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Abstract 

Land surface air temperature is one of the most important hydroclimatic variables, and its 

extremes are of paramount importance. For this reason, it is imperative not only to know 

the exact shape of the temperature tails, but also their temporal evolution. The aim of this 

work is to investigate the stochastic behavior of land surface air temperature using 

Knowable (K-)moments. K-moments were chosen for this study, as they enable reliable 

estimation from samples and effective description of high order statistics, useful for 

marginal and joint distributions of stochastic processes. Multiple timeseries of the 

average, maximum and minimum air temperature are standardized with respect to the 

monthly variability of each record. We generate segments of the whole timeseries using 

consecutive rolling 30-year periods, from which we extract extreme values corresponding 

to four specific return period levels. Furthermore, timeseries of each air temperature 

variable (average, maximum and minimum) are used as input to an aggregated 

Climacogram, for deriving the Hurst parameter, through optimization of the parameters 

of a hybrid Hurst-Kolmogorov and Markov model. The Hurst parameter is later employed 

in a Monte Carlo simulation to produce synthetic records of similar stochastic properties 

through the Symmetric Moving Average (SMA) scheme. The synthetic records produced 

are processed in a similar manner as the observed, in order to compare them. Furthermore, 

the longest single records for each air temperature variable are selected and compared to 

the ensemble of observations, as well as the synthetic records. 

 

 

 

Key words: Stochastics; Air temperature; Extreme temperature; Temperature tails; 

Standardized records; Symmetric Moving Average; Climacogram; Hurst-Kolmogorov 

behavior; Monte-Carlo simulation.  
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Εκτενής Περίληψη / Extended Abstract in Greek 

Εισαγωγή 

Η θερμοκρασία θεωρείται μία από τις πιο σημαντικές υδρομετεωρολογικές μεταβλητές, 

και μαζί με τη βροχόπτωση μπορεί να χαρακτηρίσει σε ικανοποιητικό βαθμό το κλίμα 

μίας περιοχής. Τις τελευταίες δεκαετίες, η κλιματική αλλαγή και οι επιπτώσεις της τόσο 

στον άνθρωπο όσο και στο φυσικό περιβάλλον έχουν καταστεί σημαντικά ζητήματα στο 

πολιτικό, οικονομικό και επιστημονικό πεδίο. Εξαιτίας της τρωτότητας των υποδομών, 

καθώς επίσης και ολόκληρου του συστήματος συγκομιδής και εμπορίου τροφίμων και 

ενέργειας, μικρές διαταραχές σε πολύ ευαίσθητες κλιματικές συνθήκες μπορεί να 

προκαλέσουν σημαντικά προβλήματα. Γι’ αυτό τον λόγο είναι επιτακτικό να 

κατανοήσουμε, όχι μόνο την εξέλιξη της μέσης θερμοκρασίας στην επιφάνεια της Γης, 

αλλά και της ελάχιστης και μέγιστης. Στο επιστημονικό επίπεδο, επιβάλλεται να 

κατανοούμε ένα πρόβλημα, πριν επιδοθούμε σε προσπάθειες επίλυσής του. 

Η κατανόηση της εξέλιξης της θερμοκρασίας στην επιφάνεια της Γης, σε όρους 

κατανομής, είναι επίσης βοηθητική στην προσπάθειά μας να αναγνωρίσουμε τα βασικά 

αίτια της κλιματικής αλλαγής, και αν, και με ποιο τρόπο, μπορούμε να μετριάσουμε τις 

συνέπειές της, με σκοπό την καλύτερη προσαρμογή μας. Υπάρχουν πολλοί συντελεστές 

του κλίματος, τόσο εσωτερικοί, όσο και εξωτερικοί. Η εσωτερική μεταβλητότητα του 

κλίματος περιλαμβάνει παράγοντες όπως η μεταβλητότητα ατμόσφαιρας-ωκεανού 

(Brown et al., 2015; Hasselmann, 1976), καθώς επίσης και τις επιδράσεις της βιόσφαιρας 

μέσω των κύκλων του νερού και του άνθρακα. Στους εξωγενείς παράγοντες λαμβάνονται 

υπ’ όψιν τα αέρια του θερμοκηπίου (Cronin, 2010), οι τροχιακές μεταβολές, η ηλιακή 

δραστηριότητα και η ηφαιστειακή δραστηριότητα μεταξύ άλλων. Ο εντοπισμός των 

ακριβών μεταβολών της θερμοκρασίας στην επιφάνεια της Γης, σε συνδυασμό με 

διεπιστημονική προσέγγιση, θα συμβάλει στην αποκρυπτογράφηση των μηχανισμών 

του κλίματος της Γης. 
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Ο σκοπός της παρούσας διπλωματικής εργασίας είναι να εντοπίσουμε τη χρονική εξέλιξη 

των γεγονότων ακραίων θερμοκρασιών στην επιφάνεια της Γης, σε συγκεκριμένα 

επίπεδα περιόδων επαναφοράς, και να αξιολογήσουμε εάν οι προκύπτουσες μεταβολές 

είναι εντός των ορίων του αναμενόμενου από τη στοχαστική διεργασία που περιγράφει 

μία φυσική μεταβλητή όπως τη θερμοκρασία. Για το σκοπό αυτό, εξετάζουμε πιθανές 

τάσεις της θερμοκρασίας στο παρελθόν και το παρόν, και πώς αυτές εντάσσονται στο 

γενικότερο πλαίσιο των παγκόσμιων κλιματικών μεταβολών. 

Πολλαπλές επιστημονικές μελέτες έχουν δείξει ότι η μέση θερμοκρασία του πλανήτη 

έχει αυξηθεί σημαντικά κατά τον 20ο αιώνα. Σύμφωνα με την 5η Αναφορά Αποτίμησης 

του IPCC (2018), η δεκαετία 2009-2018 ήταν θερμότερη κατά 0.93 ± 0.07 °C σε σύγκριση 

με την προβιομηχανική θερμοκρασία βάσης (1850-1900). Παρόλο που υπάρχει μία 

αποκλίνουσα συμπεριφορά μεταξύ των αστικών και αγροτικών μετεωρολογικών 

μετρήσεων (Peterson et al. 1999), η γενική τάση φαίνεται να είναι ανοδική, όπως 

φαίνεται και στο σχήμα 1. 

 

 

Γράφημα 1: Μεταβολές του παγκόσμιου μέσου όρου της ετήσιας θερμοκρασίας στην επιφάνεια της Γης 
(LSAT) συγκριτικά με την κλιματολογία του 1961-1990, όπως προκύπτει από τις τελευταίες εκδόσεις 

τεσσάρων διαφορετικών βάσεων δεδομένων (Berkeley, CRUTEM, GHCN and GISS) | Πηγή: Stocker et al. 
(2013) 

 

Μ
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Οι έρευνες, που έχουν γίνει για τη μέγιστη και την ελάχιστη θερμοκρασία δείχνουν ότι η 

ελάχιστη θερμοκρασία τείνει να αυξάνεται με γρηγορότερο ρυθμό απ’ ότι η μέγιστη 

θερμοκρασία. Αποτέλεσμα αυτής της διαφορετικής συμπεριφοράς είναι το ημερήσιο 

εύρος της θερμοκρασίας να μειώνεται στις περισσότερες περιοχές του πλανήτη. 

Συγκεκριμένα, κατά τους Easterling et al. (1997) η ημερήσια διακύμανση της 

θερμοκρασίας μειώνεται με ρυθμό 0.1 °C/δεκαετία.  

Εντούτοις, οι μελέτες της θερμοκρασίας της Γης που έχουν γίνει μέχρι στιγμής έχουν 

παραλείψει να λάβουν υπ’ όψιν την εγγενή εποχική μεταβλητότητα της θερμοκρασίας, 

η οποία δύναται να συμπεριληφθεί μέσω της τυποποίησης των ημερήσιων καταγραφών 

της θερμοκρασίας σε σχέση με τον αντίστοιχο μήνα. Σε αυτή την έρευνα θεωρήσαμε την 

εποχική μεταβλητότητα αναπόσπαστο κομμάτι της μελέτης της θερμοκρασίας, 

απεμπλέκοντας τα αποτελέσματα από οποιαδήποτε μεροληψία, που πιθανόν επέρχεται 

από επόμενες, στατιστικά ασήμαντες, καταγραφές. 

Επιπλέον, κάναμε χρήση των K-ροπών, οι οποίες είναι ιδιαίτερα εύρωστες στην μελέτη 

ακραίων δεδομένων (Koutsoyiannis, 2020). Ένα από τα σημαντικότερα πλεονεκτήματά 

τους είναι ότι είναι γνωστές, με αμερόληπτες εκτιμήτριες, των οποίων η αβεβαιότητα 

εκτίμησης είναι τάξεις μεγέθους μικρότερη από τις κλασσικές ροπές. Επιπλέον, οι 

εκτιμήτριες μπορούν να λάβουν υπ’ όψιν οποιαδήποτε υπάρχουσα δομή εξάρτησης, 

ενώ, επίσης, μπορούν να τους αντιστοιχίσουμε άμεσα περιόδους επαναφοράς, όπως και 

στη χρήση order statistics. 

