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Abstract Time’s arrow has important philosophical, scientific and technical connotations and is 

closely related to randomness as well as to causality. Stochastics offers a frame to explore, 

characterize and simulate irreversibility in natural processes. Indicators of irreversibility are 

different if we study a single process alone, or more processes simultaneously. In the former 

case, description of irreversibility requires at least third-order properties, while in the latter 

lagged second-order properties may suffice to reveal causal relations. Several examined data 

sets indicate that in atmospheric processes irreversibility is negligible at hydrologically relevant 

time scales, but may appear at the finest scales. However, the irreversibility of streamflow is 

marked for scales of several days and this highlights the need to reproduce it in flood 

simulations. For this reason, two methods of generating time series with irreversibility are 

developed, from which one, based on an asymmetric moving average scheme, proves to be 

satisfactory.  
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1 Introduction 

Yesterday all my troubles seemed so far away. 
Now it looks as though they're here to stay. 

Oh, I believe in yesterday. 

Paul McCartney 

Time irreversibility in physics has a long history, going back to 1807, when Fourier established 

the basis for the modern theory of heat conduction (published later; Fourier 1822). His 

equations, unlike those of Newtonian mechanics, were not symmetric with respect to past and 

future directions of time. Thomson and Maxwell followed in the same direction, and Clausius 

(1850, 1854, 1865) laid the foundation for the second law of thermodynamics by examining the 

relation between heat transfer and work, introduced the concept (and the term) of entropy and 

connected time irreversibility with the second law. Boltzmann (1877) explained the concept of 

entropy in probability theoretic context, and penetrated into the concept of irreversibility, on 

which he had a productive debate with Planck (Hollinger and Zenzen 1985). By the end of the 
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19th century, the study of the laws of time irreversible processes had become popular (e.g., 

Natanson, 1896); however, it included obscure and circular elements which in several cases 

remain until the present day (e.g. the classical definition of entropy is applicable in a reversible 

process, which in turn is one in which the definition holds; Koutsoyiannis 2011). 

The concept (and the term) of “time’s arrow” was developed by Eddington (1928) to describe 

time directionality, which can be determined by studying the organization of atoms, molecules 

and bodies. He stated “I shall use the phrase ‘time’s arrow’ to express this one-way property of time 

which has no analogue in space. It is a singularly interesting property from a philosophical 

standpoint. We must note that: (1) It is vividly recognized by consciousness. (2) It is equally insisted 

on by our reasoning faculty, which tells us that a reversal of the arrow would render the external 

world nonsensical. (3) It makes no appearance in physical science except in the study of 

organization of a number of individuals. Here the arrow indicates the direction of progressive 

increase of the random element.” 

 Time asymmetry is closely related to causality, which presupposes irreversibility. Thus, “no 

causal process (i.e., such that of two consecutive phases, one is always the cause of the other) can be 

reversible”, while “according to the causal theory of time, two events are simultaneous by definition 

if there can be no causal action between them” (Heller 1983; see also Kline 1980). In probabilistic 

definitions of causality, time asymmetry is determinant. For instance, Suppes (1970) defines 

causation thus: “An event Bt΄ [occurring at time t΄] is a prima facie cause of the event At if and only 

if (i) 𝑡′ < 𝑡, (ii) 𝑃(𝐵𝑡′) > 0, (iii) 𝑃(𝐴𝑡|𝐵𝑡′) > 𝑃(𝐴𝑡).” Also, Granger’s (1980) first axiom in defining 

causality reads “The past and present may cause the future, but the future cannot.” 

In the modern deterministic framework of dynamical systems, time reversibility and 

irreversibility can be understood through the following concepts (Lasota and Mackey 1994): 

 A dynamical law St maps a system’s state y at time t = 0 into new states St(y) as time t changes, 

i.e., y(t) = St(y(0)). 

 A dynamical system is, by definition, time invertible (reversible): St(St΄(y)) = St + t΄(y) for t, t΄ ∈ R 

(positive or negative), so that St(S–t(y)) = y.  

 A semidynamical system is, by definition, noninvertible (irreversible) in time: the relationship 

St(St΄(y)) = St + t΄(y) holds only for t, t΄ ∈ R+ (nonnegative), so that St(S–t(y)) ≠ y.  

In this framework, the sequence of a system’s states y as time t changes is known as a 

trajectory y(t). However, a deterministic system description in terms of trajectories is ineffective 

and not far-reaching. Prigogine and Stengers (1997) remark that “a trajectory is time reversible, 

and thus allows no distinction between future and past”, and (quoting Poincaré) “explaining 

irreversibility in terms of trajectories that are time-reversible processes, however numerous, 

appears to be a purely logical error”. They appeal to abandon the trajectory description and state: 

“we need a statistical description to formulate dynamics in situations where we expect irreversible 

processes and therefore an increase in entropy. Such situations, after all, are what we see in the 

world around us. Indeterminism, as conceived by Whitehead, Bergson, and Popper, now appears in 
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physics.” In the same line of thought, the replacement of trajectories with “flow tubes” 

probabilistically defined was suggested (Koutsoyiannis 2010), while this idea was explored in 

hydrological modelling (Montanari and Koutsoyiannis 2012).  

 Once we introduce probability in a system’s representation, materialized in terms of a time 

varying probability density function of the system state, we move from a deterministic to a 

stochastic description. The latter is far richer: for example, we can define and study the system’s 

entropy, which in modern terms is a purely probabilistic concept. Thus, in a dynamical (time 

reversible) system the entropy is constant (Mackey, 2003, p. 31), while in a semidynamical (time 

irreversible) system the entropy is non-decreasing reaching a limit (maximum) as t → ∞ 

(Mackey, 2003, p. 30).  

 At this point it is useful to mention the so-called God theorem (Mackey, 2003, p. 111) which 

states that every continuous trajectory x(t) in a space X is the trace (projection) of a single 

dynamical system St(y) operating in a higher dimensional phase space Y. We then understand 

that, as elementary physical laws are time symmetric, the entropy increase is adherent to 

macroscopization of our description: in a detailed (high-dimensional) system description (Y), 

the entropy should be constant (time reversibility), but in a macroscopic (lower-dimensional) 

description (X) it may increase in time (time irreversibility). This is consistent with Eddington’s 

view: “Physical processes at the microscopic level are believed to be either entirely or mostly time-

symmetric: if the direction of time were to reverse, the theoretical statements that describe them 

would remain true. Yet at the macroscopic level it often appears that this is not the case: there is an 

obvious direction (or flow) of time.” In this respect, the notion of causality also presupposes 

macroscopization of the description and thus cannot be captured by the Newtonian or other 

time symmetric equations. 

Having entered the world of stochastics, we can formulate a simpler definition of time 

reversibility using the concept of a stochastic process and bypassing that of a dynamical or a 

semidynamical system. We recall that a stochastic process x(t) is a collection of (usually 

infinitely many) random variables x indexed by t, typically representing time. In turn, a random 

variable, x, is an abstract mathematical entity, associated with a probability distribution 

function, 𝐹(𝑥) ≔ 𝑃{𝑥 ≤ 𝑥}, where x is any numerical value (a regular variable), P denotes 

probability and the symbol “≔” means “is defined as”. A random variable x becomes identical to 

a regular variable x0 only if F(x) = H(x – x0), where H is the unit step function. The stochastic 

process x(t) represents the evolution of the system over time, while a trajectory x(t) is a 

realization of x(t); if it is known at certain points ti, it is a time series. To avoid (the common 

practice of) confusing a random variable with a regular variable and a stochastic process with a 

time series, we use a careful notation adopting the so-called Dutch convention (Hemelrijk 1966), 

i.e., underlining random variables and stochastic processes; regular variables such as the time t 

or realizations of x are denoted by non-underlined symbols.  

A stochastic process x(t) at (continuous) time t, with nth order distribution function 
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𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛)  ≔ 𝑃{𝑥(𝑡1) ≤ 𝑥1, 𝑥(𝑡2) ≤ 𝑥2, … , 𝑥(𝑡𝑛) ≤ 𝑥𝑛} (1) 

is time-symmetric or time-reversible if its joint distribution does not change after reflection of 

time about the origin, i.e., if for any n, 𝑡1, 𝑡2, … , 𝑡𝑛−1, 𝑡𝑛, 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛;−𝑡1, −𝑡2, … , −𝑡𝑛)  (2) 

The definition in (2) is adapted from Weiss (1975). Assuming that the process x(t) is stationary 

and that times are equidistant, i.e. ti – ti – 1 = D, and shifting the time by τ = 2t1 + (n – 1)D, we get  

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛−1, 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛; 𝑡𝑛, 𝑡𝑛−1, … , 𝑡2, 𝑡1) (3) 

This is a generalization for continuous time of the definition given for a coarse-grained process 

in discrete time by Porporato et al. (2007), while it is practically the same as in Lawrance 

(1991). We stress the fact (neglected in many papers) that (3) cannot be valid for arbitrary ti, but 

only for equidistant ones; in contrast, (2) is a more general definition valid always. A process 

that is not time-reversible is called time-asymmetric, time-irreversible or time-directional. For 

brevity, in the next part of this paper we will drop the identifier “time” from the terms 

(a)symmetric, (ir)reversible and directional. 

 Lawrance (1991) has investigated the relationship of stationarity and reversibility, showing 

that if (3) holds then the process is stationary. We recall that stationary is a stochastic process 

whose distribution is invariant to a shift of time, so that for any n, 𝑡1, 𝑡2, … , 𝑡𝑛−1, 𝑡𝑛, and c,  

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1 + 𝑐, 𝑡2 + 𝑐,… , 𝑡𝑛 + 𝑐)  (4) 

Weiss (1975) showed that if the process x(t) is Gaussian (i.e., all its finite dimensional 

distributions are multivariate normal) then it is reversible; this means that a directional process 

cannot be Gaussian. He also showed that a discrete-time autoregressive moving-average (ARMA) 

process is reversible if and only if it is Gaussian and extended this result for continuous-time 

Markov processes. As noted by Lawrance (1991), “The implications [of Weiss’s result] are far 

reaching: stationary series which show evidence of directionality cannot be modelled by Gaussian 

ARMA models; they need to be modelled by non-Gaussian ARMA models or some type of non-linear 

model.” Later Lawrance (2001) investigated the relationship of reversibility with chaos and 

demonstrated that the chaotic behaviour is not always reversible, and is perhaps never so for 

monotonic many-branch maps.  

Several characterizations and relevant diagnostic tests of (ir)reversibility have been 

proposed. Brillinger and Rosenblatt (1967) investigated the irreversibility on sunspot numbers, 

and presented a theory of high-order spectra, noting that their imaginary parts are zero for 

reversible processes. However, according to Lawrance (1991), checking this feature statistically 

cannot be fully practical. Ramsey and Rothman (1996) presented a test based on third order 

joint moments of consecutive terms of a time series, which is equivalent to testing the 

hypothesis that the marginal third moment of the differenced process is zero (see definition of 

the differenced process in section 2). This latter third moment, suitably standardized in the form 
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of a skewness coefficient, had earlier been suggested as a possibility to study the form of 

irreversibility by Cox (1981).  

Chen et al. (2000) presented a test based on the fact that in a reversible process the 

expectation of the sine of the differenced process (multiplied by any number) is zero. This is 

equivalent to testing the hypothesis that the imaginary part of the characteristic function of the 

differenced process is zero and was also studied by Racine and Maasoumi (2007). Porporato et 

al. (2007) proposed as quantification of time asymmetry the relative entropy between the joint 

probability distribution of backward and forward sequences. A simpler statistic was proposed 

by Psaradakis (2008), who considered the probability of the differenced process being positive, 

as a simple measure of the deviation of the median of the differenced process from zero.  

In a more recent and hydrologically relevant study, Müller et al. (2017) again used as an 

indicator of asymmetry the third moment of differences, but of the empirical copulas rather than 

of the time series. They justified the use of the third moment by noting that “the power of three is 

applied to give large values more weight while preserving the sign”. Further, they performed 

simulations of combined sewer systems with original and time-reversed time series and found 

“significant deviations of more than 10%”, noting that “As in many rainfall generators the 

irreversibility is not explicitly considered, therefore, systematic deviations from reality may occur if 

synthetic series are applied to combined sewer systems”. 

