skewness coefficient.   

CV =  
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Variation of CV of the average 

of mean inflow, for different 

sample sizes and H = 0.70. 

As expected, longer sample  

decreases the coefficient value.  

Similar behavior is observed 

for all essential characteristics.   

Variation of CV of the average 

of mean inflow, for different 

Hurst coefficients (n = 28). 

As expected, long-term 

persistence increases the CV 

value. Similar behavior is 

observed  for all essential 

characteristics.   

 Goal : Estimation of the useful storage capacity of the reservoir, for 

multiple demand targets and associated reliability levels 

 Key assumptions: 

1 Constant water demand (stationary conditions) 

2 Max annual demand ≤ Mean annual inflow 

3 Failure (deficit) of one month accounts as 

failure of the entire year (annual reliability) 

 Methodology: 

1 Scenarios development  

2 Implementation of reservoir simulation model 

3 Derivation of storage-yield-reliability relationship 

ii) Reliability scenarios 

i) Demand scenarios 

• Max demand = Mean annual inflow 

Problem setting 

Demand scenarios: 12 

• Expressed in terms of ratio of max demand 

(adjusted demand) 

• Starting point D = −
𝝁

𝝈
  , corresponding to 100% 

100.00 % 91.87 % 83.74 % 75.61 % 

67.48 %  59.35 % 51.22 % 43.09% 

34.96 % 26.83%  18.70 %  10.57% 

• Increase by step 0.1 

Reliability scenarios: 5 

80% 85% 90% 95% 99% 

Totally simulated scenarios: 540 (12×5×9) 

Reservoir model Implementation:  

• R programming 

• Input inflow: 100 time series of 1000 

years length, generated through the 

CastaliaR program. 

• Multiple scenarios for different sample 

sizes (n = 28, 20 and 50 years) and Hurst 

coefficient (H = 0.50, 0.70, 0.90). 

Storage-yield-reliability analysis 

Κ* = 
𝛫−𝜇

𝜎
 

Non-dimensional 

storage capacity 

easier comparisons 

Storage-reliability curve for 91.87% of max demand 

Storage-reliability curve for 75.61% of max demand 

 Typical requirements of reservoir 

sizing problems: maximize 

demand, under a high 

reliability level. 

 Significant uncertainty in the 

estimations of storage capacity  

for scenarios around the max 

water demand, when considering 

reliability levels around 95 to 

99% (red circle).  

 Uncertainty is reduced for very 

high storage capacity values (i.e., 

much above the mean annual 

inflow) that reasonably ensure 

high reliability levels (green 

circle), as well as for very small 

capacities, which yet result to 

sharp decrease of reliability 

(blue circle)  

 Too large reservoirs or too low 
reliability levels are both non-
acceptable, for socio-economic 
and environmental reasons. 

 “Classical” long-term stochastic simulation approach (displayed with red line), as far 

as the time series generation is concerned, gives quite conservative estimates, well 

above the average scenario.  

 Similar outcomes for different sample sizes and Hurst coefficients. As the Hurst 

coefficient increases, the deviation from the average scenario decreases as well.  

 We developed a generalized methodology to quantify the impacts of sample 

uncertainty within a typical stochastic simulation exercise, i.e. the derivation of the 

storage-yield-reliability relationship of a single-purpose reservoir. 

 The outcomes of our analyses may be characterized shocking, since key design and 

management quantities that have been traditionally estimated via stochastic 

approaches (i.e. the use of synthetic data) are substantially affected by the 

uncertainty induced from short length of historical data. 

 In the context of storage-yield-reliability estimations, the uncertainty is amplified in 

the area of interest of practical applications, i.e. reservoir sizing for water demands 

little less than the mean annual inflow, to be fulfilled with high reliability levels.  

 The existence (or not) of long-range dependence at the annual scale (as quantified 

by the Hurst coefficient) has a significant impact in the analysis of reservoir’s design. 

 Future research will be focused to: 

 Use of newly emerged synthetic data generators, that beyond marginal and joint 

moments are capable of generating time series with any marginal distribution and 

correlation structure (Tsoukalas et al., 2018b,c). 

 Application to multi-reservoir multi-purpose systems, involving the simulation of 

spatially-correlated processes. 

 Application to hydroelectric reservoirs, considering firm energy demands. 

Design and management of water resource systems are arguably challenging tasks, 

as they are mainly driven by hydrological processes that are dominated by 

“structured” randomness. In this vein, the stochastic simulation of the input 

processes is regarded an essential component for such studies.  

Typically, the objective of stochastic models is the generation of long synthetic time 

series that reproduce the statistical and dependence properties of the historical 

data, ideally at multiple time scales (including long-term changes, such as those 

induced by the Hurst-Kolmogorov behavior). However, the sample statistical 

characteristics that are forced to be reproduced entail an inherent uncertainty, due 

to the generally short length of historical data. This key shortcoming is not typically 

accounted for within the current practices.  

This work is an attempt to investigate and quantify the input uncertainty within 

stochastic models, and eventually assess its impact on reservoir systems. Towards this, 

we establish a methodology for the quantification of the sample uncertainty, involving 

the essential statistical characteristics of historical inflows in a multiscale context, by 

using as background stochastic simulator the CastaliaR model.  

Initially, this model is employed for the generation of a large set of synthetic time 

series with the same length with the historical sample, and thus provide multiple 

“pseudo-historic” realizations. Subsequently, the statistical properties of the ensemble 

of pseudo-historic data are extracted and employed to generate long synthetic time 

series, which are finally used as inputs to a reservoir simulation model.  

The above procedure is demonstrated for the derivation of ensembles of storage-

yield-reliability relationships. Furthermore, multiple analyses for different sample 

sizes and Hurst coefficients are performed, aiming to investigate the uncertainty 

imposed by the sample size and the long-term persistence of the inflow processes. 

 R-based, open-source 

implementation of a state-of-the 

art framework for multivariate 

stochastic simulation of hydro-

meteorological processes; its 

background builds upon the works 

of Koutsoyiannis and Manetas 

(1996), Koutsoyiannis (2000) and 

Efstratiadis et al. (2014). 

 Reproduces the essential statistical characteristics (marginal and joint-moments) of 

the historical data at three temporal scales (annual, monthly and daily) as well as 

the long-range dependence (Hurst-Kolmogorov behavior) at over-annual scales. 

 The generation procedure lies upon a symmetric moving average process for the 

annual scale and a periodic autoregressive process for the finer scales, while a 

Monte Carlo disaggregation approach re-establishes consistency across the three 

temporal scales. 

 CastaliaR is fully automated, providing a user-friendly time series generation 

package for engineers and researchers (Tsoukalas et al., 2018a). 

Table 1: Demand scenarios 

Table 2: Reliability scenarios 
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