Investigation of stochastic similarities among entrance and outflow variables of spatially distributed waste water treatment plants in Greece; I: Statistical analysis of entrance variables in terms of the marginal distribution

European Geosciences Union General Assembly 2018 Vienna, Austria, 7 – 12 April 2019

1. INTRODUCTION

The last 25 years, Greece presents a remarkable improvement on Wastewater manage implementation of Urban Wastewater Treatment Directive (91/271/EEC), contributed the construction and operation of 234 Wastewater Treatment Plants (WWTPs) until particular, Greece has 455 urban waste water agglomerations of more than 2000 po equivalent (p.e) and their total load corresponds to 11.790.586 p.e. 90% of this load i collecting systems and 10% addressed through Individual and Appropriate Systems treatment plants have a total capacity of 13.982.384 p.e. Most of the Greek WWTPs activated sludge system based on extended aeration and sludge stabilization carried biological stage, while 23% of WWTP have a primary treatment stage along with bi and sludge stabilization achieved through anaerobic digestion.

WWTP size	Served population(p.e.)	Percentage (%)		Type of treatment	Served population (p.e.)	Percentage (%)
<10.000 p.e.	254.501	2.3		Secondary treatment	14.233	0.1
10.000-100.000 p.e	2.837.162	25.6		N-Removal	7.501.533	67.6
>100.000 p.e.	8.000.353	72.1		NP-Removal	2.793.043	25.2
total	11.092.016	100		P-Removal	27.274	0.2
Table 1.1 Served population for WWTP of different size			Other treatment	14.233	0.1	
			total	11.092.016	100	

(source: Urban Waste Water Treatment Directive (UWWTD) site for Europe)

Table 1.2 Served population for every type of treatment

5. RESULTS

•Fitting distributions

In order to define which distribution can most appropriately fit the incoming load, the maximum likelihood and square error methods were applied. The most appropriate distributions for BOD₅ for both Psyttalia and Thessaloniki WWTP are the Log Normal and Gamma distributions, according to both methods. On the other hand, Normal distribution was less appropriate, and Weibull distribution the less appropriate!

WWTP

Seasonal marginal statistics

Monthly mean and standard deviation values of data from specific WWTP were estimated, to examine the seasonality. Mean values are lower in summer period.

•Spatial analysis

and 0.97 for the above variables. to 0.7.

		а	b	R ²
_	BOD	2.22	108	0.51
-	COD	2.4	244	0.54
	SS	1.74	95.64	0.6
ŝ	T-N	2.37	31.17	0.43
5	NH₄-N	3.38	16.18	0.708
	T-P	1.45	5.8	0.534

Table 5: Correlation between 1st and 2nd L moments:

•High levels of correlation are observed in specific cases. R² between L3 and L4 moments for T-P influent is 0.959!

Figure 3.1: Linear correlation between L3 and L4 moments of T-P (total phosphorus) influent from WWTP spatially distributed in Greece

Figure 2: Seasonal mean and L2 moments

HS3.2: Spatio-temporal and/or (geo)statistical analysis of hydrological events, floods, extremes, and related hazards

gement. The
l significantly to
2014. In
pulation
is connected to
(IAS). All these
(77%) consist of
d out in
ological stage

2. AIM OF RESEARCH

analysis studies.

3. DATA

for long periods of time, is important.

•There is a high linear correlation among 3rd and 4th moments of influent BOD₅, COD, SS, T-N and T-P of WWTP distributed spatially in Greece. Particularly correlation (R²) is between 0.7

•The linear correlation between 1st and 2nd moments is not

adequate for every variable. Only NH₄-N perform correlation up

distributed in Greece

Greece.

Maria Megagianni, Evridiki Maria Barka, Panayiotis Dimitriadis, Simos Malamis, and Constantinos Noutsopoulos

National Technical University of Athens School of Civil Engineering Department of Water Resources and Environmental Engineering

4. MATERIALS AND METHODS

1) Statistical analysis on inflow variables (BOD₅, COD, SS, T-N, NH₄-N, T-P) required the estimation of marginal statistics for each of them. Specifically, for each WWTP the following statistics were estimated:

•first four classical moments (mean, Standard deviation, Skewness and Kurtosis) •first four L moments (L1=mean, L2, L3, L4) coefficients for both classical and L moments

Estimation of probabilistically weighted moments	<u>L moments</u>	<u>Classical moments</u>		
bo $= \left(\frac{1}{n}\right) \sum_{k=0}^{n} \mathbf{X}(\mathbf{j})$	L1=bo	E[x]		
b1 = $(\frac{1}{n}) \sum_{k=0}^{n} (1 - (j - 0.35)/n)) * X(j)$	L2=(2×b1)-bo	E[(x-m) ²]		
b2 = $(\frac{1}{n}) \sum_{k=0}^{n} (1 - (j - 0.35)/n))^2 * X(j)$	L3=(6×b2)-(6×b1)+bo	E[(x-m) ³]		
$b3 = \binom{1}{n} \sum_{k=0}^{n} (1 - (j - 0.35)/n))^{3} \times X(j)$	L4=(20×b3)-(30×b2)+(12×b1)-bo	E[(x-m) ⁴]		
Table 4.1 Calculation of b coefficients, L moments and classical moments				

(D. Koutsoyiannis, 1997)

L moments coefficients	Classical moments coefficients
L2/L1	E[(x-m) ²]/ E[x]
L3/L2	E[(x-m) ³]/ E[(x-m) ²]
L4/L2	E[(x-m) ⁴]/ E[(x-m) ²]

Table 4.2 Calculation of L and classical moments' coefficients (D. Koutsoyiannis, 1997)

2) Based on the above equations for each variable a series of calculations were implemented as follows:

>Overall marginal statistics for every WWTP Seasonal marginal statistics for specific WWTP (Psyttalia)

3) Spatial analysis of these marginal

statistics was carried out and particularly the correlation between different statistical parameters (e.g. mean-L2, L3-L4, Cs-Ck) and different variables (e.g. BOD₅/T-P influent - T-P effluent, COD/BOD₅ influent, NH₄-N - T-N influent) were examined.

4) Spatially analyzed marginal statistics were fitted to many distributions (Max PBF, Min PBF, Log-Normal, Gamma, Weibull, Reyleigh)

5) Two different methods (square error and maximum likelihood) were implemented for different types of distributions (Normal, Log-Normal, Gamma, Weibull) to define which one fits better in each of the influent wastewater variables (BOD₅, COD, SS, T-N, NH₄-N, T-P). The WWTP where the fitting was implemented was Psyttalia and Thessaloniki, because they have the largest treatment capacity.

6. CONCLUSIONS

➤There is a rather good correlation between average BOD₅ and COD influent. The equation that expresses this relation is: $COD = 1.97 \cdot BOD_5$

 \succ In the attempt τ o fit distributions to the BOD₅ sample, taking into consideration some of the largest WWTP in Greece (of total p.e. 6.123.532), Log-Normal and Gamma distributions present a better fitting than Weibull distribution. The same tendency appears in influent and effluent variables.

Interesting note...

There is a high correlation between L3 and L4 moments of all influent variables. Further investigation on it, could help to find an appropriate distribution that responds to influent variables.

REFERENCES

D. Koutsoyiannis, Statistical Hydrology, Edition 4, 312 pages, doi:10.13140/RG.2.1.5118.2325, National Technical University of Athens, Athens, 1997

P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, *Stochastic Environmental Research & Risk Assessment*, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018

۲S	
/astikalima	ta.ypeka.gr
//uwwtd.eu	u/Greece/
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Printing sponsor: ATTIKO METRO S.A.