The result on the relation of Gaussian and reversible behaviours is valid for scalar 

(univariate) stochastic processes only. A vector (multivariate) process can be Gaussian and 

irreversible at the same time. As a simple example, we consider the following form of the 

autoregressive process AR(1) for discrete-time τ: 

𝑥𝜏 = 𝑎𝑥𝜏−1 +√1 − 𝑎
2𝑣𝜏−𝜂0  (5) 

where 𝜂0 ≥ 0 is a time lag and –1 < a < 1. The innovations 𝑣𝜏 are assumed independent Gaussian 

with zero mean and unit variance. Obviously the process 𝑥𝜏 will be Gaussian too (with zero 

mean and unit variance) and thus it is reversible if viewed alone. However, it is more interesting 

to examine the vector process 𝒚𝜏 ≔ [𝑥𝜏, 𝑣𝜏]
T

, which is again Gaussian. Taking a single statistical 

characteristic, the expected value of the product of 𝒚𝜏 at two times with distance 𝜂0 + 1, then 

reflecting time and finally shifting by 2τ + η0 + 1, we obtain E [𝒚−𝜏𝒚−𝜏−𝜂0−1
T ] = E [𝒚𝜏+𝜂0+1𝒚𝜏

T] =

E [𝒚𝜏𝒚𝜏+𝜂0+1
T ]

T
. The last quantity is different from E [𝒚𝜏𝒚𝜏+𝜂0+1

T ] because this matrix is not 

symmetric. Indeed, it can easily be verified by simple stochastic calculus that for any lag η, 

Ε[𝑥𝜏𝑥𝜏−𝜂] = 𝑎
|𝜂|, Ε[𝑣𝜏𝑣𝜏−𝜂] = {

0, 𝜂 ≠ 0
1, 𝜂 = 0

, Ε[𝑥𝜏𝑣𝜏−𝜂] = {
0 𝜂 < 𝜂0

𝑎𝑛−𝜂0√1 − 𝑎2 𝜂 ≥ 𝜂0
 (6) 

and thus E [𝒚𝜏𝒚𝜏+𝜂0+1
T ] = [[𝑎𝜂0+1, 𝑎√1 − 𝑎2]

T
, [0,0]T], i.e., not symmetric (note that because of 

the zero mean and the unit variances, the expected values of the products are identical to 

correlation coefficients). In other words, equation (2) does not hold and, hence, the process is 

irreversible and at the same time Gaussian. A general result for any multivariate Gaussian linear 
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process has been presented by Tong and Zhang (2005) who demonstrated that such a process is 

reversible if and only if its autocovariance matrices are all symmetric. More complicated 

conditions in order for multivariate non-Gaussian linear processes to be symmetric have been 

studied by Chan et al. (2006). On a more theoretical basis, Georgiou and Lindquist (2014) 

presented an account of time reversal in bivariate stochastic models and showed that any model 

which consists of a linear stable dynamical system driven by an appropriate input process can 

be reversed in time. 

 Equation (5), along with time asymmetry, which is evident in Ε[𝑥𝜏𝑣𝜏−𝜂] in equation (6), gives 

some grounds for a claim of a causal relationship between 𝑣𝜏, the cause, and 𝑥𝜏, the effect. In this 

simple case, because of the time independence of the succession of causes 𝑣𝜏, the process 𝑥𝜏 is 

not correlated with the future of the process 𝑣𝜏 but is correlated with its past (at lags 𝜂 ≥ 𝜂0). 

This is a strong indication that 𝑥𝜏 is an effect caused by 𝑣𝜏 and not the other way round. This 

example constitutes a simple case because of the zero correlation for positive lags, which makes 

detection of irreversibility clear, but such simplicity would not emerge if the past and future of 

𝑣𝜏 per se were (auto)correlated; that case will be discussed below.  

Attributing causal relations to events and processes needs caution as we tend to see causality 

where chance rules (Mlodinow 2008). However, the above discourse points out the conditions 

that are necessary for causality claims about processes (rather than single events). A first, 

already obvious, condition is irreversibility as without it there cannot be causality. This 

condition alone makes the study of irreversibility important from both a philosophical and a 

practical point of view. A second condition is related to an antithesis of cross-correlations 

between the two processes for positive and negative lags, as that in equation (6); a formal 

criterion representing this condition will be formulated below. While here we discuss necessary 

conditions for causality claims, we clarify that we avoid seeking sufficient conditions, a task that 

would be too difficult or impossible without a generally acceptable formal definition of causality 

which is currently lacking.  

 As already discussed, irreversibility may have important implications, yet insufficient 

attention has been given to it in the hydrological and geophysical literature, with few exceptions 

such as those already cited. Several relevant questions have not been well studied or even not 

posed at all. Is irreversibility present in hydrological time series and, if yes, in what degree and 

at which time scales? How can irreversibility be detected and can this detection help determine 

causality relationships? Are customary stochastic simulation methods capable of reproducing 

irreversibility in a controlled manner? If not (which actually turns out to be the case) and if there 

are cases where irreversibility cannot be neglected, can we devise simulation techniques capable 

of dealing with irreversibility? 

All these questions are addressed in this paper. In the next part of it, after reviewing the basic 

tools to study irreversibility in a stochastic context (section 2), we explore several data sets of 

atmospheric and hydrological processes, investigating possible irreversibility (section 3). This 
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exploration is made separately for bivariate processes, where causation is also discussed 

(section 3.1), and univariate ones (section 3.2). To keep the study simple, we are basing our 

exploration on moments of the examined processes. As explained before, in the bivariate 

processes irreversibility can be explored by means of joint second-order moments, while in the 

univariate case second-order moments do not provide useful information and at least third-

order moments should be examined. Two simulation techniques capable of reproducing 

irreversibility are developed in section 4 for the univariate case, while multivariate simulation 

techniques are not dealt with in this paper. 

2 Basic stochastic tools 

In this section we provide a synopsis of the stochastic framework needed for the study, which 

includes classical concepts and some recent developments, whose details can be found in 

Koutsoyiannis (2010, 2016, 2017), along with some additional elements. Let x(t) be a stationary 

stochastic process representing the instantaneous quantity of a certain hydrological or other 

physical process in continuous time t. Fundamental characteristics of the marginal distribution 

of the instantaneous process x(t) are its mean and variance (assumed to be finite), 

μ ≔ E[x(t)],    γ0 ≔ var[x(t)] (7) 

The most customary characteristics of the joint distribution of the process are its second-order 

characteristics: 

 Autocovariance function, c(h) for time lag h, defined as 

𝑐(ℎ) ∶=  cov[𝑥(𝑡), 𝑥(𝑡 +  ℎ)] (8) 

 Power spectrum (also known as spectral density), s(w) for frequency w, defined as the 

Fourier transform of the autocovariance function, i.e., 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ

∞

0

 (9) 

 Structure function (also known as semivariogram or variogram), 

𝑣(ℎ) ≔
1

2
var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)] (10) 

 Climacogram, γ(k), i.e., the variance of the averaged process at time scale k. 

𝛾(𝑘) ≔ var [
𝑋(𝑘)

𝑘
] (11) 

where 

𝑋(𝑡) ≔ ∫𝑥(𝜉)d𝜉

𝑡

0

 (12) 
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is the cumulative process, which for natural processes x(t) is nonstationary with mean and 

variance, respectively, 

E[𝑋(𝑡)] = 𝜇𝑡, 𝛤(𝑡) ≔ var[𝑋(𝑡)] = 𝑡2𝛾(𝑡) (13) 

 Climacospectrum, ζ(k), proportional to the difference of the variances of the averaged 

process at time scales k and 2k, 

𝜁(𝑘) ≔
𝑘(𝛾(𝑘) − 𝛾(2𝑘))

ln 2
 (14) 

This resembles the power spectrum and combines the asymptotic behaviours of the 

climacogram and the structure function. 

The asymptotic behaviours of these characteristics are given by log-log derivatives (LLD). 

Namely, for a function f(t), LLD is formally expressed by: 

𝑓#(𝑡) ≔
d(ln 𝑓(𝑡))

d(ln 𝑡) 
=
𝑡𝑓 ′(𝑡)

𝑓(𝑡)
 (15) 

Specifically, the asymptotic behaviour of the second-order characteristics of a process for k → 

0 and k → ∞ is characterized by two parameters, M and H, which are given as (Koutsoyiannis, 

2017): 

𝑀 ≔
𝑣#(0)

2
=
𝜁#(0) − 1

2
, 𝐻 ≔ 1 +

𝛾#(∞)

2
 =
𝜁#(∞) + 1

2
 (16) 

where both are dimensionless and take on values between 0 and 1 (notice the effectiveness of 

the climacospectrum ζ(k) to express both asymptotic behaviours, while this is not possible for 

the other characteristics as 𝛾#(0) = 𝑣#(∞) = 0, irrespective of γ(k)). The parameter M (from 

Mandelbrot) characterizes the local behaviour or the smoothness (fractality) of the process, with 

M = 0.5, < 0.5 and > 0.5 corresponding, respectively, to a neutral (like a Markov), a rough and a 

smooth process. The parameter H (from Hurst) characterizes the global behaviour or 

persistence of the process, with H = 0.5, < 0.5 and > 0.5 corresponding, respectively, to a neutral 

(like a Markov or even white noise), antipersistent and persistent process. The multifractal 

literature typically confuses M and H (Koutsoyiannis et al. 2018) but they clearly differ 

(Koutsoyiannis 2017). 

 The cumulative process enables representation of the process in discrete time τ (denoting the 

continuous-time interval [(𝜏 − 1)𝐷, 𝜏𝐷], where D is a time unit) by 

𝑥𝜏 ≔
1

𝐷
∫ 𝑥(𝑢)d𝑢

𝜏𝐷

(𝜏−1)𝐷

=
𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷)

𝐷
 (17) 

This can readily be expanded to define a discrete time process averaged at scale k = κ D, 

𝑥𝜏
(𝜅) ≔

𝑋(𝜏𝜅𝐷) − 𝑋((𝜏 − 1)𝜅𝐷)

𝜅𝐷
=
𝑥(𝜏−1)𝜅+1 + 𝑥(𝜏−1)𝜅+2 +⋯+ 𝑥𝜏𝜅

𝜅
 (18) 
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Notice that for time-related quantities, in the above notation and in the next part of this 

article, we use Latin letters for dimensional quantities and Greek letters for dimensionless ones, 

where the latter are convenient when using the discrete-time variants of a process; specifically 

we use the following symbols: 

 Time unit, D. 

 Time, t =τ D where t is continuous time and τ discrete time. 

 Time lag, h = η D. 

 Time scale k = κ D.  

 Frequency, w = ω/ D, related to time scale by w = 1/k , ω = 1/κ. 

We stress that all the above five second-order characteristics are transformations of one 

another and thus any one of them suffices to determine all five, as well as to infer the discrete-

time versions of the characteristics. For example, given the climacogram 𝛾(𝑘) = 𝛤(𝑘)/𝑘2, the 

autocorrelation in continuous and discrete time are respectively: 

𝑐(ℎ) =
1

2
 
d2(𝛤(ℎ))

dℎ2
, 𝑐𝜂 =

1

𝐷2
(
𝛤(|𝜂 + 1|𝐷) + 𝛤((|𝜂 − 1|𝐷)

2
− 𝛤(|𝜂|𝐷)) (19) 

Details and the full set of transformations are given in Koutsoyiannis (2017). 

To study the time asymmetry of processes we define the differenced process in discrete and 

continuous time, respectively, as 

�̃�𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1, �̃�𝜏,𝜂 ≔ 𝑥𝜏 − 𝑥𝜏−𝜂 , �̃�(𝑡, 𝐷) ≔ 𝑥(𝑡) − 𝑥(𝑡 − 𝐷) (20) 

The cumulative process of �̃�𝜏 for discrete time is  

�̃�𝜅 ≔ �̃�1 + �̃�2 +⋯+ �̃�𝜅 = 𝑥1 − 𝑥0 + 𝑥2 − 𝑥1 +⋯+ 𝑥𝜅 − 𝑥𝜅−1 = 𝑥𝜅 − 𝑥0 (21) 

and for continuous time, 

�̃�(𝑘, 𝐷) ≔ ∫ �̃�(𝑡, 𝐷)d𝑡

𝑘

0

= ∫(𝑥(𝑡) − 𝑥(𝑡 − 𝐷))d𝑡

𝑘

0

= ∫𝑥(𝑡)d𝑡

𝑘

0

− ∫ 𝑥(𝑡)d𝑡

𝑘−𝐷

−𝐷

= 𝑋(𝑘) − 𝑋(𝑘 − 𝐷) + 𝑋(−𝐷) 

(22) 

which for k = κ D, where κ is a positive integer, yields 

�̃�(𝑘, 𝐷) = 𝐷(𝑥𝜅 − 𝑥0) = 𝐷�̃�𝜅 (23) 

 The averaged differenced process at discrete time scale κ is defined in a manner similar to 

(18): 

�̃�𝜏
(𝜅) ≔

�̃�(𝜏𝜅𝐷) − �̃�((𝜏 − 1)𝜅𝐷)

𝜅𝐷
=
�̃�𝜏𝜅 − �̃�(𝜏−1)𝜅

𝜅
=
𝑥𝜏𝜅 − 𝑥(𝜏−1)𝜅

𝜅
=
�̃�𝜏𝜅,𝜅
𝜅

 (24) 

As seen in the expression of �̃�𝜏
(𝜅), κ represents both time lag and time scale. In other words, in 

the case of the differenced process �̃�𝜏, averaging in time is practically identical to differencing 𝑥𝜏 

at higher time lags; we also notice that �̃�𝜏
(1) ≡ �̃�𝜏 ≡ �̃�𝜏,1.  
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 As explained in the Introduction, a minimal representation of time asymmetry will require 

the study of third moment μ3 and the coefficient of skewness Cs of the process, original and 

differenced. We note that the first moment (mean) of the differenced process is always zero 

(provided that the original process is stationary), while the second one (variance) is always 

positive and thus it does not provide indications on time asymmetry. Thus, the least-order 

moment that can be used to detect reversibility is the third. For the original process, averaged at 

the integer time scale κ, the marginal third moment characteristics are:  

𝜇3(𝜅) ≔ E [(𝑥𝜏
(𝜅)
− 𝜇)

3
],     𝐶s(𝜅) ≔

𝜇3(𝜅)

(𝛾(𝜅))
3/2
  (25) 

Here we have used the notation simplification 𝛾(𝜅𝐷) = 𝛾(𝜅) (and likewise for the third 

moment), which is legitimate as the climacogram of the discrete-time process takes identical 

values with that of the continuous-time process at the points where the former is defined (this is 

not the case for the autocorrelation and power spectrum and this constitutes one of the 

advantages of the climacogram and climacospectrum over other tools; for additional advantages 

see Koutsoyiannis 2016 and Dimitriadis and Koutsoyiannis 2015). Likewise, we denote the 

second and third moments of the averaged-differenced process (which obviously has mean 

zero) as  

�̃�(𝜅) ≔ var [�̃�𝜏
(𝜅)
] ,  �̃�(𝜅) ≔ var[�̃�𝜅] = 𝜅

2�̃�(𝜅),   �̃�3(𝜅) ≔ E [(�̃�𝜏
(𝜅)
)
3
],   �̃�s(𝜅) ≔

�̃�3(𝜅)

(�̃�(𝜅))
3/2
  (26) 

 The second-order characteristics of the differenced processes can be fully determined from 

those of the original process. Specifically, from (21) we obtain 

var[�̃�𝜅] = var[𝑥𝜅] + var[𝑥0] − 2 cov[𝑥𝜅 , 𝑥0] (27) 

which entails 

�̃�(𝜅) = 2𝑐0 − 2𝑐𝜅 = 2𝑣𝜅 , �̃�(𝜅) =
2𝑣𝜅
𝜅2

 (28) 

with 𝑐𝜅 and 𝑣𝜅 denoting the autocovariance and structure function at discrete time for lag κ. As 

κ → ∞, the structure function tends to a finite value, 𝑣𝜅 → 𝑐0, and therefore the asymptotic 

behaviour of �̃�(𝜅) is determined by the denominator 𝜅2 in (28); namely, �̃�#(𝜅) = −2, 

irrespective of γ(κ), which means that �̃�𝜏 is completely antipersistent, irrespective of γ(κ). The 

third-order characteristics of the differenced processes (�̃�3(𝜅), �̃�s(𝜅)) cannot be uniquely 

determined from those of the original process (𝜇3(𝜅), 𝐶s(𝜅)). 