 

Στοιχεία θεωρίας 

Φαινόμενο Hurst 

Κλιματικές και υδρολογικές διεργασίες, όπως η θερμοκρασία του αέρα, η βροχόπτωση 

και η εξάτμιση συχνά εξετάζονται ως στάσιμες στοχαστικές διεργασίες διακριτού 

χρόνου. Έστω 𝑋𝑖 μία διεργασία με 𝑖 = 1,2,3, … να δηλώνει διακριτό χρόνο (όπως μέρες). 

Επίσης, έστω ότι έχει μέση τιμή 𝜇 = Ε[𝑋𝑖], αυτοσυνδιακύμανση 𝛾𝑗 = cov[𝑋𝑖𝑋𝑖+𝑗] και 
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αυτοσυσχέτιση 𝜌𝑗 = corr[𝑋𝑖𝑋𝑖+𝑗] = 𝛾𝑗 𝛾0⁄ , όπου 𝑗 = 0,±1,±2,±3, … . Εάν 

υποθέσουμε 𝛿 να είναι η κλίμακα χρόνου που μας ενδιαφέρει, τότε ο δείκτης 𝑖 

αναπαριστά το συνεχές μεσο-διάστημα χρόνου [(𝑖 − 1)𝛿, 𝑖𝛿]. Έστω 𝑘𝛿 μία κλίμακα 

χρόνου μεγαλύτερη από τη 𝛿, όπου 𝑘 είναι θετικός ακέραιος. Η συναθροισμένη 

στοχαστική διεργασία σε αυτή τη χρονική κλίμακα συμβολίζεται με 𝑍𝑖
(𝑘)

 και είναι ίση με: 

 𝑍𝑖
(𝑘)

∶= ∑ 𝑋𝑙

𝑖𝑘

𝑙=(𝑖−1)𝑘+1

 (1) 

Από αυτόν τον ορισμό, είναι εύκολο να συνάγουμε ότι για 𝑘 = 1, 𝑍𝑖
(1)

= 𝑋𝑖, για 𝑘 = 2,

𝑍1
(2)

= 𝑋1 + 𝑋2, 𝑍2
(2)

= 𝑋3 + 𝑋4, κ.ο.κ.. Οι στατιστικές ιδιότητες της 𝑍𝑖
(𝑘)

 μπορούν να 

εξαχθούν από αυτές της διαδικασίας 𝑋𝑖. Για παράδειγμα, η μέση (αναμενόμενη) τιμή 

μπορεί να βρεθεί ως: 

 E[𝑍𝑖
(𝑘)

] = 𝑘𝜇 (2) 

ενώ η διακύμανση και η αυτοσυσχέτιση από τις σχέσεις: 

 𝛾𝑗
(𝑘)

= cov[𝑍𝑖
(𝑘)

, 𝑍𝑖+𝑗
(𝑘)

] = ∑ ∑ 𝛾𝑚−𝑙

(𝑗+1)𝑘

𝑚=𝑗∙𝑘+!

𝑘

𝑙=1

,     𝑗 = 0,±1,±2,±3,… (3) 

 

Ο Hurst ήταν ο πρώτος που ανακάλυψε την μακροχρόνια εμμονή στις φυσικές 

διεργασίες (1951), εντούτοις, ο Kolmogorov (1940) ήταν ο πρώτος που την περιέγραψε 

μαθηματικά, όταν μελετούσε αυτό-όμοιες διεργασίες σε τυρβώδη πεδία (Koutsoyiannis, 

2011). Αυτή η συμπεριφορά (δηλαδή η τάση υψηλών ή χαμηλών τιμών να 

συσσωρεύονται σε μεγάλες χρονικές κλίμακες) είναι γνωστή ως φαινόμενο Hurst, 

συμπεριφορά Hurst-Kolmogorov (HK), ή δυναμική Hurst-Kolmogorov (HK) (Mandelbrot, 

1983; Koutsoyiannis, 2011). Μία στοχαστική διεργασία με συμπεριφορά ΗΚ είναι επίσης 

γνωστή σαν διεργασία Hurst-Kolmogorov ή κλασματικός Gaussian θόρυβος (fGn). 

Ωστόσο ο fGn προϋποθέτει ότι ο θόρυβος έχει κανονική κατανομή (Gaussian), κάτι το 

οποίο δεν ισχύει πάντα. Ο fGn μπορεί να οριστεί σε διακριτό χρόνο (που είναι και το 
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ζητούμενο στην παρούσα εργασία) με τρόπο παρόμοιο με τον συνεχή χρόνο. 

Συγκεκριμένα, ο fGn ορίζεται ως μία διεργασία, που ικανοποιεί την ακόλουθη συνθήκη: 

 (𝑍𝑖
(𝑘)

− 𝑘𝜇) = (
𝑘

𝑙
)

𝐻

(𝑍𝑗
(𝑙) − 𝑙𝜇) (4) 

η οποία εφαρμόζεται μόνο σε (πεπερασμένων διαστάσεων κοινή) κατανομή. H είναι μία 

θετική σταθερά (0 < 𝐻 < 1) γνωστή και ως συντελεστής Hurst. Η εξίσωση ισχύει για 

κάθε ακέραια τιμή των 𝑖 και 𝑗 (με τη στασιμότητα της διεργασίας να είναι 

προαπαιτούμενο) και κάθε χρονική κλίμακα 𝑘 και 𝑙 (Koutsoyiannis, 2002). Επομένως, για 

𝑖 = 𝑗 = 𝑙 = 1 προκύπτει ότι: 

 𝛾0
(𝑘)

= 𝑘2𝐻𝛾0 (5) 

Κλιμακόγραμμα 

Το κλιμακόγραμμα (Cg) προέρχεται από τις λέξεις «κλίμαξ» και «γράμμα» και είναι ένα 

δισδιάστατο γράφημα της τυπικής απόκλισης SD(k) της μέσης συναθροισμένης σειράς 

της τυχαίας μεταβλητής Z στον κατακόρυφο άξονα και της συναθροισμένης κλίμακας k 

στο οριζόντιο άξονα (Koutsoyiannis, 2010): 

 𝑍𝑢
(𝑘)

=
1

𝑘
∑ 𝑍𝑖

𝑢𝑘

𝑖=(𝑢−1)𝑘

 (6) 

όπου οι μεταβλητές 𝑍 και 𝑍𝑢 αναπαριστούν το τυχαίο πεδίο ενδιαφέροντος και το μέσο 

συναθροισμένο πεδίο αντίστοιχα, ενώ 𝑢 είναι το διάνυσμα-δείκτης του πεδίου, που 

δείχνει την υστέρηση, δηλαδή τη θέση στο πεδίο. 

Το κλιμακόγραμμα χρησιμοποιείται για τον εντοπισμό μακροχρόνιων μεταβολών μίας 

διεργασίας και την εμμονή (ή εξάρτηση) που αυτή μπορεί να παρουσιάζει. Αυτή η 

εμμονή μπορεί να ποσοτικοποιηθεί μέσω του συντελεστή Hurst, ο οποίος μπορεί να 

εξαχθεί από την κλίση του κλιμακογράμματος με λογαριθμικούς άξονες (Η=1-κλίση). Για 

τιμές 0<H<0.5 η διεργασία είναι αντιέμμονη, ενώ για 0.5<H<1 είναι έμμονη (πιο συνήθης 

συμπεριφορά για φυσικές διεργασίες) και για H=0.5 η διεργασία είναι πλήρως 

ασυσχέτιστη (λευκός θόρυβος). 
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Σε κάποιες περιπτώσεις, παρόλ’ αυτά, (όπως και στην παρούσα εργασία) η προσαρμογή 

μίας ευθείας γραμμής στο κλιμακόγραμμα για την εξαγωγή της κλίσης, και άρα της 

ποσοτικοποίησης της εμμονής δεν είναι η βέλτιστη λύση, λόγω της πιθανής απόκλισης 

του κλιμακογράμματος από την προσαρμοσμένη «ισοδύναμη» ευθεία για μεγάλες 

κλίμακες. Για το λόγο αυτό, χρησιμοποιήσαμε ένα ίσης βαρύτητας συνδυασμό 

διεργασιών Hurst-Kolmogorov και Markov, με σκοπό τη μεγιστοποίηση της παραγωγής 

εντροπίας, τόσο στις μικρές, όσο και στις μεγάλες χρονικές κλίμακες (Koutsoyiannis et 

al., 2018). 

Η εξίσωση του μοντέλου είναι: 

 𝛾(𝑘) =
𝜆

2
(1 + (𝑘 𝑎⁄ )2𝑀)

𝐻−1
𝑀

+
𝜆

𝑘
𝑎⁄

(1 −
1 − 𝑒−𝑘

𝑎⁄

𝑘
𝑎⁄

) (7) 

όπου 𝐻, 𝑀 και 𝑎 είναι οι τρεις ανεξάρτητες παράμετροι και 𝜆 είναι μία εξαρτημένη 

παράμετρος, που προκύπτει από την εξίσωση του μοντέλου για κλίμακα 𝑘 = 1. Οι 

παράμετροι 𝐻 και 𝑀 είναι φραγμένες από το 0 και το 1, ενώ η παράμετρος 𝑎 είναι θετική. 

