EONIKO MET2OBIO NMOAYTEXNEIO
2 XOAH TTOAITIKQN MHXANIKQN
TOMEAZ YAATIKQON MOPQON KAl

[TEPIBAAAONTO2

Extreme-oriented rainfall modelling on global scale
using knowable moments

Movtelomoilnon akpalwyv BPoYOTTTWOEWY OE
TIAYKOOULAL KALLAKOL LLE TN XPNON EVYVWOTWY POTIWV

AykaBepnc NIKOAaOC
ErupBAEnwy kaBnyntng: Anpntploc Koutooylavvng

ABrva, Oktwpplog 2019



"If you can look into the seeds of time, and
say which grain will grow and which will not,
speak then unto me. "

-- William Shakespeare

"Prediction is very difficult, especially if it's
about the future."

-- Nils Bohr
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nebodoug kat tnv mapaywyn HovtéAwv. H cupBoAr Toug elSIKA yLa TNV TIPOETOLUACLA TNG
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yvwpilw otL Ba elvat ekel kot oto LEANOV YL OTLONTIOTE XPELAOTW.
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Abstract

Assessment of extremes in hydrological processes is crucial in a variety of tasks from
engineering design to risk management. Using classical moments to express important
attributes of such assessment, proves to be efficient only for low order of moments.
However, extreme rainfall events are better modelled using high-order moments. Whilst L
— moments can be reliably estimated even for those higher orders, they fail in accounting
for long-term dependence bias which exists in most large hydrological records. Thus, the
newly introduced knowable (K) moments are used to model extremes, as they provide
better grounds for prediction based on high orders, whilst retaining precision of classical
moments for low orders. This study’s findings may improve knowledge on how to correctly
model and predict such extreme rainfall events, providing comparison between the
effectiveness of K— moments and classic methods. As this is a global study using data from
the GHCN — Daily database, an attempt is made at constructing the basic framework for
correlating a distribution’s fitting parameters and regional climatic characteristics.
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OL avnoUuXieg OXETIKA UE TIC OKPALEG KOLPIKEG OUVONKEG SLOYKWVOVTOL CUVEXWG, OE La
€MOXN OTOoU N KAWLATIK peTaBAntotnTa Bploketal oto mpooknvio. H afloAdynon autwy
TWV akpaiwv ouvOnkwy, 18iwg otav avadpepopaoTe o akpalo Gavopeva USPOAOYIKWV
Slepyaotwy, ivat kaiplag onpaoctag yla pia motkiAia epappoywv and tov oxedLooUo Twy
£pywv UTIoSOUNC LEXPL TN Slaxeiplon Tou Kivduvou.

KUpLog otoxog TnG HEAETNC lvat va eTiiteuxBel n Snuoupyla evog yevikol mMAaLciou yla t
HLOVTEAOTIOLNON aKpailwv BPOXOMTWOEWV UE TN XPNoN TNG veoslooxBeioag pebodou twv
gvyvwotwyv portwv (K — moments / K — pomég). Emiong, ot 800 mo kKAaowkEg pEBodot
HOVTEAOTIOLNONG XPNOLUOTIoLoUVTAL, TIPOKELLEVOU Vo ouykplBolv kal va aflohoynBouv
OUYKPLTIKA PE TNV VEX PEBO0SO yla tnv LoxU TpoPAe G Toug. Asdopévou OTL N UEAETN
amoteAel maykooula avaiuvon, Ba xpnolpomolnBel pia kabiepwpévn Baon Sedopévwy
HETPNONC BpoxOMTWOoNg Twv oTabuwy and 0Ao Tov KOGHO, N OToLa 0TV MEPIMTWON auTh
elvat n GHCN — Daily and tov National Oceanic and Atmospheric Administration twv
Hvwpévwy MoAltewwv tng Apeplkng. Me tn xprion maykooplwv SeSopévwy, n HEAETN
OTOXEVEL OTO VA EPEUVAOEL TNV AELOTILOTLO KOL TN GUVETELD TwV K - pOTTWV YLaL TAL KALLOTLKA
XOPOAKTNPLOTIKA KABE TEPLOXNAG.

Metd tnv KoBOlEpwon Twv Omolwv TAEOVEKTNUATWY €XeL n xpnon K — ponwv, eival
UTIOXPEWTLKO VA EKTLUNBOEL N emidpacn tNC HOKPOTPOOEoUNG EUUOVAG TIOU UTIAPXEL OTO
neploootepa Seiypata Bpoxomtwong. OL K — pomég mapExouv To MAALCLO yLa TNV EKTLUNON
QUTNC TNC pepoAnPiag. TUVENWG, N TTOCOTIKOTOLNUEVN HepoAnPia mou mpokaAeital ano
TNV HOKPOXPOVLO EUHOVI) TIPOOTIBETAL OTO TEALKO MOVTEAO KoL QUTO UE TN OELPA TOU
OUYKPLVETAL LE TO (610 LOVTEAOD QyVOWVTOG TNV EUHOVI). AUTO €XEL WC amoTéAeopa va pavel
N ONMOVTLIKI ETLPPON TIOU KATEXEL N HepoAnULa auTr) OTLG TEALKEG TPOPBAETIOUEVEG TIUEG
Bpoxontwong.

TENOG, UTLAPXEL TTPOOTITLKNA OTNV AVAAUGCN TNG KOTAVOUNRG TWV TOPAUETPWY TTOU TIPOKUTITOUV
and T Bewpntik cuvaptnon Katavoung mbavotntag. H avaAuon auth yivetal oe
OAOKANPO TOV KOOWO YL TNV £EEUPEDCN CUOXETLOMOU HETAEY TWV TLLWV TTOU AapBavouv Kat
TWV KALLOTIKWV XOPAKTNPLOTIKWY TNG KABE TEPLOXNG. 2TO MEPAC TNG LEAETNG QUTNG, UIMOPEL
va koBoplotel éva yevikO MAALOLO QVOUEVOUEVWY TIUWV TIOAPAUETPWY YLa UEANOVTLKN
avadopa.

Ocov adopd TG akpaieg BPOXOMTIWOEL], OMWG Kal OAQ T UTIOAOUTA aKpaid KALPLKA
dawoupeva anoteAolV GUGCLKO UEPOG TOU KALUATIKOU cuotnuatog t¢ ng. Ou akpaleg
eKPAVOELS TNG KaTakpnuviong Ba mpémel va avapévovtal, kol ekdppalovial eite oav
HOKPOXPOVIEC Enpaocieg, elte oav ocuxvég epdavioelg Bpoxwyv. Qotdco, autd ta akpaia
YEYOVOTA €XOUV ONUAVIIKO QVTIKTUTIO oTnV Kadnuepvi avBpwrivn {wr), oTLG UTTOSOUES,
KaBwg Kat oto mepBaiiov.

Ztnv enoxn TnG eUdavoug KALLOTIKAG LETOPANTOTNTOC OL AVNOUXLEG OXETIKA UE TLG AKPALES
KALPLKEG ouVONRKeg ofuvovtal. ZUpdwva pe TN AlakuBepvnTikn Emttpomnn yla tTnv KALLATIKN
oAlayn (IPCC, 2012), mpémel va 600¢el n peyaAutepn mpoooxr otnv aflomiotn npoPAsyn
akpaiwv epdavicewv onoloudnmnote eidoug puoiknig dtadikaoiag. H ékBeon autr avédepe



eniong €peuveg mou Oeilxvouv OTL Ta POVIEAQ Tou afloAoyouv mapeABovia yeyovota
umoSelkvUouV pLa eAadpd avénon Twv akpaiwv GuoLKWV YEYOVOTWV.

Mo cuykeKpLUEva, INULEG otV LolokTnota kot to meptBaAlov (loss events) mou amodidovtal
oe akpaia patvopeva udpoloyikng dpuong epdavilouv ouvexn avavopevn eudavion ano
™ Sekaetia tou 1990 péxpl onuepa. Evw n emidpavelokr avaAuon UTIOSELKVUEL CUCKETLOUO
HETAEL TOU aplBpol TwV MANUUUPWY KAl TWV YEYOVOTWV QMWAELAG, E(VOL ONUAVIIKO Vol
AndBoUv uToYPn oL AUENUEVEG EKTACELG YNG TTOU XPNOLUOTIOLOUVTOL TWPO YLOL OTEYACN KOl
Blopnxavik umodoun, oL OmMoieg UmopoUV KAAALOTO VOl OMOTEAECOUV TOV AOYO yla TNV
avénon auti Twv yeyovotwv amwAslag. Omowodnmote amd ta dUo Kol va LoXUEL, TO
CUUMEPAOUA lval To (Sto.

O ONUAVTIKOTEPOC KivOUVOC o TIG aKpaileg BPoXOMTWOELG ival ol MANUUUPEG. ZUUdPwva
ue tov Opyaviopud Otkovoulkng Zuvepyaoiog kat Avamtuéng (Organization for Economic
Cooperation and Development), ot TAnUuUPEC pokalolv etnoiwg $40 Sio. exat. {nuisg,
TOOO O€ KOTOLKNUEVEG TEPLOXEC OCO Kal Ot UTIOSOHEC. Ao To 1995, oL MANUUUPES
armoteAolV T0 43% OAWV TWV PUOIKWV KATAOTPOPWY TOU OXETL(OVTAL HUE TOV KALPO Kall
ennpPealouv OUVOAIKA 2.3 81C. €KAT. ATOMA. Y€ OUVOUAOUO HE TNV KATAOTpOdn Twv
avOpWILVWV TIEPLOUGLAKWY OTOLXELWV, oL {Nuieg ot yewpyia odeilovtal katd kUpLo Adyo
oo TANUUUPEG, TPAYUO TIOU ONUOlvVEL OTL UTIOVOUEUETAL N UTIKA Tapaywyn,
TIPOKAAWVTAG {NULEC KOL OTOV XPNUOTOTILOTWTLKO TOUEQ.

ATO ETLOTNUOVLKA OKOTILA, N YEVIKEUUEVN LEAETN TNG KOTOVOUNC TWV BPOXOMTWOEWV LLE TNV
TIAPOSO TOU XPOVOU VL0 MLl CUYKEKPLUEVN Tieploxn elval {WTIKAC onuooilog yla tnv
afloAdynon tng moootnTag vepoL Tou StatiBetal yla tv KAAuYPn TwV oMOLTHOEWV TNG
Bopnxaviag, tng yewpyilag n aAwv avBpwriivwv dpaotnplotitwy. Qotoco, n akpifela
otnv TPOBAePn akpailwv yeyovotwv elval emiong onuavtiki, 6edopévou  OTL
XPNOLLOTIOLOUVTAL YLot TOV OXESLAOUO KAl TNV KOTOOKEUN €pywv Tou Tpoopilovial yla
OKOTIOUG SLaxelpLong Tou vepou, OmwG ppayuata, Epya Slaxeiplong MANUUUPLKOU KvdUVou
KOl UOPONAEKTPIKEG MOVASEG nAekTpomopaywynG. YMOEKTIHWVIAG To MEyeBOC NG
Bpoxontwong, eivat BERalo 6t Ba obnyrnoel oe amotuxieg N avemapkn aupAuvon twv
TANUUUPpWY, BETovTag o€ KivOuvo KATOLKNUEVEG TIEPLOXEC Kol avBpwrveg {wéG. AvtiBeta,
N UTIEPEKTINON TOU 08nyel 0€ OLKOVOUIKEG {nuieg, dedopévou otL Ba xpnotponownBolyv
TIEPLTTOL TTOPOL VLA TNV KATACKEUN KoL TN CUVTHPNON TOU EKACTOTE €PYOU.

MapoAo ou N xpron TNG VIETEPULVLOTIKAG TTPOCEYYLONG yLa TNV BpaxunpoBeoun mpoBAsyn
Bpoxomtwoewy elval EPLKT UE TA GNUEPLVA TEXVOAOYLKA TIPOTUTIA KOL TOL LETEWPOAOYLKA
HoVTéAa, Sev elval duvatn n xprion tng 6cov adopad TG Lakpompobeopeg poPAEYELS, o
evbladépouv to oxeSLACUO KaL TN KATAOKEUN TWV HEYAAWY €pywV UTTOSOUNAG. Z€ AUTO TO
TAQLOLO, Ol BPOXOTTWOELS TIPETEL VA OVTIUETWILIOVTAL WG ML TuXaila peTaBAntrh mou
oakoAouBel pla kabBoplopévn ouvaptnon KATtavoung mbavotntag, n omoia TMapEXEL TN
Suvatdtnta ouvdeong meplodwyv enavadopdg oe TIHES Bpoxomtwong (Papalexiou et al,
2012). H ocuvon ¢ yevikng Stadikaoiag povtehomoinong mapatibetal mopakatw:
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Bpoxomtwon KOTOVOMNG

Ewova 1: Zuvoyn dwadikaciog emiAoyng KAtdAANANG KOTAVO UG

Me Baon ta gupripata twv Papalexiou et al (2012), ot Baplég (6oov adopd TNV oupd)
KOTOVOUEC €lval TO KATAAMNAEC vyl TNV Tepypadrn Twv HOKPOTPOBECUWV
XOPOAKTNPLOTIKWY TNG Ppoxomtwong Kol blaitepa TI¢ akpaieg TWEG TnG. Etol, Paplég
KQTOVOUEG XPNOLULOTIOLOUVTAL YLO TN LOVTIEAOTIOINGN KAL TILO CUYKEKPLUEVA N TEVIKEUUEVN
Katavoun Pareto (Generalized Pareto Distribution) kat n Pareto-Burr-Feller (PBF), n onoia
elval pa 8k mepimtwon tng Katavoung Burr mou amodeixbnke pabnuatikd amnod tov
Feller (Dimitriadis, 2017).

H F'evikeupévn Katavoun Pareto (GPD) petd tnv cupBoAn kat tou Pickands (1975) éktote
£XEL XpnoLuomolnBel ektevwe og TIOAAOUC TOUEIC TNG ETLOTNLOVLKAG €PEUVAG. OPLOUEVEC
ano T £PAPUOYEG TNG KAAUTITOUV OVAAUCHN OKPalwv YEYOVOTWV 1 HOVIEAOTOLNON
HeEYAAwWV aopoAloTikwy ditekdiknoswv (Hosking & Wallis, 1987). AmoteAsl pla olkoyEveLla
OUVEXWV KATOVOUWV TTUKVOTNTOC TBavotntag, Kal ekppaletal and TPELG MOPAUETPOUG:
Aeiktn oupadg k, KAipaka A (A b), kaw 6éon . Mo T HEAETN QUTN:

A. Mapolo mou n Xprion Kol TwV TPLWV TAPAUETPWY Ba €xel wg TBaVO amotéeoua
peyaAUtepn cuvoAlkn akpiBeLa, n mapauetpog Béong éxeL oplotel Y = 0, wote va
glval puoLKA CUVETHC E TO XAUNAOTEPO OPLO TNEG PPOXOMTWONC TO OTOLo £ival To
UNGEv.

B. Nax = 0 n katavoun Pareto LETATPEMETAL OTNV EKOETLKI KOTAVOUN.

C. Ta Kk <0 n oupd teivel tayutepa oto UNdEV Kal Bewpeltal «eladppd» apa
akataAAnAn yia tn Stadikacia tg Ppoxomtwong. Tautoxpova, KOTAVOUEG WE
apVNTLKO Kk elval avw dpaypEVeC To omolo eival puaotka AavBaopévo.

Opolwg pe tn Fevikeupévn Katavoun Pareto, n Pareto-Burr-Feller (PBF) elvat pila mapoépota
KOTAVOUN LE TPELG TOPAUETPOUC. Elval pla KAaTavoun mou XpnoLoTmoLeital Kuplwg otnv
Owovopetpia (Singh & Maddala, 1976), kat epdaviletal kat wg Pareto IV 3 Burr XII. H
napaywyn tng PBF peAetBnke amod tov Burr (1942) kat anodeixBnke pabnuatikd anod tov
Feller (1970) o omoiog tn ouvédeoe Pe TNV cuvaptnon BAta Kot TNV avtiotolyn Katavoun
™G. H xpnootntad tn¢ o€ pLa molkidia mediwv peAetribnke amnd tov Brouers (2015). Ze auti
TN UEAETN, Xpnoluomnoleitat oe cuvbuaoud pe tnv GPD yla t povtelomoinon akpoiwv
Bpoxonmtwoewv, Sedopévou OTL N PooOnKN LLaG TPLTNG MOPAPETPOU Utopel va amodelxBel
enwdeANG yLa TNV akpiBeLla Tou TEALKOU LOVTEAOU.

H xprion Twv oTOaTLOTIKWY pontwVv MpocodEpeL Tn duvatdtnta neplypadrg TwV KATAVOUWY
mBavotntag pe peyaAn eukoAia (Feller, 1968). Katd tnv avaAuon €vog HETPHOLUOU
HEYEBOUC yLa SLadOPETIKEG XPOVLKEG KALUAKEG, OTEKOVTAL WG TO BACLKO epyaleio yla To
OTOXQOTIKO XOPAKTNPLOKO TNG oAAQYAG KoL TNG METAPBANTOTNTAG, TA OTola armoteAouv
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ONUOVTLKA XaPaKTNPLOTIKA KABe dpuaikng diepyaoiag. Qotdco, TOG0 oL KAAGIKEC 00O KOl N
L — pomég, oL dU0 Paclkéc HEOBOSOL yla TOV XAPAKTNPLOUO HLOG KOTOVOUNG, €XOUV
HELOVEKTHLOTAL.

OL KAOOLKECG POTIEG, KEVTPLKEG 1 LN KEVTPLKEG, SV UmopoUV va ekTipnBouv aflomiota anod
peyaAa Selypata yio tagelg peyaAvtepeg amo 2 1 3 (Lombardo et al, 2014). Onwg
e€etaotnke amo tov Koutsoyiannis (2019), yia uPnAég TALeLlC (p), N EKTLUATPLO KAOOLKNG
POTING QTELKOVI(EL pia aKpalo TTOoOTNTA KAl MAPOUCLALEL CNUOVTLKA apyry oUYKALON OTh
Bewpntik TLUA. AUTO 0 CUVOUAOUO LLE TO YEYOVOC OTL OL TTIEPLOCOTEPEC YEWDUOIKEG KOl
udpoloyikég Slepyacieg dev akoAouBoUV TNV KAVOVLKI) KATAVOWUT, ONUOLVEL OTL Ol KAAOLKEG
pnEBodol Sev eival LOAVIKEG yLa va XOpAKTNPLOTOUV OL KATAVOUEC aglomLoTa.

AvtiBeta, oL L — pOmEG, EKTLLWVTOL AKOUN Kal av LOVo N mpwTtn KAaoKn pomh (LEcog 6pog)
elval menepoopévn. To TO ONUOVTIKO MELOVEKTNUA TOUC €ilval n avikavotnta va
XOPAKTNPL{OUV KAl VA EKTLHOUV TNV EUMOVA OTOXAOTIKWV Slepyactwy. H gppovr, onwg
npoavapEPONKe, amMOTEAEL ONUAVIIKO XOPAKTNPLOTIKO TWV TIEPLOCOTEPWV YEWDUOLKWV
Slepyaoctwy Kat eivat amapaitnTto va urtoAoyilletal n enppon Tng.

OL akpaieg TIHEG BplokovTal 0TV OUPA TNC CUVAPTNONG KATAVOUNG, £T0L cuayeTi{ovtal
oteva pe pomég uPnAng taéng. OL K — pomég, ouvdualouv Ta MAEOVEKTALOTA TWV KAQCGIKWV
Kal L — pormwyv, emutpénoviag tnv aflomiotn eKTipnon Kot meplypadn TwV OTATIOTIKWY
XOPAKTNPLOTIKWY UPNAWV TALEWV, EVW TTAPAAANAQ TTOPEXOUV TO TTAQLOLO YLOL TNV EKTIUNON
NG LOKPOTIPOBEGUNG ELHUOVAG.

OL EKTLUATPLEG TWV UN KEVTPLKWYV KAL KEVIPLKWV OEPOANTITWY K — portwyv opilovtal wg:

n
Kpq = Z bi,n,p—q+1£gi:n) (1)
i=1
n
p1 = Z bimp (X(im) — 1) (2)
i=1
UE TOV by, VOl QVTLOTOLKEL OE:
0, i<p
= r'n-— 1 rd
by =4 PI(n—p+1) (@) i>p>0 (3)

n I'(n) TIl-p+1)
omnou:

X, Elval TO Ta§LVOUNEVO CUVOAO TWV TTAPATNPROEWY Katd avéovta aplOuo.

I elvaln ouvdaptnon Mapa kat p opiel TV TAEN TNG POTING KOl Umopel va eival
omoloodnmote BeTKOG aplBuog, cuvnBwe aképatog, aAAd autd Sev eival
amnopaitnto.

U €lval n péon tun tou delypartog

H apepoAnyia tng kevtpkng K — pomng emttuyxavetal povo ya g = 1 aAha autd
ETOPKEL YLO TOUG OKOTIOUC TNG LEAETNCG.
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H mpaktikn onpacio tou 6pou by, elval To yeyovog otL kabwg n pomh avéavel og taén (p)
OMo katL Ayotepa Sedopéva amnod to delypa kabBopilouv tnv TeEAKNA ektipnon tng K — pomnc.
AuTO amodelkvueTal amnd To YeYovog OTL by, = 0 yia @ < p. Apa, weyalUtepn gudaon
Sivetat og uPNAOTEPEC TLUEG TOU Selypatog, armo O, TL 0€ XaUNAOTEPEG, TO OTIOLO UE TN OELPA
Tou avoiyel to Spoéuo yla mio oakplBn ektipnon pomwv uPnAng Taéng He eAAaxLotn
UTTOAOYLOTIKI) LOXU, £TOL N HOVIEAomoinon akpaiwv ¢GAVOUEVWY ETUTUYXAVETOL ME
HEYAAUTEPN TaxUTNTA Kal akpiBeLa.

H povtelomoinon He TG mapandvw HeBOSoUC oToxeUEL TTPAKTIKA OToV aKpLBr) oplopd
TILWV BPOXOMTWONG O CUYKEKPLUEVEG TIEPLOSOUC emavadopds. H avtiotoixion neplodwy
enavadopag o MAPATNPOUUEVEC TILEC ELVAL ONUAVTLKH YLOL TNV OTOXOOTLKH LlOVTEAOTIOLINGN
TWV OKPALWV TIHWV. A0 ToV apXLlkd oplopo toug amo tov Fuller (1914), n évvola tng
TEPLOSOU emavadopdg elvat KPLOLUN yLo TOV OXeSLOOUO Kat TNV aloAdynon Twv Kvduvwy
TWV TIEPLOCOTEPWV KATACKEVU WV, TIOPEXOVTAG T HECO AfLOAOYNONG TNG CUXVOTNTOC TWV
okpaiwv yeyovotwv. e Opou¢ mBavotntwy, n TEeEpiodo¢ emavadopd¢ ocuvdEsTal
QVTLOTPODWC UE TNV MLBavotnTa UTEPBAONG ULOC CUYKEKPLUEVNG aflag pLaG HETOBANTAG
apa €XEL AUECN OXEON UE OTOTLOTIKA avaAuon taflvounpévou delypartog (order statistics).

Me tnv (6la vootporia, adol ol K — pomég elval KATAOKEUAOUEVEG e BAon TIG BEWPNTLKEG
L8LOTNTEC TNC OTATIOTIKAG Taflvopnuévou Seiypatog, sival mpodaveég OTL Umopouv va
OVTLOTOLXLOTOUV KoL Tteplodol emavadopag o€ aUTEC. AUTO ESPALWVETOL LE TOV OPLOUO TWV
A\ — CUVTEAECTWV OL OTIOLOL XPNOLUOTIOLOUVTOL YLl TNV QVTLOTOLXLON EUMELPLKWY TIEPLOSWV
enavadopag os kaBe umtoAoyllopevn K — pormn.

Inuovtikg otnta Twv K — ponwv elval kat n tkavotnta UToAoyLopoU TnG HepoAnyiag
AOYW HOKPOXPOVLAG EUHOVNG. H BewpnTikn €vvola TNC HOKPOXPOVLAG EULOVAC, N omola
UTIAPXEL OTLG TIEPLOOOTEPEG PUOCLKEC SLEpyaTieg, CUUTIEPIAAUBAVOUEVWY TWV BpoxomTtwaong,
avakaAudpOnke and ta €pya tou H.E. Hurst (1951) mou omoudale TG LaKPOMPOBETES
XWPNTLKOTNTEG TAULEUTNPWV. MpLv amod auto, o A. Kolmogorov (1941) édwoe pabnuatikod
OpPLOMO OE QUTH TNV £vvold, EVW QVEAUCE TA XAPAKINPLOTIKA TNG TUPBNG. ZAUEpQ,
avayvwpiletalt wg to ¢awvopevo Hurst i oupnepidpopad Hurst-Kolmogorov (HK) kot
TLOCOTLKOMOLE(TaL amd Tov ouvieAeotn Hurst (H).

O UMOAOYLOPOG TOU TPAYUATOMOLEITOL MEOW TNG KAlong tou Bswpntikov K -—
KALLOKOYPAUHUATOC. To TEAEUTALO SEIXVEL TIC APEPOANTITEG KEVTPLKECG K — pOTIEG OE OXEDN LE
TNV XPOVLKA KALHAKQ, EVW TO KAAGLKO KALLAKOYPA LA TIapouactdlel Tn SLacTiopa o€ oxEon
HE TNV XPOVLKNA KALpOKA.

Mépa amnd 1o Bewpntikd umoBabpo Twv pueBOdwv ou Ba xpnotpomnolnBouy, MPEMEL va
emleyel KatdAAnAn Bdaon Sedopévwv Bpoxomtwong n omoia Ba mAnpol TG akOAoubeg
QAT OELC:

o Huepnoleg petprioelg Bpoxomtwong mpEMeL va xpnotpornotnBouv (Min et al, 2011).
MeyoaAUtepeg XpOVIKEG KAlpakeg, dev delyvouv aflomiota Tn ouxvoTnTA KAl TNV
€Vtaon TwV aKpoilwv TLUWV.

o Aebopévou OTL 0O AMWTEPOG OKOTOG €lval n aLomiotn TPOPAEYn TwWV yEyoVOTWY
aKopn kat yla opifovra avw Twv 1000 eTwv, TA LOTOPLKA SeSopEva TIPEMEL VAL EXOUV
HAKOG avw Twv 30 €TWV yla TOV EMAPKA TPOCOLOPLOUO TWV ETUMTWOEWV TNG
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HOKPOXPOVLIOG EUMOVAG oTo Selypa, n omola amoteAel avamoomooto UEPOG TNG
Stadikaciag poviehomnoinong.

o T va amodelyBel n amoteAeopatikotnTa T dtadikaoiag povteAomnoinong, mpEmel
va xpnotuomnotnBouv otabuol mou untdyovtat o OAa Ta €16 KALLATWV.

o H Baon 6ebopévwv MPEMEL va TTOPEXEL OOOUG TIEPLOCOTEPOUG OTABUOUC yiveTal,
WOTE TO TEAKO amotéleopa va ovodelkvUel o€ peyoAUtepo PBabuo tnv
QTITOTEAECUATIKOTNTA TNE HEBSGSOU.