 We now focus our attention on bivariate processes whose study of interdependence may 

reveal time asymmetry and causation. While covariance and its equivalent standardized form, 

i.e., correlation, have been the most customary tools to characterize dependence, they are 

neither the only nor the most effective ones. As indicated with the concept of the climacogram, 

the variance of the process averaged at a specified time scale k provides a mathematically 

equivalent but statistically more advantageous tool than the standard autocorrelogram. 
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Applying the same idea to any two random variables 𝑥 and 𝑦 (possibly representing different 

physical quantities) with means 𝜇𝑥 and 𝜇𝑦 and standard deviations 𝜎𝑥 and 𝜎𝑦, we may form a 

different type of a correlation coefficient and covariance, namely (Koutsoyiannis, 2018): 

𝜌𝑥𝑦 ≔ var [
1

2
(
𝑥

𝜎𝑥
+
𝑦

𝜎𝑦
)] , 𝜎𝑥𝑦 ≔ 𝜎𝑥𝜎𝑦𝜌𝑥𝑦 = var [

1

2
(√
𝜎𝑦

𝜎𝑥
𝑥 + √

𝜎𝑥
𝜎𝑦
𝑦)] (29) 

We note that standardizing the variables 𝑥 and 𝑦 with their standard deviations is necessary if 

they represent different physical quantities, in order to make them compatible before taking the 

average. It is easily seen that 𝜌𝑥𝑦 is linearly related to the classical (Pearson) correlation 

coefficient, 𝑟𝑥𝑦 ∶= cov [𝑥, 𝑦] /(𝜎𝑥𝜎𝑦) = cov [𝑥/𝜎𝑥, 𝑦/𝜎𝑦], by 𝜌𝑥𝑦 = (1 + 𝑟𝑥𝑦)/2. As is well 

known,𝑟𝑥𝑦 lies in the interval [–1, 1] with the values –1, 0 and 1 representing completely anti-

correlated, uncorrelated and completely correlated variables, respectively. Obviously, the same 

information as in rxy is provided by ρxy, which lies in the interval [0, 1] with the values 0, 1/2, 1 

representing fully anticorrelated, uncorrelated and fully correlated variables, respectively. 

Consequently, 𝜎𝑥𝑦 lies in the interval [0, 𝜎𝑥𝜎𝑦]. 

Unlike 𝑟𝑥𝑦, the notions of 𝜌𝑥𝑦 and 𝜎𝑥𝑦 could be readily expanded to many variables and 

actually this is done with the climacogram. The latter can be further expanded to describe the 

dependence of different processes, replacing the concept of cross-correlogram of two stationary 

processes 𝑥(𝑡) and 𝑦(𝑡) by the standardized cross-climacogram (SCC) for scale k and lag h 

(Koutsoyiannis, 2019): 

𝜌𝑥𝑦(𝑘, ℎ) ≔ var [
1

2
(
𝑋(𝑘)

√𝛤𝑥(𝑘)
+
𝑌(𝑘 + ℎ) − 𝑌(ℎ)

√𝛤𝑦(𝑘)
)]

= var [
1

2
(
𝑋(𝑘)/𝑘

√𝛾𝑥(𝑘)
+
(𝑌(𝑘 + ℎ) − 𝑌(ℎ)) /𝑘

√𝛾𝑦(𝑘)
)] 

(30) 

and that of cross-covariance by the cross-climacogram (CC) and the cumulative cross-

climacogram (CCC): 

𝛾𝑥𝑦(𝑘, ℎ) ≔ 𝜌𝑥𝑦(𝑘, ℎ)√𝛾𝑥(𝑘)𝛾𝑦(𝑘),    𝛤𝑥𝑦(𝑘, ℎ) ≔ 𝜌𝑥𝑦(𝑘, ℎ)√𝛤𝑥(𝑘)𝛤𝑦(𝑘)  (31) 

Interesting special cases of the cross-climacogram, including the lagged auto-climacogram are 

studied in Appendix A, where it is also shown that the SCC has the symmetric property 

𝜌𝑥𝑦(𝑘, ℎ) = 𝜌𝑦𝑥(𝑘, −ℎ) (32) 

Discrete-time versions of these quantities are easily derived.  

Inspired by equations (5) and (6) and continuing the related discussion in the Introduction, 

we attempt to formalize a function that can quantify irreversibility even in cases where the cross 

covariance Ε[𝑣𝜏𝑣𝜏+𝜂] is not zero. In the example of the Introduction, the difference of cross 

covariance for positive and negative lags, i.e., Ε[𝑥𝜏𝑣𝜏−𝜂] − Ε[𝑥𝜏𝑣𝜏+𝜂] for η ≥ 0, is a candidate. 

Some of its properties are: (a) this difference is nonzero for any lag 𝜂 ≥ 𝜂0 and zero for 𝜂 < 𝜂0; 
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(b) if a > 0 (in other words, if 𝑥𝜏 is positively autocorrelated), for 𝜂 ≥ 𝜂0 it is a nonnegative 

decreasing function of the lag η, taking its maximum value √1 − 𝑎2 at lag 𝜂 = 𝜂0 (unless 𝜂0 = 0, 

at which case the maximum value is 𝑎√1 − 𝑎2 at lag η = 1); (c) if a < 0 (in other words, if 𝑥𝜏 is 

negatively autocorrelated at some lags) then the same conditions as in (b) will hold after 

multiplying the difference with the sign δη of E[𝑥𝜏, 𝑥𝜏+𝜂−𝑛0] (it is easily seen in equation (6) that 

this sign is the same as that of Ε[𝑥𝜏𝑣𝜏−𝜂], so that, after multiplying with this sign, the latter 

quantity becomes consistently nonnegative).  

The range of lags at which this difference is positive (here theoretically all 𝜂 ≥ 𝜂0, even 

though for large η the difference decays very fast to zero) and the lag maximizing the cross-

covariance and the cross-covariance difference (here 𝜂 = 𝜂0 for both cases) seem to be 

important features for causality characterization. 

Generalizing, we may contend that if there is a causal relationship between 𝑣𝜏, the cause, and 

𝑥𝜏, the effect, both assumed to have zero mean, then for η > 0, 

𝛿𝜂Ε[𝑥𝜏(𝑣𝜏−𝜂 − 𝑣𝜏+𝜂)] = 𝛿𝜂Ε[𝑣𝜏(𝑥𝜏+𝜂 − 𝑥𝜏−𝜂)] = 𝛿𝜂Ε[𝑣𝜏�̃�𝜏+𝜂,2𝜂] > 0 (33) 

Extending this further, we can formulate a necessary condition for a causative relationship 

between the processes 𝑣𝜏 and 𝑥𝜏 based on either the SCC, 𝜌𝑣�̃�, or the correlation coefficient, 𝑟𝑣�̃�, 

between 𝑣𝜏 and �̃�𝜏+𝜂,2𝜂, suitably lagged and differenced as indicated by the subscripts, i.e., for 

scale κ = 1, 

𝜌𝑣�̃�(1, 𝜂) = var [
1

2
(
𝑣𝜏

√𝛾𝑣(1)
+
𝛿𝜂  �̃�𝜏+𝜂,2𝜂

√var(�̃�𝜏,2𝜂)
)] , 𝑟𝑣�̃�(1, 𝜂) = cov [

𝑣𝜏

√𝛾𝑣(1)
,
𝛿𝜂  �̃�𝜏+𝜂,2𝜂

√var(�̃�𝜏,2𝜂)
] (34) 

where  

𝛿𝜂 = sign(cov[𝑥𝜏, 𝑥𝜏+𝜂−𝑛0]) = sign (var[𝑥𝜏 ] −
1

2
var[ �̃�𝜏,𝜂−𝜂0  ]) 

 𝜂0 ≔ argmax |𝜌𝑣𝑥(1, 𝜂)| 
(35) 

Hence the necessary condition sought that 𝑣𝜏 is a cause of 𝑥𝜏 is that 

𝜌𝑣�̃�(1, 𝜂) > 1/2   or    𝑟𝑣�̃�(1, 𝜂) > 0 (36) 

systematically for positive lags η or at least in a wide range defining the region where causality 

holds. Note that (𝜌𝑣�̃� − 1/2) and 𝑟𝑣�̃� are odd functions of η. Quantitative characteristics of the 

causal relationship in a discrete-time representation at scale κ, are: 

 The lag η0 at which the SCC, |𝜌𝑣𝑥(𝜅, 𝜂)|, is maximized and the maximum value 

|𝜌𝑣𝑥(𝜅, 𝜂0)|. 

 The lag η1 at which the differenced SCC, 𝜌𝑣�̃�(𝜅, 𝜂), is maximized and the maximum value 

𝜌𝑣�̃�(𝜅, 𝜂1). 

 The range of lags η for which 𝜌𝑣�̃�(𝜅, 𝜂) > 1/2.  

The standard cross-covariances (or cross-correlations) could alternatively be used instead of 

cross-climacograms (or SCCs).  
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3 Exploration of atmospheric and hydrological data sets 

3.1 Irreversibility in bivariate processes 

The best known causal relationship in hydrology is that between rainfall and streamflow. Our 

exploration in this case is not aimed to discover a relationship but to see how this relationship is 

mapped using the stochastic tools described above.  

 In a case study we use rainfall and streamflow data from the database of the U.S. Geological 

Survey (https://nwis.waterdata.usgs.gov/md/nwis/uv/?site_no=01603000&agency_cd=USGS, 

retrieved: 2018-09-16) for the site USGS 01603000 North Branch Potomac River Near 

Cumberland, MD (39°37'18.5"N, 78°46'24.3"W, catchment area 2271 km2). The data series are 

for the period 2013-10-01 to 2018-08-31 for time step of 15 min. The discharge data were 

converted from cubic feet per second to m3/s and the precipitation data from inches to mm. 

Missing values (4% for discharge and 11% for precipitation for a total of 172 416 values) were 

left unfilled.  

The two data series for precipitation and discharge are depicted in Figure 1(a). A close up of 

the data series for a six-month period shown in Figure 1(b) visually indicates the time 

asymmetry of the discharge process alone (rapid increases followed by milder decreases). For 

the precipitation process alone, as well as for the two processes taken together, there is no 

similar visual indication. However, the standardized cross-climacograms shown in Figure 1(c) 

provide clear indication of the time asymmetry of the bivariate process. For negative lags there 

is no correlation, i.e., ρ ≈ 0.5, while for positive lags ρ > 0.5, with a maximum ρ = 0.55 at the scale 

of 15 min and at a lag of 16 h. This does not look too high and the reasons are many, e.g. (a) the 

point rainfall at the measurement site, which is the catchment outlet, is not faithfully 

representative of the real cause, which is the rainfall over the entire catchment; (b) the 

catchment filters and routes the rainfall process; (c) a dam upstream regulates the flow; and (d) 

the rainfall signal is highly varied and skewed.  

We can reduce the process variance, by averaging at larger time scales. Then the correlation 

becomes stronger, reaching a peak of ρ = 0.72 for time scale of 96 h, beyond which the maximum 

ρ decreases. Thus, the evidence for causality becomes stronger by increasing the time scale up to 

a certain point. However, this is done at a cost, which is an artificial increase of the time to peak 

and the deformation of the cross-climacogram shape, whose positive values expand to the 

negative lags. The deformation is an effect of the fact that each of the two processes exhibits 

positive autocorrelation, as shown in the lagged auto-climacograms of Figure 1(d). Nonetheless, 

the entire picture provided by Figure 1 reflects well the causative relationship between 

precipitation and discharge. 
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(a) 

 

 (b)

 

(c)  

 

(d) 

 

Figure 1 (a) Precipitation and discharge data series for the USGS site North Branch Potomac 

River Near Cumberland, MD; (b) close up of the data series for a six-month period; (c) 

standardized cross-climacograms for the indicated time scales and lags; (d) standardized cross-

climacograms for two time scales along with the lagged auto-climacograms (P: Precipitation, Q: 

discharge). 
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 (a) 

 

(b) 

 

Figure 2 (a) Time series of temperature and CO2 concentration from the Vostok ice core for time 

step of 1000 years; (b) standardized cross-climacograms for time scale of 1000 years along with 

the lagged auto-climacograms and lagged-and-differenced cross-climacogram (equation (34)); 

the difference of standard cross-correlation coefficients between positive and negative lags is 

also plotted for comparison (T: Temperature, CO2: CO2 concentration).  