K-ροπές 

Ας υποθέσουμε ότι η 𝑥 είναι μία στοχαστική μεταβλητή και 𝑥1,𝑥2, … , 𝑥𝑝 είναι αντίγραφά 

της, ανεξάρτητα και όμοια κατανεμημένα, αποτελώντας ένα δείγμα. Το μέγιστο όλων, το 

οποίο ταυτίζεται με το pοστό στοχαστικό, είναι εξ’ ορισμού: 

 𝑥(𝑝) ∶= max (𝑥1, 𝑥2, … , 𝑥𝑝) (8) 

Εαν 𝐹(𝑥) είναι η συνάρτηση κατανομής της 𝑥 και 𝑓(𝑥) είναι η συνάρτηση πυκνότητας 

πιθανότητας, τότε οι αντίστοιχες συναρτήσεις της 𝑥(𝑝) είναι: 

 𝐹(𝑝)(𝑥) = (𝐹(𝑥))𝑝, 𝑓(𝑝)(𝑥) = 𝑝𝑓(𝑥)(𝐹(𝑥))
𝑝−1

 (9) 

όπου η πρώτη είναι το γινόμενο 𝑝 εμφανίσεων της 𝐹(𝑥) (που δικαιολογείται από την 

υπόθεση ανεξάρτητης και όμοιας κατανομή τους), ενώ η δεύτερη είναι η παράγωγος της 

𝐹(𝑝)(𝑥) ως προς 𝑥. 
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Για την εξαγωγή των Κ-(knowable, δηλαδή γνωστών) ροπών σε υψηλή δύναμη 𝑝, με 

σκοπό τον ορισμό της 𝑝ης ροπής, υψώνουμε τον όρο (𝑥 − 𝜇) σε χαμηλότερη δύναμη 

𝑞 < 𝑝 και για τους υπολειπόμενους πολλαπλασιαστικούς όρους (𝑝 − 𝑞), 

αντικαθιστούμε το (𝑥 − 𝜇) με (2𝐹(𝑥) − 1), όπου 𝐹(𝑥) είναι η συνάρτηση κατανομής. 

Αυτό οδηγεί στον ακόλουθο ορισμό της κεντρικής Κ-ροπής τάξης (𝑝, 𝑞) (Koutsoyiannis, 

2019): 

 𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)
𝑞
], 𝑝 ≥ 𝑞 (10) 

Αντίστοιχα, η μη-κεντρική Κ-ροπή τάξης (𝑝, 𝑞) ορίζεται (Koutsoyiannis, 2019): 

 𝐾′𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞

𝑥𝑞] , 𝑝 ≥ 𝑞 (11) 

Οι ποσότητες (𝐹(𝑥))
𝑝−𝑞

 και (2𝐹(𝑥) − 1)
𝑝−𝑞

 εκτιμώνται από ένα δείγμα, χωρίς τη 

χρήση των δυνάμεων του 𝑥, κάνοντας έτσι την εκτίμηση πολύ πιο αξιόπιστη. 

Συγκεκριμένα, για το 𝑖οστό στοιχείο του δείγματος 𝑥(𝑖) μεγέθους 𝑛, ταξινομημένο σε 

αύξουσα σειρά, οι 𝐹(𝑥(𝑖)) και (2𝐹(𝑥(𝑖)) − 1) υπολογίζονται ως: 

 𝐹̂(𝑥(𝑖)) =
𝑖−1

𝑛−1
 ,     2𝐹̂(𝑥(𝑖)) − 1 =

2𝑖−𝑛−1

𝑛−1
 (12) 

παίρνοντας τιμές στα διαστήματα [0,1] και [-1,1], αντίστοιχα, ανεξάρτητα από τις τιμές 

της 𝑥(𝑖). Επομένως, οι εκτιμήτριες των Κ-ροπών είναι: 

 𝐾̂′𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑(

𝑖 − 1

𝑛 − 1
)
𝑝−𝑞

𝑥(𝑖)
𝑞

𝑛

𝑖=1

 (13) 

 𝐾̂𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑(

2𝑖 − 𝑛 − 1

𝑛 − 1
)
𝑝−𝑞

(𝑥(𝑖)

𝑛

𝑖=1

− 𝜇̂)𝑞 (14) 

Περίοδοι επαναφοράς 

Όπως είναι κατανοητό, η χρήση των order statistics έχει σημαντικά πλεονεκτήματα 

έναντι άλλων στατιστικών εργαλείων στο πλαίσιο των περιόδων επαναφοράς, καθώς 

επίσης και στην αντιστοίχιση μίας ξεχωριστής τιμής συνάρτησης κατανομής σε κάθε μία 

από αυτές. Αυτό τυχαίνει να ισχύει και με τις Κ-ροπές, καθώς είναι άρρηκτα 

συνδεδεμένες με τα order statistics. 
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Γενικά, η περίοδος επαναφοράς μπορεί να εκφραστεί από τη σχέση: 

 
𝑇(𝐾′

𝑝1)

𝐷
= 𝛬𝑝𝑝 (15) 

όπου 𝐷 είναι η χρονική αναφορά για την προδιαγραφή της περιόδου επαναφοράς και 

𝛬𝑝 είναι ένας συντελεστής που γενικά εξαρτάται από την συνάρτηση κατανομής και την 

τάξη 𝑝. 

Ο ακριβής ορισμός του𝛬𝑝 είναι (Koutsoyiannis, 2019): 

 𝛬𝑝 ∶=
1

𝑝(1 − 𝐹(𝐾′
𝑝1))

 (16) 

Ελλείψει αναλυτικής λύσης, μία ακριβής σχέση μεταξύ του 𝑝 και του 𝑇 έχει καθιερωθεί 

μέσω της εκτέλεσης αριθμητικών υπολογισμών για διάφορες τιμές του 𝑝. Η μικρή 

διακύμανση του 𝛬𝑝 με το 𝑝 μπορεί να υπολογιστεί πολύ καλά εάν είναι γνωστές οι 

ειδικές τιμές των 𝛬1 και 𝛬∞. Η τιμή του 𝛬1 υπολογίζεται πολύ εύκολα, αφού πρακτικά 

ταυτίζεται με την περίοδο επαναφοράς της μέσης τιμής: 

 𝛬1 =
1

1 − 𝐹(𝜇)
=

𝛵(𝜇)

𝐷
 (16) 

Επιπλέον, σε ένα πλήθος συνηθισμένων κατανομών, ειδικά αυτές που ανήκουν στις 

Extreme Value Type 1 κατανομές, το 𝛬∞ έχει σταθερή τιμή, ανεξάρτητη από την 

κατανομή. Όπως απέδειξε και ο Koutsoyiannis (2019), η τιμή αυτή είναι: 

 𝛬∞ = 𝑒𝛾 = 1.781 (17) 

όπου 𝛾 είναι η σταθερά Euler–Mascheroni. 

Για τον υπολογισμό του 𝛬𝑝, χρησιμοποιείται η παρακάτω σχέση, η οποία είναι 

ικανοποιητική για τις περισσότερες κατανομές: 

 𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)
1

𝑝
 (18) 

Αυτό συνεπάγεται μία γραμμική σχέση μεταξύ της περιόδου επαναφοράς 𝛵 και της τάξης 

𝑝: 
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𝑇(𝐾′

𝑝1)

𝐷
= 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (19) 

Για την κανονική κατανομή, που προσεγγίζει καλύτερα την κατανομή της πραγματικής 

θερμοκρασίας στην επιφάνεια της Γης, οι προσεγγιστικές τιμές των 𝛬1 και 𝛬∞.  είναι: 

𝛬1 = 2 και 𝛬∞ = 𝑒
1

2⁄ = 1.649. 

 

Δεδομένα 

Η GHCN (Global Historical Climatology Network)-Daily είναι η βάση δεδομένων που 

χρησιμοποιήσαμε στα πλαίσια της παρούσας μελέτης. Περιλαμβάνει χρονοσειρές από 

πληθώρα μετεωρολογικών σταθμών από όλο τον κόσμο. Για τη θερμοκρασία, 

περιλαμβάνει δεδομένα από 106.283 σταθμούς από 180 διαφορετικές χώρες. Τόσο το 

μήκος των καταγραφών, όσο και οι καλυπτόμενες χρονικές περίοδοι, διαφέρουν από 

σταθμό σε σταθμό, το συνολικό μήκος των οποίων μπορεί να ξεπερνά και τα 175 έτη. 

Από όλα τα καταγεγραμμένα μεγέθη που περιλαμβάνονται στη συγκεκριμένη βάση 

δεδομένων, εμείς εξετάσαμε τη μέση, μέγιστη και ελάχιστη θερμοκρασία στην 

επιφάνεια της Γης. 