H kataAAnAdtepn Baon debopévwy kpiBnke n GHCN — Daily dtaBéoun dwpedv and tov
tototono tou NOAA. MopeExel PEXPL OTLYUNG NUEPNOLEG UETPNOELG KATAKPNUVIOEWY yLa
112,777 otaBuoug ano to {edlaAeypa Twv onoilwv TeAkA anopévouv 34,784 mpog xprion
oTnV mopouoa UEALTN.

H Stadikaocia povtehomoinong Eekvael e Eva MapAadeLlypo VO ETIAEYUEVOU oTABUOU Kal
HETA Oa yevikeuBel oto gupUTEPO CUVOAO TNG Baong dedopévwy. Na To MapAdelypa
€TUAEYETAL 0 OTABUOG «SZ000002220» pe cuvtetayuéveg [47,250, 9,340]. Bploketal otnv
enapxio AmevieA, n omola ivat BopeloavatoAlkn meploxn tng EABetiac. Mo cuykekpLUéEva
Bpiloketal oe pa kopudry Bouvol tTwv AAewv Tou AmeviéN, mou cuvhBwc ovopaletatl
Santis. OAa ta Sedopéva kapol amod TNV apxf TNG AELToupylag Tou HEXPL OAMEPQ,
ouykevtpwvovtatl otnv GHCN — Daily. Emtetta oo nolotikod €Aeyxo, n Baon Sedopévwy pHéxpL
onuepa TePLEXEL 43,276 NUEPNOLEC TTAPATNPNOELG, TIOU OVEPXOVTOL OUVOALKA o€ 119 €1t
OUVEXWV HETPROEWV.

H dwadikaoia povtelomoinong eivat Eekabapn yla T KAAOIKEG HeBOSoUC Kat TtepAapBavel
TNV XPr1on TwV MPWTWV 2 POTIWV KL TIC OEWPNTIKEG OXETELG UTTOAOYLOLOU TWV TTOPUUETPWY
™¢ mpoavadepbeioag katavourg Pareto, avtiotolxa. Ocov adopd t¢ K — pomég, n
Sladikacia propet va opyavwBei ota €€n¢ Brnarta:

A. Me ) Xxprion OAwV TwV TIUWV Tou SelYHATOC EKTOC TWV UNOEVIKWY, EKTLLWVTAL OL
QAUEPOANTITEG KEVTPLKEG K — poTtég (2), yia g = 1 kaw yia p €wg 1/10 to péyebog Tou
Selyuparog.

B. To K — kKAlpakoypappa kataokeuadletal pe faon tig mpoavadepOeioeg kKeviplkeg K
— POTIEG KOl Yot KALMaKEG Ewg 1/10 Tou pey£Boug tou delypatog. Ao tnv kAlon tou
ylo LEYAAN XPOVLKH KALLOKA EKTLUATAL O CUVTEAEOTAG Hurst.

C. EKTLHWVTOL OL N KEVTIPLKEG apePOANTITEG K — porég (1), yia g = 1 ko yLa p LéxpL To
péyebog tou Selypartog n.

D. Avdahoya pe to péyeBog Tou ouvteleotr) Hurst ektipdtal kot AapBavetal umogn n
pepoAnyio Adyw HaKpOXpOvIaG EUUOVAG (3) OTIC KN KEVIPLKEG apePOANTITEG K —

POTIEG (4).
2H(1 - H) 1
HK ~ —
O )~ — o o e )
K =Ky, = (1+60)Ky, (5)

E. Me 1g Bewpntikég €€lOWOELG TwV ouvteAeotwv A yla tnv kKatavour Pareto, ol
EUTELPLKEC TIEPLObOL eMavadopdg amodidovtal oTIg pn KEVIPLKEG K — poTEG.



F.

G.

KaBopilovtag éva onueio ekkivnong tTwv k Kot A (MAPOUETPWY TNG KOTAVOUAG
Pareto), ektipwvtol oL BewpnTIKES Ttepiodol emavadopag.

Xpnowuomowwvtag évav alyoplBuo PeAtiotonoinong, n kaAltepn BewpnTiki
TIPOCAPUOYH TOPAYETAL HE TNV €Aoylotomoinon Tou odAApATOG HETafl Twv
EUTELPIKA  QVTLOTOLXIOUEVWY TEPLOSWV  emavadopdc Kal TwvV avTtioTolXwv
BewpnTIKWVY. Z€ AUTA TNV MEPIMTWAON, XPNOLULOTOLOUVTOL Ta EAAXLOTO TETPAYWVA
(LSE). Aebopévou OTL OKOMOG QUTAC TNG MEAETNG €lvol va HOVIEAOTOLNOEL
QTTOTEAECUATIKA TLC AKPALEG TIHEG, KaBopIlovVTaG EVa KATWTOTO OPLO OTLC EUTIELPLKES
neplodoug emavadopads (T > 1 ypovo) kat ehaxiotonolwvrog to LSE og autd to
€UpoC emLTuyxavetal n BEATotn mpooappoyn yla autd. H suelifia tng pebodou
gilvat mpodavng, kaBwc to Lovtélo pumopei va BabpovounBet yia va avadépetal o
omnolodnmnote eVpog nepLOdwv emavadopag.

MNapayetal AoyaplOuiko Staypappo He Katakopudo atova Tig EVTAoELS BpoxnG Kal

opLlovTLo TI¢ teplodoug emavadopag.

AkolouBwvrtag auth ™ HEB0do, yivetal avtiAnmto ot divetal peyaAltepn €udacn otnv
oupa TNG Katavoung. ETol, oplopéveg ¢opéc, evw elaylotomoleital to LSE o éva
OUYKEKPLUEVO €UpOC TepLOdwY emavadopac, To XOUNAOTEPO UEPOC TNC KaTavoung Sev
npooapuoletal Pe Tov KAAUTEPO TPOMo. Evw n akpifela Buotaletal oTig XapnAOTEPEC TLUEG,
N okpiBela otig akpaieg TIHEC elval Lo onpavtikr, dedopévou ekel Sivetal mpoooyn amno
TLC TTIEPLOCOTEPEC UEAETEC OXESLATHOU €pYWV Kal EKTiNONG KvdUvou. H mpooappoyr) OAwv
TWV peEBOdwV mapouotaleTal TaApoKATW.

H néBodoc twv K — pomwv UTEPLOXVUEL GNUAVTIKA TWV KAOCLKWY 0TV avoPEPOUAOTE OE
oKpaieg TLHEG Bpoxomtwong. MapoAa autd, SelXVEL pLla OXETIKI aduvapio 0g OXEON LE TIG
KAQOLKEG HEBOSOUC OTIG XOUNAEG TLHEG. H peTayevéoTepn xprion tn¢ Pareto-Burr-Feller, pe
NV MPooBnkn TNG EMUMAEOV MOPAUETPOU, AUVEL AUTO TO TIPOBANUO.

Nivakog 1: AmoteAéopata TPOCAPHOYNG KOTOVOUNG Kal andodoon HeBOSwV yLa TG aKPOie KaL TLg
XAUNAEG TLHEG, AAAA Kall CUVOALKA

Method K A RMSE | RMSE | RMSE | NRMSE | NRMSE | NRMSE
High Low Total High Low Total
Classic moments | 0.158 | 11.047 | 39.413 | 2.620 | 27.257 | -0.177 | 0.895 0.521
L - moments 0.278 | 9.474 | 163.476 | 9.858 | 113.001 | -3.883 | 0.603 | -0.998
K - moments 0.046 | 15.000 | 5.921 | 3.820 | 4.933 0.823 0.846 0.913

Nivakog 2: AVOUEVOUEVES TIHEG BpoxomTwong yia Stddopeg teptodoug enavadopdg (o xpovia), He

XWpLG TNV emippor] Tt pepoAndiog Aoyw pakpompoOeounG ELUOVAG

Katdotaon Avapevopevn Bpoxontwon (mm/d)
MepoAnypiag T =100 T = 1000
ApepoAnmro 178.85 230.21

Me pepoAndia 187.86 245.58
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Awdypappa 2: TeAkn pooappoyn Pareto-Burr-Feller yia th pébodo twv K — pontwv

Itn ouvéxela n Stadkaocia mapaywyng HovtéAou yivetal yla kaBe otabuod tng Baong
bebopévwy kal mapouctalovtal OTATIOTIKA OTOoLEla yla Tnv amodoon twv pebddwv
xpnowuomnowwvrtag ta epyaleia NRMSE (Normalized Root Squared Mean Error) kat RMSE.
To oddaApa NRMSE Seiyvel Tnv andédoon Tng mpooappoyng Tou BewpnTikol LOVTEAOU OTLG
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TOPOTNPOUUEVEG TIHEC. Ooco mo Kovtd otn 1, tOoo KAAUTEpO TO Movtélo. Omnwg
mapouotaletal kat oto Awdypappa 3, ot K — pomég eudavilouv 10 ULKPOTEPO TTOCOOTO
otaBuwv pe T NRMSE xapnAotepn amo 0.8. To i6lo .oVl Kal yLa TG akpales TIHEC, EVW
YLOL TG LLKPOTEPEC TLUEG UTIEPTEPOUV EAAXLOTA OL KAQOLKEC pHEBOSOL.

Cumulative Frequency - Overall NRMSE
100

=K -moments e=——=Raw Moments ==L -moments

Cumulative Frequency (%)

0.00 0.10 0.20 030 040 0.50 0.60 0.70 0.80 0.90 1.00
NRMSE Value

Awdypappa 3: ABpoiotikr) ouxvotnta cuvoAltkwv NRMSE yia 0Aeg Tig pefodouc. Ot eTLKETEG SESO0UEVWV
Sei)vouv 10 T0C0OTO TWV OTABUWV OOV N EKTLHWHEVN T Tou NRMSE givau xapnAotepn ano 0,8.

Rainfall Values - Difference
T =100 years

2500 0.90

0.88

2000 0.86

[ Rainfall Values
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0.80
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1000 0.78

Hurst Coefficient

0.76

500

0.74

0.72
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Percentage Difference (%)

Awdypappa 4: Nocootiaieg Stadopsg petald npooapoyng pe pepoAndia kat apepoAnyia. H ypapun
avTLpoowneLEeL TN Héon T Hurst yia KOs meploxr) mooootwv.
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To Aldypappa 4 deixvel tnv nocootiaia dtadpopd HETALY TWV TIHWV BpOXOMTWOoNG yla Thv
ev Aoyw mepiodo enavadopag. Ol TIpES TNG Bpoxng, deixvouv ocadn emppon tng SoUNG
e€dptnong oe akpaia yeyovota. Ta dedopéva TOU LOTOYPAUMATOC Omelkovilouv OTL oL
TepPLooOTEPOL oTaBpol Sev udiotavtal peydAn cuvoAlkn aAlayn oTnV TEALKN TN, aAAA N
oAAayr QUTH CUCXETL(ETAL OTEVA UE TNV TLUN TOU cuvteAeotn Hurst.

Evw o ouvteAeotng Hurst Sev elval n povn mapAPeETPOC TOU EMNPEALEL TNV TTOCOTIKOMOINON
NG MPAYHUATIKAG Sladopds HETAEY TWV TEALKWVY TLLWV TOU HOVTEAOU, Elval TapoAd auTd N
To Loxupn. Ooo vPnAodtepn eival n moocootiaia alhayr, Toco uPnAdTeEpPOC gival 0 LECOG
ouvteAeotng Hurst, apa mapouoialouv uPnAn BeTikr) cuoxETon PETAEL TOUC.

Tail Index ()

Tail Index Value (k)

Ewova 2: Maykoopia Katavoun cuvteAeot oupdg (k)

Scale Parameter (1)

\ N
15 20 25
Scale Parameter (\)

Ewova 3: Maykoopia Katavou ouvteAeotr KAipakaog (A)
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T€Aog, yilvetal mpoomABela CUCYXETLONG TWV TILWV TWV TTOPAUETPWYV TNG Katavoung Pareto
HE TA KALLOTLKA XOPOKTNPLOTIKA TNG €kAoTtote meploxng. Ooov adopd Tov cuvteleotn
oupag (k) mapatnpeital 6tL epdavilel XAUNAEG TILEC OE TIEPLOXEC TTOU KOTAYpAPETAL CUXVA
KOl onuovtiky Bpoxomtwon KaBoAn tn SLAPKELA TOU XPOVOU, OTIWGE TIEPLOXEG KOVTA OTOV
lonuepwvo (m.x. Bpalihia, Ivéia, Me€ko) (Elkova 2).

Opolwg, yla tov ouvteAeot KALLakaG (A) mopatnpeitot OTL yLa TEPLOXEC TPOTILKOU KALHLOTOG
maipvel LeyaAUTEPEC TIUEG, EPOOOV EXEL BETIKA CUOXETLON LE TO PEyEBOC Tou pEoou Opou
Bpoxomtwong yla kaBes otabuo (Ewkova 3)

TOl CUUTMEPACLOTO TIOU TIPOKUTITOUV OO TNV XPrion Tng LeB6dou Twv K — pomwv cuyKpLTIKA
LE TIG KAQOLKEG peBOdouC elval:

o H péBodoc twv K — ponmwv elvol OmMOTEAECUOTIKOTEPN QMO TIC KAQOLKEG,
nipoPAETovVTaG afLOTILOTA TA AKPALO YEYOVOTA OTLG TIEPLOCOTEPEG TIEPUTTWOELG YL
uPnAéc meplobouc enavadopdag. Qotoco, OSebopévou OtL n  Sadkaoia
TIPOCAPLOYAG TtpayUaTonoleital pe aAyoplBuo BeAtiotonoinong, eotiacn Sivetat
OTNV KAAUTEPN TIPOCOPUOYN YLO OKPOLEC TLUEG, £TOL UTIAPXEL eAadpd amwAELL
aKpIBELAG OTLC AVTIOTOLXEC XOUNAEG, LE TIG KAOOLKEC LEBOSOUC va Selyvouv eAayLota
KaAUtepn epapuoyn.

o H katavoun Pareto-Burr-Feller, pe tnv xprion tng emutAéov MAPAUETPOU, Slatnpel
™V TEAELOQ TIPOCAPUOYH OTNV 0UPQ, VW TIAPAAANAQ TN BEATIWVEL yla XAUNAEC
TeEPLOSoUC emavadopag, ETUTUYXAVOVIOC YEVIKOTEPA TNV KaAutepn duvarth
nmpooappoyn ota dsSopéva.

o H pakponpdBsoun gupovh €Xel PEYAAO QVTIKTUTIO oTa TEALKA amoteAéopata. H
noocootiaia Stapopad otig uPnAég meplddoug emavadopag eivat un apeAnTEQ yla
otabuoug pe ouvteheotn Hurst mavw amoé 0.70. Xwpi¢ va cupmnepllappavetal n
puepoAnyio AOyw €UUOVIAG, OL OKPALEG BPOXOMTWOELG UTTOEKTIHWVTAL Tautdxpova,
anodelkvUETaL N Loxupn Betikn cuoxétion HeTafl Tou ouvteheotr Hurst kal tng
Sladopadg Bpoxng yLa LeyaAeg mepLodoug enavadopag.

o Ano tnv mepattépw OSlepelivnon TNG CUOXETLONG METALY TWV KALLATOAOYLKWV
XOPOKTNPLOTIKWY Kol Tou Selktn oupdg, KAlpata pe otabepd auENUEVEC TLUEG
Bpoxomtwaong, OMw¢ To TPOTLKO (lonuepLvog), mapdyouv Kuplwg XOUNAEG TLUEG.
AvtiBeta, oL otabuol mou Bpiokovtal oe Avudpo 1 HeCOYELOKO KAlHQ, oL omoiot
Aappavouv Katd HEco 0po XOUNAEG BPOXOTITWOELS E TLG OTIAVLEG OKPOLLES TLUES Va
elval onuavtikd vPnAoTePECG amod To Kavoviko, Selxvouv TG UPNAOTEPES TIUEG TOU
Seiktn petafL OAwv.

o Edappolovtag tnv dla Stadikaocia otnv efeupeon ouUOXETIOMOU METAEL TNG
TIOPOUETPOU KALLAKOG KOL TWV KALLOTOAOYIKWY XOPOKTNPLOTIKWY HLOG TIEPLOXAG,
SlamiotwveTtal OTL TA TPOTILKA Kal TANPWE uypd eUkpata KAlpota amelkovilouv
UNAEG TIHEG, avtiBeTa e Ta Enpd KALHLATA KOL TO XLOVL TTOU CUVOEOVTAL UE XOUUNAEG

TLMEG.
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Extreme-oriented rainfall modelling on global scale using knowable moments

1 Introduction

1.1 General Context

In an era where climate variability is becoming more and more significant, concerns about
extreme weather conditions are at peak. Assessment of such extremes, especially when
referring to extremes in hydrological processes, is crucial in a variety of tasks from
engineering design of infrastructure projects to risk management.

Failing to model extremes reliably can lead to catastrophic consequences, depending on the
magnitude of that failure. According to the COP21 Weather Disaster Report 2015 (CRED,
2015) floods are considered as the most prominent natural disaster, accounting for 43% of
total disasters during the period between 1995 to 2015. Underestimation of extremes, is
destined to lead to dam failures or insufficient flood mitigation and consequently pose
threatening consequences to residential areas and human lives. On the other hand,
overestimation, especially severe, can lead to financial losses and overbudgeting of a
project, since more unnecessary resources will be used in construction and maintenance.
Thus, the fabrication of a consistently reliable method for extreme-oriented rainfall
modelling is deemed as paramount.

For achieving reliable long-term predictions, deterministic methods fail to produce credible
results. Consequently, rainfall has to be treated as a random variable bound to a probability
distribution function. Statistical moments are the fundamental tool used to express the
important attributes of probability distributions of natural processes, and in this case
rainfall.

Classical moments whilst having the advantage of being simple in their calculation, are
proven to be efficient only in expressing attributes for orders up to 2 and in most large
samples can’t be estimated for orders higher than 3 (Lombardo, et al., 2014). However,
extreme rainfall events are better modelled using high-order moments, since they are
closely correlated with each other.

On the other hand, L — moments can be reliably estimated for high-orders if only the first
moment is known. However, their most significant disadvantage is their inability to
characterise and model dependence of stochastic processes. Long-term dependence bias,
when not taken into account can lead to severe underestimation of extremes, especially for
the higher return periods needed in designing and constructing engineering projects.

In order to overcome the issues portrayed by classic methods, newly introduced knowable
moments (K — moments) (Koutsoyiannis, 2019) combine both methods’ advantages and
provide a sound basis for reliably estimating high-order moments and statistical
characteristics of marginal and joint distributions, whilst retaining precision in low-orders.
Moreover, they create a reliable framework for estimation of long-term dependence
important for any study of natural processes.



Extreme-oriented rainfall modelling on global scale using knowable moments

1.2 Scope of Work

The main objective of this study is to achieve in providing a general framework for extreme-
oriented rainfall modelling using the newly introduced knowable moments (K — moments)
method. Classic methods are also used for the modelling process in order to compare and
assess the prediction power of all three. Since this is a global study, an established
precipitation database of stations from around the world will be used, namely the GHCN —
Daily database from NOAA (NOAA, 2019). By using global data, the study aims in proving
the reliability and consistency of K— moments for every regions’ climatic characteristics.

All methods estimate the parameters of a specified probability distribution function and are
compared to each other for their efficiency in fitting such distribution to observed data.
Distributions from the Pareto family are the most optimal and concurrent with the rainfall
process (Papalexiou, et al., 2013). While comparative results are being shown for the whole
distribution (body and tail), in this study focus is mostly given in the fitting power for
extreme values. Extremes are considered values for return periods higher than 1 year. Thus,
more comprehensive analysis is done for such extremes, which in statistical terms, are
located in the distribution tail. All comparisons are being made using goodness-of-fit
statistics between observed and theoretically modelled data.

After establishing the fitting advantages of the knowable moments’ method, it is obligatory
to assess the influence of long-term dependence bias existing in most rainfall samples.
Knowable moments provide the framework for estimating this bias. Consequently, the
effects of long-term dependence are estimated and infused in the fitting process and are
being compared to an otherwise general sample independence in order to show the
magnitude this bias holds in the final predicted rainfall values.

Finally, with consistent modelling results for most worldwide stations, prospect exists in
analysing them by the distribution of parameters across the globe and finding correlation
between them and each region’s climatic characteristics. This is done while using the
aforementioned K — moment approach with the dependence structure of each station, if
present, taken into account. In this regard, a general framework of expected distribution’s
parameter values can be established for future reference.

1.3 Work Structure
This study is split into eight (8) chapters all with their distinct value.

The first chapter gives a general overview over rainfall extremes, while also highlighting the
goals this study aims to achieve and what the analysis will showcase.

The second chapter provides a bibliographic analysis of the differences between weather
and climate, while also defining extreme rainfall and showcasing the importance of
acquiring a reliable model for modelling such extremes.

The third chapter is an extensive analysis of all probabilistic and stochastic theory used in
the modelling process with increased focus on describing the notion of knowable moments.
Moreover, usage of Pareto distributions for best description of the rainfall process is
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justified combined with the hydrometeorological significance of using the whole dataset in
the fitting process.

The fourth chapter provides information about the chosen database containing global
precipitation data. Next, a general distribution of all its provided stations is shown along
with whichever remain from the elimination process.

In the fifth chapter emphasis is given on the computer-based modelling tools that were
used. Specifically, the MATLAB and Python programming environments are analysed along
with any of their toolboxes used for specific applications in this study. Also, their advantages
in respect to other programming languages are also explained for justifying their use case.

The sixth chapter is an analytic description of the modelling procedure. It is analysed in the
context of a step by step guideline, with deeper analysis on the K — moments method.
Moreover, details on the initial file processing are given along with definitions of all the
goodness-of-fit statistic tools used for later evaluation purposes.

In the seventh chapter an application of all methods is presented in a specific station. Every
method is analysed and compared to each other for its modelling power and consistency,
especially in the extremes, by providing comparative figures and goodness-of-fit values. This
assessment is being made for the overall fit, as well as for the distribution’s body and tail
fit, separately. Moreover, a depiction of the long-term dependence bias effect is provided
for showing the importance of accounting for a sample’s dependence structure. Also, an
alternative distribution for fitting with K — moments is showcased which further improves
the fitting result.

The eighth chapter contains comparative results from the generalization of the process
followed in modelling of the aforementioned sample station. The process is now universally
applied to the entirety of the database and overall results from the extreme-oriented fitting
process are being produced, showcasing every method’s predicting power. Conclusions on
the effectiveness of knowable moments are drawn and with them an extensive analysis on
the influence of long-term dependence when fitting stations with high estimated
dependence bias. Finally, the distribution’s parameters are assessed for their correlation
with each region’s climatic characteristics, in order to draw conclusions on representative
parameter values for different climate zones.

The ninth chapter is a review of the whole research focusing on its preliminary objectives
and the conclusions drawn from the resulting extreme-oriented rainfall modelling
procedure, evaluating knowable moments for their overall effectiveness. Finally,
perspectives on future research along the lines of this study are also given.
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2 Theoretical Analysis

2.1 Weather and Climate

Starting from the top, the difference between the concepts of regional “weather” and
“climate” has to be clarified. Both notions are closely related and since they are required in
understanding the proceedings of this study they should be explained before moving to
deeper analysis.

Weather, in its simplest form is defined as the way the atmosphere behaves in respect to
day-to-day effects on human activities (American Meteorological Society, 2015).

Climate, on the other hand is in short, the description of the long-term patterns of weather
in a specific area of interest. Therefore, as climate is a long-term characteristic of an area,
climate zones have been established through the Képpen Climate Classification (Figure 2.1)
describing the average climatic features on any place on Earth (Rubel & Kottek, 2010). A
more established definition by the IPCC is provided below:

“Climate in a narrow sense is usually defined as the average weather, or more rigorously, as
the statistical description in terms of the mean and variability of relevant quantities over a
period of time ranging from months to thousands or millions of years. The classical period
for averaging these variables is 30 years, as defined by the World Meteorological
Organization. The relevant quantities are most often surface variables such as temperature,
precipitation, and wind. Climate in a wider sense is the state, including a statistical
description, of the climate system.” (IPCC, 2014)

Képpen-Geiger climate classification (1980-2016)
. A [lswh []csa [Jcwa [|cfa [llDsa [[JDwa [HDfa [EJET
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Figure 2.1: Képpen climate zones classification (1980-2016) (Beck, et al., 2018)
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2.2 Weather Forecasting

The importance of knowing and anticipating weather conditions spanning a short period of
time in the future was acknowledged even before the modern era. For centuries, even
millennia, people have been trying to forecast weather. Ancient Greeks such as Aristotle
and Theophrastus described weather patterns in Meteorologica and Book of Signs,
respectively. The Babylonians predicted weather from astrology signs and cloud patterns,
while the Chinese are assumed to have been attempting to predict the weather since 300
BC. Their methods largely relied on recognizing specific patterns of events and most of them
don’t prove to have reliable outcomes by todays’ standards.

In recent times, advances in the deeper comprehension of atmospheric physics followed by
technological innovations in the 20t™" century led to the founding of Numerical Weather
Prediction. Its practical use started in 1955 with the emergence of programmable electronic
computers (Wikipedia, 2019)

The core principle behind numerical weather prediction is sampling the fluid state at a
specific time and with the use of fluid dynamics and thermodynamics, construct a model
that estimates the fluid state in the near or far future. Inputs of this system are real-time
observable quantitative weather data such as precipitation, temperature, and barometric
pressure. A week-long rainfall prediction output of a model, is shown below in Figure 2.2.

Precipitation Forecasts
D —— e

Precipitation (mm)
during the period:

Mon, 09 SEP 2019 at 00Z 150
to-

Tue, 17 SEP 2019 at 00Z o

Tue, 17 SEP 2019 at 00Z 10
to- 7.5

‘Wed, 25 SEP 2019 at 00Z

Figure 2.2: 7-day rainfall forecast in Australia and New Zealand (NOAA, 2019)
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Despite the successful implementation of those prediction systems, the chaotic nature of
weather cannot be ignored. Minute errors in the initial conditions of a model grow quickly,
hindering the forecasting power of the model, while similarly, errors in approximating the
simulation of atmospheric processes leads to limited predictability.