The next example is about an important yet controversial causative relation of two 

atmospheric processes, temperature (T) and CO2 concentration (CO2). To study it we use 

paleoclimatic data from the Vostok ice core (Jouzel et al., 1987; Petit et al. 1999). The CO2 data 

were retrieved from http://cdiac.ess-dive.lbl.gov/ftp/trends/co2/vostok.icecore.co2 (accessed 

Sep. 2018, dated Jan. 2003) and the T data from http://cdiac.ess-dive.lbl.gov/ftp/trends/temp/ 

vostok/vostok.1999.temp.dat (accessed Sep. 2018, dated Jan. 2000). The two data series go back 

to about 420 000 years before present (more precisely, before 1950) and are given for irregular 

time steps, which are quite different for the two series. Namely, the average time step for the T 

and CO2 time series are ~128 and ~1150 years, respectively. It must be noted that the age of the 

gas (air bubbles) at a certain ice layer differs from the ice age; specifically, the air extracted from 

the ice is younger than the surrounding ice. Extensive studies to date the air with respect to ice 

by Barnola et al. (1991) concluded that “the age difference between air and ice is about 6000 
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years during the coldest periods instead of about 4000 years, as previously assumed”. Indeed in the 

data provided in the above site, the difference between the ice and air age is about 6000 years 

for the coldest periods, decreasing to about 2000 years for the hottest periods and averaging at a 

difference of ~4070 years. Naturally, in our calculations for the CO2 time series we used the air 

age, as given in the publicly available data series. To make calculations possible, we regularized 

the time reference at a constant time step of 1000 years using linear interpolation, a technique 

justified in Markonis and Koutsoyiannis (2013). The step of 1000 years is close to the average 

time step of the original CO2 time series. 

The two time series are depicted in Figure 2(a), which clearly indicates the time directionality 

of each of the two processes as well as the strong correlation between them. The latter is 

quantified by the standardized cross-climacograms shown in Figure 2(b), which provide 

evidence of the time asymmetry of the bivariate process. Contrary to what was observed in the 

previous example, there is correlation (ρ > 0.5) for both positive and negative lags, which 

reaches a maximum of 0.94 at a lag η0 = 1000 years.  

Generally the values of the cross-climacograms are comparable to those of the lagged auto-

climacograms, shown in Figure 2(b), except in a small area near the origin. This does not help 

identity cause and effect. The positive lag of 1000 years in the maximum value of the SCC makes 

it more plausible that the temperature is the cause and the CO2 concentration the effect. 

Somewhat stronger is the indication provided by the differenced cross-climacogram, estimated 

using (34) and also plotted in Figure 2(b) (marked as cross-climacogram T-ΔCO2). Here the 

maximum value appears for lag η1 = 5000 years and is 0.61. The graph shows that the data are 

consistent with the necessary condition of causality of equation (36), with T being the cause and 

CO2 the effect, for all lags up to 26 000 years. The differences in standard (Pearson) correlation 

coefficients, also plotted in the figure, provide similar information. 

Larger time scales, as in Figure 1, were also investigated but not plotted in Figure 2 to avoid 

an overloaded graph. At scales larger than 1000 years, the maximum value of the cross-

climacogram between T and CO2 appears at lag 0, which does not help in identifying causality. As 

the maximum correlation value is already very high at scale 1000 years, increasing the time 

scale does not make a visible difference. However, again the differenced cross climacogram (as 

well as the difference of cross-correlation coefficients between positive and negative lags) 

indicates the same pattern, positive values at positive lags and negative at negative ones.  

It is quite likely that what we are observing at time scale 1000 or more years could be a SCC 

that has been deformed in the same way as the rainfall-streamflow relation in the previous 

example. That is, the time-step of 1000 years could be argued to be too long so that a more 

useful shape could only be captured by an analysis at finer timescales. For that reason, an 

analysis with time scale of 500 years was also made. This was done for half of the time series, i.e. 

between 119 and 325 thousand years, in which the measurements were more frequent, at an 

average time step of ~800 years (against ~1150 years of the entire time series). Qualitatively, 



17 

the results were the same as in 1000-year time scale, with slight increase of cross-climacogram 

values. Namely, the maximum value of the cross-climacogram between T and CO2 appears again 

at a lag η0 = 1000 years and it is about 0.96 (against 0.94 at the 1000-year time scale). The 

differenced cross-climacogram T-ΔCO2 has a maximum value of 0.65 (against 0.61 at the 1000-

year time scale) at lag η1 = 3000 years.  

The above analysis, and in particular the lag η0 = 1000 years that maximizes the SCC and the 

positive values of the differenced cross-climacogram for lags up to 26 000 years, provides 

evidence that: (a) air temperature and CO2 concentration are closely associated; (b) a necessary 

(but not sufficient) condition holds that the temperature can be the cause and the CO2 

concentration the effect; and (c) the possibility that the opposite is the case can be excluded. The 

positive lag, i.e. the fact that T changes first and CO2 follows, is consistent with other studies 

(Soon 2007 and references therein) while the lag value of 1000 years found here is compatible 

with that of 800 (± 200) years found in other studies (Caillon et al., 2003); actually the coarse 

time resolution of the CO2 time series does not allow distinguishing 800 from 1000 years. 

Whether the exact lag is 1000 or 800 years or even smaller (e.g. 400 years as in Pedro et al. 

2012, a value that is not supported, though, by the present analyses, particularly that at the time 

step of 500 years) is irrelevant to causality identification. Equally irrelevant is whether or not 

the 800- or 1000-year time lag is short in comparison with the total duration of the temperature 

and CO2 increases (~5000 years; Caillon et al. 2003). What actually matters for causality 

identification is the fact that the causality condition holds for a wide range of time lags, up to 

26 000 years, and hence the time lag is positive and most likely real, as, according to Barnola et 

al. (1991), it cannot be explained by air dating problems. 

Undoubtedly, the T-CO2 problem is much more complex than the rainfall-runoff one, and 

indeed the latter cannot serve as a prototype for dealing with the former, even though in the 

public perception (and sometimes in the scientific community) there may be a tendency to 

reduce any type of causality to the simplest one (e.g. that in the example of the Introduction) or 

even to reverse cause and effect. For the T-CO2 relationship one may hypothesize that there is a 

positive feedback loop between the two processes (change in one amplifies that in the other), 

with the temperature being more determinant than the CO2 concentration. This “chicken-or-

egg”1 type of causal relationship, obviously more complex than that of exclusive roles of cause 

and effect, is a subject to be further explored.  

3.2 Irreversibility in univariate processes 

To visualize an extreme case of an irreversible process (viewed alone), in order to see how a 

time series from it looks, we start with a synthetic example shown in Figure 3. The time series is 

                                                             
1 Even though Aristotle studied the concepts of causality and first cause, it was likely Plutarch who first 
posed this type of causality as a philosophical problem using the example of the chicken and the egg. He 
refers to it in his work Ηθικά (Moralia), part Συμποσιακὰ Β (Quaestiones convivales, B), Πρόβλημα Γ 
(Question III), “Πότερον ἡ ἄρνις πρότερον ἢ τὸ ᾠὸν ἐγένετο” (Which was first the bird or the egg?).  
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composed of 100 terms, all of which were assumed to be the control variables of a nonlinear 

optimization problem, solved by a commercial spreadsheet solver. The constraints were that the 

original series be Gaussian (quantified by a small acceptable mean-square error between the 

empirical and the theoretical distribution) with mean 3 and standard deviation 1, and the lag-

one autocorrelation coefficient be 0.5, so that the variance of the differenced process be equal to 

that of the original process. The objective function to be maximized was either the coefficient of 

skewness of the differenced process (solution 1) or the frequency that the differenced process 

has a negative value (meaning that the next value of the original process would be lower than 

the current; solution 2). We note that in this example, because the entire setting is nonlinear, 

with reference to Weiss’s (1975) result mentioned in the Introduction, there is no inconsistency 

with the constraint that the original process be Gaussian in its marginal distribution. 

As seen in Figure 3, the two synthetic time series so generated are characterized by a few 

steep increases followed by systematic milder decreases. The differenced process is 

characterized by a few markedly high positive values at certain points, with all other values 

being negative, thus leading to a coefficient of skewness of 4.10 (or 3.34 in the case of series 2), 

which could obviously be (much) larger if we removed either the Gaussian constraint or the 

autocorrelation constraint or both. 

 

Figure 3 Plot of two synthetic time series generated by maximizing time irreversibility 

properties of a process restricted to be marginally Gaussian (N(3, 1)) with lag-one 

autocorrelation 0.5, so that the variance of the differenced process is also 1 (equal to that of the 

original process). Solution 1 maximizes the skewness of the differenced process. Solution 2 

maximizes the frequency that the differenced process has a negative value, without taking into 

account the skewness. In both series the frequency that the differenced process has negative 

values is 0.94. The coefficients of skewness of the differenced processes for series 1 and 2 are 

4.10 and 3.34, respectively.  
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As a general remark, before we discuss specific real-world examples, the study of time 

irreversibility requires estimation of third moments and skewness coefficients. It is known (e.g. 

Lombardo et al., 2014) that the third moment estimates are not reliable for typical sample sizes. 

Therefore, in all examples that follow we use samples with sizes of several thousands. If the sizes 

were smaller, a possibility would be to use other metrics of skewness such as the L-skewness 

(Hosking, 1990) or K-skewness (Koutsoyiannis, 2019) but here we preferred the simplest 

option, the classical skewness coefficient, accompanied by large sample sizes. 

Our first real-world example for the exploration of univariate processes is a long series of 

nearly isotropic grid turbulence, which provides a view of the structure of a process at the finest 

time scales. Specifically we use grid data of turbulence from the Corrsin Wind Tunnel at a high 

Reynolds number (Kang et al. 2003), which were made available on the Internet by the Johns 

Hopkins University. This dataset consists of 40 time series with n = 36 × 106 data points of wind 

velocity along the flow direction and an equal number of time series of cross-stream velocity, all 

measured at a sampling time interval D = 25 μs by X-wire probes placed downstream of the grid. 

Here we use part of the data, namely the series of velocity along the flow direction at the first of 

the probes (http://pages.jh.edu/~cmeneve1/datasets/Activegrid/M20/H1/; first column in the 

file), which we averaged for time scale of D = 50 μs, thus forming a time series with length 

600 000. More data and analyses are contained in Dimitriadis and Koutsoyiannis (2018) and 

Koutsoyiannis (2013, 2017) in a different context, without explicitly considering the time 

asymmetry.  

Figure 4(a) and (b) depict plots of 1/6 of the original turbulent velocity time series and the 

differenced one, respectively. A visual inspection of plot (a) reveals that the original process is 

slightly skewed (compare the very high and very low values to the mean). The same is not 

apparent in the differenced process. However, the coefficient of skewness of the differenced 

process is in fact higher (almost double, 0.353 against 0.196) than that of the original process. 

Further information is provided by Figure 4(c), which depicts the change with time scale of 

averaging of the variance and skewness of the original and the differenced process. To compile 

this figure we standardized the process by its standard deviation at the minimum available time 

scale and thus the variance of this process is 1 at this time scale. The variance decreases very 

slowly as the time scale increases but the variance of the differenced process is by orders of 

magnitude smaller. With regard to the skewness of the differenced process, the graph, in 

addition to the plot for the entire series, provides two more plots, one for each of the two halves 

of the time series, as a quick indication that the skewness estimates are reliable and their 

variation is systematic rather than random. We follow the same conventions also in other 

similar plots of the next examples.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4 Plots of (a) part of the turbulent velocity time series; (b) part of the differenced time 

series and (c) climacograms and skewness coefficients of the original and differenced processes 

as functions of time scale. In (a) and (b) the means are also depicted with a thick line. 

We observe in Figure 4(c) that the skewness of the original process becomes zero at a scale of 

about 1000 × 50 μs = 0.05 s, while the differenced process still has a positive value at this time 

scale and vanishes off at about twice this scale. Therefore, since a lot of studies have investigated 

the skewness (and intermittency) of the turbulence process, it would be equally interesting to 

study its time irreversibility. In any case, these may be important at the finest time scales, while 

as we approach the time scale of a tenth of a second, the process becomes symmetrical, both in 

time (reversibility) and in state (distribution function); beyond that scale the distribution of the 
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original process seems to become negatively skewed (which is in contrast to what we would 

expect from the Central Limit Theorem), yet the time symmetry, as inferred from the skewness 

of the differenced process, continues to hold. 

 (a)

 

(b)

 

Figure 5 Plot of (a) the time series of wind speed u coordinate (west to east) at ABLE Beaumont 

site; and (b) climacograms and skewness coefficients of the original and differenced process as 

functions of time scale.  