Τα δεδομένα που χρησιμοποιήσαμε υποβλήθηκαν σε πολυάριθμους ποιοτικούς 

ελέγχους, τόσο από την Εθνική Υπηρεσία Ατμόσφαιρας και Ωκεανών (ΝΟΑΑ) των Η.Π.Α., 

η οποία διατηρεί τη βάση, όσο και από εμάς. Οι αυτοματοποιημένοι έλεγχοι, που 

διενεργήθηκαν από τη ΝΟΑΑ, οδήγησαν στην επισήμανση των προβληματικών τιμών 

των χρονοσειρών (flagging). Στον πίνακα 1, που ακολουθεί φαίνονται οι επισημάνσεις, 

που πιθανώς υπήρχαν στις χρονοσειρές της θερμοκρασίας, τις οποίες χρησιμοποιήσαμε. 

Για τους σκοπούς της παρούσας εργασίας, χρησιμοποιήσαμε μόνο τις μη επισημασμένες 

τιμές των χρονοσειρών (με κενή εγγραφή στη θέση της επισήμανσης), καθώς θεωρήθηκε 

ότι οποιαδήποτε από τις παραπάνω επισημάνσεις υποδήλωνε πρόβλημα στην 

καταγραφή της πραγματικής θερμοκρασίας. 
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Επιλέξαμε χρονοσειρές σταθμών, οι οποίες είχαν σημείο εκκίνησης προγενέστερο του 

1935, καθώς αυτό επέτρεψε την εξαγωγή παραπάνω από 50 διαδοχικές κυλιόμενες 

τριακονταετίες. Παρόλο που αυτός ο περιορισμός κατέστησε το δείγμα των χρονοσειρών 

σαφώς περιορισμένο, εντούτοις, μας επέτρεψε να αναγνωρίσουμε σε μεγάλες χρονικές 

κλίμακες μοτίβα εμμονής. Αυτό δεν θα ήταν δυνατό με τη χρήση ενός διαρκώς 

μεταβαλλόμενου δείγματος βραχύβιων χρονοσειρών. 

Από τον προαναφερθέντα περιορισμό, ο τελικά χρησιμοποιούμενος αριθμός 

χρονοσειρών για κάθε μέγεθος είναι: 

• Για τη μελέτη της μέσης θερμοκρασίας: 245 χρονοσειρές 

• Για τη μελέτη της μέγιστης θερμοκρασίας: 5,006 χρονοσειρές 

• Για τη μελέτη της ελάχιστης θερμοκρασίας: 5,006 χρονοσειρές 

 

Μεθοδολογία 

Η μεθοδολογία, που ακολουθήσαμε για κάθε παράμετρο της επιφανειακής 

θερμοκρασίας, συνοψίζεται στο ακόλουθο διάγραμμα ροής. Δηλαδή, οι εικονιζόμενες 

ενέργειες έγιναν ξεχωριστά για τη μέση, τη μέγιστη και την ελάχιστη θερμοκρασία. 
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Γράφημα 2: Διάγραμμα ροής εργασιών για κάθε παράμετρο (μέση, μέγιστη, ελάχιστη) της θερμοκρασίας 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Τα στάδια που ακολουθήσαμε στην μελέτη της συμπεριφοράς της θερμοκρασίας στην 

επιφάνεια της Γης σε παγκόσμια κλίμακα συνοψίζονται στο γράφημα 2 που προηγείται. 

Αξίζει να αναφερθεί, ότι τα βήματα που φαίνονται στο γράφημα, επαναλήφθηκαν για 

κάθε μία από τις τρεις μεταβλητές της θερμοκρασίας, δηλαδή τη μέση, τη μέγιστη και 

την ελάχιστη. 

Στο πρώτο στάδιο, κατεβάσαμε όλα τα απαραίτητα δεδομένα, σε ημερήσια κλίμακα, από 

τη βάση GHCNDA, στα οποία κάναμε εκκαθάριση, για να απομονώσουμε τις χρονοσειρές 

που θα εξετάζαμε περαιτέρω. Στη συνέχεια τυποποιήσαμε τις χρονοσειρές, με βάση τον 

μήνα της κάθε εγγραφής για τον εκάστοτε μετεωρολογικό σταθμό. Μετά την 

Συλλογή & 

έλεγχος 

δεδομένων 

Τυποποίηση 

K-ροπές 

Απεικόνιση 

Κλιμακόγραμμα 

Παράμετρος H 
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K-ροπές 

Απεικόνιση 
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τυποποίηση, βρίσκοντας τα χρονικά όρια της κάθε χρονοσειράς, απομονώσαμε 

συνεχόμενες κυλιόμενες τριακονταετίες. 

Για κάθε τριακονταετία, χρησιμοποιήσαμε τις αμερόληπτες εκτιμήτριες των μη-

κεντρικών Κ-ροπών, ώστε σε συγκεκριμένα επίπεδα περιόδων επαναφοράς, που είχαμε 

προεπιλέξει, να βρούμε το μέγεθος των επεισοδίων υψηλής ή χαμηλής αντίστοιχα 

θερμοκρασίας. Από το σύνολο των δεδομένων αυτών, που αποκτήθηκαν από κάθε 

χρονοσειρά, και για κάθε μέγεθος, επιλέξαμε συγκεκριμένα εκατοστημόρια, τα οποία 

και απεικονίσαμε σε γραφήματα, σε σύγκριση με τη χρονολογία έναρξης των 

αντίστοιχων κυλιόμενων τριακονταετιών. 

Παράλληλα, όμως, με την εξέταση των πραγματικών χρονοσειρών, εξετάσαμε τη 

στοχαστική δομή τους, με σκοπό την παραγωγή συνθετικών χρονοσειρών. Αυτό 

επιτεύχθηκε μέσω του συναθροισμένου κλιμακογράμματος. Συγκεκριμένα, μετά την 

τυποποίηση όλων των πραγματικών χρονοσειρών, υπολογίσαμε τις τιμές του 

κλιμακογράμματος από την κλίμακα k=1 μέχρι k=n/10, όπου n το μήκος της εκάστοτε 

χρονοσειράς. Στη συνέχεια, υπολογίσαμε τον μέσο όρο των τιμών των 

κλιμακογραμμάτων για πλήθος κλιμάκων ίσο με τη μέση τιμή της μέγιστης κλίμακας. Με 

αυτό τον τρόπο, δημιουργήσαμε ένα συναθροισμένο κλιμακόγραμμα, που εμπεριείχε 

την στοχαστική συμπεριφορά της θερμοκρασίας όλων των χρονοσειρών. 

Στο συναθροισμένο κλιμακόγραμμα εφαρμόσαμε το υβριδικό μοντέλο Hurst-

Kolmogorov και Markov, το οποίο είχε τρεις ανεξάρτητες παραμέτρους (H, M και α) και 

μία εξαρτημένη (λ). Επειδή ο αναλυτικός υπολογισμός των τιμών των ανεξάρτητων 

μεταβλητών κρίθηκε δύσκολος, επιλέχθηκε η τεχνική της βελτιστοποίησης. 

Συγκεκριμένα, χρησιμοποιήσαμε τον GRG2-Nonlinear και τον εξελικτικό αλγόριθμο, που 

προσφέρεται στο πακέτο “Solver” του υπολογιστικού φύλλου “Microsoft Office Excel”, 

με σκοπό την ελαχιστοποίηση του μέσου τετραγωνικού σφάλματος (RMSE) μεταξύ των 

θεωρητικών και των πραγματικών τιμών του συναθροισμένου κλιμακογράμματος. 

Ο συντελεστής Hurst, που προέκυψε από το κλιμακόγραμμα (για κάθε μία από τις τρεις 

παραμέτρους της θερμοκρασίας) χρησιμοποιήθηκε, για να τροφοδοτήσει την παραγωγή 
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συνθετικών χρονοσειρών με χρήση του μοντέλου συμμετρικού κυλιόμενου μέσου 

(SMA). Πέρα από τον συντελεστή Hurst, εισαγάγαμε στο μοντέλο τις τέσσερις πρώτες 

κλασσικές ροπές της κάθε χρονοσειράς, και το μήκος της, το οποίο το λάβαμε ίσο με τον 

μέγιστο μήκος των χρονοσειρών. 

Αξίζει να αναφερθεί ότι για υπολογιστική οικονομία, αλλά και επιδίωξη της μέγιστης 

δυνατής μεταβλητότητας του συνθετικού δείγματος των χρονοσειρών, επιλέξαμε να 

παράξουμε 245 συνθετικές χρονοσειρές με χρήση του μοντέλου SMA για κάθε ένα από 

τα τρία μεγέθη της θερμοκρασίας (μέση, μέγιστη, ελάχιστη). Για να γίνει όμως 

αμερόληπτα η επιλογή των χρονοσειρών-δοτών των στατιστικών μεγεθών 

δημιουργήθηκε ένα βρόγχος τυχαίας προσπέλασης, όπου διάλεξε με τυχαίο τρόπο τους 

σταθμούς, των οποίων οι 4 πρώτες ροπές χρησιμοποιήθηκαν. 