2.3 Precipitation

Based on the American Meteorological Society (American Meteorological Society, 2015)
precipitation is defined as:

“All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the
earth's surface.”

The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail. In theory,
precipitation occurs when air temperature falls below the dew point, which refers to the
temperature to which a parcel of air has to be cooled in order to become saturated, and
condense into water. Raindrops have dimensions ranging from 0.1 millimetres to 9
millimetres mean diameter, above which they tend to separate into smaller sizes
(Wikipedia, 2019).

Throughout history, long-term annual averages of precipitation have been fluctuating ever
so slightly. Although this is the case, expectations on rainfall patterns are still consequent
to an area’s climate characteristics throughout the year i.e. areas near the Equator receive
heavier rainfall annually than areas with temperate climate, such as Europe and North
America. In Figure 2.3 this consistency of average rainfall values in different regions of the
world is showcased.

~.
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Figure 2.3: Average annual precipitation (mm) by country (Wikipedia, 2019)
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0 2 [ mm/day
0 0.079 0.236 iniday

Figure 2.4: Average global monthly precipitation patterns (mm/d) (Wikipedia, 2019)
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Focusing on short-term annual averages of any natural process, might fabricate the notion
that there is no statistically significant change between years. However, applying that same
study on long-term annual averages spanning more than 50 years, it is evident that even on
the annual scale, there exists evident variability. Also referred to as periodicity or
cyclostationarity, this characteristic suggests that rainfall or any other natural process
cannot be considered as a random variable, but rather should be attributed a stochastic
nature. This seasonal periodicity is also evident in smaller time scales such as months, as
seen from Figure 2.4

Given the importance of weather forecasting and the extent of applications in human
activities, achieving accuracy in measurements has become a science in its own. There exist
numerous weather measuring devices ranging from ground weather stations and radars to
unmanned aircrafts and satellite atmospheric imagery. The most common are shown in
Figure 2.5.

In order to obtain a reliable set of data, most of the time there is crossover and validation
between techniques for each region. Ground monitoring is used in conjunction with aerial
monitoring, were one is used as the primary measurement tool and the other as a validation
method.

Figure 2.5: Most common weather collection methods (World Meteorological Organization, 2016)
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2.4 Extreme Precipitation

As is with any natural process, extreme weather is a natural part of the Earth's climate
system. Extreme precipitation events should be expected, either by long lasting droughts,
or by severe rainfall occurrences. Nonetheless, these extreme events have significant
impact on everyday human life, infrastructure, as well as on the environment. Assuming the
climate is not changing, these events sustain an annual constant frequency and thus are
expected and dealt with efficiency and resilience, not being intrusive and disastrous to
humanity and the environment.

However, in an era where climate variability is becoming more and more significant,
concerns about extreme weather conditions are at peak. According to the
Intergovernmental Panel on Climate Change (IPCC, 2012) the uppermost attention must be
given in reliably predicting extremes of any kind of natural process. This report also
showcased some research showing that models assessing past events produced results
which hinted at a slight increase of extreme natural events.

More specifically, damages to property and the environment (loss events) attributed to
hydrological extremes, show continuous increasing occurrence from the 1990s until today,
with their frequency caused by floods and mass movements more than tripling during this
timeframe (Graph 2.1). While a superficial look of this graph shows correlation between
floods numbers and loss events it is important to take note of the increased land areas now
used for housing and industrial infrastructure which ultimately might be the reason for the
increase in loss events. Either way, the resulting fact is the same.

800

T w
700 | Number of loss events 1980-2016
NatCatSERVICE MunichRE, 2017,
800 Topics Geo 2016

500 \
400

il

1980 1985 ‘ 1990 1995

B Geophysical events B Meteorological events B Hydrological events W Climatological events
Earthquake, tsunami, Tropical storm, extratropical storm, Flood, mass movement Extreme temperature,
volcanic activity convective storm, local storm drought, wildfire

Graph 2.1: Extreme weather loss events’ occurrences from 1980 to 2016 (Met Office UK, 2017)
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Donat, et al. (2016) studied different models which assessed the fluctuation of heavy rainfall
events and their intensity through the past century. Findings showed probability that:

o Northern Europe and central Eurasia = slight increase over the past century
o Eastern North & South America = slight increase since the 1950s

o Eastern Africa = slight decrease over the past century

o Tropical Africa = slight increase over the past century

o Southeast Asia & Indonesia = increase over the past century

HadEX2 (1991-2010) - (1901-1920) 20CR (1991-2010)- (1901-1620), S-0.05  ERA-20C (1891-2010) - (1901-1020), 80,14 ERA-20CM (1901-2010) - (1901-1020), 8=0.04
- e : T > PR .

global average of near-complete (90 yrs) grid cells
4 0 | | | | ! 1 | | | | | | I | | | I | |
= HadEX2
] 20CR, R=0.6
——ERA-20C, R=0.67
———ERA-20CM, R=0.41

R10mm [days]

-6.0 I | | l | I ! | | I I I I I I I I I I I | I

1920 1940 1960 1980 2000
year

Graph 2.2: Multiple models output on global fluctuation of heavy rainfall days [R10mm] from 1901 to
2010 (Donat, et al., 2016)

These findings (Graph 2.2) show that on global average, extremes have fluctuated through
the past century with some areas hinting at increases and others at decreases. Whichever
the case, monitoring and analysing them is an important component of assessing the
climate system, since it is vital to know how their characteristics are evolving, and will
change in the future, in order to facilitate appropriate adaptation.
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2.5 Importance of Extreme Rainfall Modelling

Extreme precipitation events, even though in later years technology provides the means of
predicting them with more certainty, can hardly be stopped from disrupting human
activities as well as damaging the environment.

The most significant hazard from extreme rainfall are floods. According to the Organization
for Economic Cooperation and Development floods cause annually $40 billion in damages,
both on residential areas and infrastructure (CRED, 2015). Since 1995, floods make up 43%
of all weather-related natural disasters, affecting 2.3 billion people in total. In conjunction
to human property destruction, agriculture losses are mostly liable to floods, meaning that
essential crop production is undermined, producing losses to the financial sector as well.

From an engineering point of view, studying the overall distribution of rainfall over time in
a specific region is vital for evaluating the amount of water available for meeting the
demands of industry, agriculture, or other human activities. However, accuracy in the
prediction of extreme events is also important, since they are being used in the design and
construction of projects that are destined for water management purposes, such as dams,
flood mitigation works, and hydroelectric power plants. Underestimating extremes, is
bound to lead to dam failures or insufficient flood mitigation, placing at risk residential areas
and human lives. On the other hand, overestimation leads to financial losses and
overbudgeting, since more unnecessary resources will be used in construction and
maintenance.

Flood

Storm

Earthquake

Extreme temperature
Landslide

Drought

Wildfire

M Volcanic activity

Figure 2.6: Extreme events percentage by type (CRED, 2015)
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3 Stochastic Framework Analysis

3.1 Modelling Process

While today’s technology standards and meteorological models allow the prediction of
short-term precipitation events using the deterministic approach, long-term predictions are
not possible considering deterministic methods. In this regard, rainfall has to be treated as
a random variable that follows a specified probability distribution function, which is the
mediator of the all-important assignment of return periods to rainfall values. The selection
of this distribution can be generally summarised in four steps (Papalexiou, et al., 2013):

Acquirement . Parameter Goodness of
Assignment of

of observed 1 selection of estimation fit tests for
data for a e —— according to selecting the
large itti i
e distributions 210 Wl t?est. f|ttgd
timeframe method distribution

Figure 3.1: General procedure on probability distribution function selection

3.2 Heavy and Light Tailed Distributions

One way of classifying distributions, is by the nature of the asymptotic behaviour of their
tails. The tail of a distribution is responsible for the magnitude and frequency of extreme
values, thus distinguishing distributions by this factor is an essential starting stage.
Distribution tails are one of two kinds depending on their relation to the behaviour of an
exponential tail (Teugels, 1975):

A. Heavy Tailed (Sub exponential class) = Referring to distributions which converge to
zero slower than an exponential tail.

B. Light Tailed (Hyper exponential class) = Referring to distributions which converge
to zero faster than an exponential tail.

Mathematically the definition of a heavy tailed distribution is given by:

. 1-F()
lim —— = oo,
e ()

The norm when modelling rainfall is to apply a light-tailed distribution model (e.g. Gamma
distribution) and fitting to the whole sample of observed data. The typical procedure of
applying a distribution law to rainfall is a provides the best fit on the whole spectrum of
observations and does not guarantee efficiency when trying to model for the extremes. As
extremes are located on the tail-end of the distribution and usually only a fraction of the
empirical data is also located there, all traditional light-tailed methods are biased against
extreme values.

VB >0 (3.1)
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Furthermore, the distinct characteristic of heavy tails is that they predict more frequent
larger magnitude rainfall occurrences compared to light tails. Consequently, when using a
light-tailed model, there is great risk of underestimating extreme events putting human
lives at risk.

3.3 Distribution Function for Rainfall Modelling

Based on the findings by Papalexiou, et al. (2013) heavy tailed distributions are more suited
in describing the long-term characteristics of rainfall and especially its extremes. Thus,
heavy tailed distributions are used for modelling and more specifically the Generalized
Pareto Distribution (GPD) and the Pareto-Burr-Feller (PBF).

3.3.1 Generalized Pareto Distribution

The classic Pareto distribution is a power-law probability distribution used extensively in
many observable natural phenomena, as well as in socioeconomic research. It was originally
applied by Vilfredo Pareto to model the distribution of wealth among a society, and
nowadays is most known and associated by the famous Pareto principle or the “80-20 rule”.

The Generalized Pareto Distribution, after the contribution of Pickands (1975), has since
been used extensively in many sectors of research. Some of its applications cover analysis
of extreme events or modelling of large insurance claims (Hosking & Wallis, 1987). It
consists of a family of continuous probability distributions, stated by originally three
parameters: tail index k, scale A (or b), and location . In this study:

A. Though, using all three parameters will result in greater overall accuracy, the
location parameter is set to 1 = 0, in order to be naturally consistent with the
rainfall process’s zero lower bound.

B. For k = 0 the Pareto distribution specializes into the exponential distribution

C. For k < 0 the tail converges faster to zero, thus it is a light tailed distribution and
not suitable for this study’s modelling purposes. Especially in this case, negative tail
index gives the distribution an upper bound which contradicts the rainfall process.

Thus, the two parameter Generalized Pareto Distribution’s (GPD2) probability and
cumulative distribution functions are given below. In Graph 3.1 and Graph 3.2 the behaviour
of the GPD2 with changing tail index and scale parameter is showcased.

1
1—(1+Kf) K k%0

F(x) = A (3.2)
1—exp(—%), k=0
1(1+Kf)_ﬁ, Kk#0

fx) = % @C (33)
zexp (—Z), k=20
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GPD2 - Cumulative Distribution Function (b = constant)
T T T T T T |

T
——k=0.5 | b=1
09+ —— = I b=1 —
k=2 | b=1
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X
Graph 3.1: Generalized Pareto Distribution (GPD2) for different tail index k
0.9 GPD2 - Cumulative Distribution Function (k=constant)
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Graph 3.2: Generalized Pareto Distribution (GPD2) for different scale parameter A or b
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3.3.2 Pareto-Burr-Feller Distribution

In similarity to the Generalized Pareto Distribution, the Pareto-Burr-Feller (PBF) is a heavy
tailed power-law probability distribution with three parameters. It is a distribution used
mostly in econometrics (Singh & Maddala, 1976), and is more commonly named the Pareto
IV or the Burr Type Xll. The derivation of the PBF was studied by Burr (1942) and given
mathematical justification from Feller (1970) who linked it to the Beta function and
distribution. Its usefulness in a variety of fields is shown in Brouers (2015).

In this study, it is used in conjunction with the GPD2 in modelling extreme rainfall,
considering its two different asymptotic properties, that of a Weibull distribution for low
precipitation values, and that of a Pareto distribution in the tail. Furthermore, the addition
of a third parameter of the GPD2 may prove advantageous in the accuracy of the final
model. The importance of these properties will be displayed subsequently. The Pareto-Burr-
Feller is defined as:

1

X\¢\ ¢k
F(x)=1— (1 + ke (I) ) (3.4)
With a probability density function:
x\¢1 1
Cc (— C\ "ck—1
_ /1) f ck—1
fa =—4— (1 +xe(3) ) (3.5)

PBF - Cumulative Distribution Function (k=2 | b=2)
| T T T T T

0.9 I 1

F(x)

Graph 3.3: Pareto-Burr-Feller cumulative distribution for different ¢
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3.4 Definitions of Moments / Estimators

In statistics, the expected value is the foundation of producing moments. Moments are
guantitative measures that portray the shape and characteristics of a distribution function.
If X is a random variable and g(X) is a function of X, then the expectation of g(X) is given by:

+00

E[g(x0)] = f 90O f()dx

— 00

Or for a discreet random variable X:

Flg(0] = ) gGrdP(X = x)

From the theoretical expected value, moments can be defined as:

A. Non-central Moment:
m := E[X7]

B. Central Moment:

u = E[(X — m,)"]

(3.6)

(3.7)

(3.8)

(3.9)

In hydrology and most natural sciences, the moments and central moments up to the fourth
order are consistently used to describe characteristics in distributions. Their practical
estimators are presented in Table 3.1.

Table 3.1: First four order estimators of classical moments

Order (r) Estimator Characteristic
1 n
1 x = —Z X; (3.10) Mean
e
1 n
2 Var = g2 = le(xi —-x)%(3.11) Variance
n i=1
= (g —x)3
3 g=nt 103’ (3.12) Skewness
1 _
=¥ (x; —x)* -
4 k=" l 1041 (3.13) Kurtosis
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Where:

o mnisthe size of the sample
o o isthe standard deviation and,

o x is the first non-central moment, or the mean
3.5 L—moments / Estimators
Comparably with classic moments, L — moments are statistic tools aiming to describe the

shape and characteristics of a probability distribution. For a random variable X, the r'” order
L — moment is given by (Hosking, 1990):

Ap =171 ;(—1)’< (T & 1)Er_k;r (3.14)

Where:

o Xy, denotes the ki smallest value (order statistic) from an independent sample of
n observations from the X distribution and,

o FEisthe expected value

The first four population L — moments are:

A = EX (3.15)

Ay = (EXpp — EX15)/2 (3.16)

A3 = (EX3.3 — 2EX,.3 + EX13)/3 (3.17)

Ay = (EXyy — 3EX3.4 + 3EXy, — EX1.4)/4 (3.18)

L — moments can be derived from Probability Weighted Moments (PWM) first discovered
by Greenwood, et al., 1979. They are connected by the probability weighted average:

n
s
B. =n1 2(1 ~Djn) Xjm (3.19)
i=1
And in the unbiased form:

b, = (3.20)

_1i(n—j)(n—j—1)...(n—j_r+1) |
" i=1 n—-1)n-2)..(n—r) Xjn
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Where:

0 Xipm < Xop < o+ < X IS the ordered sample based on order statistics

o nisthe sample size

jty

O Pjn =775+ where y and 6 are suitable constants. Based on the findings of
Landwebhr, et al., 1979 for the Wakeby distribution (of which the Pareto is a special
case), the recommended values are: y = —0.35and § = 0.

In practice the estimators of the first four L— moments, based on PWM, are provided below:

Table 3.2: First four order estimators of L - moments

Order (r) Estimator
1 A1 =By (3.21)
2 Ay =28, — Bo (3.22)
3 A3 = 6B, — 681 + o (3.23)
4 Ay =208 — 308, + 128, — By (3.24)

The use of L — moments instead of classical ones proves to have some major advantages.
Firstly, because of their linear nature in estimation, they have higher robustness in dealing
with outliers in a sample, meaning less sensitivity in extreme values. Moreover, their
existence is dependent only in a finite sample mean, thus higher order L — moments exist,
even if classic ones don’t.

In order to obtain statistical data for the shape of the distribution using L — moments the
following coefficients can be used:

A. L—moment mean > the equivalent of the sample mean.

Tl = /11 (3.25)

B. L — moment coefficient of variation = equivalent to the standard coefficient of
variance, showing in percentage the variation of values without accounting for the
sample mean.

A2

= /1—1 (3.26)

T2
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C. L—moment coefficient of skew = equivalent to the standard skewness coefficient,
showing the symmetry of the distribution with respect to its mean and median.

=7 (3.27)

D. L—moment of Kurtosis = equivalent to the standard kurtosis measure, showing the
density of values around the mean (sharpness of the top).

A
T, = /1—‘2‘ (3.28)

0.6

5}
C
(="
06
K =20
10
0.4 5
_ 3
O
C) 2
(=7
0.2
0 T 1 1 1

Graph 3.4: Skewness and kurtosis coefficients values and representation
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3.6 Order Statistics

If X is a stochastic variable and x4, x5, ..., x,, are copies of it, independent and identically
distributed they form a sample. By rearranging them in ascending order of magnitude order
statistics are formed:

X(1m) € X2m) < < X(nm) (3.29)

The minimum and the maximum of the ordered sample are special cases of order statistics
and are defined as:

min{X} = X(1.n) (3.30)
max{X} = X(n.n) (3.31)

Order statistics can be a useful tool for stochastics since they take into account both the
magnitude and the relative position to other observations. Furthermore, it is important to
note that from all ordered samples there can arise efficient estimators. Order statistics are
usually used by many modelling methodologies and could prove as a valuable tool in
extremes modelling too, especially on the assignment of return periods to sample values,
which are examined in the next chapter.

3.7 Sample Return Period

Assigning return periods to sample values is crucial in stochastic modelling of extremes. The
concept of the return period is crucial in the designing and risk assessment of most
engineering works, providing with the means of evaluating the frequency of extreme events
(Volpi, et al., 2015).

In probability terms, the return period is inversely related to the probability of exceedance
of a specific value of a variable (e.g. precipitation). Another definition from probability
theory indicates that for a specific event A, which is a subset of some certain event Q, return
period T is defined as the mean time between consecutive occurrences of event A. This
notion is not deterministic by any case and simply suggests that the time between
consecutive occurrences of event A is a stochastic variable with T as the mean
(Koutsoyiannis, 2019).

With the use of order statistics, sample return periods are assigned to precipitation values
based on the Weibull plotting position by Weibull (1939).

T n+1
(iin)
= 3.32
D n+1-—i ( )
With maximum return period at the highest value of the ordered sample:
T
% =n+1 (3.33)

20



Extreme-oriented rainfall modelling on global scale using knowable moments

A variety of methods for assigning sample return periods exist, but in this case the Weibull
plotting position method is used since:

A. It's implementation in very simple and sufficient for the modelling process
B. Itisn’t susceptible to distribution function changes

C. Itis unbiased for F(x.p))-

Weibull Plotting Position - Sample Return Period Assignment

102 [

Sample Return Periods (days)

100 T T | 1 1
10 10 10
Order Statistic Xi

Graph 3.5: Weibull plotting position - sample return periods for sample size of n=100

3.8 K—moments

The use of statistical moments offers the ability of describing probability distributions with
reasonable simplicity (Feller, 1968). When analysing an observable process among different
time scales, they stand as the basic tool for stochastic characterization of change and
variability, both important features when studying natural processes. Nonetheless, both
classical and L — moments, the two basic methods of characterising a distribution, have
disadvantages.

Classical moments, central or non-central, cannot be reliably estimated from large samples
for orders beyond two or three (Lombardo, et al., 2014). As examined in Koutsoyiannis
(2019) for high orders (p) the standard moment estimator portrays an estimator of an
extreme quantity and converges considerably slowly to the theoretical value (Equation
3.34). This combined with the fact that most geophysical and hydrological processes don’t
follow the normal distribution, means that two moment statistics aren’t enough to
characterise their distributions reliably.
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n

1 1 p
= 05~ (maxGo) (3.34)
i=1

On the other hand, L — moments, as mentioned before, exist even if only the first order
classical moment is finite. However, because of their fundamental linearity, they are all first
order in terms of the process of interest. Their most significant disadvantage is their inability
to characterise and model dependence of stochastic processes. Dependence is an
important characteristic of most geophysical processes and will be defined later in the
study.

Extremes are located in the tail-end of a distribution function, thus are closely correlated
with high-order moments. Consequently, using classical moments to model extremes (i.e.
in rainfall), proves to be efficient only for low-order of moments. Thus, the newly introduced
knowable moments (K — moments) (Koutsoyiannis, 2019) will be used in the modelling
process, as they provide better grounds for prediction based on high orders, whilst retaining
precision of classical moments for low orders.

K — moments, combine the advantages of using classical or L — moments, allowing reliable
estimation and description of high-order statistics, imperative for marginal and joint
distributions of stochastic processes, whilst also providing the framework for estimation of
long-term dependence.

3.8.1 Definitions of K— moments

With the use of order statistics, if x4, X5, ..., X;, are copies of stochastic variable that form a
sample, then the expected maximum of order p of x (i.e. the expected value of x(,) defines
a statistical moment:

Kyy := E[max(x;, x5, ..., x)| = pE [(F (z))p_lz], p>1 (3.35)

Non-central knowable moments of order (p, q) form with the generalisation of equation
(3.35) and are defined as:

Kpot=—a+DE[(F@) 1], p=gq (336)
In the same manner, central knowable moments of order (p, q) are defined as:
Kpq:=(@—q+1DE [(F(x))p_q (x— u)q]. p=q (3.37)
Finally, hypercentral knowable moments of order (p, q) are defined as:
Kj:=@—q+DE[QF(x)-1)""(x-n)'], p=gq (3.38)
From equation, it is clear that K — moments are by definition connected to maxima. This

holds true for all other definitions of K— moments, both central and hypercentral, providing
with the means of a reliable estimation of expected extreme values.
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3.8.2 Biased Estimators of K— moments

In order to estimate K —moments, the values of (F(x))P~? and (2F(x) — 1)P~9 have to be
known. Their quantities can be estimated if order statistics are involved, thus by arranging
the sample x4, x5, ..., X, in ascending order.

Xam) S Xam) S < X (3.39)

It is worth noting that the sample is arranged in order of x and not x9, thus making the
estimation more reliable. In this regard, F(x(i:n)) and 2F(x(l-:n)) — 1 are estimated as:

i—1
F(xw) = — (3.40)
With a value range of 0 < F(x(l-)) < 1. In the same manner:
2i—n—1
2F(xp) —1=——"7"— 41
(xw) — (3.41)
With a value range of —1 < ZF(x(l-)) <1l
By the use of equations (3.40) and (3.41) , K— moments estimators become:
Fino i1y
, _b—4q L= q
Ko=) (=7) (342)
i=1
Flnoi-1y
p—q L= q
Kpq = " Z (n — 1) (xgmy — 1) (3.43)
=1
+ 1% 20 N
bp—q l—n— q
Kpq = o Z ( 1 ) (xmy) — 1) (3.44)
i=1
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3.8.3 Unbiased Estimators of K—moments

Deriving the estimators of F(x(;.n)) and 2F (X)) — 1 from simple uses of order statistics

yields biased results, especially for high orders of p. Thus, the estimators are biased and

insufficient for high orders. Unbiased estimators can be produced by denoting the non-
p—1

stochastic variable (%) (F(x(i:n))) , which depends only on the values of i, n and p, as

binp- Thus, the estimators of the non-central and central K - moments becomes:

n
Kpq = Z bi,n,p—q+1£gi;n) (3.45)
i=1
n
p1 = Z binp (&(i:n) - M) (3.46)
i=1
Which in turn becomes unbiased if:
0, i<p
L= I'(n—-— 1 (i
bup = PI=p+D I (3.47)
n I'(n) T@-p+1)

Where:

o [is the gamma function and p defines the moment order and can be any positive
number, usually an integer, but that’s not necessary.

o For the central K— moment, complete unbiasedness is achieved only for g = 1, but
that is sufficient for this study’s purposes.

o The unbiasedness of the estimator can be easily substantiated by the fact that:

binp = 1 (3.48)

n
i=1

The significance of b;,, in extremes modelling stands in the fact that as moment order p
increases, lesser data from the sample determine the final K - moment estimate. This is due
to biy, = 0 for i < p. This means that for high p, more emphasis is given in higher sample
values, than in lower ones, which in turn paves the way for accurate high order moment
estimation with minimal computing power and better precision in extremes modelling.

3.8.4 Statistical Significance and Relation to Other Moments

Using specific combinations of p and g, K— moments provide the basis for estimating basic
statistical characteristics otherwise produced by the classic method of moments or L —
moments. Consequently, both classic methods can be derived from special cases of K —
moments, meaning that they can be fully replaced. Classic moments can be derived as:

=l Ky = (3.49)
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While L — moments are derived using their direct relationship with Probability Weighted
Moments (PWM), as the non-central K— moment with g = 1. They are defined as:

1;1 = P,Bp—1 (3.50)

With the use of equations (3.47) and (3.48), a table of the customary and more statistically
useful moments can be created:

Table 3.3: K - moments relationship to classic moments

Order (p) Relationship Characteristic
1 Ki,=u Mean
2 Kt =Ky, =y = 02 Variance
s Kss _ s Skewness
K;Z/Z o3 (Dimensionless)
A Kis _ M4 Kurtosis
K3 o* (Dimensionless)
Table 3.4: K - moments relationship to L - moments
Order (p) Relationship Characteristic
1 Klll = /11 Mean
2 K} = 2Ky, = 2(Ky; — ) = 24, Variance
. K_;&_Z&_B_@ Skewness
KY T Ky A, (Dimensionless)
K, K. K. A
4 K;?=4K;“—8K—31+6=0.8/1—4+1.2 Kurtosis
21 21 21 2 (Dimensionless)
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3.8.5 Return Periods of K— moments

Assigning return periods at an observed sample is closely related to the use of order
statistics. With the same mindset, since K— moments are constructed upon the theoretical
properties of order statistics, it is evident that they can be assigned return periods as well.
The general rule applied for non-central K — moments with g =1 is of the form
(Koutsoyiannis, 2019):

T(Kp1)
—p A

Y (3.51)

Where:

o Dis atime reference for the specific return period and,

o A, is a coefficient dependent on moment order p and the distribution function
associated with the specific sample

Solving for the A, coefficient with the theoretical definition of a return period and time
reference of D = 1:

- 1
’ P(l _F(Kzlnl))

In order to determine the variation of the return period between different moment orders,
firstly an exact relationship between p and A, should be constructed. This relationship can
be extracted by first estimating the lower A; and upper A, boundaries of A,. Since A, is
also dependent on the distribution function, in this study focus is given on defining the
coefficient for the Pareto (GPD2) and the Pareto-Burr-Feller distribution (PBF), which are
the ones used for modelling extremes as mentioned earlier.