Next we study wind data at the much larger, yet very fine, time scale of 0.1 s. We use data 

recorded at a 10 Hz resolution for a period of one month by a sonic anemometer on a 

meteorological tower located at Beaumont KS, provided by NCAR/EOL, totalling over 25×106 

wind speed measurements in three directions, as well as temperature measurements (Doran, 

2011). Part of the data was used, namely 71 998 data values for the period starting at 1999-10-

11 20:30 UTC (which is perhaps 6 h earlier in local time) and ending 2:30 h later. A plot of this 

part of the time series is shown in panel (a) of Figure 5, while panel (b) depicts the variation 

with time scale of the variance and skewness of the original and the differenced process. Neither 
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remarkable skewness nor time directionality are observed, a finding consistent with the 

previous example of turbulent velocity, as now the minimum time scale is 0.1 s.  

 (a)

 

(b)

 

Figure 6 Plot of (a) the time series of temperature at ABLE Beaumont site; and (b) climacograms 

and skewness coefficients of the original and differenced process as functions of time scale.  

In the next example we study the temperature measurements at the same site and the same 

period, from the same data set as above. The plot of Figure 6(a) shows interesting time 

directionality (or dependence) with decreasing variability with the increase of time. However, 

we may conjecture that this behaviour is local, related to the diurnal temperature cycle and 

would be reduced if we considered a longer period of observations for several days and if we 

took into account the double (daily, annual) cyclostationarity of the temperature process. Even 

in this part of the series both state asymmetry and time asymmetry cease at time scales of 100 s 

or more, as shown in Figure 6(b). It is interesting, though, that for time scales smaller than that 

the skewness of the original process is positive, while that of the differenced is negative. 
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 (a)

 

(b)

 

Figure 7 Climacograms and skewness coefficients of the original and differenced precipitation 

time series at the study site (Figure 1) as functions of time scale, (a) without transformation and 

(b) after standardizing for diurnal cycle.  

The next example is the precipitation time series already described in section 3.1 and shown 

in Figure 1(a), which was measured every 15 min but here was aggregated to hourly scale. As is 

well-known and also confirmed in Figure 7, the variation and skewness of precipitation are very 

high at fine time scales. Part of the variation and also of the skewness is due to the daily and 

annual cycles. The effect of the former was found to be more marked than the latter and thus it 

was “removed” by multiplying the rainfall values by 24 different coefficients, one per hour, 

summing up to 1. These coefficients were found by minimizing the total variance of the 

transformed time series (a commercial solver was used for this task). The characteristics of the 

transformed time series are shown in Figure 7(b). The un-differenced transformed process still 

has a very high coefficients of skewness (~12), but in the differenced one the skewness and thus 
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the irreversibility is rather negligible. However, for time scales much lower than hourly this may 

not be the case and the irreversibility may be relevant for simulation of urban drainage 

networks, where relevant times are of the order of several minutes, rather than hours (cf. Müller 

et al. 2017). 

 (a)

 

(b)

 

Figure 8 Climacograms and skewness coefficients of the original and differenced streamflow 

process at the study site as functions of time scale, (a) without transformation and (b) after 

standardizing for annual cycle.  

The last example is the streamflow (discharge) time series already described in section 3.1 

and shown in Figure 1(a), which is measured every 15 min, but here was aggregated to hourly 

scale. Comparing Figure 7 (rainfall) and Figure 8 (streamflow), the skewness of streamflow is 

much lower than that of precipitation for the original process, but the reverse happens with the 

differenced process, thus indicating a marked irreversibility of streamflow. Further exploration 

of the data indicated that, contrary to what happens with rainfall, the daily cycle has a negligible 
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effect on streamflow but not the annual cycle. The effect of the annual cycle was “removed” by a 

method similar to that described above for rainfall (i.e. multiplying the discharge values by 12 

different coefficients, one per month, summing up to 1).  

The characteristics of the transformed time series are shown in Figure 8(b). The skewness 

coefficients of the original and differenced processes after the transformation become 2.98 and 

10.99, respectively, for the hourly scale, not very different from those before the transformation. 

The latter value indicates strong irreversibility and its attenuation is rather slow, requiring 

about 100 h or 4 days to vanish. This means that irreversibility is relevant for flood simulations 

on operational time scales, and can only be neglected for water balance and management 

applications that are performed on the monthly time scale.  

Overall, the entire set of examples indicates that in the atmospheric processes irreversibility 

can be neglected at scales relevant to hydrological application, while in streamflow it is 

important to take into account irreversibility in flood studies. Rainfall is in between, and the 

irreversibility is relevant at time scales lower than hourly. Also irreversibility will be important 

to consider in simultaneous simulation of processes that are linked to each other by causative 

relations. 

4 Generation of time series from univariate irreversible processes  

From the above exploration, and in particular from the finding of irreversibility of streamflow 

series at hourly and daily scale, the need arises to devise simulation techniques that can deal 

with irreversibility in a controlled manner (i.e. preserving some important characteristics), of 

which the common simulation methods are not capable. Next we will develop two such methods 

based on linear filtering of non-Gaussian white noise. This general methodology, streamlined by 

Koutsoyiannis (2016) was extended by Dimitriadis and Koutsoyiannis (2018) and Koutsoyiannis 

(2019) to preserve, with explicit equations and without transformations, as many moments of 

the process as required. It has also been shown (Koutsoyiannis 2017) that the method can deal 

with any type of processes, however persistent or antipersistent, smooth or rough. 

Let c := [c0, c1 …, cq]T the vector of q + 1 terms of the autocovariance function of a stochastic 

process 𝑥𝜏 in discrete time τ, assumed to have zero mean. Let this be preserved by a generating 

scheme that filters white noise 𝑣𝜏, with zero mean, unit variance and not necessarily Gaussian 

distribution, with a linear filter determined by a vector of q + 1 coefficients,  

𝒂 ≔ [𝑎0, 𝑎1, … , 𝑎𝑞]
T

 (37) 

The two characteristic generating schemes (Koutsoyiannis, 2000) are the symmetric moving 

average (SMA) scheme, 

𝑥𝜏 = ∑ 𝑎|𝑖|𝑣𝜏+𝑖

𝑞

𝑖=−𝑞

 (38) 

and the asymmetric moving average (AMA) scheme, 
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𝑥𝜏 =∑𝑎𝑖𝑣𝜏−𝑖

𝑞

𝑖=0

 (39) 

The terms 𝑎𝑖  are internal coefficients of the generation scheme, not model parameters to be 

estimated from the data. We will examine both schemes in the next subsections. 

4.1 Generation method 1: Symmetric scheme for the differenced process 

The SMA scheme is easier to apply as it enables an analytical solution of the coefficients a. 

Namely, if 𝑠d(𝜔) is the power spectrum of the process in discrete time, then the Fourier 

transform of the sequence of coefficients a, 𝑠d
𝑎(𝜔), is  

𝑠d
𝑎(𝜔) = √2𝑠d(𝜔) (40) 

Thus, to calculate the series of coefficients 𝑎𝑖  we first determine 𝑠d
𝑎(𝜔) and then we inverse the 

transform and obtain the coefficients 𝑎𝑖 . We note that exact preservation of the second order 

properties of a theoretical model would in theory require an infinite number of autocovariance 

terms and hence an infinite number of coefficients 𝑎𝑖 . In practice, a truncation to a specific finite 

q is made, resulting in a truncation error, which can be made arbitrarily small by increasing the 

number q. An appropriate value of q could be chosen a priori, so that the value of the last 

autocovariance term to be preserved, cq, be small enough. Even if q is not chosen large enough 

and the truncation error is not negligible (to avoid too slow generation), it can be managed by 

appropriate procedures, as described in Koutsoyiannis (2016). 

 It can easily be verified that the SMA model always results in time symmetric processes, 

irrespective of the specific vector a. This property of symmetric linear filters was first observed 

by Weiss (1975). However, if we apply the SMA scheme to the differenced process �̃�𝜏 ≔ 𝑥𝜏 −

𝑥𝜏−1, then we can easily reproduce its skewness (and higher order moments; see Koutsoyiannis 

2019 and Dimitriadis and Koutsoyiannis 2018) and hence the characteristics of the temporal 

asymmetry. We recall from section 2 that �̃�𝜏 is completely antipersistent (�̃�#(𝜅) = −2 or H = 0) 

but this is not a problem in the generation. We also recall that the second order characteristics of 

�̃�𝜏 are determined completely from those of 𝑥𝜏 by equation (28). Once we generate �̃�𝜏 it is easy 

to obtain 𝑥𝜏 as the accumulation of �̃�𝜏. The second-order characteristics of the latter will be the 

correct ones, but we have no control on its skewness, its higher order moments and, eventually, 

its marginal distribution. In other words, with this method we can fully reproduce the marginal 

distribution of �̃�𝜏, the second-order (joint and marginal) moments of both �̃�𝜏 and 𝑥𝜏, but not 

necessarily the marginal distribution of 𝑥𝜏 beyond second order moments. Rather, because of 

the summations made to form 𝑥𝜏 (the cumulative of �̃�𝜏) and of the Central Limit Theorem, we 

may expect that the marginal distribution of 𝑥𝜏 will be close to normal.  

Next we apply this technique to streamflow data of section 3 after their transformation to 

deal with seasonality. First we fit a model to the data, choosing this to be a Filtered Hurst-

Kolmogorov process with a generalized Cauchy-type climacogram (FHK-C; Koutsoyiannis 2017):  
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𝛾(𝑘) = 𝜆(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1
𝑀  (41) 

where the dimensionless parameters M and H have been defined in equation (16), while α and λ 

are scale parameters with dimensions of [t] and [x2], respectively. We fitted this model on the 

empirical estimates of the climacogram (equation (11)) and climacospectrum (equation (14)). 

As shown in Figure 9(a), the fitting is impressively good; the parameters are M = 0.56 (indicating 

a slightly smooth process), H = 0.6 (a persistent process), α = 160 h and λ = γ(0) = 1.01. 

Additional parameters quantifying state and time asymmetry are the skewness coefficients of 

the original and differenced process (which as already mentioned are 2.98 and 10.99, 

respectively, for the hourly scale).  

 

(a)

 

(b)

 

Figure 9 (a) Fit of the FHK-C model to the climacogram and climacospectrum of streamflow data 

of the case study (Figure 1) after their transformation to deal with seasonality and 

standardization to unit variance. (b) Climacogram and autocorrelation of the original and 

differenced process, and a values for the differenced process. (OP: original process—

transformed and standardized but not differenced; DP: differenced process). 
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 (a)

 

(b)

 

(c)

 

(d)

 

Figure 10 (a) Discharge time series generated by Method 1 (time references are arbitrary); (b) 

Close up of the time series for a six-month period; (c) Comparison of the climacogram and 

climacospectrum of the generated series with the FHK-C model; (d) Climacograms and skewness 

coefficients of the original and differenced time series as functions of time scale. Panels (c) and 

(d) refer to the series transformed for seasonality and standardized to unit variance, while (a) 

and (b) refer to the “naturalized” (back-transformed) series.  
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 Once the model is fitted on the original process, the climacogram of the differenced process is 

determined from (28), the autocovariance function of the latter from (19) and the coefficients a 

from (40). For the latter we choose a number of 𝑎𝑖  items q = 1024. All these functions are 

depicted in Figure 9(b). Since the differenced process �̃�𝜏 is completely antipersistent, the 

autocovariance terms and the coefficients 𝑎𝑖  are negative except a few positive for small lags.  

 For the generation of the white noise the lognormal distribution was used with skewness 

determined so that the skewness of the differenced process be 10.99 as required. A time series 

with length equal to that of the real world data was then derived for the differenced process �̃�𝜏 

using (38), and was then “naturalized” by applying the inverse seasonal transformation. Plots for 

the so obtained time series and their characteristics are shown in Figure 10. It is observed that 

the generated time series is consistent with the model and hence the original data in terms of 

second-order characteristics (panel (c)), but has some problems with respect to other 

characteristics. While both visually (panel (b)) and quantitatively (panel (d)) the irreversibility 

characteristics are captured, the generated series of 𝑥𝜏 is practically Gaussian in terms of its 

marginal distribution, with zero skewness and with many negative values which were truncated 

to zero (plot (a)).  

As a result of not preserving the skewness of the original process 𝑥𝜏, the behaviour with 

respect to maxima is not captured; rather the maxima are substantially underestimated. For all 

these reasons, as well its instability (sensitivity to the sequence of innovation terms and the 

initial value of x0), Method 1 proves not suitable for streamflow time series. However, for a 

process with directionality and Gaussian marginal distribution, it could be practically suitable, 

The above mentioned Weiss’s (1975) theoretical result says that the three behaviours, Gaussian, 

linear and irreversible, cannot be compatible all together. However, Method 1 does not actually 

generate a truly Gaussian process. Rather, it generates one with Gaussian marginal distribution, 

but with skewed differences (in a truly Gaussian process the differences would be Gaussian too). 

A Gaussian marginal distribution does not seem the case for natural hydrological processes at 

fine time scales, where irreversibility matters, but one could think of transforming the natural 

process to have Gaussian marginal distribution at a first step (as in Tsoukalas et al. 2018) and 

then applying Method 1 to deal with irreversibility. 