Στο σημείο αυτό, που είχαμε παράξει τις συνθετικές χρονοσειρές, ακολουθήσαμε την 

ίδια αλληλουχία εργασιών, για τον υπολογισμό των Κ-ροπών σε συγκεκριμένα επίπεδα 

περιόδων επαναφοράς, τα οποία και απεικονίσαμε σε διαγράμματα. 

Θεωρήσαμε επίσης χρήσιμο, από όλους τους σταθμούς, τους οποίους αντιμετωπίσαμε 

σαν σύνολο, να απομονώσουμε τους μακροβιότερους, και να αποτυπώσουμε τη δική 

τους συμπεριφορά στη διάρκεια του χρόνου, για να εξετάσουμε με ποιον τρόπο αυτοί οι 

σταθμοί ταυτίζονται ή όχι με το σύνολο των σταθμών. Ο μακροβιότερος σταθμός 

καταγραφής της μέσης θερμοκρασίας ήταν της Αγίας Πετρούπολης στη Ρωσία με 136 

χρόνια καταγραφών, ενώ καταγραφής τόσο της μέγιστης, όσο και της ελάχιστης, 

θερμοκρασίας ήταν στο Μιλάνο της Ιταλίας με 146 χρόνια καταγραφών. 

 

Αποτελέσματα 

Τα αποτελέσματά της έρευνάς μας φαίνονται στα ακόλουθα διαγράμματα. Με γραμμές 

μαύρου χρώματος έχουν σχεδιαστεί τα γραφήματα των παρατηρημένων χρονοσειρών, 

ενώ με μπλε χρώμα, τα γραφήματα των συνθετικών χρονοσειρών. Τέλος, οι 

μεμονωμένες γραμμές μαύρου χρώματος στα γραφήματα 11-14 αντιστοιχούν σε 
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περίοδο λειτουργίας των μεμονωμένων σταθμών που ταυτίζεται με το σύνολο των 

παρατηρήσεων, ενώ με κόκκινη διακεκομμένη γραμμή, απεικονίζεται το χρονικό 

διάστημα που προηγείται των υπόλοιπων παρατηρήσεων. 
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Συμπεράσματα 

Με βάση τα αποτελέσματα που προκύπτουν από τη μελέτη της παρατηρημένης μέσης 

θερμοκρασίας προκύπτει ότι η επάνω ουρά τείνει να αυξηθεί σε πάχος, ενώ η κάτω ουρά 

τείνει να λεπτύνει. Επειδή, όμως, οι μεταβολές αυτές φαίνεται να είναι ίσες σε όλα τα 

επίπεδα των περιόδων επαναφοράς, η μεταβολή μάλλον οφείλεται σε μετατόπιση της 

μέσης τιμής της κατανομής (προς τα πάνω) και όχι σε μεταβολή της διασποράς. Η 

παρατηρημένη μέγιστη θερμοκρασία εμφανίζει ουρά, η οποία φαίνεται να παραμένει 

σχετικά αμετάβλητη στο χρόνο, και μάλιστα τα τελευταία χρόνια ίσως και να λεπταίνει 

ελαφρά. Η κάτω ουρά της ελάχιστης παρατηρημένης θερμοκρασίας εμφανίζεται να 

παραμένει σταθερή, μέχρι περίπου τη δεκαετία του 1990 (δηλαδή τριακονταετίας, που 

ξεκινούν τη δεκαετία του 1960), αλλά μετά εμφανίζεται να λεπταίνει σημαντικά σε όλα 

τα επίπεδα περιόδων επαναφοράς. Η μετατόπιση αυτή, όπως και στην περίπτωση της 
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παρατηρημένης μέσης θερμοκρασίας μάλλον οφείλεται σε μεταβολή της μέσης τιμής 

και όχι της διασποράς της κατανομής. 

Από τα γραφήματα των ουρών των συνθετικών χρονοσειρών καταλαβαίνουμε ότι, στις 

περισσότερες περιπτώσεις, η συμπεριφορά των ουρών είναι μέσα στα πλαίσια των 

αναμενόμενων μεταβολών. Όπως φαίνεται από τα γραφήματα των συνθετικών 

χρονοσειρών, τόσο η εξέλιξη της μέσης τιμής, όσο και το εύρος των δύο ακραίων 

εκατοστημορίων φαίνεται να ταυτίζονται με τα παρατηρημένα δεδομένα. Μοναδική 

εξαίρεση αποτελεί η κάτω ουρά της μέσης θερμοκρασίας, η οποία στα παρατηρημένα 

δεδομένα φαίνεται να είναι πιο χοντρή απ’ ότι στα συνθετικά δεδομένα. Αυτό σημαίνει 

ότι ακόμα και το μοντέλο που διαλέξαμε για την εκτίμηση του συντελεστή Hurst και το 

μοντέλο SMA για την αναπαραγωγή της στοχαστικής συμπεριφοράς, δεν ήταν αρκετά, 

για να απεικονίσουν ρεαλιστικά τη συγκεκριμένη συμπεριφορά. 

Οι μεμονωμένες χρονοσειρές των μακροβιότερων σταθμών εμφανίζουν μία τάση 

θέρμανσης, όπως αυτή μεταφράζεται από την αύξηση του πάχους της πάνω ουράς και 

τη μείωση της κάτω ουράς. Αυτό πιθανόν οφείλεται σε γεωγραφική μεροληψία, μιας και 

οι δύο σταθμοί βρίσκονται στην Ευρώπη, ή την αστικοποίηση των δύο αυτών πόλεων, ο 

πληθυσμός των οποίων (και κατ’ επέκταση η αστική χρήση γης) έχει πολλαπλασιαστεί 

στη διάρκεια της περιόδου καταγραφής των θερμοκρασιών.  
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1. Introduction 

1.1 Research scope 

The aim of the present diploma thesis is to identify the temporal evolution of the extreme 

land surface air temperature events, at specific return period levels, and to evaluate if 

such variations are within the expected inherent fluctuations of a stochastic process 

representing a natural process like temperature. In this respect, we investigate possible 

past and current trends of land surface air temperature, and how these are related within 

the context of global climate variations.  

Over the last decades, climate change and its effects on both humans and the natural 

world have emerged to be at the forefront of political, financial and scientific agendas. Due 

to the vulnerability of human infrastructure, as well as the entire system of food and 

energy harvesting and logistics chain, slight disturbances in very delicate climatic 

conditions can cause severe disruptions. That is why it is imperative to understand, not 

only the trend of the average land surface air temperature, but also the evolution of the 

maximum and minimum land surface air temperature. In the scientific level, we need to be 

able to understand the problem, before attempting to mitigate, let alone solve it. 

The understanding of the evolution of air temperature, in terms of distribution, is also 

beneficial in helping us identify the major factors of climate change, and if, and how, we 

will be able to moderate its effect, in order for us to better adapt. There are numerous 

causes of climate change, both internal and external. The internal variability of the climate 

includes factors like ocean-atmosphere variability (Brown et al., 2015; Hasselmann, 1976) 

as well the effects of the biosphere through the carbon and water cycles. In the external 

forcing mechanisms, we take into account greenhouse gases (Cronin, 2010), orbital 

variations, solar output and volcanic activity among others. Identifying the exact changes 

of the air temperature, together with an interdisciplinary approach, will facilitate the 

deciphering of how the Earth’s climate works. 
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1.2 State-of-the-art 

The vast majority of scientific studies of the land surface air temperature has focused on 

the evolution of the average (arithmetic mean) temperature, while the maximum and 

minimum temperature have remained largely out of the spotlight. As shown by Peterson 

et al. (1999) and Peterson and Vose (1997), there is slightly diverging behavior of the 

average air temperature among the rural and urban meteorological records. While there 

is little difference in the long-term (1880 to 1998) rural (0.70 °C/century) and full set of 

station temperature trends (actually less at 0.65 °C/century), more recent data (1951 to 

1989) do suggest a slight disparity in the rural (0.80 °C/century) and full set of station 

trends (0.92 °C/century). More recent independently produced instrumental datasets 

confirm that the 2009–2018 decade was 0.93 ± 0.07 °C warmer compared to the pre-

industrial baseline (1850–1900) (IPCC, 2018). Overall, the trend seems to be increasing 

in both cases. 