A (3.52)

For the Pareto distribution:

1

T() = (1+ K;)E (3.53)
For the Pareto-Burr-Feller:
1
T(x) = (1 + ke G)C)a (3.54)

For the different distributions, A; and A, values can be calculated respectively as:

For the Pareto distribution:

=

/11:( ! ) (3.55)

11—k
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Ay =(r@—-r)"™" (3.56)

For the Pareto-Burr-Feller distribution:

(3.57)

(3.58)

With the boundaries known, an approximate relationship of A,, and p can be formulated
below. Despite the fact, that this approximate relationship can be applied reliably for a
number of distributions, in the case of the Pareto distribution, an exact theoretical
relationship exists too. This exact relationship is the one used in this study.

Ay = Ag + (Ay — Aoo)% (3.59)
A = (p+1- zc)BS —Kk,p+ 1))~ 360

A - coefficient for GPD2
3.2 ———— T T

—— Theoretical GPD2

3.1

A - coefficient
N N N N
(e}] ~l [2] [{s]

P
(&)

24
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Order (p)

Graph 3.6: A - coefficients for the GPD2 using the theoretical relationship from Equation (3.60)
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The nature of A — coefficients enhances them with important properties which arise from a
direct observation of theirimmediate definition and relation with return periods. As shown
in Graph 3.6, the coefficient varies in a narrow range for the Pareto distribution, this also
being the case for many other common distributions. This allows for reliable assessment of
the whole series by just two estimates (i.e. A;, A ), which can be approximated by generic
functions, independent of the distribution function for which they are needed.

In conclusion, by assigning empirical return periods to K—moments and using them instead
of the standard practice used in classic order statistics, the modelling procedure profits with
some significant advantages.

A. Interms of expected values and uncertainty, both methods are identical.

B. With the classic method of order statistics, one can assign return periods only to
values in the sample thus only n values of return periods. However, with K —
moments as the return period is dependent on the moment order p, which can be
assigned any value up to the size of the sample, one can empirically produce them
for any quantile up to the size of the sample.

C. Because of the most accurate estimation formulas of assigning empirical return
periods to K — moments, compared to return periods with order statistics, the
former method is bound to be more accurate or at least equivalent to the later.

D. In the classic approach, each return period is dependent only on one sample value.
With the K— moments method, each return period is a weighted average of several
observations. Consequently, this enhances overall accuracy in the estimation.

3.8.6 Climacogram / Persistence and Long-term Dependence / HK Behaviour

The theoretical concept of persistence or long-term dependence, which exists in most
natural processes including rainfall, was discovered by the works of H.E. Hurst (1951) who
was studying the long-term capacities of reservoirs. Before that, A. Kolmogorov (1941) gave
mathematical significance to this concept while analysing turbulence characteristics.
Nowadays, it is recognised as the Hurst phenomenon or Hurst-Kolmogorov (HK) behaviour
and is quantified by the Hurst coefficient H. In order to calculate the Hurst coefficient, the
most accurate method is by formulating the climacogram (Dimitriadis & Koutsoyiannis,
2015), which is defined as the plot of variance of an averaged process versus averaged time
scale. The Hurst coefficient is equal to half the slope of the climacogram plus 1 in a log-log
plot. Based on its value it is assumed that:

o 0<H<O0.5 > the process is antipersistent (or anticorrelated) and it is not
common in natural processes.

o H = 0.5 - the process is equivalent to white noise, meaning that there is no long-
term change (dependence) or persistence in the sample.

o 0.5<H <1 - the process has enhanced long-term persistence (or positively
correlated), which is the most common behaviour on hydroclimatic processes.
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Before estimating the Hurst parameter, the climacogram should be constructed. The
theoretical definition of the climacogram for a stochastic process is given in the equation

below:

y(k) :=var [%] (3.61)

To construct it (Graph 3.7) the subsequent procedure has to be followed:

A.

B.

Scaled Standard Deviation

A range of time scales is created, ranging from 1 to 1/10 of the sample size n.

For each time scale an average of consecutive items in the time series is made. For
example, for scale two (2):

X1+ X, X3+ X4 Xpn—1+ X,
= —,X(Z)z ‘=T, ...,X(Z)n/z = T

@ .
x <y >

(3.62)

For each constructed averaged time series, the variance is calculated. For the same
example for scale two (2):
2
(x; —w?* + -+ (xn/Z - ”)
2

7(2) = (3.63)

By plotting the variances and time scales in a log-log plot, the climacogram is built
and the Hurst parameter is estimated from the slope (s) in high time scales:

H=1+s (3.64)

Climacogram
e :

Power trendline | |
—— Climacogram
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Graph 3.7: Climacogram for station “NLE00100503” with 55708 total observations and Hurst estimation.

29



Extreme-oriented rainfall modelling on global scale using knowable moments

3.8.7 K—climacogram

Long-term dependence or change, is considered a second-order characteristic of a
stochastic process. In order to determine characteristics that are of higher order the
standard method of using the covariance function equation, requires many variables whose
estimation is difficult. This is due to the fact that using classic methods for estimating
moments for orders higher than two or three is proven inaccurate. To overcome this, the K
— climacogram is defined (Koutsoyiannis, 2019), using the standard climacogram idea and
expanding it with the use of hypercentral K— moments.

P—q q
Yoq(k) :=( —q+ 1)E KZF <¥> — 1> <¥— > l (3.65)

The K — climacogram is versatile in the description of high-order statistics. In this study, the
K — climacogram is used in the same manner as the standard climacogram, which is to
investigate long-term dependence in the rainfall time series. Like standard methods, by
using the K — climacogram with ¢ = 1 and p = 2 the Hurst parameter is calculated as in
equation (3.64). An interesting characteristic is that for different orders of p, the plots are
similar and parallel to each other (Graph 3.8). However, the statistical significance of this, if
any, is not part of this study.

K - Climacogram for different orders (p)
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Graph 3.8: K - climacograms for different orders (p) and q = 1 for station “NLE00100503”
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3.8.8 Long-term Dependence Bias in K—moments

Unlike the theoretical K — moment definition which is a first order characteristic of a
marginal distribution thus dependence is not a differentiating factor, K — moments
estimators like in Equation (3.45), contain long-term persistence bias. This bias can be
estimated and removed using the procedure outlined in Koutsoyiannis (2019). Depending
on the process structure the bias estimator takes different forms. For a Markov process with
autocorrelation function 7(t) = rt and sample size n:

2r

M (n,r) = CEICEE) (3.66)

Alike, for an HK process with theoretical autocorrelation function r(t) ~ H(2H — 1)t?H~2;

2H(1 — H) 1
n—1 2(n—1)224

01K (n, H) ~ (3.67)
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Graph 3.9: Bias correction factor O for different Hurst parameter (H) and sample sizes (n) (MIATLAB)

By plotting the bias estimation for different n, H (Graph 3.9) it is evident that the more long-
term persistence exists in the observations, the greater the bias, while for H values closer
to white noise behaviour the bias is practically negligible. Sample size on the other hand
seems to affect the bias estimation, but not as much as the dependence structure of the
process. The bias can be redefined as:

K% — K
6 = 0"k (n, H) = 2L PL (3.68)

Kpq
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And the final K— moments are defined by solving equation:
K} =Ky, =1+ 60)K,, (3.69)

Where K, corresponds to the unbiased K — moment with modified order p’, which is
derived from:

p' =20 + (1—20)p+o’ (3.70)

The final K — moment value is almost the same either using equation or equation.
Dependence is important to be taken into account when trying to model natural processes.
Combining the results from Graph 3.9 and Equation (3.70) it is clear that the difference
between removing the bias and neglecting it is not negligible in most cases.

As moment order increases, since the bias is defined as a percentage of the final K—moment
value, the difference will increase too. Consequently, dependence biased high-order
moments needed to successfully model extremes will be significantly inaccurate, leading to
underestimation of extreme events. From another perspective, since empirical K— moment
return periods are assigned and reliant on p value, it is evident from Equation (3.59), that
there will be consequences in their assignment to extreme values.

3.9 Hydrometeorological Analysis Methods — Use of Complete Record

Nowadays, analysis of hydrometeorological records used for modelling extremes takes
place with two main methods. Block maxima and values over threshold.

The block maxima approach introduced by Gumbel (1958), mainly used in extreme value
theory (EVT), consists of dividing the sample into equal time periods and choosing to use
only the highest observation from each one. The final statistical sample is called “block
maxima” with size equal to the number of periods (blocks) and is then used to model an
extreme value distribution. The significant disadvantage of this method is that it misses high
value observations that simply aren’t the highest in their block, but may well be higher than
other maximums in other blocks.

By assigning a value threshold and forming a sample containing all values above that
threshold, the “block maxima” disadvantage is alleviated. This method is known as Values
Over Threshold (VOT) or more commonly called Peaks Over Threshold (POT). Another
advantage in using POT is that the sample used includes most high values, thus it focuses
the modelling process on the distribution tail. But, an important disadvantage of using POT
is that time dependence and especially in the long-term cannot be discovered. Dependence
especially when studying extremes is crucial in order to model correctly. Ignoring it will most
probably lead to severe underestimation of extremes.

Consequently, modelling with the whole record as the statistical sample is the most reliable
method to proceed with, as no observation is omitted. This means that the modelling result
will prove to be more accurate, with dependence correctly estimated. In this study, all
observations are used in the modelling process for every method.
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4 Precipitation Database

4.1 Data Collection Requirements

The main purpose of this study, as mentioned in the introduction, is to effectively model
extreme rainfall from historical observations and comparing the different methods. For this
goal, the chosen data set needs to meet the following requirements:

o Daily or sub-daily time scales of rainfall observations need to be used in order to
effectively model extremes (Min, et al., 2011). Higher time scales than daily, don’t
reliably show the frequency and intensity of extremes.

o Asthe purpose is to provide the means to reliably predict events even in the horizon
of 1000 years or more, the historical data should be of length higher than 30 years.
Data sets with length lower than 30 years, don’t often provide sufficient means of
determining the effects of long-term persistence in the sample, which as shown in
section (3.8.8) is an integral part of the modelling process.

o In order to show the effectiveness and adaptation of the modelling process, data
with precipitation patterns from different climatic regions should be used. Thus, the
data set needs to contain worldwide weather stations.

o Aiming to provide a reliable method for estimating extremes, the data set except
from its versatility in climate patterns, needs to be in bulk. The more stations
provided, the more substantiated the final result.

4.2 The GHCN — Daily Database

After extensive research, the well-established Global Historical Climatology Network
(GHCN) — Daily database is chosen. The GHCN — Daily contains daily data from over 100,000
ground weather stations in 180 countries worldwide, from which about two-thirds are used
exclusively for precipitation measurements. Like its counterpart for monthly data, GHCN —
Daily is composed by numerous daily weather reports from different sources merged
together and subjected to rigorous quality assurance (QA) reviews for ensuring their
reliability. While the database is mostly focused on precipitation and temperature, many
stations also provide measurements for snow, snowfall depth, and otherimportant weather
variables (Menne, et al., 2012).

The initiative in creating the GHCN database was made a few decades ago, when a reliable
procedure in archiving global weather observation data was needed and had not yet been
initialized, since most data was handled by individual state organizations. The largest
collections, now fully integrated into GHCN were created by the Global Daily Climatology
Network (GDCN) (Gleason, et al., 2002) containing numerous international stations and the
National Oceanic and Atmospheric Administration / National Climatic Data Centre
(NOAA/NCDC) which contains mostly data from the US and South America. Another
important asset is the Global Climate Observing System (GCOS) program, which works to
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facilitate the free exchange of daily data from GCOS surface stations. The final GHCN — Daily
database contains data from all these organizations and more.

An important aspect of the usage of GHCN — Daily, is the fact that the database is up to this
day updated and continuously undergoes QA assessments. Consequently, reliability in the
weather observations is well established. The quality tests are mainly comprised of record
integrity checks of which some are aimed to flag (Menne, et al., 2012):

Stations with missing data between days
Nearby stations with significant differences between each other
Duplication of data records

o O O O

Climatological characteristics inconsistent with location

Comparing it to other databases, GHCN — Daily is most likely the most comprehensive global
archive of global weather observations. Up until 2012 the number of total elements in the
dataset was over 2 billion, containing nearly 300 million maximum and minimum
temperature reads and 800 million daily precipitation measurements. The complete
database can be accessed by visiting the NOAA website.
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Figure 4.1: Density of GHCN stations measuring precipitation (Menne, et al., 2012)
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4.3 Elimination Process and Final Dataset

Data assimilated from NOAA’s website containing the newest GHCN — Daily database
inquiry accounted to 112,777 total precipitation measuring stations. Their distribution
based on their coordinates is shown in Figure 4.2.

Figure 4.2: World map with total GHCN - Daily stations’ distribution

However, they do not constitute the final dataset. In extremes modelling, as mentioned
above, it is imperative to use stations whose observations span for over 30 years of
continuous recording. Thus, from the total stations acquired, the ones which don’t satisfy
this requirement are eliminated from the final dataset. The total stations remaining account
to 34,782. Their distribution is again shown in Figure 4.3.

089’ w 180 E

Figure 4.3: World map with GHCN - Daily remaining stations’ distribution
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Based on the quality assurance assessments made directly into the observations when they
are integrated into the GHCN — Daily database, no further action is necessary in eliminating
stations. The sample features looked upon when aiming for reliability in the observations
and in the final modelling results, are continuity in time without major disruptions, and
mitigation of outliers not consistent with stations’ regional climatic characteristics. These
features are already dealt with in the aforementioned QA. Below are presented; a
histogram depicting the distribution of observed years for remaining stations (Graph 4.1)
and a heat map of the total observed years for each station respectively (Figure 4.4)
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Graph 4.1: Distribution of stations depending on total years observed (>30 years)
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Figure 4.4: Heat map of total years observed from each station
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5 Modelling Tools

5.1 Microsoft Excel

For analysing precipitation data and in order to provide the means of reliable modelling and
extraction of useful statistical characteristics multiple platforms can be used. Microsoft
Excel offers a wide range of statistical tools, while the exclusivity in use of the GRG non-
linear solver is an important tool in the fitting process of distributions with complex
equations and multiple parameters. Moreover, MS Excel offers the ability to code user
specific functions with the Visual Basic Suite meaning that it is versatile and doesn’t limit
the user to only Excel’s functions libraries.

However, when studying bulk data, and in this case over 34,000 stations, it becomes clearly
impossible to use Excel in modelling for each one of them, since it can’t be completely
automated in analysing data. For this reason, the next step was to provide with an equally
reliable interface for complex statistics and fitting methods, that could also loop between
all stations. The solution was found in the MATLAB programming language which will be
analysed below.

MS Excel is still going to be used to statistically analyse the final modelling results and assess
the fittings provided by MATLAB. The main chart production in the results section is also
produced by Excel’s extensive chart possibilities.

5.2 MATLAB

The MATLAB programming language is becoming more and more famous in the engineering
community over the past few years. This is due to its versatility and ease of use in a variety
of engineering, financial, or statistical analysis. In this study, the core development is being
produced in the MATLAB environment and ranges from initial data extraction of GHCN —
Daily database, to the final fittings on extreme rainfall modelling and finally exporting the
results in Excel (.xlIsx) format for further analysis.

It was first conceived by Cleve Molerin the 1970s as an alternative to having to learn Fortran
in order to use the mathematical libraries of LINPACK and EISPACK. MATLAB is nowadays
being developed by MathWorks (https://www.mathworks.com) and was rewrittenin C, C++
and Java in order to improve its versatility. It is considered as a high-level multi paradigm
numerical computing environment which aims at solving complex problems with an ease-
of-use approach to the user. Some of its main characteristic applications are:

o Algorithm development
o Image processing

o Math and computation

o Modelling and simulation
o Data analysis

o General application development including General User Interface (GUI) production
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o Scientific graphs production
o Atrtificial intelligence designing

o Computational finance support

Standing as an acronym for MATrix LABoratory, its core data element is an array that
doesn’t require dimensioning, allowing to use simple logic in order to solve even the more
complex problems. Evolving over the years, MATLAB has gained popularity in scientific and
engineering applications and is considered as the basic programming language for data
analytics and high-productivity research. Moreover, it has one of the largest scientific
communities online, where the user can download purpose specific code or solve any
guestion regarding the software.

The user-friendly interface (Figure 5.1), other than providing with the basic operations for
the script, offers a group of application-specific bundles termed toolboxes. These toolboxes
allow the user to easily learn and apply study-specific technology and are provided as basic
.m function files solving problems covering a large branch of engineering studies (i.e. control
systems, neural networks, simulation, statistics, finance etc.). From the abundance of
toolboxes this study will use the optimization and curve fitting toolboxes for further
validation and quality assurance tests on the fitting process.
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Figure 5.1: MATLAB user interface (version R2018a)
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Figure 5.2: Demonstration of MATLAB’s Curve Fitting tool used for evaluation of the Hurst parameter from
the slope of the fitted power curve to K — climacogram’s values (version R2018a)

5.3 Python

In spite of its variability, MATLAB or its aforementioned toolboxes can’t provide everything
needed for this study’s purposes. Instead, for the completion of less observable, but
similarly important tasks, the Python programming language was recruited. The choice of
using Python was mainly justified for its ease of use and extensive community and function
libraries compared to other engineering-oriented programming languages.

In this study, Python is used for manipulating the GHCN — Daily database’s files and
structuring them effectively for increased run speed and compatibility with MATLAB.
Furthermore, each station’s metadata contains information such as its unique code name
(providing information on its location) as well as its raw geographical coordinates. Thus,
Python is used to corroborate these coordinates with the location provided from the
station’s name based on Federal Information Processing Standard (FIPS) codes, aiming at
improving reliability (Table 5.1).

Table 5.1: Station metadata region validation example

. . . Country Country
Station Name Latitude | Longitude (FIPS code) | (Coordinates) Check
SZ000002220 47.250 9.350 SZ Switzerland v
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Python was first conceived in 1991 by Guido van Rossum as a substitute to the ABC
language. It consists of a general use, object-oriented, high-level language, that is
dynamically typed and garbage collected, with central focus in code readability. The object-
oriented approach helps programmers, engineers and scientists produce clear cut code for
projects of every scale or form. To this day it is one of the most used programming
languages worldwide (Wikipedia, 2019).

The purpose of using it in this study is its high level of modularity. Specific sets of functions
(modules) can be installed to its core, depending on the user’s needs. They can be
downloaded from a large library of packages (https://pypi.org) thus making Python a very
modular programming environment.

In this study, Python version 3.7 is used with code written using the free PyCharm Integrated
Development Environment (IDE) made by JetBrains (https://www.jetbrains.com). The main
packages needed for the purposes of this study are Pandas, NumPy and Geopy. They are in
short analysed below:

o NumPy = main package for scientific and numerical computing
o Pandas = extensive support for data structures and data analysis tools

o Geopy =2 support for geocoding (or reverse geocoding) services. Receiving as input
geographical coordinates, they output information about the respective location (or
in the opposite manner).
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Figure 5.3: PyCharm CE interface (Python 3.7)
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6 Modelling Methodology

6.1 Methods Used

With precipitation data provided from GHCN — Daily the modelling process mainly consists
of fitting a suitable distribution, in this case the GPD2 and PBF, and providing with goodness-
of-fit parameters to judge the accuracy and reliability of the resulting fit. The concept of
“fitting a distribution” refers to estimating the theoretical distributions’ parameters. In this
study focus is given in showcasing the significant advantages of using the newly introduced
K—moments for modelling extremes, compared to classic and L — moments. For this reason,
all three methods are analysed and compared to each other for their modelling power and
consistency. Classic and L — moments fit the GPD2, while K — moments fit both the GPD2
and PBF. This choice will be analysed further in chapter.

6.2 Goodness of Fit Comparison

The aforementioned comparison between fitting methods materialises by calculating the
goodness-of-fit between the theoretical distribution and observed data. In practice, the
goal is to measure the divergence between observed values and values produced by the
model in hand. This can be done with a number of different statistical tests (e.g. Chi-squared
test, Kolmogorov-Smirnoff test, Anderson-Darling test), however, in order to provide with
a simple yet accurate method to compare models, this study uses the standard Root Mean
Squared Error.

In statistics, Root Mean Square Error (RMSE) or Root Mean Square Deviation (RMSD) is a
measure of the root squared differences of model produced values with observed values.
These differences are more commonly called residuals and in simple terms it measures the
accuracy of a model. The estimator of RMSE is (MathWorks, 2019):

2?:1(Xtheor - Xobs)2
n

RMSE = (6.1)

Where:

0 Xineor are the theoretical model values
o X,ps are the observed data values

o mnisthe sample size

RMSE always takes positive values, while a zero (0) value means that there is perfect fit to
the observed data. Thus, when comparing methods, a lower RMSE value means better
overall fit. However, since the error is being squared, higher scales produce
disproportionally larger errors than lower scales, which means that high errorin large scales
doesn’t mean that the fitted model is always unreliable.
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In order to solve this scaling issue, the Normalised Root Mean Square Error (NRMSE) is also
used. The benefit of normalising data is that all scaling properties of the model are omitted,
consequently creating a more efficient and more straightforward fitting evaluation process.
NRMSE is a slight variation from the traditional RMSE, allowing this valuable data
normalisation. NRMSE outputs values in the range (—oo, 1] with 1 showing perfect fit. It is
defined as (MathWorks, 2019):

n

NRMSE =1 —Z

i=1

Xobs - Xtheor

— (6.2)
Xobs - Xobs

Where:

o X,ps is the observed sample mean

o nisthe sample size

6.3 Modelling Procedure

6.3.1 Initial File Processing

In the ensuing subsections, the procedure followed in rainfall extremes modelling with each
of the three methods is analysed step by step. Firstly, the raw files from the GHCN — Daily
database have to be modified to work in the MATLAB environment. The steps followed for
this purpose are:

A. Raw database files (.dly) containing measurement data for a number of variables
(i.e. precipitation, temperature, snow cover), as well as station metadata, are
accessed and converted to MATLAB compatible files (.mat) containing only the
whole set of precipitation data and important metadata such as station name,
coordinates and starting-ending date of measurements (Jaffrés, 2019).

B. Each individual file is checked for satisfying the requirement for more than 30 years
of observed data. Any station below this threshold is ignored from the core
modelling process.

C. The mainframe for order statistics is built by sorting each station’s data in
descending order, while excluding zero values since they don’t contribute in the
fitting process. Order statistics are essential for assigning return periods to sample
values.

D. Otherimportant statistical characteristics of the sample are extracted (e.g. average,
standard deviation, rain days per year)
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6.3.2 Modelling with Method of Moments

The first method used is the classic method of moments (MoM). For fitting the Generalised
Pareto Distribution with two (2) parameters the following process is used:

A.

6.3.3

The first and second order moments for the whole data set are estimated through
Equations 3.10 and 3.11. The number of moments used is equivalent to the number
of the distributions’ parameters. While similarly third and fourth order moments
could be used, since higher moment orders are better for modelling extremes, the
counterargument is that moment estimation becomes significantly unreliable for
orders higher than two. Consequently, this study uses the simplistic and more
common approach of estimating the mean (x) and variance (s?).

Providing that mean and variance are finite, parameters k and A are estimated using
equations produced by Hosking & Wallis (1987) for the method of moments and
GPD2:

A= %f(f—z + 1> (6.3)
—2
K = %(9;—2 — 1> (6.4)

With known GPD2 parameters, return periods (Ty,p) are assigned by using
Equation 3.53 and converted to yearly values by dividing with rain days per year

(rdpy).

Observed data are sorted in ascending order and are assigned sample return periods
(Temp) from Equation 3.32 and similarly converted to yearly values by dividing with

rdpy.

In a log-log plot sample return periods and theoretical return periods are plotted
against rainfall values.

Goodness-of-fit is estimated with RMSE and NRMSE by using equations (6.1) and
(6.2) respectively, between theoretical and observed plots.

Modelling with L — moments

A similar procedure to classic moments is once again used in modelling with L — moments,
for the Generalised Pareto Distribution with two (2) parameters:

A.

Observed data without zero values is sorted in ascending order to facilitate the use
of order statistics in L — moments estimators.
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B. Either from Equation 3.19 or 3.20, the first two Probability Weighted Averages
(Bo, B1) are estimated. Constants are attributed their respective recommended
valuesy = 0.35and § = 0.

C. Based on equations produced by Hosking & Wallis (1987) the parameter estimators
for GPD2 using L — moments are:

__ P
K_ﬁo—2ﬁ1 2 (6.5)
_ 2B5B
QT (66)

Then the same process for plotting and error calculation is applied.
6.3.4 Modelling with K—moments

Moving on from the classic methods, the new concept of rainfall modelling using knowable
moments holds several advantages as seen from the theoretical analysis. Especially for
extreme-oriented distribution fitting they prove to have several unique advantages not
present in any other method.

Firstly, unlike classic moments, K — moments are knowable with reliable and unbiased
estimators for orders up to the size of the sample. With increasing order, more weight is
given in higher values of the sample, thus their estimation for high orders is greatly focused
on extremes.

Long-term persistence bias existing in most rainfall records is taken into account when using
K — moments and the whole data set. In classic methods using Peaks Over Threshold,
dependence is omitted thus producing a significant probability of severely underestimating
extreme values. Lastly, K— moments can be directly assigned return periods, with the use
of A\ — coefficients.

The following framework was used in order to successfully implement the use of K —
moments for extreme-oriented rainfall modelling:

A. While using all data, unbiased central K — moments are estimated from Equation
3.47, for ¢ = 1 and for p up to 1/10 the size of the sample.

B. The K — climacogram is constructed following the procedure in section 3.8.7, using
the aforementioned central K — moments and for scales up to 1/10 the size of the

sample. From its slope, the Hurst coefficient is estimated from Equation 3.64.

C. Non-central unbiased K—moments are estimated from Equation 3.46, forq = 1 and
for p up to the size of the sample n.
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D. Depending on the value of the Hurst coefficient dependence bias is estimated from
Equation 3.67 and taken into account in the non-central K—moments according to
Equation 3.69.

E. By the theoretical equations of A — coefficients for the Pareto distribution, empirical
return periods are assigned to the non-central K— moments.