4.2 Generation method 2: Asymmetric scheme for the original process  

Here we develop an algorithm that can provide the coefficients 𝑎𝑖  in an indirect, iterative 

manner, and without involving Fourier transforms. In method 2 the algorithm works on the 

original, rather than the differenced process. It is appropriate for both the SMA and the AMA 

schemes preserving the autocovariance and marginal distribution of the original process in both 

cases. In the latter case, additionally it enables the preservation of skewness of the differenced 

process, thus reproducing irreversibility. With either of the two schemes, once the vector of 
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coefficients a is specified, the autocovariance function achieved by the generating scheme, is a 

function of a: 

𝝍 ≔ [𝜓0(𝒂),𝜓1(𝒂),… , 𝜓𝑞(𝒂)]
T

 (42) 

It can easily be verified that in both the SMA and AMA cases the autocovariance terms can be 

written as  

𝜓𝑖(𝒂) = 𝑨0
T𝑨𝑖 (43) 

where 𝑨𝑖 is the size (2q + 1) vector  

𝑨𝑖 ≔ [ 𝑎−𝑞+𝑖, … , 𝑎−1, 𝑎0, 𝑎1, … , 𝑎𝑞 , 0, … ,0⏟  
𝑖

]

T

 (44) 

with 𝑎−𝑖 ≡ 0 for the AMA scheme and 𝑎−𝑖 ≡ 𝑎𝑖  for the SMA scheme for any i > 0. As a notational 

convention, we use regular and bold letters for scalars and vectors, respectively, with lower case 

for vectors with size (q + 1) and upper case for those with size (2q + 1). 

The vector of differences between the model autocovariance vector c and that achieved by 

the generating scheme ψ is  

𝜺(𝒂) = 𝒄 − 𝝍(𝒂) = [𝑐0 − 𝜓0(𝒂), 𝑐1 −𝜓1(𝒂),… , 𝑐𝑞 −𝜓𝑞(𝒂)]
T

  (45) 

and the lumped (scalar) error function is 

𝑒(𝒂) = 𝜺T𝜺 = (𝑐0 −𝜓0(𝒂))
2 + (𝑐1 −𝜓1(𝒂))

2 +⋯+ (𝑐𝑞 − 𝜓𝑞(𝒂))
2 (46) 

We wish to find the vector 𝒂 which makes 𝑒(𝒂) = 0 or, if this is not possible, which minimizes 

𝑒(𝒂). We tackle this problem in an iterative manner. Starting from an arbitrary guess a in which 

e(a) = e1, we find an improved value a – Δa in which e(a – Δa) = e2 < e1 and proceed until the 

improved error becomes zero or minimum. To this aim, we apply the Newton-Raphson method 

in a multivariate variant we develop in Appendix D.  

The method requires evaluation of the gradient of the error 𝑒(𝒂). In this evaluation, it is more 

convenient to express the error in terms of the size (2q + 1) vector: 

𝑬 ≔ [𝜀𝑞 , … 𝜀1, 2𝜀0, 𝜀1, … , 𝜀𝑞]
T

 (47) 

(Notice the factor 2 in 𝜀0). Specifically, as can be easily verified, the error can be expressed as  

𝑒(𝒂) = 𝜺T𝜺 =
1

2
𝑬T𝑬 − 𝜀0

2 (48) 

and, as shown in Appendix B, its gradient is  

∇𝑒(𝒂) = −2[𝑬T𝑨0, 𝑘𝑬
T𝑨1, … , 𝑘𝑬

T𝑨𝑞]
T

 (49) 

where k = 1 for the AMA and k = 2 for the SMA. 

When we are interested in time asymmetry we need also to preserve, as a minimum, the 

ratios of the skewness coefficients of 𝑥 to those of the white noise 𝑣. By preserving these ratios, 

if we also preserve the skewness of the original process (by appropriate choice of that of the 
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white noise), then we will have preserved the skewness of the differenced process. Namely, we 

need to preserve the ratios λ and �̃� where:  

E[𝑥𝑖
3]

E[𝑥𝑖
2]
3/2
≕  𝜆 E[𝑣𝑖

3],
E [(𝑥𝑖 − 𝑥𝑖−1)

3
]

E [(𝑥𝑖 − 𝑥𝑖−1)
2
]
3/2
≕ �̃� E[𝑣𝑖

3] (50) 

The third moment of 𝑣, E[𝑣𝑖
3], is numerically equal to its skewness as by definition E[𝑣𝑖

2] = 1. 

The third moment of the process achieved by the generating scheme, divided by E[𝑣𝑖
3], is 

𝜃(𝒂) = 𝑎0
3 + 𝑎1

3 +⋯+ 𝑎𝑞
3 = 𝒂T𝒂(2) (51) 

where 𝒂(2) is the vector whose elements are the squares of a. Likewise, the third moment of 

differences of consecutive x, divided by E[𝑣3], is  

�̃�(𝒂) = 𝑎0
3 + (𝑎1 − 𝑎0)

3 +⋯+ (𝑎𝑞 − 𝑎𝑞−1)
3
+ (−𝑎𝑞)

3
= 𝐃𝐚0

T𝐃𝐚0
(2)

 (52) 

where 𝐃𝐚𝑖 denotes a size (q + 2) vector defined as 

𝐃𝐚𝑖 ∶= [Da𝑖, Da𝑖+1, … , Da𝑖+𝑞 , Da𝑖+𝑞+1]
T
, Da𝑖 ≔ 𝑎𝑖 − 𝑎𝑖−1  (53) 

whereas 𝐃𝐚𝑖
(2)

 is 𝐃𝐚𝑖 with squared elements, while coefficients 𝑎𝑖  for 𝑖 < 0 or 𝑖 > 𝑞 are zero.  

The variances achieved by the generating scheme are 

E[𝑥𝑖
2] = 𝜓0(𝒂), E [(𝑥𝑖 − 𝑥𝑖−1)

2
] = 2(𝜓0(𝒂) − 𝜓1(𝒂)) (54) 

The errors and the squared errors (all scalars in this case) are 

𝜀s(𝒂) ≔ 𝜆 −
𝜃(𝒂)

𝜓0(𝒂)
3/2
, 𝑒s(𝒂) = 𝜀s(𝒂)

2  (55) 

𝜀s̃(𝒂) ≔ �̃� −
1

23/2
�̃�(𝒂)

(𝜓0(𝒂) − 𝜓1(𝒂))
3/2
, �̃�𝑠(𝒂) = 𝜀s̃(𝒂)

2  (56) 

and, as shown in Appendix C, their gradients are 

∇𝑒s(𝒂) = −
6𝜀s(𝒂)

𝜓0(𝒂)
3/2
(𝒂(2) −

𝜃(𝒂)

𝜓0(𝒂)
𝒂) (57) 

∇�̃�s(𝒂) =
−3𝜀s̃(𝒂)

√2(𝜓0(𝒂) − 𝜓1(𝒂))
3/2
(𝐃𝐚0

(2)
− 𝐃𝐚1

(2) −
�̃�(𝒂)

2(𝜓0(𝒂) − 𝜓1(𝒂))
 (𝐃𝐚0 − 𝐃𝐚1)) (58) 

Both 𝜀s(𝒂) and 𝜀s̃(𝒂) should be added to 𝑒(𝒂) of equation (48) to obtain the total error. 

Likewise, both ∇𝑒s(𝒂) and ∇�̃�s(𝒂) should be added to ∇𝑒(𝒂) of equation (49) to determine the 

total gradient. Once these are determined for an initial guess of a, the improvement Δ𝒂 is  

Δ𝒂 = 𝑚
𝑒(𝒂)

∇𝑒(𝒂)T∇𝑒(𝒂)
∇𝑒(𝒂)  (59) 

where the coefficient m is determined in each iteration step as detailed in Appendix D. 
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It is useful to know for the solution algorithm that the theoretically achieved 𝜆 and �̃� have 

lower and upper limits, which are –1 and 1. These are precise for 𝜆 and correspond to the case 

where all 𝑎𝑖 = 0, except a nonzero 𝑎0; the limits –1 and 1 correspond to 𝑎0 < 0 and 𝑎0 > 0, 

respectively. The precise limits of �̃� are ±𝑞/√(𝑞 + 1)(𝑞 + 2) (apparently, tending to ±1 for large 

q) and correspond to the case where all but one Da𝑖 are equal to each other. More precisely, the 

negative limit corresponds to a linear arrangement of 𝑎𝑖  determined by 𝑎𝑖 = √3(𝑖 + 1)/

√(𝑞 + 1)(𝑞 + 2)(𝑞 + 3/2) and the positive limit corresponds to the time reversed arrangement. 

The proof is omitted. Furthermore, the ratio �̃�/𝜆 cannot be arbitrarily high; an investigation 

showed that its upper limit is about 0.9√𝑞. In practice, the values of 𝜆 and �̃� to be achieved 

should be chosen at a good distance from the theoretical limits. This is made possible by 

choosing a relatively high value of E[𝑣𝑖
3] (see eqn. (50)) or a large q if the ratio �̃�/𝜆 is high. 

This method has several advantages: (a) its applicability is very broad as it works for both the 

SMA and the AMA scheme and in the latter case, additionally to preserving the autocovariance 

function, can host constraints related (but not limited) to the preservation of third moments; (b) 

it avoids Fourier transforms and its application is easy—e.g., it can run in a spreadsheet 

application without programming; (c) it is reliable as it even gives approximations if the 

requirements are infeasible—e.g. for non-positive definite autocorrelation sequences; (d) it is 

fast—particularly in the SMA case it is rapid and, provided that a good initial guess is found with 

the technique described in Appendix E, just one iteration usually suffices; and (e) it is 

computationally economic as only a few vectors, and not matrices, are needed to be stored in the 

computer memory (or spreadsheet). The disadvantage is that it is iterative and numerical rather 

than analytical.  

For the application of the method with the streamflow time series we used the same model as 

in Method 1 with q = 1024 again, but here we directly modelled the original process, while from 

the differenced process we used only its skewness (10.99). The coefficients a determined after 

convergence of the iterative method are shown in Figure 11, along with the climacogram and the 

autocorrelation function of the original process.  

 

Figure 11 Climacogram, autocorrelation and a values of the original process for Method 2.  
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(a)   

(b)   

(c)
  

(d)

 

Figure 12 (a) Discharge time series generated by Method 2 (time references are arbitrary); (b) 

Close up of the time series for a six-month period; (c) Comparison with the FHK-C model of the 

climacogram and climacospectrum of the generated series; (d) Climacograms and skewness 

coefficients of the original and differenced time series as functions of time scale. Panels (c) and 

(d) refer to the series transformed for seasonality and standardized to unit variance, while (a) 

and (b) refer to the “naturalized” (back-transformed) series.  
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Again we used lognormal white noise with skewness determined so that the skewness of the 

original process be 2.98 as required. A time series with length equal to that of the real world 

data was then derived for the original process 𝑥𝜏 using (39), and was then “naturalized” by 

applying the inverse seasonal transformation. Plots for the generated time series and their 

characteristics are shown in Figure 12. It is observed that the generated time series is consistent 

with the model and hence the original data in terms of all important statistics, marginal as well 

as related to time irreversibility. Therefore, Method 2 seems suitable for simulation of 

streamflow time series even at fine time scales.  

5 Conclusions 

Time’s arrow has important philosophical, scientific and technical connotations and is closely 

related to randomness. Time asymmetry is also closely related to causality, which presupposes 

irreversibility. Stochastics offers a frame to explore, detect, analyse, characterize and simulate 

irreversibility in natural processes.  

 Indicators of irreversibility are different if we study a single process alone, or more processes 

simultaneously. In the first case, irreversibility cannot be reflected in the second-order 

stochastic characteristics of the process, which are by definition time symmetrical. Therefore we 

need to study third-order properties as a minimum. In the case of two or more processes, 

irreversibility can be studied in terms of lagged second-order properties and this study may 

reveal causal relations. 

 In the case of a single process, a convenient index of irreversibility is the skewness of the time 

differenced process, which is also related to the skewness of the marginal distribution. For 

theoretical reasons (cf. Central Limit Theorem), skewness vanishes off for large time scales and 

thus irreversibility of this type can appear in the finest time scales only. On the contrary, in 

bivariate or multivariate processes, irreversibility can appear at any time scale.  

 The example time series examined here indicate that atmospheric processes, such as wind, 

temperature and rainfall, do not exhibit marked irreversibility at hydrologically relevant time 

scales, even though for very fine scales irreversibility seems to exist. However, the irreversibility 

of streamflow is marked for scales of several days and this highlights the need to reproduce it in 

flood simulations. 

 For this reason, two methods of generating time series with irreversibility are developed, one 

of which, based on an asymmetric moving average (AMA) scheme, proves to be satisfactory for 

streamflow simulation. The same method can be used more generally in stochastic simulation 

problems, even in the case of reversibility and even for the symmetric moving average (SMA) 

scheme. 
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Appendix A – Special cases of the cross-climacogram 

1. It is easily shown that the cross-climacogram has a symmetry with respect to the variables x 

and y. Applying the definition of the cumulative process (equation (12)), 𝜌𝑥𝑦(𝑘, ℎ) is written:  

𝜌𝑥𝑦(𝑘, ℎ) =  var [
∫ 𝑥(𝜉)d𝜉
𝑘

0

2√𝛾𝑥(𝑘)
+
∫ 𝑦(𝜉)d𝜉
𝑘+ℎ

ℎ

2√𝛾𝑦(𝑘)
 ] (A1) 

Setting ζ = ξ – h we get 

𝜌𝑥𝑦(𝑘, ℎ) = var [
∫ 𝑥(𝜉)d𝜉
𝑘−ℎ

−ℎ

2√𝛾𝑥(𝑘)
+
∫ 𝑦(𝜉)d𝜉
𝑘

0

2√𝛾𝑦(𝑘)
 ] = var [

𝑋(𝑘 − ℎ) − 𝑋(−ℎ)

2√𝛾𝑥(𝑘)
+

𝑌(𝑘)

2√𝛾𝑦(𝑘)
 ]   (A2) 

(note that 𝑋(0) = 𝑌(0) ≡ 0), and finally we find 

𝜌𝑥𝑦(𝑘, ℎ) = 𝜌𝑦𝑥(𝑘, −ℎ) (A3) 

2. For k → 0, we get the instantaneous SCC and CC; in this case 𝑋(𝑘)/𝑘 → 𝑥(0) and (𝑌(𝑘 + ℎ) −

𝑌(ℎ)) /𝑘 → 𝑦(ℎ), and thus from equation (30) and (31) we get 

𝜌𝑥𝑦(0, ℎ) = var [
1

2
(
𝑥(0)

√𝛾𝑥(0)
+
𝑦(ℎ)

√𝛾𝑦(0)
)] , 𝛾𝑥𝑦(0, ℎ) ≔ 𝜌𝑥𝑦(0, ℎ)√𝛾𝑥(0)𝛾𝑦(0) (A4) 

We note though that the instantaneous process is hardly measured and thus it is the cross-

climacogram on a finite time scale k that provides a convenient means for estimation. 