In addition, multiple studies (Lawrimore et al., 2011; Hansen et al., 2010; Jones et al., 

2012; Rohde et al., 2013a), which have accounted for urban impact, have used additional 

station series and newly homogenized versions of many individual record stations, attest 

to the increase of the land surface air temperature, particularly after 1900. Global average 

land surface air temperature has increased substantially, as shown in the figure 1.1. 
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Figure 1.1 Global annual average land-surface air temperature (LSAT) anomalies relative to a 1961–1990 

climatology from the latest versions of four different data sets (Berkeley, CRUTEM, GHCN and GISS) | 

Source: Stocker et al. (2013) 

Since the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate 

Change (Trenberth et al., 2007) many theoretical challenges of the veracity of global land 

surface air temperature records have arisen (Pielke et al., 2007). Globally, different 

methods have been used to evaluate such claims, such as sub-sampling (Parker et al., 

2009; Jones et al., 2012) and the creation of an entirely new and structurally complete 

products (Rohde et al., 2013b). None of these have yielded significant variations of the 

global land surface air temperature records. Further controversy has arisen over the siting 

quality of weather stations, especially in the United States, which does not correspond to 

the WMO suggestions and may be expected to suffer potentially large siting-induced 

absolute biases (Fall et al., 2011). However, it has been pointed out by numerous studies 

(Menne et al., 2010; Williams et al., 2012) that any such bias has been probably caused by 

replacement of Stevenson’s screens with maximum minimum temperature recorders 

rather than siting. 

As for the maximum and minimum land surface air temperature, as reported in the Second 

Assessment Report (SAR) of the Intergovernmental Panel on Climate Change (1995) and 

later updated by Easterling et al. (1997), the daily minimum temperature has increased 

faster than the daily maximum temperature. This has caused a decrease in the diurnal 
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temperature range (DTR) in many parts of the world. In the relatively narrow time window 

between 1950 and 1993, the overall global trend for the maximum temperature appears 

to be approximately 0.1 °C/decade, while the minimum temperature increases at a rate 

of 0.2 °C/decade Thus the DTR is decreasing by about 0.1 °C/decade (Easterling et al., 

1997). Further studies include different trend estimates (–0.04 ± 0.01 °C per decade over 

1950–2011 (Rohde et al., 2013b) and –0.066 °C per decade over 1950–2004 (Vose et 

al., 2005)), which are much smaller than the smallest estimated global mean average land 

surface air temperature trend over 1951–2012, which is 0.175 ± 0.029 °C (Rohde et al., 

2013b). 

 

 

Figure 1.2 Trends in annual diurnal temperature range (DTR, °C/decade), from 1950 to 1993, for non-

urban stations only, updated from Easterling et al. (1997). Decreases are in blue and increases in red. | 

Source: Folland et al. (2001) 

 

What the aforementioned studies have omitted to take into account, however, is the 

inherent seasonal variability of the land surface air temperature, which can only be taken 

into account be standardizing the record values with respect to their specific season. As 

presented by Lindzen (2010) winter daily temperature in the arctic has a much greater 

variability (often as large as 20 °C) than the summer daily, thus the increase most 
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researchers find in the minimum temperature in these areas may be within the boundaries 

of natural variability. By not regarding the inter-seasonal variability into account and 

focusing, instead, solely on the average air temperature is inconsistent with the scientific 

intuition and may be misleading. 

In the present study we consider the inter-seasonal variability of the air temperature to 

be an integral part of the expected trend, thus releasing ourselves from any bias imposed 

by persistent slightly increased, yet normal, temperature recordings. 

Furthermore, in the present study we introduce the concept and make use of K-moments, 

which have several advantages, compared to both classical and L-moments, and are 

particularly strong for an extreme-oriented modelling (Koutsoyiannis, 2020). The 

following three properties are highlighted: 

1. They are knowable with unbiased estimators for high orders, up to the sample size 

n, while the estimation uncertainty is by orders of magnitude lower than in the 

classical moments. 

2. The estimators can explicitly (albeit approximately) take into account any existing 

dependence structure. 

3. The K-moment values, can be directly assigned return periods, through 𝛬 

coefficients, similar to happens with order statistics, but with some advantages 

over the latter. 

 

1.3 Work structure 

The thesis is structured into eight distinct chapters, all of whom are sorted in a way similar 

to the line of reasoning required for the understanding of the objective. 

In this first chapter we introduce a preamble to the subject, as well as the research 

objectives and the points that differentiate it from similar state-of-the-art research. 
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In the second chapter we provide some insight of the importance of land surface air 

temperature, as well as lay out the prime factors of climate variations, on which increased 

scientific importance has been given. We also present a brief historical overview of the 

instruments used for recording air temperature. 

In the third chapter we make an extensive presentation of the basic theoretical tools used, 

as well as the rudimentary mathematical and statistics theory behind it. As part of it we 

also explain all the information required for the understanding of the methodology and 

procedures followed, including the very nature of stochastic processes and its 

quantification introduced by Hurst. 

In the fourth chapter we introduce a concise presentation of the computational tools 

used for the purpose of this study, namely MathWorks Matlab and Microsoft Office Excel 

spreadsheet. To this purpose, we scrutinize all the ready-to-use functions utilized, their 

fundamental properties, as well the operation of the software used. 

In the fifth chapter we present the database, from which the data studied were 

downloaded and the quality checks performed to isolate flagged problematic data entries. 

In addition, we explain the qualitative and quantitative criteria with which data were 

selected for processing, as well the preliminary data processing of them. 

In the sixth chapter we present an extensive overview of the methodology followed. We 

explain all the steps of the procedures, both in depth and in relation to the previous and 

following steps. Furthermore, we present all the intermediate calculation steps, as well as 

the intermediate findings used for the identification of air temperature trends. 

In the seventh chapter we present the results of the study of both the observed 

temperature records and the synthetic ones produced by the calculation of the Hurst 

coefficient and basic moments of the former. Moreover, we present the temporal 

evolution of the longest-lived individual instrumental records, with the objective of 

comparing them with general trend. 
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In the eighth chapter we make an allusion to the methodology followed and present the 

major conclusions deduced from the findings, regarding them both individually and 

together. In addition, we take a closer look at what these findings mean for the tail of the 

surface air temperature and provide suggestions for future research.  
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2. Air temperature 

2.1 Importance of air temperature 

Temperature is a physical quantity measuring the kinetic energy of matter. Temperature 

is a widely studied quantity within meteorology, and thermometers exposed to air, but 

sheltered from direct solar radiation, are used to record it (Huschke, 1959; Glickman, 

2000). 

Near-land-surface air temperature, which is measured at meteorological stations at a 

typical height of 1.5 or 2m, is one of the most important physical variables used to 

evaluate climatic trends in multiple scales, as well as the exchange of thermal energy 

between the Earth’s surface and the atmosphere (Prihodko and Goward, 1997). Because 

of its paramount importance for a variety of physical processes, such as photosynthesis, 

evapotranspiration, and energy flows, land surface air temperature is essential in all land 

surface process models, including, but not limited to, climatology and hydrology (Huld et 

al., 2006). 

Climate change, whether driven by natural or human forcings, can lead to changes in the 

likelihood of the occurrence or strength of extreme weather (Seneviratne et al., 2012). 

The probability of occurrence of values of a climate or weather variable can be described 

by a probability density function (PDF) that for some variables (e.g., temperature) is 

shaped similar to a Gaussian curve (Stocker et al., 2013). Since the definition of extreme 

events varies, it is important to identify the evolution of the whole distribution of land 

surface air temperature, because changes in the mean or variance have a profound impact 

on extreme weather. The figure 2.1 depicts the changes likely to happen form some 

probable changes in the mean and variance of air temperature. 

In agricultural areas, where there is a strong, yet volatile, mixing of hot and cold air masses, 

such as in the Mediterranean, slight changes in the extreme occurrence may have impact 

of paramount importance to the food supply of many countries, including those which 
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receive exports of the region. In addition, a change of the extremes’ magnitude will 

inadvertently alter the definition of norm as well. Heatwaves and winter storms may have 

a different meaning for the people of the future, since their very definition relies upon the 

probability of happening. 

 

Figure 2.1 Schematic representations of the probability density function of daily temperature, which tends 

to be approximately Gaussian. Dashed lines represent a previous distribution and solid lines a changed 

distribution. The probability of occurrence, or frequencies of extremes are affected by changes (a) in the 

mean, (b) in the variance or shape, and (c) in both the mean and the variance | Source: Stocker et al. 

(2013) 

 

2.2 Physical drivers for air temperature changes 

Factors affecting the air temperature of an area, as well as the whole planet, include: 
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Solar irradiation 

The climate of Earth has undergone serious changes during our planet’s lifetime. 

Alternating ice ages have shaped, not only the surface of the ground, but have, also, 

changed the evolutionary path of many organisms. A major factor of such great changes 

is no other than the variations of incoming solar radiation, caused by either change of the 

activity of Sun’s magnetic field, or by astronomical factors. Solar radiation, and heated 

plasma particles, i.e. solar wind, emitted by the surface of the Sun are the fundamental 

drives of our climatic system. Even small variations in solar irradiance can have a profound 

impact on Earth’s climate with both regional and global-scale responses (Lean and Rind, 

2009). 

Despite the correlation between the Sun’s activity and climate change is considered to be 

evident, lack of longtime records of solar activity inhibits statistically important research. 

For many years, the Earth Climate-Solar Activity relationship belonged to the sphere of 

ambiguity. Yet recent space probes’ recordings show that total solar irradiance changes 

at multiple time scales, ranging from minutes up to the solar circle. 

