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1. Introduction - Abstract
The identification and quantification of stochastic scaling laws has been an important task in modelling of 
hydrometeorological processes. Stochastic tools such as the power spectrum, autocovariance function, 
structure and climacogram have been among the most powerful. However, the common practice of using 
solely one of them may lead to process misinterpretation. We introduce a methodology that compares these 
stochastic tools and seeks the optimal one for different scales in terms of minimizing fitting errors. For 
validation and illustration purposes, we apply this methodology to various fundamental stochastic processes, 
such as Markovian, Hurst-Kolmogorov (HK) and Cauchy type ones. For each one, we produce Gaussian 
synthetic time series, we estimate the uncertainty of their expected values and finally, we conclude upon the 
ones with the smallest uncertainty. Furthermore, we apply this method to a real case time-series of high 
resolution turbulent flow velocities.

Here, we adopt the Dutch convention for the notation and a 
2. Definitions and notations
Here, we adopt the Dutch convention for the notation and a 
climacogram-based stochastic framework described in 
Koutsoyiannis (2013) and Dimitriadis et al. (under review) along 
with the assumption D = Δ > 0, where D is the time interval between 
two observations of the continuous time process x(t) and Δ is the 
time window that corresponds to each observation. The discrete 
time process xi

(Δ), can then be calculated from x(t) as:

(1)

where i [1,n] is an index representing discrete time,  is the total 
number of observations and T [0,∞) is the time length of 
observations.

����� = � ����d�����−1����  

2. Definitions and notations

Figure 1: An example of a continuous time 
process sampled at time intervals D for a total 
period T and with instrument response time Δ
(Source: Dimitriadis et al., under review).



3. Stochastic tools (autocovariance-based)

In this and the following section, we 
present the most common and powerful 
stochastic tools following Dimitriadis et al. 
(under review) categorization into 
autocovariance-based ones: 
autocovariance, 2nd structural function 
(else known as variogram) and power-
spectrum; and climacogram-based ones: 
climacogram (i.e., variance of the averaged 
process versus averaging time scale, 
introduced by Koutsoyiannis, 2013), 

Table 1: Autocovariance definition and expressions for a process in continuous 
and discrete time, along with the properties of its estimator and the variogram
and power-spectrum for the continuous time only (the rest can be easily derived 
from eq. 3-5).

Type Autocovariance  

continuous ��
�: = Cov�����, ��� + 
�� 

where 
 ⋲ ℝ is the lag for a continuous time process (in time units)                                

(2) 

discrete �d������: = Cov������, ��+����� = Δ2��2������2Δ��2�
= 12 ��� + 1�2� �� + 1��! + �� − 1�2� �� − 1��! − 2�2�����" 

where � ⋲ ℤ is the lag for the process at discrete time (dimensionless)                                                                                                         

(3) 

introduced by Koutsoyiannis, 2013), 
climacogram-based 2nd structural function 
(CBSF) and climacogram-based spectrum 
(CBS; introduced by Koutsoyiannis, 2013). 
In Tables 1 and 2, we present the definition 
for a stochastic stationary process in 
continuous and discrete time, a classical 
estimator and its corresponding estimation 
for the autocovariance and climacogram. 
For the rest of the examined stochastic 
tools, we present only the expressions in 
continuous time.

= 2 ��� + 1� � �� + 1��! + �� − 1� � �� − 1��! − 2� �����"
where � ⋲ ℤ is the lag for the process at discrete time (dimensionless)                                                                                                         

classical 

estimator �̂d������ = 1%��� & '����,(� − 1) *& �+���)
+=1 ,- '��+���,(� − 1) *& �+���)

+=1 ,-)−�
�=1  

where %��� is usually taken as: n or n – 1 or n – j 

(4) 

expectation 

of classical 

estimator 

E��̂d������� = 1%��� *�) − ���d������ + �2) ����� − ���)�� − �) − ��2) � �) − ���!, 
(5) 

continuous 

Variogram 

/�
�: = ��0� − ��
� (6) 

continuous 

Power-

spectrum 

1�2�: = 4 � ��
� cos�2π2
� d
∞0   

where 2 ⋲ ℝ is the frequency for continuous time (in inverse time units). 

(7) 



4. Stochastic tools (climacogram-based)

It is important to note that in most cases 
(e.g., Dimitriadis and Koutsoyiannis, under 
review and Dimitriadis et al., under 
review), the climacogram and 
autocovariance are useful for investigating 
the large-scale behaviour of the process 
(e.g., determine if there is an exponential or 
a power-law decay in large scales), the 
variogram and CBSF for the small-scale 
behaviour (e.g., to estimate the fractal 

Table 2: Climacogram definition and expressions for a process in continuous 
and discrete time, along with the properties of its estimator and the CBSF and 
CBS for the continuous time only (the rest can be easily derived from eq. 9-11).