F. Setting astarting point of k and A, theoretical return periods based on Equation 3.53,
are estimated.

G. Using an optimization algorithm, the best theoretical fit is produced by minimizing
the error between empirically assigned return periods and theoretical ones. In this
case, Least Squares (LSE), as in Equation 6.7, are used. Since the purpose of this
study is to efficiently model extremes, by setting a threshold on empirical return
periods (T > 1 year) and minimizing the LSE on that range an optimal fit on
extremes is achieved. The flexibility of the method is obvious, as the model can be
calibrated to fit effectively specific ranges of return periods thus specific intensities
of rainfall.

lrl(Ttheor)
- )

D. In alog-log plot sample return periods, empirical K— moments return periods and
theoretical return periods are plotted against rainfall values.

E. Goodness-of-fit is estimated with RMSE and NRMSE.

By following this method, as it is evident more emphasis is given in extremes. Thus,
sometimes while minimizing the LSE in a specific range of return periods, the lower part of
the distribution will not be fitted as accurately as possible. While accuracy is sacrificed in
the lower end, precision on extreme values is significantly more important since they are
the focus in most aspects of engineering design and risk assessment studies.

However, complete fitting accuracy can be achieved by adding one more parameter to the
theoretical distribution function. In this study, an evolution of the two (2) parameter
Generalized Pareto distribution is the Pareto-Burr-Feller (PBF) distribution which was
analysed in section 3.3.2. The extra parameter of the PBF is vital in combining accuracy in
lower and high return period values. The process of fitting is the same as with the classic
GPD2 and should provide with the best overall fit of observed data. The only difference is
that since a best overall fit is needed, the LSE minimizing process is done without setting a
threshold (quantile weight). While this method will most probably provide better results,
by adding an extra parameter, the model experiences higher uncertainty. Consequently, it
is advised to use the more parsimonious model of GPD2 (Koutsoyiannis, 2019).

In the following chapter, an application of all methods is presented in a specific station,
which will then be generalised in the whole of the database for evaluating both classic and
K —moments methods.
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7 Sample Station for Extreme-oriented Rainfall Modelling

7.1 Station Characteristics

For the methods demonstration, station named “SZ000002220"” is chosen. The reason for
this selection is the evident portrayal of the effectiveness of the K — moments method in
comparison to classic and L — moments. Furthermore, it satisfies all expected requirements
for reliability in the modelling process.

Station “SZ000002220” with coordinates [47.250, 9.340] is situated in the Appenzell
Innerrhodden province, in the North-East region of Switzerland. More specifically it is
located in the peak of the highest mountain of the Appenzell alps, most commonly called
Santis. Elevation at the weather station’s position is 2502m. The station was built by order
of the International Meteorological Congress of Rome in 1879 in which it was deemed
necessary to build weather stations across the most accessible mountain peaks of Europe.
The general location and a bird’s eye view of the station are provided in Figure 7.1 and
Figure 7.2.

All weather data from its commissioning until today, are compiled into the GHCN — Daily
database. By filtering it through quality assessment the database to this day contains 43,276
total daily observations, amounting to a total of 119 years of measurements, far above the
required minimum of 30 years. From the total number of observations, precipitation days
amount to 24,036, and by dividing with the 119 years, results in 202 rain days per year. The
complete time series is presented below in Graph 7.1.
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Graph 7.1: Rainfall observations of station “SZ2000002220"”
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Figure 7.1: Santis weather station bird's eye view (Wikipedia)
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Figure 7.2: Station's location in respect to Western Europe (Google Earth)
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7.2 Classic Methods Evaluation

Using the whole data set of 24,036 precipitation days and following the process from
sections 6.3.2 and 6.3.3, the first step is to estimate the mean, variance, and the first two
probability weighted averages. Then, from equations 5.3 and 5.4, the GPD2 parameters are
estimated for classic moments, and from equations 5.5 and 5.6, for L — moments
respectively. The results are presented below:

Table 7.1: Classic moments parameter estimation and goodness-of-fit statistics

Classic Moments
Mean Variance K A RMSE NRMSE
13.122 251.812 0.158 11.047 27.257 0.521

As for classic moments, because of the station’s position and the fact that on average the
region receives 202 rain days per year, the high mean value is not unusual. The fitted GPD2
with the method of moments is shown in Graph 7.2. While, for low orders the fit shows
perfect results, for high orders where extremes are located, the fitted distribution tail
slightly overestimates observed values. As this is a log — log plot it is evident that with
increasing return periods, the difference between observed and theoretical values
increases considerably. Mathematically, in this case, the tail index k should have had a lower
value in order not to overestimate extreme values.

Table 7.2: L - moments parameter estimation and goodness-of-fit statistics

L — moments
Bo B1 K A RMSE NRMSE
13.122 2.751 0.278 9.474 113.009 -0.988

On the other hand, L — moments fit estimates higher tail index value than classic moments
and as seen from Graph 7.2 this leads to even higher overestimation of extremes, though
similarly, for lower return periods, the fit is almost perfect. The significant unreliability in
fitting is also confirmed by the substantial RMSE value and the negative value on NRMSE.

RMSE and the variant NRMSE as mentioned before, are steadfast goodness-of-fit
determinants for the whole fitted distribution. In order to facilitate the means for evaluating
and comparing fitting methods separately on the distribution’s body and tail, three RMSE
and NRMSE values will be calculated in each method.

A. GoF —Total = error of the whole fitted distribution
B. GoF —Low = error for T < 1 year, which portrays goodness of fit on low orders.

C. GoF — High = error for T = 1 year, which portrays goodness of fit on high orders
(i.e. extreme values).
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Table 7.3: RMSE and NRMSE values for different parts of the fitted distribution

RMSE NRMSE
Method Classic Moments | L-moments | Classic Moments | L-moments
High 39.413 163.476 -0.177 -3.883
Low 2.620 9.858 0.895 0.603
Total 27.257 113.009 0.521 -0.998

Forthe classic methods showcased, the specific RMSE and NRMSE values are shown in Table
7.3. Confirming the visual representation from Graph 7.2, RMSE is minimal in low and
significant in high orders. In the same way, NRMSE is closer to 1 in low and lower in high
orders. By splitting the goodness of fit in high and low return period values, all methods
effectiveness on modelling extremes can be quantified reliably. By only using the standard
total RMSE and NRMSE values, a comparison specifically on extremes fitting can’t be made,
as from a single number there is no way of knowing where the error is produced from.

The unsatisfactory results portrayed are produced by using the classic methods of
distribution fitting, while using every precipitation observation (x; > 0) of the sample.
While a statistically better fit on extremes can be achieved if peaks over threshold are used,
this is done in expense to not taking into account long-term dependence, an important
characteristic of most rainfall samples, as mentioned in section 3.8.8. The purpose should
be to try and find a method that is both statistically and naturally consistent.
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Graph 7.2: Modelling results for classic methods. Values over threshold (T>1 year) and the whole
sample are also plotted for reference
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7.3 K—=moments Method Evaluation

7.3.1 Assuming Sample Independence

In order to showcase the difference in taking into account the long-term dependence bias,
the procedure in fitting with K— moments is applied twice. At first, the sample is assumed
as independent, while on the second trial the dependence bias is estimated and a
comparison between the two is produced.

For ignoring dependence modelling results are provided in Table 7.4. Since the fitting
process is based on minimizing the Least Squared Error (LSE) between empirical return
periods assigned to K — moments and theoretical return periods the error value is also
provided.

Table 7.4: Independent sample - K - moments parameter estimation and goodness-of-fit

K — moments (Independent)

K A LSE RMSE NRMSE

0.040 14.700 2.083 5.842 0.897

The low LSE value shows almost perfect fit of the GPD2 to empirical return periods, which
in turn validates the selected distribution as the appropriate for the modelling process.
Moreover, the goodness of fit statistics for the theoretical and observed values are
respectively significantly better than the classic methods, thus meaning that the fit is close
to perfect for all orders.

The fitted distribution, combined with empirical return periods are showcased in Graph 7.3.
It is evident that the fit is perfect for high orders where extremes are located, and almost
as good for low orders. Moreover, by using the same splitting process in evaluating the
RMSE and NRMSE, the results in Table 7.5, show low error on both high and low return
periods, as expected.

Table 7.5: RMSE and NRMSE values for different parts of the fitted distribution

K — moments (Independent)
Method
RMSE NRMSE
High 8.098 0.758
Low 2.358 0.905
Total 5.842 0.897
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Graph 7.3: Modelling results with the K - moments method for assumed sample independence. Empirical
K - moments return periods are also plotted.

7.3.2 Long-term Dependence Bias Effect

For taking into account dependence bias, the Hurst parameter has to estimated first. By
constructing the K — climacogram (Graph 7.4) for scales up to 5,000 days (~1/10 of the
sample) the estimated Hurst parameter is H = 0.85 which indicates significant long-term
persistence. Afterwards, the order (p) values that correspond to K — moments estimated
from the assumed independence method are corrected and the modelling process
continues as before. The final fitting results are shown in Table 7.6.

Table 7.6: Dependence biased sample - K - moments parameter estimation and goodness-of-fit

K — moments (Dependent)

K A LSE RMSE NRMSE

0.046 15.000 1.872 4.933 0.913
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Table 7.7: RMSE and NRMSE values for different parts of the fitted distribution

RMSE NRMSE
Method K — moments K — moments
(Dependent) (Dependent)
High 5.921 0.823
Low 3.820 0.846
Total 4.933 0.913

The results themselves don’t show significant differences in terms of parameter estimation
of the GPD2. While LSE and RMSE errors are now lower (and NRMSE better) than in the
previous trial, this doesn’t mean that if they were slightly higher the fit would be less
effective. This comes down to how much the bias affects empirical return periods, which in
turn depict the behaviour of theoretical GPD2 return periods. Again, RMSE and NRMSE is
split and the individual errors are provided in Table 7.7.

By comparing pure goodness of fit statistics and GPD2 parameters the true magnitude of
long-term persistence bias is not portrayed. Table 7.8, provides with interpolated rainfall
values from the two fitted GPD2 for return periods T = 100 and T = 1000 years which are
mostly associated with designing engineering works. The difference in expected rainfall is
significant, with the first trial underestimating values by a non-negligible margin for either
return period. Consequently, bias is necessary to be acknowledged when modelling
extremes.

Moreover, from Graph 7.3 and Graph 7.5, by purely comparing empirical return periods
assigned to K — moments from both methods, one can easily notice the difference in the
positioning of the empirical curve. For example, the highest empirically set K — moment
value K, = 186.7 is assigned a return period (in years) of Temp(ingepy = 219.17 assuming
independence, while with dependence accounted for, this value is Temp(aepy = 142.48. In
risk analysis terms and engineering design studies this is a significant difference which
should always be accounted for.

Table 7.8: Effect of long-term dependence bias on rainfall values for large return periods

Rainfall Expectation (mm/d)
Sample
LRI T =100 T = 1000
Independent 178.85 230.21
Dependent 187.86 245.58

52



Extreme-oriented rainfall modelling on global scale using knowable moments
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Graph 7.4: K - climacogram from unbiased central K - moments (p=2) and fitted trendline to measure
Hurst parameter in large time scales.
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Graph 7.5: Modelling results with K - moments method plus long-term dependence bias
estimation. Empirical K - moments return periods are also plotted.
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7.3.3 Methods Comparison

In the following tables, a summary of the fitting methods parameters and errors is provided
along with rainfall expectations at large return periods, in order to showcase the superior
performance of using K — moments for modelling extremes. Furthermore, in Graph 7.6 all

classic methods are plotted together with the bias dependent K — moments method.

Table 7.9: Modelling results parameters and goodness-of-fit comparison for all methods

Method K A RMSE | RMSE | RMSE | NRMSE | NRMSE | NRMSE
High Low Total High Low Total
Classic moments | 0.158 | 11.047 | 39.413 | 2.620 | 27.257 | -0.177 0.895 0.521
L - moments 0.278 | 9.474 | 163.476 | 9.858 | 113.001 | -3.883 0.603 -0.998
K - moments 0.046 | 15.000 | 5.921 3.820 4,933 0.823 0.846 0.913
Table 7.10: Rainfall expectation comparison for all methods used
Rainfall Expectation (mm/d
Method P (mm/d)
T = 100 years T = 1000 years
Classic moments 264.85 411.78
L - moments 502.10 983.20
K - moments 187.86 245.58
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Graph 7.6: Final fitting with all methods for comparison
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7.4 Overall Fit Improvement

The dominance of using K—moments when focusing on extremes is evident, while for low
orders there is a slight tendency of overestimating observed values, best explained on
section 6.3.4. Although the focus remains in proving reliability on predicting extremes, an
overall better fit can be achieved with the use of K—moments and the PBF distribution. The
same fitting process is applied as before except now Least Squares are measured in the
whole spectrum of the distribution, not just for T > 1 year. Moreover, in order to maintain
consistency in tail accuracy, the tail index from the standard K — moments modelling is
preserved. The variables are now only the scale parameter A and the new parameter c.
Results are provided in table and figure.

Although better overall fitting is achieved, in this study the main focus is on extremes, while
using the simplest model possible for providing the most consistent results. A simpler
distribution suggests less overall model uncertainty. With either distribution fitting of high
orders accomplishes almost the same great reliability. Thus, the PBF distribution is shown
here as an example and will not be present in the final fitting results for the whole database.

Table 7.11: Comparison of different distributions used for modelling with K - moments

RMSE | RMSE | RMSE | NRMSE | NRMSE | NRMSE

Distributi
Istribution . A ¢ High | Low | Total | High Low Total

GPD2 0.046 | 15.000 1 5.921 | 3.820 | 4.933 | 0.823 0.846 | 0.913

PBF 0.046 | 13.510 | 0.953 | 5.176 | 1.974 | 3.847 | 0.845 0.921 0.932
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Graph 7.7: Fitting result with PBF distribution
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8 Cumulative Results

8.1 General Overview

This section contains the results produced by the generalization of the process followed in
fitting the theoretical distribution to observed results for the aforementioned sample
station. The process is now universally applied to the entirety of the GHCN — Daily database
selected from section 4.3. The procedure is exactly the same as in station “SZ000002220".

By automating the procedure through MATLAB ease of use in monitoring for potential
errors during each station's fitting is achieved. The final fitting results are assembled in an
Excel spreadsheet (Table 8.1) produced by MATLAB, as it enables easier evaluation and
comparison of gathered data. This spreadsheet contains:

A.

Geographical coordinates and official name of each station, along with a station
specific identification code based on the computer handling MATLAB scripts and the
GHCN — Daily database. This code is used as an easier reference for locating a
station in the file system, if necessary.

Basic statistical characteristics for each station including total number of
observations, total rainfall observations, total years observed, averages and
standard deviations for all data and only rainfall data accordingly.

Parameter estimation results according to the process followed in sections 6.3.2,
6.3.3, 6.3.4. These results include the estimation of the tail index k and the scale
parameter A. Specifically for the K — moments method, as it is based on a
minimization algorithm, the Least Squared Error (LSE) between theoretical and
empirical return periods is also printed along with the parameters.

Goodness-of-fit statistics (6.2. This means that total RMSE and NRMSE values are
given, combined with the individual RMSE and NRMSE values for different parts of
the distribution.

Rainfall values following the K— moments method assuming long-term
dependence, for large return periods, and specifically for T = 100 years and T = 1000
years, from MATLAB's interpolation algorithm.

The percentage difference between interpolated rainfall values according to K —
moments and classical methods to showcase the impact on rainfall value
inconsistency between methods. From these percentages, if needed, actual rainfall
values for the other methods can be estimated.

. Data assimilated from rerun of the script for stations with high Hurst parameter,

now assuming sample independence.
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After the production of the Excel spreadsheet, analysis on the fitting results can begin. First
of all, a general evaluation and comparison is made between all methods used in the
modelling process. An overview of the fitting parameters composition is given in order to
show the general disparity between estimation methods, while also histograms are
produced to better showcase the result.

In order to showcase the effectiveness of knowable moments against other methods,
separate histograms are created depicting goodness-of-fit statistical parameters. Greater
density of high NRMSE values shows better fit, while the same is valid for greater density of
low RMSE values. Since in this study the focus is in modelling extremes, again histograms
are produced, now showing the effectiveness of K—moments for high return periods, while
also evaluating their efficiency in low return periods.

An integral part of this study is evaluating the importance of accounting for long-term
dependence in the observed sample when modelling extremes. Thus, the different results
produced for presumed structural independence or long-term dependence are compared
to each other. For this reason, a density graph is created showing which stations are
affected the most by their dependence structure and if the Hurst coefficient is correlated
to this change. The aforementioned comparison is made for the most prominent stations.

Moreover, more comparisons between other characteristics from the fitting process are
produced. In specific, since, the GHCN — Daily database provides globally distributed data,
this study attempts at constructing effective estimation of average rainfall modelling
characteristics based on each region’s climatic attributes.
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Table 8.1: Indicative sample of fitting results for the first 20 stations. Each method is represented by its
first letter; “K” for knowable moments, “M” for classic moments, and “L” for L — moments.

N Name Ut lon oy Ohs FeinObs VewsOhs Avg AvgTor Sibev SDeviot Aust (0 AKD LS ) A(M) k(i () KM3(T00] KNG FE000]KIF (F100) K4 (13600

11 AGO000060390 36.717 3.250 Algeria 25839 7122 71 7.091 1.954 10.260 6.249 0.73 0.114 8.550 2.984 0.261 5.239 0.396 4.283 45.8 90.6 192.2 405.9

12 AG000060590 30.567 2.867 Algeria 31313 780 86 4.504 0.112 7.157 1.329 0.65 0.306 3.300 0.032 0.302 3.144 0.325 3.039 -6.5 7.1 0.7 4.7

13 AG000060611 28.050 9.633 Algeria 19559 373 54 4.061 0.077 5.988 0.995 0.5 0.226 3.500 0.509 0.27 2.964 0.298 2.851 1.4 10.5 7.8 26

14 AG000060680 22.800 5.433 Algeria 21768 698 60 4.437 0.142 6.078 1.339 0.58 0.034 5.800 3.052 0.234 3.4 0.24 3.372 35.9 79.3 40 85.8

15 AGE00135039 35.730 0.650 Algeria 26848 4233 74 7.132 1.124 9.367 4.537 0.75 0.056 8.900 0.468 0.21 5.633 0.268 5.218 40.3 81.8 81.3 162.9

17 AGE00147705 36.780 3.070 Algeria 21287 5828 59 7.200 1.971 10.319 6.281 0.47 0.114 8.150 0.205 0.257 5.352 0.403 4.295 50.8 95.5 220.9 464.8

20 AGE00147708 36.720 4.050 Algeria 24415 6112 67 9.278 2.323 11.317 6.944 0.59 0.108 9.300 1.261 0.164 7.757 0.189 7.525 13.5 24.7 27 46.3

21 AGE00147709 36.630 4.200 Algeria 19744 5080 55 10.700 2.753 12.392 7.835 0.59 0.001 13.250 4.889 0.127 9.338 0.135 9.254 35.3 58.1 40.1 66.3

23 AGE00147711 36.370 6.620 Algeria 16343 3782 45 6.884 1.593 8.270 4925 0.62 0.092 7.100 0.108 0.153 5.828 0.159 5.789 15.2 27 18.4 31.1

24 AGE00147712 36.170 1.340 Algeria 18101 3837 50 5.517 1.169 6.789 3.854 0.44 0.02 7.050 0.798 0.17 4.579 0.222 4.29 39.8 76 78.9 146.1

25 AGE00147713 36.180 5.400 Algeria 14734 3511 41 5.188 1.236 7.254 4.174 0.56 0.12 5.750 0.509 0.244 3.921 0.34 3.426 41.3 75.3 126.3 240.5

27 AGE00147715 35.420 8.120 Algeria 12886 2054 36 5.663 0.903 7.158 3.530 0.7 0.196 4.250 1.861 0.187 4.603 0.226 4.38 2.4 1.5 22 29.8

28 AGE00147716 35.100 -1.850 Algeria 25809 4085 71 7.646 1.210 9.336 4.646 0.69 0.016 9.700 1.588 0.165 6.388 0.192 6.178 36.3 74.1 53.2 105.7

29 AGE00147717 35.200 0.630 Algeria 16103 2844 45 6.329 1.118 7.332 3.914 0.52 0.02 7.450 0.797 0.127 5.522 0.133 5.488 28.2 48.1 30.1 52.4

30 AGE00147718 34.850 5.720 Algeria 26775 2084 74 5.782 0.450 10.125 3.221 0.65 0.374 3.500 0.038 0.337 3.833 0.384 3.561 -11.2 -17.8 7.8 10.1

31 AGE00147719 33.800 2.890 Algeria 16716 1403 46 5.449 0.457 7.320 2.603 0.48 0.224 4.300 0.412 0.223 4.234 0.225 4.222 -1.9 -2 -1.1 -0.9

32 AGE00147720 33.680 1.000 Algeria 14558 2544 40 5.701 0.996 8.619 4.203 0.76 0.098 8.300 8.389 0.281 4.097 0.307 3.953 36 90.7 53.1 125.8

36 AGMO00060360 36.822 7.809 Algeria 11489 3350 32 6.927 2.020 9.538 6.036 0.69 0.118 7.950 0.393 0.236 5.291 0.3 4.852 34 64.1 83.9 156

40 AGMO00060402 36.712 5.070 Algeria 10958 3050 31 8.349 2.324 11.955 7.333 0.42 0.118 9.550 0.831 0.256 6.21 0.38 5.175 46.1 87.8 175.5 357.5

46 AGMO00060419 36.276 6.620 Algeria 10800 2958 30 5.818 1.593 8.557 5.175 0.82 0.178 6.450 3.261 0.269 4.253 0.339 3.845 14.9 36.5 63.7 125.3

N RWSEK) RIMSE(0A) RIS (L) RIS igh () RV High (M) RV High () ROMSELow (K RMSE Low () ROMSELow(L) NRWISE (k) NRMSE () NRMISE L) NRVISE High <) NRVISE Hgh ) NRMIE High L] NRMISE Lo () NRWSE Low () NRMSE Low (1) Rainfal 100) il 11000)
11 5.735 11.420 63.375 7.264 16.356 91.266 3.798 1.715 2.591 0.864 0.729 -0.502 0.737 0.407 -2.309 0.731 0.879 0.817 138.747 202.719
12 5.142 6.785 5.304 6.330 8.345 6.520 0.531 0.506 0.501 0.786 0.718 0.779 0.713 0.622 0.705 0.836 0.843 0.845 78.500 169.348
13 3.067 3.654 2.780 3.665 4.431 3.367 1.011 0.514 0.460 0.793 0.754 0.813 0.707 0.645 0.731 0.501 0.747 0.773 52.582 97.886
14 2.565 2.557 2.595 2.510 3.174 3.225 2.654 0.795 0.787 0.822 0.823 0.820 0.736 0.666 0.661 0.272 0.782 0.784 44.638 64.045
15 3.631 7.879 19.486 3.895 10.861 27.096 3.325 1.535 0.961 0.879 0.738 0.353 0.785 0.401 -0.494 0.710 0.866 0.916 98.939 132.841
17 5.304 11.633 64.022 7.365 16.793 93.151 2.218 2.048 2.434 0.862 0.697 -0.665 0.709 0.336 -2.684 0.848 0.859 0.833 132.388 193.383
20 5.510 2.795 6.344 7.666 3.985 9.100 1.927 0.487 0.540 0.871 0.935 0.852 0.731 0.860 0.680 0.872 0.968 0.964 144.450 208.704
21 4.514 7.462 8.873 5.174 10.815 12.883 3.835 1.130 0.948 0.875 0.794 0.755 0.695 0.362 0.240 0.777 0.934 0.945 118.241 151.972
23 2.765 1.101 1.326 3.709 1.540 1.904 1.546 0.465 0.389 0.899 0.960 0.952 0.774 0.906 0.884 0.859 0.958 0.964 98.634 140.345
24 2.381 4.242 10.659 2.181 6.111 15.441 2.549 0.642 0.424 0.882 0.789 0.470 0.786 0.399 -0.519 0.712 0.927 0.952 67.541 87.537
25 3.149 4.471 20.137 4.300 6.437 29.746 1.636 1.378 1.036 0.876 0.824 0.205 0.730 0.596 -0.869 0.834 0.860 0.895 92.204 137.485
27 4.021 4.099 6.329 5.473 5.858 9.191 1.989 1.136 0.850 0.813 0.810 0.706 0.655 0.630 0.420 0.774 0.871 0.904 96.594 163.372
28 3.310 6.179 10.495 3.373 8.545 14.614 3.243 1.158 0.901 0.880 0.776 0.620 0.781 0.445 0.052 0.714 0.898 0.921 89.101 112.682
29 2.206 2.033 2.385 2.431 2.887 3.407 1.975 0.510 0.480 0.892 0.900 0.883 0.769 0.726 0.676 0.778 0.943 0.946 69.128 89.595
30 13.414 17.728 10.303 17.876 23.645 13.736 0.898 0.547 0.544 0.742 0.659 0.802 0.648 0.534 0.729 0.876 0.924 0.925 175.192 427.132
31 7.439 7.935 7.778 10.229 10.910 10.694 0.235 0.306 0.299 0.727 0.709 0.715 0.568 0.539 0.548 0.963 0.952 0.953 95.727 174.783
32 8.001 8.028 8.663 8.576 11.679 12.605 7.453 0.376 0.332 0.762 0.761 0.742 0.566 0.409 0.362 0.203 0.960 0.964 115.141 164.010
36 4.758 2.915 14.392 6.086 4,183 21.958 3.439 1.318 0.706 0.864 0.917 0.589 0.710 0.801 -0.047 0.748 0.904 0.948 132.117 195.729
40 6.618 5.416 39.265 9.413 7.887 59.848 3.174 2.146 2.553 0.843 0.871 0.067 0.642 0.700 -1.279 0.809 0.871 0.846 158.269 232.853
46 7.174 7.167 11.770 9.608 10.916 17.915 4.574 0.829 1.474 0.801 0.802 0.674 0.614 0.562 0.281 0.586 0.925 0.867 149.667 243.759
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8.2 Fitting Methods Comparative Performance — Goodness-of-fit

8.2.1 Overall Performance

As mentioned before, the evaluation of a method’s performance is done by comparing
goodness-of-fit statistic tools. In this study the used tools are the RMSE and NRMSE. In this
chapter overall method performance is analysed.

Firstly, NRMSE charts are presented. The provided charts are modified to show values in
the same range for each method, in order to make the comparison more evident. It is
observed from random station tests that an overall NRMSE value over 0.7 shows acceptable
compatibility between observed values and the theoretical distribution. This NRMSE value
should not be confused with explicit measurement of reliability in the distribution tail, but
is an overall indicator of the whole distribution fit. However, again through sampling of
different stations, a value over 0.8 suggests reliability in both low and high orders.