Another reason favouring the use of a finite time scale is that some models, such as the Hurst-

Kolmogorov process, entail infinite theoretical variance of the instantaneous process, which 

makes calculations impossible.  

3. For 𝑥 ≡ 𝑦 the cross-climacogram becomes the lagged auto-climacogram taking the form 

𝛾𝑥𝑥(𝑘, ℎ) =  var [
𝑋(𝑘) + 𝑋(𝑘 + ℎ) − 𝑋(ℎ)

2𝑘
 ] , 𝜌𝑥𝑥(𝑘, ℎ) =

𝛾𝑥𝑥(𝑘, ℎ)

𝛾𝑥(𝑘)
 (A5) 

In this case the symmetry equation (A3) becomes  

𝜌𝑥𝑥(𝑘, ℎ) = 𝜌𝑥𝑥(𝑘, −ℎ) (A6) 

which shows that 𝛾𝑥𝑥(𝑘, ℎ) is an even function with respect to the lag h. 

4. For 𝑥 ≡ 𝑦 and h = 0 the cross-climacogram becomes identical to the climacogram: 

𝛾𝑥𝑥(𝑘, 0) =  var [
𝑋(𝑘)

𝑘
 ] = 𝛾𝑥(𝑘), 𝜌𝑥𝑥(𝑘, 0) = 1 (A7) 

5. For 𝑥 ≡ 𝑦 and h = k the cross-climacogram becomes identical to the climacogram at the 

double time scale: 

𝛾𝑥𝑥(𝑘, 𝑘) =  var [
𝑋(2𝑘)

2𝑘
 ] = 𝛾𝑥(2𝑘), 𝜌𝑥𝑥(𝑘, 𝑘) =

𝛾𝑥(2𝑘)

𝛾𝑥(𝑘)
 (A8) 
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Appendix B – Proof of equation (49) 

The derivative of the error with respect to 𝑎𝑖  is 

𝜕𝑒(𝒂)

𝜕𝑎𝑖
=
𝜕𝜺T𝜺

𝜕𝑎𝑖
= 2𝜺T

𝜕𝜺

𝜕𝑎𝑖
= −2𝜺T

𝜕𝝍

𝜕𝑎𝑖
 (B1) 

By virtue of (43), the vector of achieved autocovariances can be expressed as 

𝝍(𝒂)T = [𝑨0
T𝑨0, 𝑨0

T𝑨1, … , 𝑨0
T𝑨𝑞]

T
= 𝑨0

T[𝑨0, 𝑨1, … , 𝑨𝑞] = 𝑨0
T[𝑩] (B2) 

whereas [𝑩] is the (2q + 1) × (q + 1) matrix 

[𝑩] ≔ [𝑨0, 𝑨1, … , 𝑨𝑞] (B3) 

Thus, 

𝜕𝝍

𝜕𝑎𝑖
=
𝜕[𝑩]Τ𝜜0
𝜕𝑎𝑖

=
𝜕[𝑩]Τ

𝜕𝑎𝑖
𝜜0 + [𝑩]

Τ
𝜕𝜜0
𝜕𝑎𝑖

 (B4) 

We observe that the partial derivatives of vectors on the right-hand side have only sparse items 

equal to 1 while all other items are zero. By inspection it can be verified that 

−𝜺T
𝜕𝝍

𝜕𝑎𝑖
= −𝑘𝑖𝑬

T𝑨𝑖 (B5) 

where 𝑘𝑖 = 1 for the AMA,while for SMA 𝑘0 = 1, 𝑘𝑖 = 2 for i > 0. 

Appendix C – Proof of equations (57) and (58) 

The derivative of the errors with respect to 𝑎𝑖  are 

𝜕𝑒s(𝒂)

𝜕𝑎𝑖
=
𝜕𝜀𝑠
2 

𝜕𝑎𝑖
= 2𝜀s

𝜕𝜀s
𝜕𝑎𝑖

= −
𝜀s

𝜓0(𝒂)
3/2
(−
3𝜃(𝒂)

𝜓0(𝒂)

𝜕𝜓0(𝒂)

𝜕𝑎𝑖
+ 2

𝜕𝜃(𝒂)

𝜕𝑎𝑖
) (C1) 

and 

𝜕�̃�s(𝒂)

𝜕𝑎𝑖
=
𝜕𝜀�̃�
2 

𝜕𝑎𝑖
= 2�̃�s

𝜕𝜀s̃
𝜕𝑎𝑖

= −
𝜀s̃

2√2(𝜓0(𝒂) − 𝜓1(𝒂))
3/2

 

× (−
3�̃�(𝒂)

𝜓0(𝒂) − 𝜓1(𝒂)
(
𝜕𝜓1(𝒂)

𝜕𝑎𝑖
−
𝜕𝜓0(𝒂)

𝜕𝑎𝑖
) +

𝜕�̃�(𝒂)

𝜕𝑎𝑖
) 

(C2) 

Now the derivatives appearing in the inner parenthesis are  

𝜕𝜓0(𝒂)

𝜕𝑎𝑖
=
𝜕𝒂0
T𝒂0
𝜕𝑎𝑖

= 2𝑎𝑖,
𝜕𝜓1(𝒂)

𝜕𝑎𝑖
=
𝜕𝒂0
T𝒂1
𝜕𝑎𝑖

= 𝑎𝑖+1 + 𝑎𝑖−1 (C3) 

so that 

𝜕𝜓1(𝒂)

𝜕𝑎𝑖
−
𝜕𝜓0(𝒂)

𝜕𝑎𝑖
= 𝑎𝑖+1 + 𝑎𝑖−1 − 2𝑎𝑖 = Da𝑖+1 − Da𝑖 (C4) 

The derivatives of θ and �̃� are 
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𝜕𝜃(𝒂)

𝜕𝑎𝑖
= 3𝑎𝑖

2,
𝜕�̃�(𝒂)

𝜕𝑎𝑖
= 3(𝑎𝑖 − 𝑎𝑖−1)

2 − 3(𝑎𝑖+1 − 𝑎𝑖)
2 = 3Da𝑖

2 − 3Da𝑖+1
2  (C5) 

Combining these we find 

𝜕𝑒s(𝒂)

𝜕𝑎𝑖
= −

6𝜀s
𝜓0(𝒂)

3/2
(−

𝜃(𝒂)

𝜓0(𝒂)
𝑎𝑖 + 𝑎𝑖

2) (C6) 

𝜕�̃�s(𝒂)

𝜕𝑎𝑖
= −

3𝜀̃

√2(𝜓0(𝒂) − 𝜓1(𝒂))
3/2
(−
�̃�(𝒂)(Da𝑖 − Da𝑖+1)

2(𝜓0(𝒂) − 𝜓1(𝒂))
+ (Da𝑖

2 − Da𝑖+1
2 )) (C7) 

which prove (57) and (58). 

Appendix D: The Newton-Raphson method for a scalar function of a 

vector variable 

We first refer to the fully scalar version of the method and then extend it to the case of a scalar 

function of a vector variable. We assume an error function e(a) dependent on a scalar argument 

a and we wish to find the value of the argument for which e(a) = 0. Starting from an arbitrary 

guess a in which e(a) = e1 we find an improved guess a – Δa in which e(a – Δa) = e2. The 

increment Δa is determined as 

Δ𝑎 = 𝑚
𝑒(𝑎)

𝑒′(𝑎)
 (D1) 

where 𝑒′(𝑎) is the derivative of the function 𝑒(𝑎) and m is a number which in the standard 

Newton-Raphson method equals 1. For a faster convergence, as well as for making the method 

more robust in the case where 𝑒(𝑎) has no root, we can modify m by using the value e2 = 

e(a − Δa), determined for m = 1 and without further evaluating the derivative 𝑒′(𝑎 − Δ𝑎). This 

looks particularly useful for the vector case that is developed below, as in that case, while 𝑒(𝑎) 

remains a scalar, 𝑒′(𝑎) becomes a vector and thus more time consuming to evaluate. 

 From the known points e1 = e(a), e2 = e(a – Δa) and the value 𝑒′(𝑎) we can fit a parabola �̂�(𝑎) 

(a second order polynomial) to approximate the function e(a) and we can calculate a new Δ𝑎 and 

hence a value of m, which corresponds to �̂�(𝑎) = 0 or, in the case that �̂�(𝑎) has no root, to the 

minimum value of �̂�(𝑎). After algebraic manipulation, which is omitted here, it is seen that m is 

independent of 𝑒′(𝑎) and is given in terms of the value 𝑒1/(2𝑒2) by 

𝑚 =

{
 
 

 
 
𝑒1
2𝑒2
, 0 ≤

𝑒1
2𝑒2

≤ 2

𝑒1
2𝑒2

− sign(
𝑒1
2𝑒2
)√

𝑒1
2𝑒2
 (
𝑒1
2𝑒2

− 2) , otherwise
  (D2) 

The upper equation in (D2) corresponds to the case where �̂�(𝑎) has no root.  

Now let us assume that a ≔ [a0, a2, …, aq]T is a vector variable and instead of the scalar 

derivative e΄(a) we have a vector derivative, i.e.,  
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∇𝑒 ≔ [
𝜕𝑒

𝜕𝑎0
,
𝜕𝑒

𝜕𝑎1
, … ,

𝜕𝑒

𝜕𝑎𝑞
]

T

 (3) 

Using the Taylor expansion of e(a) around the initial guess a, we can approximate the value at 

a − Δa as 

𝑒(𝒂 − Δ𝒂) ≈ 𝑒(𝒂) − ∇𝑒(𝒂)TΔ𝒂 (D4) 

As the equation 

𝑒(𝒂) − ∇𝑒(𝒂)TΔ𝒂 = 0 (D5) 

is scalar, depending on a vector of unknowns, it will normally have an infinite number of 

solutions Δ𝒂 and it is reasonable to seek the one with the lowest norm ‖Δ𝒂‖2. In other words, 

we minimize ‖Δ𝒂‖2 subject to the equality constraint (D5). Introducing a Lagrange multiplier ν, 

we minimize: 

𝑓(Δ𝒂) ≔ ‖Δ𝒂‖2 + 𝜈(𝑒(𝒂) − ∇𝑒(𝒂)TΔ𝒂) (D6) 

whose derivatives with respect to Δ𝑎𝑖, i = 0, …, q, are  

𝜕𝑓(Δ𝒂)

𝜕Δ𝑎𝑖
= 2Δ𝑎𝑖 − 𝜈

𝜕𝑒(𝒂)

𝜕𝑎𝑖
= 0 (D7) 

This means that Δ𝑎𝑖 shall be proportional to 𝜕𝑒(𝒂)/𝜕𝑎𝑗 or Δ𝒂 parallel to ∇𝑒(𝒂). Hence (D5) 

becomes 

𝑒(𝒂) − (𝜈/2)∇𝑒(𝒂)T∇𝑒(𝒂) = 0 (D8) 

so that  

𝜈 =
2𝑒(𝒂)

∇𝑒(𝒂)T∇𝑒(𝒂)
  (D9) 

Notice that both the nominator and the denominator of (D9) are scalar. Combining (D7) and 

(D9) the solution is found to be that of equation (59), where we also inserted a multiplicative 

factor m as in (D1), which could again be determined from (D2). It can easily be seen that (59) 

reduces to (D1) if a becomes scalar. It can be also seen that equation (59) resembles that of the 

steepest descent method in multivariate optimization, except that the multiplier of ∇𝑒(𝒂) is 

specified rather than left to be determined by line optimization. 

 We clarify that (59) is evaluated for the first time with m = 1 thus enabling the determination 

of an initial Δ𝒂 and hence e2, from which m is determined from (D2). With this m we evaluate 

again equation (59) and find the final Δ𝒂 of the current iteration, which we subtract from the 

initial a. We replace a with 𝒂 − Δ𝒂, and continue with a new iteration until a termination 

condition is satisfied. To avoid trapping in a local optimum, we make the replacement of a with 

𝒂 − Δ𝒂 even if the error is not improving. For termination we can use the condition that 

improvement is not possible after a number (say, 10) of consecutive iteration steps. 
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Appendix E: Initial guess of coefficients 

From a systematic investigation of case studies, it was observed that the algorithm can perform 

well with an arbitrary initial guess, but its convergence can be faster if the initial guess is a good 

one, such as 

𝑎𝑖 = sign(𝑐𝑖) |𝑐𝑖|
𝛽 , 𝛽 =

3/2 − 𝛨

2 − 2𝛨
  (E1) 

where H is the Hurst coefficient. This ensures that the log-log slope of the series of ai at large i 

will be the correct one. The series produced by (E1) is then proportionally adjusted so that the 

resulting ψ0 =𝑨0
T𝑨0 is equal to the process variance. 