Type Climacogram  

continuous ��8�: = Var<� ����d��+8� =82 = Var>? ����d�8
0 @ /82 

where 8 ⋲ ℝ+ is the scale for a continuous time process (in time units) 

(8) 

discrete �d����B�: = Var�∑ �+��,(�B+=1 �B2 = ��B�� 

where B ⋲ ℕ is the dimensionless scale for a discrete time process 

(9) 

behaviour (e.g., to estimate the fractal 
dimension of the process) and the power-
spectrum and CBS for the intermediate-
scale behaviour (e.g., to test the validity of 
K41 theory in case of a turbulent isotropic 
process). For an illustrative example of 
such analysis see the application in sections 
11-13 (which is based on the work of 
Dimitriadis et al., under review).

B
where B ⋲ ℕ is the dimensionless scale for a discrete time process 

classical 

estimator �Ed����B� = 1) − 1 & '1B ' & �+���B�
+=B��−1�+1 - − ∑ �+���)+=1) -

2)
�=1  

(10) 

expectation 

of classical 

estimator 

E <�Ed����B�= = 1 − �F����)�/�F����B�1 − B/) �d����B� 

(11) 

continuous 

CBSF 

��8�: = ��0� − ��8� (12) 

continuous 

CBS 
G�2�: = 2��1/2�2 H1 − ��1/2���0� I 

(13) 

 



Here, we present the powered exponential process (abbreviated as PEX), a generalized HK process (gHK) and 
the simple processes of Markov and HK, respectively (all expressed via autocovariance):

(14)

(15)

(16)

(17)

5. Stochastic processes and important scaling parameters

��
� = e−�|
| L⁄ �N
 

��
� = �1 + |
| L⁄ �2H−2
 

��
� = e−|
| L⁄
 

��
� = |
|2H−2
 

Also, we introduce two of the most important scaling parameters in hydrometeorology, the Hurst coefficient 
and fractal dimension (Dimitriadis et al., under review):

(19)

(20)

Moreover, a useful mathematical tool for investigating scaling laws is the negative logarithmic derivative 
(abbreviated as NLD). For any function f(x) its NLD is denoted as            and defined as:

(18)P#��� ≔ − d ln P���!d ln � = − �P��� dP���d�  

U ≔ 1 + 12 lim
→∞ �# �
� 

Y ≔ 2 − 12 lim
→0 /#�
� 

P#��� 

��
� = |
|2H−2



6. Process identification issues:
Markov vs PEX in small scales (fractal dimension?)
An important characteristic of a process is the fractal parameter a (in case we choose a PEX process for the 
small scales). However, it is not always easy to estimate its value, since a Markov process (α = 1) can exhibit 
similar NLD at the small scales with a PEX process (α ≠ 1) for a value of the q parameter. Here, we estimate the 
α parameter of the PEX process by equalizing its true NLD value (between scales 2 and 3) with that of a 
Markov process (Fig. 2) for a known q, based on climacogram’s classical estimator. Close results were estimated 
for the NLD between scales 1 and 2 as well as 3 and 4. As we can see from Fig. 2, the bias related to these 
processes is negligible for the first scales and thus, the results are expected to be independent of n.
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Figure 2: Comparison between a PEX process with α = 0.5 (F = 
1.75) and q = 1.0 and a Markov process with q = 3.6.

Figure 3: Estimated power parameter of a PEX process for various 
values of the q parameter of a PEX and a Markov process.



7. Process identification issues (cont.):
Markov vs HK (with H > 0.5) in large scales (HK behaviour?)

1.0E+01

Another significant decision concerning the type of selected process is whether exhibits an HK behaviour. 
Again, there can be more than one processes that could exhibit an HK behaviour at a range of scales. To 
illustrate this, we estimate the q parameter of a Markov process by equalizing the NLD of its expected value (at 
scale equal to 90% of n) with that of an HK process for a known H (Fig. 5), based on climacogram’s classical 
estimator. Similar results were derived at scales equal to 80% and ~100% of n. The curves in Fig. 5 can be well 
approximated from:

(21)
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Figure 4: Comparison between a Markov process with q = 165 
and an HK process with H = 0.75.

Figure 5: Estimated Hurst coefficients of an HK process for various 
values of the q parameter of a Markov process and for various n.
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8. Process parameters quantification
Here, we will describe a methodology for the parameter estimation of a process. Despite the fact that all 
aforementioned stochastic tools are linked to each other through the equations in Tables 1 and 2, the statistical 
uncertainty they produce is not the same. In that sense, for each process we should often have to choose a 
different tool to calculate its parameters. Below, we investigate the performance of the estimators of 
climacogram, autocovariance and power spectrum for a Markov process (with q = 10 and n = 103). For their 
evaluation we use mean square error (MSE) expressions as shown in the equations below (Dimitriadis and 
Koutsoyiannis, under review):

(22)

(23)

` = E < ab − a!2=a2 = `/ +  `c  

`/ = Var�ab�/a2
 

`c =  a − Ε�ab�!2/a2 (24)

where θ is the true value of a statistical characteristic (i.e. climacogram, autocovariance, power spectral density 
and NLDs thereof) of the process.