Due to the ongoing debate of the human interaction with the climate of Earth, more 

research has been done in the field of total solar irradiance. In order for the quantification 

of the climate change, attributed to human activities, to be precise, first the portion of the 

naturally-caused climate change needs to be assessed. One of the most important natural 

factors is solar activity. 

Climatic models show that the total amount of solar radiation change may be responsible, 

to a great degree, for the pre-industrial change of Earth’s air temperature. During the 20th 

century. however, the relative influence of solar activity changes to climate change has 

been reduced, thus making probable that other, non-natural, factors may alter the climate. 

Solar irradiance (SI) is the power per unit area (watt per square meter, W/m2), in the form 

of electromagnetic radiation, that is emitted by the Sun, and is recorded by instruments, 

according to each instrument wavelength range. Solar irradiance can be measured in space 
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or in the Earth’s surface, after atmospheric absorption and scattering, and after 

compensating for the inclination of the solar rays in relation to the surface, as well as 

atmospheric conditions, like cloud coverage. 

 

 

Figure 2.2 Global map of direct normal irradiation | Source: World Bank Group 

 

El Niño Southern Oscillation 

The El Niño Southern Oscillation (ENSO) is the strongest climate fluctuation on 

interannual time scales and has global impacts, despite originating only from the tropical 

Pacific Ocean. Many methods have been used to quantify the severity of El Niño Southern 

Oscillation events, but the Multivariate ENSO Index (MEI) is considered as the most 

comprehensive, since it links six different meteorological parameters measured over the 

tropical Pacific. (Mazzarella et al., 2013) 

Historically El Niño events occur about every 3 to 7 years and alternate with the opposite 

phase of below-average temperature in the eastern tropical Pacific, called La Niña. 
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Variations in the trade winds, atmospheric circulation patterns, precipitation and 

associated atmospheric heating cause responses outside of the tropics. Ripple-like 

extratropical teleconnections are accompanied by changes in the jet streams and storm 

tracks in mid-latitudes (Chang and Fu, 2002). The El Niño-Southern Oscillation has global 

impacts, apparent most vividly in the northern winter months (November–March). 

Anomalies in Mean Sea Level Pressure are much greater in the temperate and arctic zones, 

while the tropics feature large precipitation variations. Associated patterns of surface 

temperature and precipitation anomalies around the globe are given in the following 

figure (Trenberth and Caron, 2000), and the evolution of these patterns and links to global 

mean temperature disturbances are given by Trenberth et al. (2002). 

 

 

Figure 2.3 Correlations with the SOI, based on normalized Tahiti minus Darwin sea level pressures, for 

annual (May to April) means for sea level pressure (top left) and surface temperature (top right) for 1958 

to 2004, and GPCP precipitation for 1979 to 2003 (bottom left), updated from Trenberth and Caron 

(2000). The Darwin-based SOI, in normalized units of standard deviation, from 1866 to 2005 (Können et 

al., 1998; lower right) features monthly values with an 11-point low-pass filter, which effectively removes 

fluctuations with periods of less than eight months (Trenberth, 1984). The smooth black curve shows 

decadal variations. Red values indicate positive sea level pressure anomalies at Darwin and thus El Niño 

conditions. | Source: Trenberth et al. (2007) 
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Suspended particles 

Although suspended particles constitute only a small fraction of our atmosphere, they 

have a great influence on it. They scatter and absorb solar radiation, while also alter the 

dynamics of the clouds. Because of their great spatiotemporal variations, the study of 

suspended particles is rendered extremely important for the understanding of the 

mechanisms behind the physics of the atmosphere. 

Suspended particles are solid or liquid particles of the atmosphere, without be constrained 

to a specific of chemical composition. Their size varies between 10 nm and 100 μm. They 

originate from either natural processes (like desert sand, sea salt or volcanic ash), or 

human activities (such as fossil fuel burning). In urban areas, where there are multiple 

human activities emitting particles, it is easy to discern their increased concentration. 

Presence of suspended particles is mostly limited to the lower layers of the atmosphere, 

due to the fact that most of their sources are on the surface of the planet. Almost 80% 

of their total mass is found within 1 km from the surface. However, natural processes like 

volcanic eruptions may cause suspended particles to transcend the lower layers and 

infiltrate the upper layers. Atmospheric suspended particles affect the Earth’s climate by 

changing the amount of incoming solar radiation and outgoing infrared radiation retained. 

This occurs through a wide variety of mechanisms, which have been categorized into direct 

and indirect (Haywood and Boucher, 2000; Twomey, 1977) 

The direct aerosol effect includes any direct interaction between radiation and suspended 

particles, such as absorption and scattering. It affects both short (UV) and longwave 

(infrared) radiation to produce a net negative equilibrium, meaning more energy gets 

trapped on Earth than escapes it (Charlson et al., 1992) 

Indirect effects of suspended particles include their influence on the radiation balance and 

hydrology through their effect on cloud microphysical processes (first indirect effect) and 

amount (second indirect effect). There is a semi-direct effect as well, in which the heating 

by aerosol particles, because of the absorption of solar radiation, results in a decrease of 
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cloud amount. The indirect effect is a significant source of uncertainty for climatologists, 

due to the complexity and number of the atmospheric interactions involved, as well as the 

wide range of scales in which these interactions occur (Fan et al., 2009) 

 

 

Figure 2.4 NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Terra aerosol optical depth 

at 550nm. Average (arithmetic mean) data of period 2007-01 to 2011-12. | Source: Acker and Leptoukh 

(2007) 

 

Greenhouse gases 

The greenhouse effect is the natural process by which outgoing radiation from a planet’s 

surface gets trapped by the planet’s atmosphere, and, through re-emitting as heat, warms 

the planet’s surface to a temperature above what it would be without the atmosphere 

(Claussen et al., 2001). 

Relatively active gases (i.e. greenhouse gases or GHG) absorb and emit radiate energy 

within the thermal infrared range. Part of this emitted radiation heads toward the surface, 

leading to its warming (Vaclav, 2003). The intensity of this downward radiation depends 
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on both the atmosphere’s temperature, as well as the concentration of greenhouse gases 

that it contains. To understand the scale of their effect, it is worth noting that if the 

greenhouse gases had not been present in the Earth’s atmosphere, the average 

temperature of the planet would be about -18 °C, rather than the present 15 °C (Le Treut 

et al., 2007). 

The contribution of each gas to the greenhouse effect relies upon its abundance, its 

characteristics and any possible indirect effect it may have. For instance, in a period of 20 

years, a mass of methane is about 84 times more potent than carbon dioxide in trapping 

outgoing infrared radiation. 

In order, the most abundant greenhouse gases in Earth’s atmosphere are: 

• Water vapor (H20) 

• Carbon dioxide (C02) 

• Methane (CH4) 

• Ozone (O3) 

• Chlorofluorocarbons (CFCs) 

• Hydrofluorocarbons (HFCs) 

The most effective greenhouse gases in the atmosphere, are (Kiehl and Trenberth, 1997):  

 

Table 2.1 Effectiveness of greenhouse gases 

Compound 
Chemical 

formula 
Contribution 

Water vapor H20 36-72% 

Carbon dioxide CO2 9-26% 

Methane CH4 4-9% 

Ozone O3 3-7% 
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The precipitable water over the globe, which basically is the water vapor, has been 

fluctuating with lowest values during the 1980s and highest values during the 1950s and 

2010s (Koutsoyiannis, 2018). Thus, the estimation of its exact contribution to the 

greenhouse effect at each specific time is extremely precarious. 

Radiative forcing (or climate forcing) is the difference between insolation (sunlight) 

absorbed by the Earth’s atmosphere and energy radiated back to space (Shindell, 2013). 

The factors that cause alterations to the Earth's complex climate system changing Earth's 

radiative balance, forcing temperatures to rise or fall, are called climate forcings. For the 

past 100-150 years concentration of greenhouse gases, and consequently global radiative 

forcing, have been steadily increasing, causing much concern to the scientific community. 

As presented in the following graph (figure 2.5), from 1979 to 2018, the global radiative 

forcing has increased from about 0.67 W/m2 to about 1.07 W/m2. Data for the creation 

of the graph were derived from the NOAA Annual Greenhouse Gas Index (AGGI). 

 

 

Figure 2.5 Global Radiative Forcing for the period 1979-2018 | Source: Butler and Montzka (2011) 
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Despite the greater emphasis given to greenhouse gases emitted by nature, as well as 

humans (such as carbon dioxide), water vapors account for the largest portion of the 

greenhouse effect. Water vapor concentration fluctuates regionally, but human activities 

are extremely difficult to directly affect them, except for large-scale operations, such as 

extended-area irrigated fields. Indirectly, however, if human activities do cause an increase 

of global temperatures, then water vapor concentrations are likely to increase, in a process 

known as “water vapor feedback” (Held and Soden, 2000). 

 

2.3 Instrumental air temperature recording 

The land surface air temperature is measured at meteorological observatories and 

weather stations, either manned or automatic, with the latter being the most common. 