From graphs Graph 8.1, Graph 8.2, and Graph 8.3 it is evident that fitting with the K —
moments method using the two parameter Generalized Pareto Distribution proves to be
the most efficient overall. Most of the stations are well over the 0.7 range, with most of
them even above 0.8 suggesting great performance overall. On the other hand, from the
classic methods, classic moments achieve second best performance with L — moments
achieving the worst result. As seen from Graph 8.2 and Graph 8.3 over 5,500 and 23,500
stations respectively are below the 0.6 mark, with many of them even on the negative
range.
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Graph 8.1: Overall NRMSE values - Knowable moments
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Overall NRMSE Classic moments
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Graph 8.3: Overall NRMSE values - L-moments
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In order to better illustrate the comparison between methods, Graph 8.4 provides the
cumulative frequencies of NRMSE values for all methods for every tested station. As shown,
K —moments NRMSE frequencies start the steep climb after the 0.7 mark. However, this is
not the case for classic and L — moments which show significant frequency even for low
NRMSE values.

The 0.8 threshold is presented for all methods in the same graph. The data label shows the
percentage of stations with NRMSE values below 0.8. K—moments are in the range of 11%,
while L— moments on the other end of the spectrum show a calculated percentage of 86%.
Classic moments give an in-between result of 56%.

Since this section provides the overall fitting result, it still can’t be assumed that K —

moments show the best extreme-oriented distribution fitting. For pointing to this

conclusion, a deeper analysis on how the fit performs specifically in high orders is needed.
Cumulative Frequency - Overall NRMSE
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Graph 8.4: Cumulative frequency of overall NRMSE for all methods. The data labels show the percentage
of stations where the estimated NRMSE value is below 0.8.

These comparisons were made using the NRMSE tool. Now, the same results are presented
using the standard RMSE. While, RMSE shows reliability by how close to zero the error is,
maximum values aren’t theoretically defined. As with NRMSE, from trial tests in different
stations, RMSE values are considered reliable enough if below 4-6.

The problem with RMSE is that while it gives a great representation of the fit, it is biased for
high values, meaning that equally sufficient fit is achieved for stations with different valued
extremes. A station with higher observed extreme values, compared to another with lower
extremes, whilst may have identical fit results, will most certainly show a greater RMSE
value which is not representative. Thus, main focus is given in the normalised NRMSE value
which is independent of the sample size and intensity of extreme values. Although this is
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the case, RMSE results follow the same pattern as with the NRMSE, suggesting overall better
fit for K — moments (Graph 8.5), followed by classic moments (Graph 8.6), and finally L —

moments (Graph 8.7).

Overall RMSE K - moments

Stations

(4, 5] (6,7 (8,9] (10,111  (12,13]  (14,15]  (16,17]  (18,19] >20

(2,3]
(7, 8] (9, 10] (11,12]  (13,14]  (15,16]  (17,18]  (19,20]

<2 (3, 4] (5,6]
RMSE

Graph 8.5: Overall RMSE values - Knowable moments
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Graph 8.6: Overall RMSE values - Classic moments
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Stations
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Graph 8.7: Overall RMSE values - L-moments

Again, for better comparison between methods, a cumulative frequency graph for RMSE
values is shown below. Depicted is the percentage of stations below RMSE value of 6, which
is equivalent to an overall reliable fit. As with NRMSE, here again, knowable moments
prevail over classic methods, with almost double target frequency against classic moments.
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Graph 8.8: Cumulative frequency of overall RMSE for all methods. The data labels show the
percentage of stations where the estimated RMSE value is below 6.
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8.2.2 High Order Performance - Extremes

While an overall performance statistic is most of the time sufficient to judge a distribution’s
power to suitably match observed data, in this study the main focus as mentioned before is
extreme-oriented rainfall modelling. For this purpose, as already tested in Chapter 7 NRMSE
and RMSE statistics are separated and used upon different parts of the distribution, in order
to showcase performance in both the tail and the body. Goodness-of-fit values are
estimated as in section 7.2.

For high moment orders, thus as extremes are concerned, the results are provided below
in the same format as the overall goodness-of-fit values. From Graph 8.9, Graph 8.10, and
Graph 8.11, it is evident that using the K— moments method gives significantly more reliable
results. Classic methods fail to accurately model the tail of the distribution, while classic
moments are the best between the two.

High Orders NRMSE K - moments

3947 3982

Stations

Graph 8.9: High Orders (T > 1 year) NRMSE values - Knowable moments

Using the same principle as before (Section 8.2.1) values over 0.7 consist of reliable tail fits.
Thus, by comparing the three methods, itis clear that with K—moments there is a significant
advantage. Most stations give a result around 0.75 with K—moments which is considerably
higher than classic and L — moments which show average results below 0.5.

A better representation of this is again shown in the cumulative frequency chart (Graph
8.12), where the threshold 0.7 is overpassed by almost 65% of stations modelled with K —
moments, whereas the next closest in reliability are classic moments with 25% of stations
overpassing 0.7 in high-order NRMSE.
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Graph 8.11: High Orders (T > 1 year) NRMSE values - L-moments
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Cumulative Frequency - High Orders NRMSE
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Graph 8.12: Cumulative frequency of high-order NRMSE values for all methods. The data labels show the
percentage of stations where the estimated NRMSE value is below 0.7.

Again, for validation purposes, RMSE values are also estimated and shown below in Graph
8.13, Graph 8.14, and Graph 8.15. The same pattern arises from both evaluation methods,
showing better fit of the K—moments method for extreme values. Using K—moments, most
stations give estimated RMSE in the range of 1-6. As for classic moments, RMSE values are
distributed among the spectrum provided, but the number of stations above 30 is

significantly greater. Finally, L — moments show again the worst result with most stations
showing RMSE above 30.

Moreover, the cumulative frequency chart for RMSE (Graph 8.16) gives comparable results
to the NRMSE (Graph 8.12). Specifically, it estimates that 46% of stations are lower than the
applied threshold (equal to 6, as before), while for classic and L — moments, this percentage
is in the range of 20% and 7%, respectively.

Both goodness-of-fit statistics, show clear preference of the K — moments method as the
best for extreme-oriented rainfall modelling. The results provided analytically for the
sample station are validated throughout the entirety of the dataset, specifically when
focusing on high-orders, which is the primary goal of this study.
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High Orders RMSE K - moments
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Graph 8.13: High Orders (T > 1 year) RMSE values - Knowable moments
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Graph 8.14: High Orders (T > 1 year) RMSE values - Classic moments
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Stations

Cumulative Frequency (%)

High Orders RMSE L - moments

1008 1348 1449 1372 1285 1193 1159

1041 1001

924 915.

<4 (4,6] (6,8] (8,10] (10,12] (12, 14] (14, 16] (16, 18] (18, 20] (20, 22] (22, 24] (24, 26] (26, 28] (28,30] >30
RMSE

Graph 8.15: High Orders (T > 1 year) RMSE values - L-moments
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Graph 8.16: Cumulative frequency of high-order RMSE values for all methods. The data labels show the

percentage of stations where the estimated RMSE value is below 6.
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8.2.3 Low Order Performance

While extremes modelling efficiency is achieved with the K — moments method, the
ultimate goal is to find a reliable modelling method for overall best fitting results. Since
preliminary analysis indicated overall superiority of K — moments compared to classic
methods, a definitive conclusion can be reached if superiority is also attained for low-order
moments (i.e. the distribution’s body). For this purpose, the same procedure as in Section
8.2.2 will be followed, showing goodness-of-fit statistics for low-order moments.

Firstly, NRMSE histograms depict each methods behaviour for low orders, which consist of
values for return periods lower than 1 year (T < 1 year). All methods show similarly good
fitting performance to each other, with K— moments (Graph 8.17) achieving NRMSE values
of 0.7 in most stations. However, over 3,000 stations have estimated NRMSE below 0.6.

On the other hand, both classic methods (Graph 8.18, Graph 8.19) show slightly better
performance than K — moments, with NRME values more densely compacted over 0.85 for
classic moments and over 0.8 for L—moments. Using classic moments, stations with NRMSE
below 0.6 are almost 600, while the same number for L— moments is just above 1,300, both
significantly lower the K— moments method.

This result is expected when comparing methods, since K — moments are specifically used
in focusing the modelling process on extremes, rather than in the distribution’s body. While
this is the case, the difference in the reliability between knowable and classic methods is
minimal.

Low Orders NRMSE K - moments
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Graph 8.17: Low Orders (T < 1 year) NRMSE values - Knowable moments
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Low Orders NRMSE Classic moments
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Graph 8.18: Low Orders (T < 1 year) NRMSE values - Classic moments

Low Orders NRMSE L - moments
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Graph 8.19: Low Orders (T < 1 year) NRMSE values - L-moments
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Using the cumulative frequency chart for low-order NRMSE values it is evident that the best
performer are classic moments, followed by L — moments, while K— moments provide with
the least good results. Classic moments show 11% of stations with low-order NRMSE value
below 0.8, L — moments show 19%, and finally K— moments display 45%. While this seems
like a significantly higher number compared to the best performer, this threshold gives
stations with almost perfect results. Good reliability is achieved even from NRMSE in above
0.7, where K— moments achieve almost 20% stations below that range.
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Graph 8.20: Cumulative frequency of low-order NRMSE values for all methods. The data labels show the
percentage of stations where the estimated NRMSE value is below 0.8.

The same behaviour is depicted from RMSE estimation of low-order moments, which are
provided below, again for validation purposes (Graph 8.21, Graph 8.22, Graph 8.23). K —
moments show a tendency for low RMSE values with most of them below the 4 value
threshold mark, while classic methods tend to achieve RMSE values concentrated below 2.
Moreover, almost triple the stations with over 10 RMSE value are achieved with the use of
knowable, rather than classic moments. This again shows the slight advantage of classic
methods.

In more detail, from the cumulative frequency Graph 8.24, the slight advantage is again

evident. With 4 as threshold, stations below it using K — moments show overall percentage
of 71%, classic moments 89%, and L — moments 84%.
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Graph 8.21: Low Orders (T < 1 year) values - Knowable moments
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Graph 8.22: Low Orders (T < 1 year) RMSE values - Classic moments
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Graph 8.23: Low Orders (T < 1 year) RMSE values - L-moments
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Graph 8.24: Cumulative frequency of low-order RMSE values for all methods. The data labels show the
percentage of stations where the estimated RMSE value is below 4.
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8.2.4 Rainfall Value Comparison Between K —moments and Classic Methods

As with the sample station (Chapter 7) where rainfall values at different high return periods
are showcased for more direct and clear comparison between methods, the same is applied
for the whole dataset. Since the data is now in bulk the most appropriate way of
approaching analysing it is through rainfall value percentage differences between fitting
with K—moments and classic methods.

The goodness-of-fit comparison (8.2) portrayed the dominance of K— moments in extreme-
oriented modelling. For this purpose, rainfall values predicted from K — moments for each
station are compared against the remaining inferior methods at specific high order return
periods, namely for T = 100 and T = 1000 years. Both return periods are consistently
used as standards in the design of most hydraulic engineering works, thus important
estimation of these values is paramount. Even slight variance in their estimation can prove
to cause disastrous consequences for infrastructure works and consequently for the
population affected by them.

In Graph 8.25, Graph 8.26, Graph 8.27, and Graph 8.28, the percentage difference depicted
is positive for higher classic method value than the K—moment one and negative otherwise.
More importantly, the graphs depict station that achieved NRMSE for high-order moments
over 0.7, in order for the comparison to be concurrent with increased reliability in modelling
extreme values. Choosing to use the whole dataset is invalid, since not all stations showed
perfect fit while using K—moments. Thus, only the 22,373 stations who achieved to be over
this threshold are used in this analysis.
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Graph 8.25: Rainfall value percentage comparison between K - moments and Classic moments for return
periods of T = 100 years.
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Graph 8.26: Rainfall value percentage comparison between K - moments and Classic moments for return
periods of T = 1000 years.

The first comparison is between knowable and classic moments. As it is evident, for 100
years (Graph 8.25), rainfall values are slightly overestimated by using classic moments.
Moreover, as expected for 1000 years (Graph 8.26) the overestimation continues and at a
higher rate than before. However, there are cases where there exists minor
underestimation of observed values, but as shown, these are exceptions.

Since, only high reliability stations are plotted, K — moment rainfall value is close to the
actual observed value. Thus, the overestimation is not only attributed to comparing to K —
moments, but also to real observed data. An average value in the range of 39% for T = 100
years and 95% for T = 1000 years, it is safe to say that classic moments overestimate
observed values by a great margin.

As for knowable moments and L — moments the analysis proves significantly worse results
compared to classic moments. This is in sync with goodness-of-fit statistics which portrayed
worse performance of L — moments in most cases. Again, theoretical values are
overestimated, now with greater difference between them in both 100 and 1000 years
rainfall estimation (Graph 8.27, Graph 8.28).

This significant overestimation experienced from classic methods, is detrimental to the
designing of especially large engineering works, since it can cause inconsistent risk analyses,
significant financial losses and increased resources usage where there is no need to.
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Graph 8.27: Rainfall value percentage comparison between K - moments and L - moments for return
periods of T = 100 years.
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Graph 8.28: Rainfall value percentage comparison between K - moments and L - moments for return
periods of T = 1000 years.
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8.3 Extreme-Oriented Modelling Effectiveness using K—moments

As a general conclusion for the performance of all methods used in rainfall modelling, it
seems that the K— moments approach is the most effective one. Using different distribution
regions to study fitting effectiveness for each method it is concluded that:

A. Classic Moments = provide reliable results only for the distribution body, while
extremes values are not successfully modelled showing moderate overestimation of
extremes for most stations.

B. L—moments = again like classic moments, show reliable results only for the body
of the distribution. This method is the least effective for modelling extremes, with
significantly low goodness-of-fit statistics and considerably high extremes
overestimation patterns for most stations.

C. K- moments = show best overall results. Since they are constructed to focus on
extreme values the fitting for high moment orders is the best from the three
methods, showing general consistency for most stations. For the same reason, giving
emphasis in extremes means that reliability in lower values is sacrificed. Thus, K —
moments show slightly worse results in low order moments from classic methods.
However, overall, they still provide the best results from the comparison of
goodness-of-fit statistics.

Table 8.2, and Table 8.3 depict a general overview of goodness-of-fit statistics for all
methods and for all tested distribution regions. As shown, knowable moments are on
average the most reliable for overall distribution and extreme-oriented fitting as depicted
by both the NRMSE and RMSE. While they are worse for low orders compared to classic
moments, their difference is insignificant. Thus, K — moments appear to be the most
appropriate for modelling rainfall extremes.

Table 8.2: Average NRMSE values in every distribution region for all methods

NRMSE Classic L Knowable

Overall 0.722 -0.226 0.854
High 0.303 -2.218 0.713
Low 0.870 0.768 0.783

Table 8.3: Average RMSE values in every distribution region for all methods

RMSE Classic L Knowable
Overall 11.80 46.805 6.638
High 16.907 68.236 8.427
Low 2.112 3.104 3.585
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By establishing that knowable moments are the most suitable for modelling extremes, the
study can now focus more on the fitting process’s effectiveness and efficiency. Since fitting
with K — moments rely on an optimization process through minimizing the least squares
error (LSE) between theoretical return periods obtained from Equation 3.53 and empirical
return periods assigned to K — moments from Equation 3.60, evaluation for the error
parameter is provided and analysed throughout the whole dataset (Graph 8.29).

Fitting Process Least Squared Error
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Graph 8.29: Optimization Least Squared Error (LSE) used in the fitting process between return periods.
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Graph 8.30: Cumulative frequency of LSE fitting values. The data labels show the percentage of stations
where the estimated LSE value is below 2 and 4.
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The average value of LSE through the whole dataset is estimated at 1.84. Since, the
optimization method is based on least squares, the optimum solution is achieved for the
lowest LSE value, and it will always be higher than 0. While this is the case, it is observed
that LSE values below 2 depict an almost perfect fit, and stations below 4 are quite reliable.

From Graph 8.29 it is evident that most stations are optimized with an LSE lower than 4. In
more detail, from Graph 8.30 the cumulative frequency of stations with LSE below 2 is
around 72% and for those below 4 is 88%. Consequently, there is great compatibility
between empirical equations through A — coefficients for estimating return periods and the
theoretical ones estimated from the Pareto distribution’s definition. Stations

At this moment, it is important to note that the LSE optimization tool doesn’t directly
showcase the reliability of the modelling process between the fitted distribution and
observed values. These two concepts are linked through the empirical return periods
assigned to K— moments through A — coefficients. In practice, this means that low LSE value
doesn’t guarantee that the fitted model correctly describes extremes (i.e. high NRMSE or
low RMSE value). The fitted model performance compared to observed data is displayed
from goodness-of-fit statistics as discussed in 8.2, which show great results especially for
high-order moments.

Therefore, it is safe to conclude that both empirical return periods and the final fitted Pareto
model are effective for directly describing rainfall extremes. This assumption is validated by
comparing the cumulative frequencies from NRMSE for high orders (Graph 8.12) and LSE
values (Graph 8.30). As depicted from both charts, about 65% of stations have estimated
high-order NRMSE above 0.7, while 72% have an optimization LSE below 2. Both thresholds
show a suitable respective fitting and since those percentages are only slightly different
from each other, the effectiveness and indirect correlation between empirical return
periods and final model fit is confirmed. The 7% difference, with LSE achieving the highest
percentage between the two confirms the point discussed in the previous paragraph and is
caused from the incapability of the standard two parameter Pareto distribution (GPD2) to
successfully describe the given data.
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8.4 Impact of Long-term Dependence on Modelling Results

As proven in modelling of the sample station with K - moments (7.3), taking into account
the effects of persistence or long-term dependence, yields significant difference in the
fitting results. Failing to account for dependence can lead to great underestimation of
rainfall values for high return periods, which are of the most interest.

For this reason, all modelling results produced and analysed in the previous chapters
implement the effects of long-term dependence. Thus, in order to solidify and showcase its
impact in the totality of the database, a part of it is remodelled without accounting for
dependence.

Hurst parameter depicting the magnitude of positive long-term dependence takes values
over 0.50. However, as seen in Graph 3.9 the effects are significant for values over 0.70.
Thus, stations with H > 0.70 are remodelled now ignoring the dependence structure and
only those results are presented. While, all stations with 0.50 < H < 0.70 will be affected
from positive persistence the difference in the end is minimal.
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Graph 8.31: Hurst coefficient distribution for the complete database

The Hurst coefficient’s distribution from the whole database gives an average of 0.58.
While, rainfall data is mostly associated with high long-term correlation, many stations
show either a lack of long-term dependence at around the 0.4 < H < 0.6 mark and those
with H < 0.4 signify negative long-term persistence, but these are limited to about 2,000
stations of the total (Graph 8.31).
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The fact that some stations are showing moderate anti-persistent behaviour is not
considered typical for the rainfall process, and it may be attributed to lack of sufficient years
of observed data or to specific extreme values that skew the curve fitting result of the K-
climacogram, from which the Hurst coefficient is estimated.

Remodelled stations account for 6,204 of the total and their distribution is shown in Graph
8.32. It is evident that most stations are found below the 0.8 mark. However, for Hurst
values H > 0.8 station density is still significant. Although, the Hurst coefficient plays a
significant role in quantifying the effect of long-range dependence, as seen from Graph 3.9,
observed sample size is also a contributor, but with less influence on the resulting
guantification.
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Graph 8.32: Hurst coefficient distribution for stations with H > 0.70

For evaluating the effects of long-term persistence on stations prone to show such
behaviour, the difference between modelled rainfall values for large return periods (100
and 1000 years) will be calculated with the same process as the sample station (7.3.2).
Moreover, correlation between the Hurst coefficient values and the magnitude on the
results is also investigated.

By accounting for long-term dependence, modification on the distribution tail is being
made, with a tendency to upscale extreme events for the same values of return period,
compared to sample independence. In other words, the distribution tail shifts upwards on
the y axis (rainfall values) thus estimating larger extreme events for a given time period.

The magnitude of this upward shift cannot be determined beforehand, even if the Hurst
coefficient and the dependence bias are estimated. This is due to the fact that Pareto tail
behaviour is predominantly dependent on extreme rainfall values of the specific observed
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data set and less on the dependence bias. However, slight changes on the tail index k are
bound to be noticed between the two different assumed dependence structures.

For this reason, when there is great influence of long-term dependence in the sample, while
the fit between return periods empirically assigned to K — moments and theoretical ones
might be perfect (minimal LSE), goodness-of-fit parameters may not show a great overall fit
to observed values, especially for high values (T > 1 year). Empirical return periods now
aren’t only bound by observed values, but also by the bias from the sample’s dependence
structure. The theoretical Pareto distribution is fitted by means of the empirical return
periods thus the bias transfers to it in the end.

In order to showcase this discrepancy, comparative results for high-order NRMSE values for
each added or ignored dependence bias are also provided (Graph 8.33, Graph 8.34).
Depicted is the distribution of high-orders NRMSE for stations with H = 0.70 while the line
represents the average Hurst coefficient value of each error range.

It is clear that when Hurst average is high, NRMSE is low, showing “poor” fit between
observed values and the theoretical distribution. As mentioned before, this doesn’t portray
unreliability, but shows the dependence bias effect to the final modelling result.
Furthermore, the trend is downward up to NRMSE = 0.7, while after it slightly increases.
This is again due to the fact that in some cases the upscaling effects the bias ensues can
achieve positive influence on the overall fitting result, meaning greater NRMSE value.

On the other hand, by ignoring bias the average Hurst coefficient stays practically constant
for each NRMSE bin.
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Graph 8.33: Correlation of Hurst coefficient and NRMSE value while accounting for long-term dependence
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Graph 8.34: Correlation of Hurst coefficient and NRMSE value while ignoring long-term dependence

Moving to the results, Graph 8.35 and Graph 8.36 and show the percentage difference
between rainfall values for said return periods. Also, the average Hurst coefficient for each
bin is also plotted in order to showcase the positive correlation between dependence bias
and value alteration. Rainfall values for T = 100 years, show clear influence of the
dependence structure on extreme events. The histogram data depict that most stations
don’t suffer great overall change in their rainfall value, but this is closely correlated with the
Hurst coefficient value.

While the coefficient isn’t the only parameter in quantifying the true disparity between
assumed sample independence and accounted dependence bias, it is the most influential
one. The correlation presented proves this fact. The higher the percentage change, the
higher the average Hurst coefficient. As shown before, many stations achieve Hurst of
below 0.8, thus it is normal for the histogram to depict higher density for low difference
values.

As for rainfall values for T = 1000 years, the same behaviour is noticed. However, the
effect is slightly upscaled due to the increased time period investigated, while the average
Hurst line produces the same upward trend as before.
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Graph 8.35: Distribution of stations depicting the percentage difference of rainfall values (T = 100 years)
between ignored and added dependence bias. Line represents the average Hurst value for each bin.
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Graph 8.36: Distribution of stations depicting the percentage difference of rainfall values (T = 1000 years)
between ignored and added dependence bias. Line represents the average Hurst value for each bin.
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Graph 8.37 proves the notion that goodness-of-fit for high return periods is slightly worse
when stations with moderate to significant dependence bias are compared with the same
stations when ignoring the dependence structure. While this is true for some stations, the
graph also shows performance increase for a significant number of stations, which means
that the added bias is a benefit to the overall fitting result. For either case, the influence of
the Hurst parameter in the outcome is again clear. The lowest average point is for the [0,4)
bin which signifies no major difference in NRMSE value, while the highest averages are
found for the highest absolute differences.
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Graph 8.37: Distribution of stations depicting the percentage difference of high-order NRMSE values
between ignored and added dependence bias. Line represents the average Hurst value for each bin.

Despite of the fluctuations due to the dependence bias, the fit to observed values should
still be considered reliable for the lower NRMSE values and is most likely attributed to
inconsistencies of the K — moments approach. Being naturally consistent, thus accounting
for the long-term persistence of a rainfall data set, is more important than a perfect
goodness-of-fit parameter. If this priority in modelling is not followed, then the final model
would underestimate reality and in many cases by a significant margin.

In conclusion, dependence bias greatly affects the outcome of the fitting result and should
be taken into account for every station. Specifically, for those with high estimated long-
range dependence, it is even more important since as proven above develop the greatest
overall differences in estimating rainfall extremes.
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8.5 Global Results of Fitting Parameters

In this chapter focus is given in analysing the modelling results for all stations, showing
distributions of parameters across the globe and finding correlation between certain
results, all while using the aforementioned K — moment approach with the dependence
structure of each station, if present, taken into account.

8.5.1 Tail Index

The first parameter analysed is the tail index (k). Its practical use is to control the behaviour
of the distribution’s tail. This is clarified from Graph 3.2 where the tail index is kept constant,
providing with same tail behaviour despite the changes of the scale parameter. In other
words, it gives a representation of the tail’s slope. An important attribute to note is that,
while for the cumulative distribution (Equation 3.3) higher tail index means lower slope, for
plotting return periods (Equation 3.53), the opposite is true; lower k suggests lower slope,
with zero transforming it to an exponential distribution.

Connecting it with the results from this study, the tail index is an indicator of how quickly
rainfall values increase over a specific range of high-order return periods and consequently
depicts the degree of this increase (usually for T > 1 year). In order to prove this, with the
already provided analysis over rainfall values for the large return periods such as T = 100
and T = 1000 years, by calculating the percentage difference between them the overall
increase in this time range is shown.
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Graph 8.38: Tail index (k) distribution for all modelled stations
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Graph 8.38 shows the distribution of the tail index among all stations. The results show a
significant number of stations, approximately 15% of the total, with ¥ < 0.02 and almost
3,000 of them valued at the lower threshold set in the fitting process, which is k = 0.001.
For those stations, the distribution’s tail fit might improve with the parameter being even
lower than the threshold, but since having index values below zero is not considered
naturally consistent the results remain as is.

Nonetheless, the fitting error even for these stations still remains low, suggesting reliability,
just not as perfect as could otherwise have been (r = —0.274). In this case, solutions can
be found by using the scale parameter of the GPD which was previously set as zero for
consistency reasons or alternative theoretical distributions with more parameters, like the
PBF or the Dagum which contain one more parameter. However, they are not put to the
test in this study. Despite of this, most tail index values are in the range of 0.04 to 0.2 which
is considered normal for the rainfall process (Koutsoyiannis, 2004).

Tail Index ()

0.05 0.1 0.15 02 0.25
Tail Index Value ()

Figure 8.1: Global map showing tail index distribution.