 In particular, for the SMA case, an almost perfect initial guess can be determined by the 

following steps. 

1. We assume that the climacogram γ := [γ1, γ2, …, γ2q]T is known for time scales 1 to 2q.  

2. We determine the climacospectrum ζ := [ζ1, ζ2, …, ζq]T from 

𝜁𝜅 ≔
𝜅(𝛾𝜅 − 𝛾2𝜅)

ln 2
 (E2) 

3. We take the square root of the climacospectrum, 𝜁𝜅
𝑎 = √𝜁𝜅 and form the vector 𝜻

𝑎 which 

behaves like a climacospectrum of the coefficients a. This step is inspired by the fact that the 

squared Fourier transform of the coefficients a equals the power spectrum of the process, 

while at the same time the climacospectrum resembles the power spectrum (Koutsoyiannis, 

2017). Note though that the algorithm proposed here does not involve Fourier transforms. 

4.  We calculate the “climacogram” corresponding to 𝜻𝑎 by the inverse transformation of (E2), 

which is (Koutsoyiannis, 2017): 

𝛾κ
𝑎  ≈

(𝑒 ln 2)𝜅 + 2

2𝜅 + 2
𝐼𝜅
𝑎 , 𝑒 =

1

1 − 22𝐻−2
, 𝐼𝜅 = 𝐼𝜅+1 +

𝜁𝜅
𝑎

𝜅2
, 𝐼𝑞+1 =

2𝜁𝑞+1
𝑎

(𝑞 + 1)2
 (E3) 

Note that the calculation is made in reverse order of κ. 

5. We determine the a values as if they were the autocorrelation coefficients making up the 

climacogram 𝛾κ
𝑎 , i.e., 

𝑎𝜅 = 
(𝜅 + 1)2𝛾𝜅+1

𝑎 + (𝜅 − 1)2𝛾𝜅−1
𝑎

2
− 𝜅2𝛾𝜅

𝑎 (E4) 

Acknowledgments. I gratefully acknowledge technical discussions with Panayiotis Dimitriadis and 

Theano (Any) Iliopoulou and more philosophical ones with Antonis Christofides. The detailed, penetrating 

and very constructive review comments by the reviewer Christian Onof, and the suggestions by the 

Associate Editor Krzysztof Kochanek helped improve the paper substantially. I also acknowledge the 

positive critique by an anonymous reviewer of the second review round.  

Funding information. No funding was provided for this research. 

Conflicts of interest. No conflict of interest exists. 



40 

References 

Barnola, J.M., Pimienta, P., Raynaud, D. and Korotkevich, Y.S., 1991. CO2‐climate relationship as deduced 

from the Vostok ice core: A re‐examination based on new measurements and on a re‐evaluation of the 

air dating. Tellus B, 43(2), 83-90. 

Boltzmann, L., 1877. Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen 

Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das 

Wärmegleichgewicht. Wiener Ber., 76, 373–435 (in German). 

Brillinger, D.R., and Rosenblatt, M., 1967. Computation and interpretation of k-th order spectra. In Spectral 

Analysis of Time Series, Ed. B. Harris. 189-232, Wiley, New York. 

Caillon, N., Severinghaus, J.P., Jouzel, J., Barnola, J.M., Kang, J. and Lipenkov, V.Y., 2003. Timing of 

atmospheric CO2 and Antarctic temperature changes across Termination III. Science, 299(5613), 1728-

1731. 

Chan, K.S., Ho, L.H., and Tong, H., 2006. A note on time-reversibility of multivariate linear processes. 

Biometrika, 93(1), 221-227. 

Chen, Y.T., Chou, R.Y., and Kuan, C.M., 2000. Testing time reversibility without moment restrictions. 

Journal of Econometrics, 95(1), pp.199-218. 

Clausius, R., 1850. Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die 

Wärmelehre selbst ableiten lassen. Annalen der Physik, 79, 500–524. doi: 10.1002/andp.18501550403 

(in German). English translation: Clausius, R. 1851. On the moving force of heat, and the laws regarding 

the nature of heat itself which are deducible therefrom. London, Edinburgh, and Dublin Philosophical 

Magazine and Journal of Science, 4, 2 (VIII), 102–119.  

Clausius, R., 1854. Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. 

Annalen der Physik, 481–506, doi: 10.1002/andp.18541691202 (in German). English translation: 

Clausius, R.,1856. On a modified form of the second fundamental theorem in the mechanical theory of 

heat. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4, 2, 86.  

Clausius, R., 1865. Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der 

mechanischen Wärmetheorie. Annalen der Physik und Chemie, 125 (7), 353–400. doi: 

10.1002/andp.18652010702 (in German). 

Cox, D.R., 1981. Statistical analysis of time series: Some recent developments. Scandinavian Journal of 

Statistics, 8, 93-115. 

Dimitriadis, P., and Koutsoyiannis, D., 2015. Climacogram versus autocovariance and power spectrum in 

stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stochastic Environmental 

Research & Risk Assessment, 29 (6), 1649–1669, doi: 10.1007/s00477-015-1023-7.  

Dimitriadis, P., and Koutsoyiannis, D., 2018. Stochastic synthesis approximating any process dependence 

and distribution. Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi: 

10.1007/s00477-018-1540-2. 

Doran, C., 2011. Anemometer - Sonic at ABLE Beaumont Site Data. Version 1.0. UCAR/NCAR - Earth 

Observing Laboratory, http://data.eol.ucar.edu/dataset/45.910. Accessed 2018-09-17. 

Eddington, A., 1928. The Nature of the Physical World. Cambridge University Press, Cambridge, UK. 

Fourier, J., 1822. Théorie Analytique de la Chaleur. Firmin Didot Père et Fils, Paris. 

Georgiou, T.T. and Lindquist, A., 2014. On time-reversibility of linear stochastic models. IFAC Proceedings 

Volumes, 47(3), 10403-10408. 



41 

Granger, C.W., 1980. Testing for causality: a personal viewpoint. Journal of Economic Dynamics and 

Control, 2, 329-352. 

Heller, M., 1983 Time, causality, and the quantum theory, The Review of Metaphysics, 37(2), 408–409. 

Hemelrijk, J., 1966. Underlining random variables. Statistica Neerlandica, 20 (1), 1-7. 

Hollinger, H.B. and Zenzen, M.J., 1985. The Nature of Irreversibility: A Study of its Dynamics and Physical 

Origins. D. Reidel Publishing Company, Dordrecht, Holland. 

Hosking, J.R.M., 1990. L-moments: analysis and estimation of distributions using linear combinations of 

order statistics. Journal of the Royal Statistical Society, Series B, 52, 105–124. 

Jouzel, J., Lorius, C., Petit, J.R., Genthon, C., Barkov, N.I., Kotlyakov, V.M., and Petrov, V.M., 1987. Vostok ice 

core: a continuous isotope temperature record over the last climatic cycle (160 000 years). Nature, 

329, 403-408. 

Kang, H.S., Chester, S., and Meneveau, C., 2003. Decaying turbulence in an active-grid-generated flow and 

comparisons with large-eddy simulation. J. Fluid Mech., 480, 129–160. 

Kline, A.D., 1980. Are there cases of simultaneous causation?. In PSA: Proceedings of the Biennial Meeting of 

the Philosophy of Science Association. Vol. 1980, 1, 292-301. Philosophy of Science Association. 

Koutsoyiannis, D., 2000. A generalized mathematical framework for stochastic simulation and forecast of 

hydrologic time series. Water Resources Research, 36 (6), 1519–1533, doi: 10.1029/2000WR900044. 

Koutsoyiannis, D., 2010. A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi: 

10.5194/hess-14-585-2010.  

Koutsoyiannis, D., 2011. Hurst-Kolmogorov dynamics as a result of extremal entropy production. Physica 

A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi: 10.1016/j.physa.2010.12.035. 

Koutsoyiannis, D., 2013. Hydrology and change. Hydrological Sciences Journal, 58 (6), 1177–1197, doi: 

10.1080/02626667.2013.804626. 

Koutsoyiannis, D., 2016. Generic and parsimonious stochastic modelling for hydrology and beyond. 

Hydrological Sciences Journal, 61 (2), 225–244, doi: 10.1080/02626667.2015.1016950. 

Koutsoyiannis, D., 2017. Entropy production in stochastics. Entropy, 19 (11), 581, doi: 

10.3390/e19110581. 

Koutsoyiannis, D., 2019. Knowable moments for high-order stochastic characterization and modelling of 

hydrological processes, Hydrological Sciences Journal, 64 (1), 19–33, doi: 

10.1080/02626667.2018.1556794. 

Koutsoyiannis, D., Dimitriadis, P., Lombardo, F., and Stevens, S., 2018. From fractals to stochastics: Seeking 

theoretical consistency in analysis of geophysical data. Advances in Nonlinear Geosciences, edited by 

A.A. Tsonis, 237–278, doi:10.1007/978-3-319-58895-7_14, Springer. 

Lasota, A., and Mackey, M.C., 1994. Chaos, Fractals and Noise, Springer-Verlag, New York. 

Lawrance, A.J., 1991. Directionality and reversibility in time series. International Statistical Review, 59(1) 

67-79. 

Lawrance, A.J., 2001. Chaos: but not in both directions!. Statistics and Computing, 11(3), 213-216. 

Lombardo, F., Volpi, E., Koutsoyiannis, D., and Papalexiou, S.M., 2014. Just two moments! A cautionary note 

against use of high-order moments in multifractal models in hydrology, Hydrology and Earth System 

Sciences, 18, 243–255, doi: 10.5194/hess-18-243-2014. 

Mackey, M.C., 2003. Time’s Arrow: The Origins of Thermodynamic Behavior, Dover, Mineola, NY, USA, 175 

pp. 



42 

Markonis, Y., and Koutsoyiannis, D., 2013. Climatic variability over time scales spanning nine orders of 

magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics. Surveys in Geophysics, 

34 (2), 181–207, doi: 10.1007/s10712-012-9208-9. 

Mlodinow, L., 2008. The Drunkard’s Walk: How Randomness Rules Our Lives. Pantheon, New York. 

Montanari, A. and Koutsoyiannis, D., 2012. A blueprint for process-based modeling of uncertain 

hydrological systems. Water Resources Research, 48, W09555, doi: 10.1029/2011WR011412. 

Müller, T., Schütze, M. and Bárdossy, A., 2017. Temporal asymmetry in precipitation time series and its 

influence on flow simulations in combined sewer systems. Advances in Water Resources, 107, 56-64. 

Natanson, L., 1896. On the laws of irreversible phenomena. The London, Edinburgh, and Dublin 

Philosophical Magazine and Journal of Science, 41(252), 385-406. doi: 10.1080/14786449608620860. 

Pedro, J.B., Rasmussen, S.O. and van Ommen, T.D., 2012. Tightened constraints on the time-lag between 

Antarctic temperature and CO 2 during the last deglaciation. Climate of the Past, 8(4), 1213-1221. 

Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., 

Delayque, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., 

Saltzman, E., and Stievenard. M., 1999. Climate and atmospheric history of the past 420,000 years from 

the Vostok ice core, Antarctica. Nature, 399, 429-436. 

Porporato, A., Rigby, J.R., and Daly, E., 2007. Irreversibility and fluctuation theorem in stationary time 

series. Physical Review Letters, 98(9), 094101. 

Prigogine, I. and Stengers, I., 1997. The End of Certainty. Simon and Schuster, New York. 

Psaradakis, Z., 2008. Assessing time‐reversibility under minimal assumptions. Journal of Time Series 

Analysis, 29(5), pp.881-905. 

Racine, J.S. and Maasoumi, E., 2007. A versatile and robust metric entropy test of time-reversibility, and 

other hypotheses. Journal of Econometrics, 138 (2), 547-567. 

Ramsey, J.B., Rothman, P., 1996. Time irreversibility and business cycle asymmetry. Journal of Money, 

Credit, and Banking 28 (1), 1-21. 

Soon, W., 2007. Implications of the secondary role of carbon dioxide and methane forcing in climate 

change: past, present, and future. Physical Geography, 28(2), 97-125. 

Suppes, P., 1970. A Probabilistic Theory of Causality, North-Holland Publishing, Amsterdam. 

Tong, H. and Zhang, Z., 2005. On time-reversibility of multivariate linear processes. Statistica Sinica, 15 

(2), 495-504. 

Tsoukalas I., Makropoulos C., and Koutsoyiannis D., 2018. Simulation of stochastic processes exhibiting 

any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484-

9513, doi: 10.1029/2017WR022462. 

Weiss, G., 1975. Time-reversibility of linear stochastic processes. Journal of Applied Probability, 12(4), 831-

836. 


	1 Introduction
	2 Basic stochastic tools
	3 Exploration of atmospheric and hydrological data sets
	3.1 Irreversibility in bivariate processes
	3.2 Irreversibility in univariate processes

	4 Generation of time series from univariate irreversible processes
	4.1 Generation method 1: Symmetric scheme for the differenced process
	4.2 Generation method 2: Asymmetric scheme for the original process

	5 Conclusions
	Appendix A – Special cases of the cross-climacogram
	Appendix B – Proof of equation (49)
	Appendix C – Proof of equations (57) and (58)
	Appendix D: The Newton-Raphson method for a scalar function of a vector variable
	Appendix E: Initial guess of coefficients
	References