a`/ = Var�ab�/a2
`c =  a − Ε�ab�!2/a2

 

Although we have the expressions for the expected values of the examined stochastic tools (Tables 1 and 2), we 
lack of analytical expressions for their variance, and thus, we adopt a Monte Carlo method by producing 104

synthetic timeseries of a Markov process with q = 10 (following the algorithms and schemes in Dimitriadis and 
Koutsoyiannis, under review). In Fig. 6a, we show the true, discrete and expected values for the examined 
process for the three examined tools. W observe that a Markov process can be easily misinterpreted with a 
random process if it is not analyzed using the autocovariance (in large scales or small frequencies, since both 
climacogram and power spectrum give the same NLDs as in the case of a random process). This is also an 
example that highlights the need to use multiple tools when analyzing a timeseries.



9. Process parameters quantification (cont.)
In Fig. 6b, we present the resulted MSE following the previous analysis. As we can see, for the specific process, 
the climacogram attributes the smaller MSE (among the examined tools) and thus, in case we choose to apply 
this process, we should estimate its parameters based on the climacogram classical estimator.
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It is interesting to note that, based on the analysis of Dimitriadis and Koutsoyiannis (under review) where 
various cases of HK, gHK and Markov process were examined, the overall MSE between those three stochastic 
tools followed approximately the inequality below in all cases:

(25)

Figure 6: (a) True, discrete and expected values for the climacogram, autocovariance and power spectrum for a Markov process with q
= 10 (n = 103); (b) the overall MSE for each stochastic tool for the examined Markov process.
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10. Process parameters quantification (cont.)

In Fig. 7, we present the MSE of the climacogram, 
autocovariance and power spectrum for various cases of 
Markov, HK and gHK processes (taken from the analysis of 
Dimitriadis and Koutsoyiannis, under review). As we can see, 
the climacogram attributes the smaller MSE and thus, in case 
we choose to apply this process, we should estimate its 
parameters based on the climacogram’s classical estimator.
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Figure 7: (a) True, discrete and expected values for the climacogram, autocovariance and power spectrum for a Markov process with q
= 10 (n = 103); (b) the overall MSE for each stochastic tool for the examined Markov process.
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The above rules of thumb were applied in a 
turbulent wind velocity timeseries measured 
by X-wire probes downstream of an active grid 
at the direction of the flow (Kang et al., 2003). 
The selected process is the following (Fig. 8):

11. Application
In conclusion, we first need to decide on the process we are going to use. As we showed in the previous 
sections, there could be more than one processes with similar values for certain ranges of scale. However, we 
can narrow our choices by adopting the principle of parsimony. After we built our model, we decide on the 
stochastic tools we want to use and we follow the proposed methodology in the previous sections to 
incorporate the statistical uncertainty produced by each tool. Finally, we can verify our null hypothesis on the 
chosen process by checking that its parameters were indeed calculated using the tool with the smallest MSE. 
For more information on the above methodology, see in Dimitriadis and Koutsoyiannis (under review).
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at the direction of the flow (Kang et al., 2003). 
The selected process is the following (Fig. 8):

(26)��
� = h1e−�|
| L1⁄ �N + h2�1 + |
| L2⁄ �−c
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Figure 8: Empirical averaged values for all the examined stochastic tools 
along with their log-log derivatives (Source: Dimitriadis et al., under 
review).

We used all the examined stochastic tools but 
we focused in the CBS for the small and large 
scales related parameters (i.e., the fractal 
parameter α and Hurst coefficient H) and the 
variogram for the rest (since these tools have the 
smallest MSE in Fig. 10b). The fitted parameters 
(Dimitriadis et al., under review) are: λ1 = 0.422 
m2/s2 and λ2 = 0.592 m2/s2, q1 = 19.6 ms and q2 = 
1.45 ms, a = 1.4 (F = 1.3) and H = 0.84.



12. Application (cont.)
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Here, we show the results from the model (Fig. 9) as 
well as the total MSE for each examined stochastic 
tool (Fig. 10) which verifies the use of CBS for the 
small and large scales and the variogram for the 
intermediate ones. Note that the variogram and CBSF 
are not appropriate for the large scales and similarly, 
the autocovariance and climacogram for the small 
scales, since their log-log derivatives tend to 0 at 
these ranges, independently of the process (fixed 
boundary).

Figure 9: Empirical averaged values from data, true continuous and discretized as well as expected values from the model for (a) the 
climacogram and autocovaiance, (b) the variogram and CBSF and (c) the power spectrum and CBS (Source: Dimitriadis et al., under review).
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13. Application (cont.)
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Figure 10: MSE of (a) regular values (i.e., ε) and (b) NLDs (i.e., ε#) for the climacogram, autocovariance, variogram, CBSF, power 
spectrum and CBS.
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One of the most important features of the above analyses was to highlight the advantages of investigating a 
process from the perspective of multiple stochastic tools, incorporating in this way the varying statistical 
uncertainty produced in different scales.
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