While Graph 8.38 shows a general overview of how the tail index values are distributed, it
doesn’t provide with information regarding the locations that these values arise. Thus, a
heat map with all stations showing the tail index value is provided in Figure 8.1 and a more
detailed in Figure 8.2 . The main observations can be summarised to:

A. Major regions with low values (k < 0.02) are Brazil, India, Mexico, north-western
North America, (and the Scandinavian countries). Connecting them to their climate
classification (Figure 2.1), the greatest contributors being Brazil, India, and Mexico,
have either monsoonal or dry winter equatorial climate. This suggests high rainfall
values, but stable extremes throughout the years, thus producing low tail slope in
the modelling process due to the predictability of extremes. The same is acceptable
for the other regions where climate is regarded as snow (fully humid) and in some
areas polar.
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B. As for high values (k = 0.2) are western and central Australia, central Africa, central
Eurasia, and Mexico’s Gulf of California region. Applying the same logic as before, all
regions now are known to have variations of the arid climate. This means that there
is little precipitation throughout the year and not many high rainfall values, which in
practice makes the GPD2 reach that “low” extreme value really fast, thus producing
high tail index value. High index values, aside from arid regions, are also observed in
the Mediterranean where exists a certain sub-category of warm temperate climate,
in which dry and hot summers are the main distinctive factors.

C. Values in-between (0.02 < k < 0.2) are scattered throughout and in general are
found in other variations of the temperate and snow climates, especially those with
fully humid seasons and warm summers.

Figure 8.2: Continental distribution of the tail index. From top to bottom and left to right; Europe, Africa,
Asia, North America, South America, Australia
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8.5.2 Scale Parameter

The second parameter of the GPD2 (A) controls the overall scale of the distribution. More
specifically, it is responsible for the behaviour of the distribution’s body and its curvature
characteristics (Graph 3.2). When plotting theoretical return periods, higher parameter
values produce steeper increase of rainfall values in the distribution’s body, and higher
overall in the extremes range. With the tail index kept unchanged and for high return
periods, the figure consists of parallel lines with higher A values producing greater overall
rainfall.

The scale parameter despite controlling the behaviour of the body, it plays an important
role in modelling extremes, since it indirectly depicts the magnitude of extreme values,
unlike the tail index which is responsible for the incremental change of such extremes. This
characteristicis proven by comparing the parameter’s values with the average rainfall value
in each station. Achieving a Pearson correlation coefficient of r = 0.878 the correlation
between rainfall intensity and the scale parameter is evident. The results are presented
exactly as for the tail index above.
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Graph 8.39: Scale parameter (A) distribution for all modelled stations

Graph 8.39 depicts the distribution of the scale parameter, with most stations producing
values in the range 4 < A < 12. The distribution is predominantly skewed towards lower
values which is more consistent with a general representation of the rainfall process, but
high values aren’t correlated with high fitting errors, as the correlation coefficient between
them is r = 0.158 which is low enough to assume independence. In order to show
dependence to climatic characteristics heat maps are again presented.
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Figure 8.3: Global map showing scale parameter distribution.

The worldwide heat map (Figure 8.3) produces clear results in terms of parameter
distribution. The main points taken from it are:

A. Most high values (A > 0.15) are concentrated around low absolute latitude values.
Regions like north Australia, Brazil, India, Mexico, south-eastern USA, most of Japan
and the few modelled stations in Indonesia, all show high scale parameter values.
All these regions have either equatorial (tropical) or fully humid warm temperate
climate, which as mentioned before are prone to delivering frequent rain days and
to a great intensity, since tropical storms and monsoons are a typical seasonal
phenomenon.

B. For higher absolute latitudes, values begin to diminish. Regions like Russia, Europe,
South Africa, south Australia, northern USA, and Canada, all produce low scale
parameter values consistently. In connection to their climate characteristics, all of
them belong to either an arid, warm temperate with dry warm summers, or snow
climate. All of those classifications show less rain and with less intensity throughout
the year, thus achieving lower extreme values.

From these observations it is evident that climate plays a significant role in the value the
scale parameter receives from the modelling process and comes in direct correlation with
the intensity of precipitation along those regions. This is a reason why the correlation
coefficient between A and the average values of rainfall for each station is so high.

In conclusion, the scale parameter is low for low extremes and low precipitation in general
and high otherwise. Continental maps are also provided for further clarity on the results
described (Figure 8.4).
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Figure 8.4: Continental distribution of the scale parameter. From top to bottom and left to right; Europe,
Africa, Asia, North America, South America, Australia

While it is proven that each of the GPD2 parameters are connected to the climatic
characteristics of the area they describe independently from each other, in the end both
influence the final behaviour of the distribution and especially its tail. This comes in
conjunction with the fact that there is not absolute correlation between one characteristic
and a parameter, but simply a stronger influence to it.

In order to showcase this, rainfall values for T = 100 years are plotted on the heatmap.
This characteristic is chosen, since it is the effective resulting product of the extreme-
oriented rainfall modelling and it concerns an extreme value. If independent parameter
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influence on the rainfall value is assumed based on the previous results, the only parameter
affecting the magnitude of the result is the scale parameter. By observing Figure 8.5 it is
evident that high-order rainfall values are influenced mainly by scale parameter as the same
patterns arise, suggesting high rainfall values in the same regions as was for the scale
parameter, but this effect is not valid for all stations, with some breaking the pattern
especially in Australia, central Europe, and Brazil. As a quantitative measure again the
Pearson coefficient between the scale parameter and said rainfall valuesisr = 0.663 which
suggests positive correlation, but not as strong so as to assume clear independence from
other sources in the estimated result.

Rainfall Values (T = 100 years)
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Figure 8.5: Rainfall values (mm/d) for T = 100 years
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9 Conclusions

9.1 Research Objectives

This study focused in providing the means of effective extreme-oriented rainfall modelling
in a global scale using the newly introduced knowable (K) moments method. While classical
moments are simple in their application and are widely used in modelling different natural
processes, when focusing on extremes, they fail to produce credible results. This is due to
the fact that extremes are closely related to high-order moments which can’t be reliably
estimated from typical rainfall samples while using classic moments. The L — moments
method is also studied, and despite it having the theoretical capabilities of evaluating high-
order moments, it fails to take into account the dependence structure existing in almost
every natural process and more so in rainfall.

On the other hand, knowable moments combine the advantages of both these methods
allowing reliable estimation and description of high-order statistics, whilst retaining classic
methods’ low-order precision and solving inherent handicaps by conveying the framework
for evaluation of long-term dependence bias.

A common yet simple distribution that can reliably model the rainfall process is the three
parameter Generalized Pareto Distribution (GPD). However, for being naturally consistent
its scale parameter is set to zero, thus the final distribution used is the GPD with two
parameters (GPD2). While using three parameters proves to achieve greater accuracy in the
final fitting process, it is better to be consistent with the rainfall process’ characteristics. For
improving the fitting where needed, a variation of the Burr distribution is also showcased,
known as the Pareto-Burr-Feller, which uses an extra parameter which in turn assists the
fitting process.

For producing comparative results the GHCN — Daily database is used providing with 34,782
stations that met the reliability requirements set. Those stations underwent fitting with all
three methods by using the whole hydrometeorological record and the aforementioned
GPD2. It is common to set thresholds in order to focus the modelling process on extremes,
but by doing so hinders the discovery of any long-term dependence on the sample which
affects the final model.

The results of the model are then compared to each other for their effectiveness and
efficiency firstly in reliably estimating extremes, and secondly in an overall reliable fit.
Moreover, comparison is being made between K — moments fittings accounting for long-
term dependence and fittings assuming sample independence. Comparisons are made by
use of goodness-of-fit statistic tools namely the RMSE and NRMSE which can showcase the
effectiveness of the model in either the distribution’s body or the tail.

Finally, the distribution’s parameters are assessed for their behaviour in influencing the
modelling results. Also, any correlation between them and their respective station’s
regional climate characteristics is also investigated, consequently discovering similarities
between certain climates and certain parameter values.
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9.2 Conclusions

From the preliminary fittings using all three methods for all eligible stations of the GHCN —
Daily database it is concluded that:

A.

While using each station’s total hydrometeorological sample, classic methods fail to
accurately describe extreme values highly overestimating rainfall values for return
periods higher than 1 year. For lower return periods, the fitting is almost perfect to
observed values.

Classic moments perform better than L — moments in modelling extremes, which
consistently show significant overestimation of rainfall values.

Knowable moments outperform classic methods, reliably predicting extreme events
in most cases for high return periods. However, since the fitting process is focused
on an optimization algorithm, focus is given in fitting best for extreme values, thus
thereis slight loss of accuracy for low orders, with classic methods showing marginal
greater fit.

The Pareto-Burr-Feller distribution, with the implementation of the extra
parameter, keeps the perfect tail fit while also improving it for low return periods,
achieving best fit for all return periods. These results are showcased for the sample
station.

Goodness-of-fit parameters clearly show the effectiveness of knowable moments
for the overall fitting process, with only 11% of stations below an NRMSE value of
0.8.

From the overall process of extreme-oriented fitting with knowable moments, many
insights on the method can be concluded:

A.

As for its optimization process using Least Squares, the overall average value is 1.84,
with 89% of stations achieving error below 4 which allows the fit to be deemed as
reliable considering the relationship between empirically assigned and theoretical
return periods.

The effectiveness and indirect correlation between empirical return periods and
final model fit is confirmed by the almost equal percentages of good LSE fits and
their respective NRMSE values.

Long-term dependence bias has a great impact in the final results while using the K-
moments approach. The total difference in high return periods by assuming an
independent structure and accounting for long-term dependence bias is non-
negligible for stations with Hurst coefficient over 0.70. Not including the bias,
extremes are underestimated which poses a great risk.
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D.

Strong positive correlation between the Hurst parameter and the rainfall difference
for large return periods is shown with coefficients over 0.85 achieving more than
25% change in rainfall results. Accounting for dependence is vital for getting reliable
results and the K— moments method provides the means for accomplishing that.

Goodness-of-fit NRMSE values are correlated with the Hurst parameter, since by
including the dependence bias the fit is shifted upwards for all return periods, thus
worsening the error value in some cases or improving it in others. Lower NRMSE
values should not be considered as a flaw of the process, because being naturally
consistent is more essential than attaining perfect fit.

From the analysis of the Pareto distribution’s parameters it is determined that:

A.

Pareto tail index (k) controls the tail’s behaviour where extremes are located and
acts as a gauge of how rapidly rainfall values increase over a specific range of high-
order return periods and consequently depicts the degree of this increase.

From further investigation of the correlation between climatic characteristics and
the tail index, it is suggested that climates with consistently high precipitation
climates such as tropical (equatorial) and fully humid snow, show mostly low index
values. On the contrary, stations situated in arid or Mediterranean climates which
receive on average low rainfall with rare extremes being significantly higher than
normal, show the highest index values among all.

Pareto scale parameter (A) controls the behaviour of the distribution’s body, while
indirectly having an important role in modelling extremes, since it depicts the
magnitude of extreme values. Correlation between the scale parameter and the
station’s rainfall average is r = 0.878.

Applying the same process in finding correlation between the scale parameter and
climatic characteristics of a region, it is established that tropical and fully humid
warm temperate climates depict high scale parameter values, opposite to arid and
snow climates which are connected to low A values.

While both parameters control some aspect of the distribution, their influence in
the final attained extreme rainfall values are produced from a combination of theirs.
From generalizing this fact, in other words, there is no unconditional correlation
between one characteristic and a parameter, but simply a greater influence to it.
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9.3 Future Research Potential

While this study elaborates on most aspects of using the K — moments method with the
two-parameter Pareto distribution for extreme-oriented rainfall modelling, it still is a
preliminary analysis.

In upcoming studies first of all the Pareto distribution, while being parsimonious since
having only two parameters, it isn’t perfect for every kind of sample provided. In some
stations low rainfall values are poorly modelled, while in others, the tail index alone isn’t
enough to correctly model extremes, as seen from many stations in tropical climates
achieving very low tail index and even then, the model wasn’t perfect. Thus, other
distributions should be studied for their effectiveness like the showcased Pareto-Burr-Feller
for improving low-order values.

Furthermore, deeper investigation of the correlation between the distribution’s parameters
and climatic characteristics can be made, showing in more detail the effect for each region
including analysis for the third dimension being altitude.

To further strengthen the reliability of the K — moments method, other rainfall databases
should be studied providing with more stations for countries that didn’t contribute much to
the GHCN — Daily especially countries in Africa or south America.

Knowable moments with the use of the K — climacogram can be used for further analysis of
rainfall events at a finer scale, namely for the production of ombrian curves.
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11 Appendix

11.1 MATLAB Scripts

Below all scripts and functions from the MATLAB programming interface are provided for
insight into the modelling process.

A. General script used for the production of the fitting results for all methods.
clear; clc; close all;

fstart=1;
fend=1;

years 1imit=30; kb limit=1.1; excl=360; Hl1 1im=0.2; Hu 1im=0.93; kt max=0.4;
minRP=1;

parameters fit=zeros (fstart-fend+1,49);
%% Master loop

for f=fstart:fend
a=exist (['/users/nick agatheris/New Data/G' num2str(f) '.mat'],'file');
if a==
continue
else
fdir=dir (['/users/nick agatheris/New Data/G' num2str(f) '.mat']);
file size=round(fdir.bytes./1000,0);
end
if file size<kb limit
continue
else
1=load(['/users/nick agatheris/New Data/G' num2str(f) '.mat']);
ryo_check:ceil(length(l.TSprec(:,l))/365);
end
if ryo check<years limit
continue
else

%% Data Extraction

[prectot, precsort, precsorttot, asc,desc, rdpy2, real years obs,p,aa,t0] =
datan (f) ;

ch=find (precsort>0);

%% K-climacogram

[sc,prec_scaled,Kpq clim tot] = Kclimacogram(2,prectot);
%% Trendline Production
[Hk,slope k,gof k,fit data k,exclend] =
Hurst (sc,Kpg_clim tot,excl,Hl lim,Hu lim);
clcy;

Station=f
%% Unbiased K - moments

[Kpg]l = Kmoments (aa,desc,p,l,precsort);
%% Dependence Bias

[Kpg _d,check,p d] = bias correction (Hk,desc,Kpq,p);

101



Extreme-oriented rainfall modelling on global scale using knowable moments

oe

% Optimization

[k fit,b fit,total lse,minTotal lse,~]
K optimizer (p d,Kpq, rdpy2, kt max,minRP) ;

%% Method of Moments

[k_mom,b mom, Tmom, Kpg mom] = MoM (precsort,Kpq, rdpy2) ;
%% L — moments
[k Im,b 1m,Tlm,Kpg lm] = Lmoments (precsort,asc,Kpq, rdpy2);

$% Climacogram

varprec=var (prec_scaled, 1, 'omitnan');

logsc=log(sc);

stdev_scaled=sqgrt (varprec) ./sc;

[Hc, slopec,gofc, fit datac] = Hurst(sc,stdev_scaled,360,H1 1lim,Hu lim);

%% Chart Production

ylim=1;
[Tovthr fit,Tnothr fit,Tempy fit,Ttheory fit]=ReturnPeriods...
(k_fit,b fit,p d,aa,real years obs,rdpy2,asc,Kpq);
% y axis

Kpg chart=Kpqg (Kpg>=ylim) ;

Kpg chartemp=Kpqg (Kpg>=ylim) ;

Kpg mom chart=Kpg mom(Kpg mom>=ylim) ;
Kpg 1m chart=Kpg lm(Kpg lm>=ylim);
precsort chart=precsort (precsort>=ylim);

o)

$ x axis

Ttheory fit chart=Ttheory fit(l:length(Kpg chart));
if length(Tempy fit)>=length (Kpg chartemp)
Tempy fit chart=Tempy fit (l:length (Kpg_chartemp)) ;
else
Tempy fit chart=Tempy fit;
end
Tmom chart=Tmom(1l:length (Kpg mom chart));
Tlm chart=Tlm(1l:length(Kpg 1m chart));

i=1;
while Ttheory fit chart(1l,1)<=1200 % produce adequate T until T=1000y + a
margin
Kpg chart=[20+Kpg_chart (1, 1) ;Kpg chart];
Ttheory fit chart=[((1+k fit.* (Kpg chart(l,1)./b fit)).”(1./k _fit))./rdpy2;Ttheor
y_fit chart];

i=i+1;
end

% Fit Result (Pareto Distribution)

figure(l) % y axis should start at 1

loglog (Ttheory fit chart,Kpg chart, 'r', 'linewidth',3) % Fitted Pareto
with K-moments

hold on

loglog (Tovthr fit,precsort (l:length(Tovthr fit),1), 'ob','linewidth',1) %
Values over threshold >=1

loglog (Tnothr fit(l:length (precsort chart)),precsort chart, '-
b','linewidth',1.4) % All values
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loglog (Tmom chart,Kpg mom chart, '--b', 'linewidth',2) % Fitted Pareto with
MoM

loglog (Tlm chart,Kpq 1lm chart, '--k','linewidth',2) % Fitter Pareto with
LM

loglog (Tempy fit chart,Kpg chartemp(l:length(Tempy fit chart)), '--
g','linewidth',1.2), % K-moments empirical RP

xlabel ('Return Period T (years)')

ylabel ('Precipitation (mm/d)")

title(['Pareto Distribution Fit (' num2str(tO.name) ')'])

grid on

legend ({'Theoretical Pareto', 'Order Statistics (VOT)', 'Order Statistics
(A11) "', ...

'Moments', 'L - Moments', 'Empirical K -

moments'}, 'Location', "Northwest', '"FontSize', 11)

% Climacogram

figure (2)

plot (fit_datac)

set (gca, 'XScale', "log")

set (gca, 'YScale', "log")

hold on

loglog(sc, stdev_scaled, 'b', 'linewidth', 2)
xlabel ('Time Scale (days)')

ylabel ('Scaled Standard Deviation')
title('Climacogram')

legend ('Power trendline', 'Climacogram')
grid on

o)

% Daily Precipitation Data

figure (2)

plot (prectot, 'b")

xlabel ('Time (Days) ')

ylabel ('Precipitation (mm/d)")
title('Daily Precipitation Data')
grid on

% K - climacogram / Fitted Power Curve

figure (3)

plot (fit_data k)

set (gca, 'XScale', "log"')

set (gca, 'YScale', "log")

grid on

hold on

loglog(sc,Kpg clim tot, 'linewidth',2)

xlabel ('Time Scale (Days)')

ylabel ('Central K-moment Value')

title('K - Climacogram / Fitted Power Curve')
legend ({'Fitted Power Curve', 'K - Climacogram'}, 'FontSize',11)

figure(4) % MoM - LM

loglog (Tmom chart, Kpg mom chart, '-r','linewidth', 2)

hold on

loglog (Tlm chart,Kpq 1lm chart, '-k','linewidth', 2)

loglog (Tovthr fit,precsort (l:length(Tovthr fit),1), 'ob','linewidth',1) %

loglog (Tnothr fit(l:length (precsort chart)),precsort chart, '-
b','linewidth',1.5)

xlabel ('Return Period T (years)')

ylabel ('Precipitation (mm/d) ")

title(['Pareto Distribution Fit - Classic Methods (' num2str (t0.name)
IR

grid on

legend ({ 'Raw moments', 'L - moments', 'Order Statistics (VOT)', 'Order
Statistics (Al1l)', ...

}, 'Location', '"Northwest', 'FontSize',11)
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o)

figure(5) % K - moments

loglog (Ttheory fit chart,Kpqg chart, 'r','linewidth', 3)

hold on

loglog (Tovthr fit,precsort(l:length(Tovthr fit),1), 'ob','linewidth',
loglog (Tnothr fit(l:length (precsort chart))

b','linewidth', 2)
loglog (Tempy fit chart,Kpg chartemp(l:length(Tempy fit chart)),’
g','linewidth',1.5),

(A11) "

xlabel ('"Return Period T (years)"')
ylabel ('Precipitation (mm/d) ")
axis ([0 10000 1 300])

title(['Pareto Distribution Fit - K-moments

grid on

legend ({'Theoretical Pareto', 'Order Statistics (VOT)', 'Order Statistics

,precsort chart, '-

1)

(" num2str(tO.name) ')'])

, "Empirical K - moments'}, 'Location', 'Northwest', 'FontSize',11)

[LSE, RMSE, NRMSE, perc, Ter,Xer, Ttheory fit exp, Tmom exp,Tlm exp, ...
Kpg_exp,Kpqg mom exp,Kpqg 1lm exp,K 100,K 1000] =...
errors (precsort, Kpqg, Kpg _mom, Kpg 1m, rdpy2,

k fit,k mom,k 1m,b fit,b mom,b 1lm,Tnothr fit,Ttheory fit, Tmom,Tlm);

%% Data Takeoff

parameters fit (f-fstart+l,1
parameters fit (f-fstart+l,2
parameters fit (f-fstart+l,3
parameters fit (f-fstart+l,4
parameters fit (f-fstart+l,5
parameters fit (f-fstart+l,6
parameters fit (f-fstart+l,7
parameters fit (f-fstart+l,8
(

k flt

)=
)
)
)
)
)=
)
)=b fit;

flle _size;
=t0.latlon _TS(1,1);
=t0.latlon TS (1,2);
length(prectot),

parameters fit f—fstart+l,9):round(mlnTotal 1lse,3);
parameters fit (f-fstart+l,10)=round(k _mom, 3);

parameters:fit(f—fstart+l,ll
parameters fit (f-fstart+l,12
parameters fit (f-fstart+l,13

parameters fit (f-fstart+l,38
parameters fit (f-fstart+1l,39
parameters fit (f-fstart+1,40

)

)

)
parameters fit (f-fstart+l,14)=perc(l);
parameters fit (f-fstart+l,15)=perc(2);
parameters fit (f-fstart+l,16)=perc(3);
parameters fit (f-fstart+l,17) perc(4),
parameters fit (f-fstart+l,18)=perc(5);
parameters fit (f-fstart+l,19)=perc(6);
parameters fit (f-fstart+l,20)=LSE(1,1);
parameters fit (f-fstart+l,21)=LSE(1,2);
parameters fit (f-fstart+l,22)=LSE(1,3);
parameters fit (f-fstart+l,23)=LSE(2,1);
parameters fit (f-fstart+l,24)=LSE(2,2);
parameters fit (f-fstart+l,25)=LSE(2,3);
parameters fit (f-fstart+l,26)=LSE(3,1);
parameters fit (f-fstart+l,27)=LSE(3,2);
parameters fit (f-fstart+l,28)=LSE(3,3);
parameters fit (f-fstart+l,29)=RMSE(1,1);
parameters fit (f-fstart+l,30)=RMSE(1,2);
parametersifit(f—fstart+l,31)=RMSE(1,3);
parameters fit (f-fstart+l,32)=RMSE(2,1);
parameters fit (f-fstart+l,33)=RMSE(2,2);
parameters fit (f-fstart+l,34)=RMSE(2,3);
parameters fit (f-fstart+l,35)=RMSE(3,1);
parameters fit (f-fstart+l,36)=RMSE(3,2);
parameters fit (f-fstart+l,37)=RMSE(3,3);

)

)

)
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NRMSE (1,1);
NRMSE (1, 2) ;
NRMSE (1, 3) ;

round (b_mom, 3) ;
round(k 1m, 3);
round(b_1m, 3);
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parameters fit (f-fstart+l,41
parameters fit (f-fstart+l,42
parameters fit (f-fstart+1l,43
parameters fit (f-fstart+1l, 44

( )=NRMSE (2,1);
( )
( )
_ ( )
parameters fit (f-fstart+l,45)
( )
( )
( )
( )

NRMSE (2, 2) ;
NRMSE (2, 3) ;
NRMSE (3, 1) ;
NRMSE (3, 2) ;
NRMSE (3, 3) ;

parameters fit (f-fstart+1l,46
parameters fit (f-fstart+l,47)=K 100;
parameters fit (f-fstart+1l,48)=K 1000;
parameters fit (f-fstart+l,49)=exclend;

end
end

2

s% Exportable Arrays

[names, export, export table]=takeoff (parameters fit);
[extra table] = extrasn(fstart,fend, kb limit,years limit);

writetable (export table, ...

['/users/nick agatheris/desktop/Simulation Results/matlab output/fit
results/Fit Results (G'...

num2str (fstart) ' - G' num2str (fend) ').xlsx'])

B. General script for heat map production

clear; clc; close all;

a=load ('extras used.mat');
b=load ('Wmpk.mat") ;

c=load ('Wmpl.mat"');

d=load ('Wmplse.mat");

e=]load ('YearsObs.mat");
par=load('Parameters.mat');
r=load ('Rainfall.mat');
h=locad ('Hurst.mat');

hurst=h.FitResultsGNewv2;
rain=r.FitResultsGNewv2;
parameters=par.FitResultsGNewv2;
yo=e.FitResultsGNewv2;

wmp totk=b.WorldMapParametersSl;
wmpk=wmp totk(all (wmp_ totk,2),:);

wmp totl=c.WorldMapParametersS2;
wmpl=wmp totl(all(wmp_ totl,2),:);

wmp_ totlse=d.WorldMapParametersS3;
wmplse=wmp totlse(all(wmp totlse,2),:);

ms=input ('Marker Size: ');
mc=0.8;

mapcolor=[mc mc mc];
ss=[100, 400, 200, 200];

figure (4)

f=worldmap ([-65 85], [-180 180]);

setm(gca, 'mapprojection', 'miller', 'Frame', 'on', 'FlineWidth',0.7)
geoshow ('landareas.shp', 'FaceColor',mapcolor, 'DefaultEdgeColor', 'k'")
PointLatLon = [yo(:,1) vyo(:,2)];

mValue = parameters(:,1);
plotm(PointLatLon(:,1),PointLatLon(:,2), 'w.");

markerSize = ms;

scatterm (PointLatLon(:,1), PointLatLon(:,2), markerSize, mValue, 'Filled');
colormap (f);

set(gca, 'CLim', [min (mValue) ,max (mValue)-0.15]) ;

cb=colorbar ('FontSize',12);
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set (0, 'DefaultFigureColormap', feval('jet'));
tightmap;

make it tight = true;
subplot = @(m,n,p) subtightplot (m, n, p, [0.04 0.01], [0.02 0.01], [0.1 0.011);
if ~make it tight, clear subplot; end

figure (5)

for i=l:input ('Subplots: ")
sl=subplot(2,2,1);
region=input ('Region: ','s");
f=worldmap (region) ;
setm(gca, 'mapprojection', 'miller', 'Frame', 'on', 'FlineWidth',0.7)
geoshow ('landareas.shp', 'FaceColor',mapcolor,'DefaultEdgeColor', 'k')
PointLatLon = [yo(:,1) yo(:,2)]1;
mValue = parameters(:,1);
plotm(PointLatLon(:, 1) ,PointLatlLon(:,2), 'w.");
markerSize = ms;
scatterm (PointLatLon(:,1), PointLatLon(:,2), markerSize, mValue, 'Filled');
colormap (f) ;
set(gca, 'CLim', [min (mValue),max (mValue)-0.15]);
tightmap;

end

C. Initial data processing

function [prectot,precsort,precsorttot,asc,desc,rdpy,real years obs,p,aa,t0] =
datan (f)

Used for extracting data of .mat files from precipitation stations

library. Files have been renamed in ascending order with numbers in order

to make loading easier. Provides mainframe for making data accesible for
other functions in script (order statistics)

o° o o

o

t0=load(['/users/nick agatheris/New Data/G' num2str(f) '.mat']);

prectot=t0.TSprec(:,1);
precsorttot=sort (prectot, 'descend'); % all sorted data
precsort=precsorttot (precsorttot~=0); % non-zero sorted data

o

% calculations are for non-zero data

desc=(length (precsort):-1:1)"'; % descending numbers from last to first
observation

aa=length (precsort); % size of non-zero sample

asc=(l:aa)';

real years obs=ceil (length (prectot)/365); % real years observed with zeros from
total observations

r=aa; % starting p=pmax
% rdpy=ceil (length (precsort) /years obs); % rain days per year
rdpy=ceil (length (precsort) /real years obs);

i=1;

p(l,1)=aa;

while p(1,i)>0.01 % produces adequate p until p=0.01
p(l,i+1)=p(1,1)/1.04;
i=i+1;

end

end

D. Production of K — climacogram
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function [sc,prec scaled,Kpg clim tot] = Kclimacogram(pclim,prectot)
% Production of sorted climacogram array and K-moments from this scaled

array used for plotting the K-climacogram of central K-moments on time

scales up to 1/10 of the total sample observations for investigating long term
ersistence with the use

of the Hurst parameter in a later stage.

oe

oe

e g

gclim=1; sc=1; i=1;

while sc(l,i)<ceil (1/10*length (prectot))+1000 % 1/10*length (prectot)
sc(l,i+l)=ceil(1.1.*sc(l,1i)); % scale array for producing K-clim
i=1i+1;

end

[~,csc]l=size(sc);
for i=l:csc
numz (1,1i)=floor (length (prectot) ./sc(i)); % number of elements in each scale
(column)
end

prec_scaled=zeros (length (prectot), csc);
prec_scaled(:,1)=prectot;
for j=2:size (numz, 2)
for i=1l:numz(1,73)
1=(i-1)*sc(l,j)+1l:i*sc(1l,3):
y=prectot(l);
prec_scaled(i,J)=sum(y);
end
end

for w=1l:1length (sc)
for e=1:max (numz)
if e>numz (w)
prec scaled(e,w)=NaN;
end
end
end

precsort_scaled:sort(prec_scaled./sc);
Kpg clim tot=zeros (length(sc),1);

for i=1l:length(sc)
asc_clim=(l:numz(:,1))"';
aak=numz (1) ;
[Kpg_clim]=Kmoments c(aak,asc_clim,pclim,1l,precsort scaled(:,1i));
Kpg clim tot(i,1)=2.*Kpg clim;

end

end

E. Estimation of Hurst parameter from fitted trendline power curve

function [H,slope,gof, fit data,excl,sc_trend,Kpqg trend] =

Hurst (sc,Kpg _clim tot,excl,l lim,u lim)

% Fitting of power trendline to K-moments produced from Kclimacogram in
order to estimate the Hurst parameter of the sample. excl input gives
freedom in choosing the min scale which is considered important in long
term dependence. Results provide the raw scale of the curve, the goodness
of fit statistics, combined with the Hurst parameter.

o o o o

oe

Kpg trend=Kpg clim tot (Kpg clim tot~=0);

Kpg trend=Kpqg trend(~isnan (Kpg trend));
sc_trend=sc(l:length(Kpg trend));

[xData, yData] = prepareCurveData( sc trend, Kpg trend );
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r=(find(sc_trend>=360));
if length(r)>=20

excludedPoints = xData <= excl;
else

excl=50;

excludedPoints = xData <= excl;
end

% Set up fittype and options.

ft = fittype( 'powerl' );

opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.Robust = 'Bisquare';

opts.Exclude = excludedPoints;
% Fit model to data.

[fit data,gof] = fit( xData, yData, ft, opts);
coef=coeffvalues (fit_data);

slope=coef (1,2);

H=round(l+slope,2);

if H>=u lim || H<=1l lim
excl=0;
[xData, yData] = prepareCurveData( sc trend, Kpg trend );
excludedPoints = xData <= excl;

% Set up fittype and options.

ft = fittype( 'powerl' );

opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.Robust = 'Bisquare';

opts.Exclude = excludedPoints;
% Fit model to data.

[fit data,gof] = fit( xData, yData, ft, opts);
coef=coeffvalues (fit_data);

slope=coef (1,2);

H=round (l+slope, 2) ;

F. Production of unbiased non-central K— moments

function [Kpgl] = Kmoments (aa,desc,p,q,precsort)

Production of Unbiased non-central K-moments. Moments are calculated

using the theoretical (exact) estimator with the denoted binp for g=1 and p up
o

the size of the sample. Non-central K-moments are used for the fitting
process.

o0 (t o o°

oo

forKpgl=gammaln (desc)-gammaln (aa)-log(aa);
Kpgl=zeros (length(p),1);

for i=1l:length (p)
pml=p(1,1);
j=l:aa;
ispos=desc(j,1) -pml+1>=0;
nonzero=find (ispos~=0) ;
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A

Kpgstartl=(precsort (nonzero,1)).
gammaln (desc (nonzero, 1) -pml+1l) ...
+log (pml) +forKpgl (nonzero, 1)) ;
Kpgl (i, 1)=sum(Kpgstartl) ;
end

gJ.*exp (gammaln (aa-pml+1l) —

end

G. Long-term dependence bias correction to moment orders

function [Kpg d,check,p d] = bias correction (Hk,desc,Kpg, p)

Estimation of dependence bias for calculating non-central K-moments.
Theta parameter is calculated and depends solely on the Hurst parameter
and the size of the sample (non-zero). If n is too high or H is 0.5 theta
approximates to zero and bias is non existent.

o o oo

o

theta= (2*Hk* (1-Hk) )/ (desc (1) -1)-1/(2* (desc (1) -1) "~ (2-2*Hk) ) ;
check=abs (theta)>0.001;
if abs (theta)<0.001
Kpgq_d=Kpq;
else
Kpg_d=(l+theta) .*Kpg;
end
p_d=2*theta+ (1-2*theta) .*p.” ((l+theta)"2);
p_d=p d(p d>=0.01);
end

H. Optimization process for K—moments

function [k fitl,b fitl,total lsel,minTotal lsel,Tempy d] =

K optimizer (p, Kpq, rdpy, kt max, minRP)

% Optimizer for calculating the minimum Least Squared Error for the

% best Pareto distributions parameters k & b. Use for unbiased non-central K-
moments

comparing theoretical RP to empirical RP obtained by the L parameter.

% Error minimization occurs for RPs with p>1 to focus

oe

kt=[0.001,0.002,0.004,0.005,0.006:0.002:kt _max];
bt=1:0.05:38;

total lsel=zeros (length (kt),length (bt));

lexactl=zeros (length (kt),length(p));
for i=1l:length (kt)

kll=kt (i) ;
lexactl (i, :)=((pi./(sin(pi.*kll) .*beta(kll,p+1-k11))).~(1./k11l))./p; % L
factor for every p value

end

for i=1l:1length (kt)
kll=kt (1)
for j=1l:length (bt)
bll=bt (j);
5 [~,~,Tempy, Ttheory]=ReturnPeriods (kl,bl,p,aa, ryo, rdpy,asc,Kpq) ;
Tempdl=(lexactl(i,:).*p)'; % Empirical Daily Return Periods using L
factor for Pareto dist
Tempyl=Tempdl/rdpy; % Empirical Yearly Return Periods using L factor for
Pareto dist
Ttheordl=(1+kll.* (Kpg./bll)) .~ (1/k11); % Theoretical Daily Return Periods
using Pareto dist
Ttheoryl=Ttheordl/rdpy; % Theoretical Yearly Return Periods using Pareto
dist
[row Tmin, ~]=find(Tempyl<=minRP, 1) ;
for 11=1:(row Tmin-1)
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1sel (11,1)=(log(Ttheoryl (11,1)/Tempyl (11,1))) ."2;
end
total 1lsel(i,j)=sum(lsel);
end
end
minTotal lsel=min(total 1lsel(:)); % Total error - parameters

[k posfitl,b posfitl]=find(total lsel==minTotal lsel);
k fitl=kt(k posfitl);
b fitl=bt (b posfitl);

lexact=((pi./(sin(k_fitl*pi).*beta(k _fitl,p+l-k fitl))).”~(1/k_fitl))./p;

Tempd= (lexact.*p)'; % Empirical Daily Return Periods using L factor for Pareto
dist

Tempy d=Tempd/rdpy; % Empirical Yearly Return Periods using L factor for Pareto
dist

end

I. Parameter estimation using classic moments

function [k mom,b mom, Tmom,Kpg mom] = MoM(precsort, Kpqg, rdpy)

Parameter estimation using classic method of moments (MoM). Used with
conjuction with already found K-moments as it is more convenient in later
chart production. Equations used for estimation are theoretical for the Pareto
distribution using MoM.

o° o o

o°

avrg=mean (precsort) ;

vrnc=var (precsort) ;

stdev=sqgrt (vrnc) ;

k_mom=abs (0.5* (avrg.”~2/vrnc-1)); % parameter production from MoM equations for
Pareto dist (2P)

b_mom=O.5*avrg*(avrg.AZ/vrnc+1);

Kpg_mom=Kpg;

i=1;

Tmom test=0;

while Tmom test<=1200
Kpg_mom=[20+Kpg mom (1, 1) ;Kpg mom] ;
Tmom_test=((l+k mom.* (Kpg mom(1l,1))./b mom).” (1/k mom)) /rdpy;
i=1i+1;

end

Tmom= ( (1+k_mom.* (Kpg mom) ./b _mom) .” (1/k mom))/rdpy;

end

J.  Parameter estimation using L — moments

function [k Im,b 1m,Tlm,Kpg lm] = Lmoments (precsort,asc,Kpq, rdpy)

% Parameter estimation using method of L-moments. Used with

conjuction with already found K-moments as it is more convenient in later
chart production. Equations used for estimation are theoretical for the Pareto
distribution using L-moments (or PWM) .

o 0 o

oe

precrev=sort (precsort, 'ascend') ;

bsi=[(1-(asc-0.35)./asc(end)) .*precrev, (1-(asc-0.35)./asc(end)) .”2.*precrev];
bi=[mean (precrev),1l/asc(end) *sum(bsi(:,1))1;
li=[bi (1), (2*bi(2)-bi(1))];

k Im=abs (bi(1l)/(bi(1l)-2*bi(2))-2); % parameter production from PWM equations for
Pareto dist (2P)
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b _Im=2%*(bi(1)*bi(2))/(bi(1)-2*bi(2));

Kpg_1lm=Kpqg;

i=1;

Tlm test=0;

while Tlm test<=1200
Kpg Im=[20+Kpg 1m(1,1);Kpg 1m];
Tlm test=((l+k_1lm.*Kpq 1lm(1,1)./b_1m).~(1/k_1m))/rdpy;
i=1i+1;

end

Tlm=((l+k 1m.*Kpq 1lm./b 1m).”(1/k 1m))/rdpy;

end

K. Return periods estimation

function [Tovthr,Tnothr, Tempy, Ttheory] = ReturnPeriods(k,b,p,aa,ryo,rdpy, asc,Kpq)
lexact=((pi./ (sin(k*pi).*beta(k,p+l-k)))."(1/k))./p; % L factor for every p value
i=1;

Tovthr (i,1)=(ryo+l)/asc(l,1); % Observed Return Periods until T=1
if asc(end)>ryo
while Tovthr(i,1)>1
Tovthr (i+1,1)=(ryo+l)/asc(i+1l,1);
i=1+1;
end
else
for i=2:asc (end)
Tovthr(i,1)=(ryo+l)/asc(i,1);
end
end

o)

Tnothr=(aa+l) ./ (asc.*rdpy); % Observed Return Period for all non-zero values
Tempd= (lexact.*p)'; % Empirical Daily Return Periods using L factor for Pareto
dist

Tempy=Tempd/rdpy; % Empirical Yearly Return Periods using L factor for Pareto
dist

Ttheord= (1+k.* (Kpg./b)) .”(1/k); % Theoretical Daily Return Periods using Pareto
dist
Ttheory=Ttheord/rdpy; % Theoretical Yearly Return Periods using Pareto dist

end

L. Error evaluation framework

function
[LSE, RMSE, NRMSE, perc, Ter, Xer, Ttheory fit exp,Tmom exp,Tlm exp,Kpg exp,Kpg mom exp
,Kpqg 1m exp,K 100,K 1000] = errors(...

precsort,Kpg d,Kpq mom,Kpg lm, rdpy, ...

k fit,k mom,k 1Im,b fit,b mom,b 1lm,Tnothr fit,Ttheory fit, Tmom,Tlm)
Framework for calculating differences and errors between empirical,
theoretical, and fitted data curves produced with each method.

oo

oo

)

Expand RP to reach T=1000y

Ttheory fit exp=Ttheory fit;
Tmom exp=Tmom;

Tlm exp=Tlm;

Kpg_exp=Kpq_d;

Kpg mom exp=Kpg mom;

Kpg 1m exp=Kpg 1lm;
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i=1;
while Ttheory fit exp(1l,1)<=1200 % K-moments
Kpg_exp=[20+Kpg_exp(1,1) ;Kpg_exp];

Ttheory fit exp=[((l+k _fit.* (Kpg exp(1,1)./b fit)).”(1./k _fit))./rdpy;Ttheory fit
expl;

S i=i+1;

end

while Tmom exp(1,1)<=1200 % Moments
Kpg mom exp=[20+Kpg mom exp(l,1);Kpg mom exp];
Tmom_exp=[((1+k_mom.*(qu_mom_exp(l,l)./b_mom)).A(l./k_mom))./rdpy;Tmom_exp];
i=1i+1;

end

while Tlm exp(1l,1)<=1200 % L-moments
Kpg Im exp=[20+Kpg 1m exp(1l,1);Kpg lm exp];
Tlm exp=[((l+k_1m.*(Kpg 1m exp(l,1)./b 1Im)).”(1./k 1m))./rdpy;Tlm exp];
i=1i+1;

end

% Precipitation value for each method in either T=100y and T=1000y

K _100=interpl (Ttheory fit exp,Kpg_exp,100);

K 1000=interpl (Ttheory fit exp,Kpg exp,1000);
M 100=interpl (Tmom_exp,Kpg mom exp,100);

M 1000=interpl (Tmom exp, Kpg mom exp, 1000) ;
L:lOO=interp1(Tlm_exp,qu_lm_exp,lOO);

L 1000=interpl (Tlm exp,Kpg lm exp,1000);

o)

% Percentage difference between methods for T=100y and T=1000y

KM_100=( (M_100-K_100) /K_100) *100;
KM_1000=((M_1000-K_1000) /K_1000) *100;
KI,_100=( (I, 100-K_100) /K_100) *100;
KI_1000=( (I, 1000-K_1000) /K_1000) *100;
MI, 100=((L_100-M _100) /M 100)*100;
MI, 1000=((I_1000-M_1000) /M_1000) *100;

o)

% Calculate Prec with same RP

3=0;

for i=-3:0.01:3 % RP from 10"-3 to 1073
j=j+1;
Ter(j,1)=10"1; % same step RP

end

for i=l:1length (Ter)
Xobs (i,1)=interpl (Tnothr fit,precsort,Ter(i));
Xk (i,1)=interpl (Ttheory fit exp,Kpq exp,Ter(i)):;
Xm(i,1l)=interpl (Tmom exp,Kpq mom exp,Ter (i));
X1(i,1)=interpl (Tlm exp,Kpq 1lm exp,Ter(i));

end

Xobslog=isnan (Xobs) ;
Xklog=isnan (Xk) ;
Xmlog=isnan (Xm) ;
X1llog=isnan (X1) ;

% Generate arrays w/o NaN for RMSE calculation

Jj=1; % Xk
for i=1:length (Xobsloqg)
if Xobslog(i)==0 && Xklog(i)==0
Xobskrmse (j,1)=Xobs (1) ;
Xkrmse (j,1)=Xk (i) ;
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Terk(j,1)=Ter (i) ;
J=j+1;
else
continue
end
end
Jj=1; % Xm
for i=1:length (Xobsloqg)
if Xobslog(i)==0 && Xmlog(i)==
Xobsmrmse (j, 1)=Xobs (1) ;
Xmrmse (j, 1) =Xm (i) ;
Term(j,1)=Ter (i) ;
J=j+1;
else
continue
end
end
J=1; % X1
for i=1:length (Xobslog)
if Xobslog(i)==0 && Xllog(i)==0
Xobslrmse (j,1)=Xobs (i) ;
Xlrmse (j,1)=X1(1i);
Terl(j,1l)=Ter(i);
J=3+1;
else
continue
end
end

o)

% Least Squares Error between curves

LSE_k:sum((log(Xobs./Xk)).A2,'omitnan');
LSE_m:sum((log(Xobs./Xm)).A2,'omitnan');
LSE_l:sum((log(Xobs./Xl)).A2,'omitnan');

o)

% Least Squares Error for T>ly

[rhigh,~]=find (Ter>=1,1);

d(
LSE_khigh=sum( (log (Xobs (rhigh:end, 1) ./Xk(rhigh:end,1))).”2, '"omitnan');
LSE _mhigh=sum( (log (Xobs (rhigh:end, 1) ./Xm(rhigh:end,1))).”2, '"omitnan');
LSE lhigh=sum((log (Xobs (rhigh:end, 1) ./X1l(rhigh:end,1)))."2, '"omitnan');

% Least Squares Error for T<ly

LSE klow=LSE_ k-LSE khigh;
LSE mlow=LSE m-LSE mhigh;
LSE 1llow=LSE 1-LSE lhigh;

)

% Root Mean Square Error

method="MSE";

RMSE k=sqgrt (goodnessOfFit (Xkrmse, Xobskrmse,method)) ;
RMSE m=sqgrt (goodnessOfFit (Xmrmse, Xobsmrmse,method)) ;
RMSE l=sqgrt (goodnessOfFit (Xlrmse, Xobslrmse,method)) ;

% Root Mean Square Error for T>ly

[rhighk,~]=find (Terk>=1,1); [rhighm,~]=find(Term>=1,1);
[rhighl, ~]=find(Terl>=1,1);
RMSE khigh=sqrt (goodnessOfFit (Xkrmse (rhighk:end, 1), Xobskrmse (rhighk:end, 1), method

))
RMSE mhigh=sqrt (goodnessOfFit (Xmrmse (rhighm:end, 1), Xobsmrmse (rhighm:end, 1), method

))
RMSE lhigh=sqrt (goodnessOfFit (Xlrmse (rhighl:end, 1), Xobslrmse (rhighl:end, 1), method

))
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o)

% Root Mean Square Error for T<ly

RMSE klow=sgrt (goodnessOfFit (Xkrmse (1:rhighk-1,1),Xobskrmse (1:rhighk-
1,1),method));
RMSE mlow=sgrt (goodnessOfFit (Xmrmse (1:rhighm-1,1) ,Xobsmrmse (1:rhighm-
1,1),method));
RMSE llow=sgrt (goodnessOfFit (Xlrmse (1:rhighl-1,1),Xobslrmse (1l:rhighl-
1,1),method));

o)

% Normalised Root Mean Square Error

method="NRMSE"';

NRMSE k=goodnessOfFit (Xkrmse,Xobskrmse,method) ;
NRMSE m=goodnessOfFit (Xmrmse, Xobsmrmse, method) ;
NRMSE l=goodnessOfFit (Xlrmse,Xobslrmse,method) ;

o)

% Normalised Root Mean Square Error for T>ly

[rhighk, ~]=find(Terk>=1,1); [rhighm,~]=find(Term>=1,1);

[rhighl, ~]=find(Terl>=1,1);

NRMSE khigh=goodnessOfFit (Xkrmse (rhighk:end, 1), Xobskrmse (rhighk:end, 1), method);
NRMSE mhigh=goodnessOfFit (Xmrmse (rhighm:end, 1) , Xobsmrmse (rhighm:end, 1), method) ;
NRMSE lhigh=goodnessOfFit (Xlrmse (rhighl:end, 1),Xobslrmse (rhighl:end, 1), method) ;

o)

% Normalised Root Mean Square Error for T<ly

NRMSE klow=goodnessOfFit (Xkrmse (1:rhighk-1,1),Xobskrmse (1:rhighk-1,1),method) ;
NRMSE mlow=goodnessOfFit (Xmrmse (1:rhighm-1,1),Xobsmrmse (1:rhighm-1,1),method) ;
NRMSE llow=goodnessOfFit (Xlrmse (l:rhighl-1,1),Xobslrmse (l:rhighl-1,1),method);

o)

% Takeoff array

perc=[round (KM 100,1), round (KM 1000,1), round (KL 100,1), ...
round (KL 1000,1),round (ML 100,1),round (ML 1000,1)];
LSE=[LSE_k,LSE m,LSE 1;LSE khigh,LSE mhigh,LSE lhigh;LSE klow,LSE mlow,LSE llow];
if isnan (RMSE klow)
RMSE=[RMSE_k,RMSE m,RMSE_1;RMSE khigh, RMSE mhigh,RMSE 1lhigh;0,0,0];
else

RMSE=[RMSE_k,RMSE m, RMSE_1;RMSE_khigh, RMSE mhigh, RMSE lhigh;RMSE klow,RMSE mlow,R
MSE 1llow];
end

if isnan (NRMSE klow)
NRMSE=[NRMSE k,NRMSE m,NRMSE 1;NRMSE khigh, NRMSE mhigh, NRMSE lhigh;0,0,0];
else

NRMSE=[NRMSE k,NRMSE m,NRMSE 1;NRMSE khigh,NRMSE mhigh, NRMSE lhigh;NRMSE klow, NRM
SE mlow,NRMSE llow];

end

Xer=[Xobs, Xk, Xm,X1];

Xerrmsek=[Xobskrmse, Xkrmse] ;

Xerrmsem=[Xobsmrmse, Xmrmse] ;

Xerrmsel=[Xobslrmse, Xlrmse];

varNames2={'KM 100y','KM 1000y', 'KL 100y', 'KL 1000y', 'ML 100y"', 'ML 1000y"'};

M. Data takeoff

function [varNames,parameters fit export,parameters fit export table] =
takeoff (parameters fit)

Framework for exporting data in a matrix form factor. csv_comp can be
used in Python but is unecessary.

oo

o0

varNames={'N', 'KB', 'Lat', 'Lon', 'Obs"', "Hurst', 'k fit','b fit', 'LSE', ...
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'k MoM','b MoM', 'k LM','b IM','KM 100y','KM 1000y','KL 100y','KL 1000y','ML 100y"
, 'ML_1000y", ...

"LSE k', 'LSE m','LSE 1", 'LSE _khigh', 'LSE mhigh', 'LSE lhigh', 'LSE klow', 'LSE mlow'
,"LSE llow'...

'"RMSE_k', 'RMSE m', 'RMSE_1', 'RMSE_khigh', 'RMSE mhigh', 'RMSE lhigh', 'RMSE klow', 'RM
SE mlow', "RMSE llow',...

"NRMSE_k', 'NRMSE m', 'NRMSE_1', 'NRMSE khigh', '"NRMSE mhigh', 'NRMSE lhigh', 'NRMSE kl
ow', '"NRMSE mlow', 'NRMSE llow', ...

'K 100", 'K_1000', 'Exclim'};
parameters fit export=parameters fit;
parameters fit export(all(~parameters fit export,2),:)=[]; % remove zero rows
from exported .xlsx
parameters fit export table=array2table(parameters fit export, 'VariableNames', var
Names) ;

11.2 Python Scripts

Below all scripts from the PyCharm Python programming interface are provided for insight
into the evaluation of location data provided from the GHCN — Daily database (coordinate
geocoding).

import time

from tqdm import tgdm

import pandas

from numpy import *

from geopy.geocoders import Nominatim

from geopy.geocoders import GoogleV3

from geopy.extra.rate_limiter import RateLimiter
import xird

start_time = time.time()

name ="'1-112777'

dir = ("/Users/Nick_Agatheris/Desktop/Simulation Results/MATLAB Output/Coordinates/Coordinates
("+str(name)+").csv")

# read .csv and write to .x/sx

df_paremeters = pandas.read_csv(dir)

excel_name = '"/Users/Nick_Agatheris/Desktop/Simulation Results/Python Input/Coordinates
("+str(name)+').xlsx’

writer = pandas.ExcelWriter(excel_name, engine="xlsxwriter')
df_paremeters.to_excel(writer, "Sheet1", header=False)

writer.save()

# read from .xIsx and write coordinates to numpy array

xlsxopen=xIrd.open_workbook(excel_name)
sheet = xIsxopen.sheet_by_index(0)
sheet.cell_value(0, 0)
row_number=sheet.nrows
col_number=sheet.ncols
row_number_actual=row_number
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LATLON = zeros((row_number_actual, 3), dtype=float) # produce array with station number (0) and
coordinates (1,2)

for iin range(0, row_number_actual, 1):
LATLON][I, 0] = int(sheet.cell_value(i, 1))
LATLON][i, 1] = sheet.cell_value(i, 2)
LATLON][i, 2] = sheet.cell_value(i, 3)

country_row =[]
state_row =]

# find location using coordinates (Reverse Geocoding) - Nominatim geocoder

for iin tgdm(range(0, row_number_actual, 1)):
geolocrev = Nominatim(user_agent="nick"+str(i), timeout=900)
coordinates = geolocrev.reverse(str(LATLON]i, 1])+',"+str(LATLON]i, 2]))
# prinf(coordinates.address)
raw_ID = coordinates.raw
try:
country_name = raw_|D['address']['country’]
# state_name = raw_[Dfaddress ][ state]
country_row.append(country_name)
pass
except KeyError:
country_row.append(’-")

# .xlIsx file generation with countries found

country_tot = array([LATLON[:, 0], country_row])
pandas.DataFrame(country_tot).to_excel('/users/nick_agatheris/desktop/Simulation Results/Python
Output/Country Output ('+str(name)+').xIsx', header=False, index=False)

# tofal runtime of script

end_time = time.time()

total_time = int(end_time-start_time)
print(str(total_time)+'s for '+str(row_number_actual)+' locations")
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