Usually thermometers used to record the temperature are enclosed in a shelter to prevent 

either precipitation or direct heat radiation to tamper the real air temperature recording. 

According to the setup suggested by the World Meteorological Organization (WMO), the 

thermometers ought to be positioned 1.2 to 2 m above the surface. 

A popular, yet increasingly obsolete, instrument of measuring air temperature is 

Stevenson screen, a standardized well-ventilated instrument shelter. The screen consists 

of a white-painted box, with louvres in all its vertical sides to enable ventilation, a 

ventilated floor and upper part and an air space between an inner and an outer roof. The 

innovative protecting layout of Stevenson screen enables the unobstructed flow of air 

through the louvres, without adulterating the results with influences such as direct solar 

radiation, as well as radiation emitted from surrounding objects (Allaby, 2019). Scottish 

civil engineer Thomas Stevenson (1818-1887) invented the homonym screen, which can 

be seen in the figure 2.6. 
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Figure 2.6 Stevenson screen | Source: Allaby (2019) 

 

Since the advent of technology slowly takes over the temperature instrument area, 

Stevenson screen is replaced by more standardized and automated instruments, such as 

automatic weather stations. An automatic weather station (AWS) is defined as a 

“meteorological station at which observations are made and transmitted automatically” 

(WMO, 1992). The automatic weather station (AWS) is similar in function with the 

traditional weather station, with the difference that no human work is required for its 

operation. Major reasons for adopting AWS are human labor saving and the potential of 

measuring in remote or inhospitable areas. 

In an automatic weather station, the instrument (including temperature) measurements 

are read out or received by a central data-acquisition unit. The data collected by the 

autonomous measuring devices can be processed either locally at the AWS or elsewhere, 

for example, at the central processor of the network (WMO, 2010a). Automatic weather 

stations may be designed as an integrated concept of various measuring devices in 

combination with the data-acquisition and processing units. Such a combined system of 
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instruments, interfaces and processing and transmission units is usually called an 

automated weather observing system (AWOS) or automated surface observing system 

(ASOS). It has become common practice to refer to such a system as an AWS, although 

it is not a “station” fully in line with the stated definition. 

Automatic weather stations are used in order to expand the pool of instrumental 

measurements available to scientists, while also increasing the reliability of surface 

measurements. They achieve this for the following reasons (WMO, 2008): 

• Densification of an existing network increases available data, by including data 

from new sites and from sites that are difficult to access; 

• AWS are able to supply, for manned stations, data outside the normal working 

hours; 

• Use of sophisticated technology and modern, digital measurement techniques 

increase the reliability of measurements; 

• Preservation of the homogeneity of networks by standardizing the measuring 

techniques; 

• Satisfying new observational needs and requirements; 

• Reduction of human errors, since all procedures are automated; 

• Reduction of the number of observers, thus lowering the cost of operation; 

• Measuring and reporting with high frequency or even continuously. 

Automatic weather stations fulfill many different needs, ranging from a simple aid-to-the 

observer, at already manned stations, to complete replacement of observers at fully 

automatic stations. According to the respective functions, it is possible to classify 

automatic weather stations into not very easily distinguishable groups. A general criterion 

for the classification is the ability to provide recorded data in real time or post hoc. The 

need for real-time transmission of data depends on the necessity of data analysis (WMO, 

2008). 

The two most fundamentally different categories of AWS are (WMO, 2008): 
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• Real-time AWS: Stations providing data to users of meteorological observations 

in real time, typically at programmed times, but also in emergency conditions or 

upon external request. Typical real-time use of an AWS is the provision of synoptic 

data and the monitoring of critical warning states such as storms and river or tide 

levels. 

• Off-line AWS: Stations recording data on site on internal or external data storage 

devices possibly combined with a display of actual data. The intervention of an 

observer is required to send stored data to the remote data user. Typical stations 

are climatological and simple aid-to-the-observer stations. 

Since the cost of AWSs can be substantial, the stations’ facilities can also be used to 

satisfy the common and specific needs and requirements of several applications, like 

synoptic, aeronautical and agricultural meteorology, hydrology and climatology. They may 

also be used for special purposes, such as nuclear power safety, air and water quality, and 

road meteorology. Some automatic weather stations, therefore, transcend the boundaries 

of these categories and are actually multipurpose automatic weather stations. 

It is very often that an AWS forms part of a network of meteorological stations, each 

transmitting its recorded and processed data to a central network processing unit by 

various data transmission means (WMO, 2008). As the tasks to be executed by this 

central system are strongly related, and often complementary, to the tasks of the AWSs, 

the functional and technical requirements of both the central system and the AWSs 

should be very well coordinated, in order to avoid faulty or incomprehensible from the 

main system measurements. 

The time period for which reliable temperature instrumental records exist is generally 

considered to begin around 1830-1850. Earlier records do exist, but their limited 

availability, sparse coverage and less standardized instrument calibration renders them 

problematic for most scientific applications. 

Satellite temperature measurements are also used to assess the temperature changes 

both in local and in global scale. However, weather satellites do not measure temperature 
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directly, but rather radiances in various wavelength bands. When measuring the land 

surface air temperature, the influence of stratospheric contamination on the radiance 

emitted by the surface may alter the recorded data. Because of this, land-based 

instrumental records are used to calibrate satellite records, in order to use the latter for 

large scale temperature variations assessment.  
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3. Theoretical tools 

3.1 Basic statistics 

The primary goal of statistics is the evaluation of real-life observations, in order to deduce 

generalized conclusions about the physical processes around us. The basic “unit”, on which 

it relies is the observation, while the results come from processing the set of observations. 

This set is named sample and is basically part of the ensemble of possible observations, 

i.e. the population. 

In classical statistics, sample size 𝑛 of a random variable 𝑋, with probability density 

function 𝑓(𝑋) is a sequence of 𝑛 independent random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with joint 

probability density function 𝑓(𝑥), which is defined in the domain 𝛺𝑛 = 𝛺 × 𝛺 × …𝛺 

(Papoulis, 1990). Each one of the variables 𝑋𝑖 corresponds to the possible outcomes of a 

measurement. Since we are to have one measurement for each variable, we are to have 

the sequence 𝑥1, 𝑥2, … , 𝑥𝑛 , which we call observed sample or observations (Koutsoyiannis, 

1997). There must be given great attention in taking a representative sample of the 

population, in order to avoid any bias, and consequently a misleading outcome. 

Suppose a fixed parameter 𝜃 needs to be estimated. Then estimator is the function that 

maps the sample space to a set of sample estimates. The estimator of 𝜃 is denoted by the 

symbol 𝜃. If 𝑋 is the random variable, the estimator (itself a random variable) is 

symbolized as a function of 𝑋; 𝜃(𝑋). The estimate for a particular observation 𝑥 is 𝜃(𝑥). 

Another important term of statistics, extremely useful in stochastic investigation, is that 

of expectation. The expectation of 𝑋 is defined as: 

 Ε[𝛸] = ∑𝑥𝑖𝑝𝑖 =

𝑘

𝑖=1

𝑥1𝑝1 + 𝑥2𝑝2 + ⋯+ 𝑥𝑘𝑝𝑘 (3.1) 

Since all probabilities 𝑝𝑖 add up to 1 (𝑝1 + 𝑝2 + ⋯+ 𝑝𝑘 = 1), the expected value of the 

weighted average, with 𝑝𝑖 ’s being the weights. In the case that all outcomes are 
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equiprobable, (i.e. 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 , then the weighted average turns into simple 

average. 

A stochastic process is defined as a collection of random variables defined on a common 

probability space (𝛺, 𝐹, 𝑃), where 𝛺 is a sample space, 𝐹 is a σ-algebra, and 𝑃 is a 

probability measure. The random variables, indexed by some set 𝑇, take values in the same 

mathematical space 𝑆, which has to be measurable with respect to some σ-algebra 𝛴 

(Lamperti, 1977). In other words, for a given probability space (𝛺, 𝐹, 𝑃) and a measurable 

space (𝑆, 𝛴), a stochastic process is a set of 𝑆-valued random variables (Florescu, 2014), 

i.e. {𝑋(𝑡) ∶ 𝑡 ∈ 𝑇} 

In the context of this study, the land surface air temperature evolution is the stochastic 

process, and the observations, with which we work, are part of the random variable, whose 

estimation is the ultimate goal. 

 

3.2 Hurst phenomenon 

Climatic and hydrological processes, such as temperature, rainfall, evaporation, are often 

modelled as stationary discrete-time stochastic processes. Let 𝑋𝑖 be such a process with 

𝑖 = 1,2,3, … denoting discrete time (e.g. days). In addition, let its mean be 𝜇 = Ε[𝑋𝑖], its 

autocovariance 𝛾𝑗 = cov[𝑋𝑖𝑋𝑖+𝑗] and its autocorrelation 𝜌𝑗 = corr[𝑋𝑖𝑋𝑖+𝑗] = 𝛾𝑗 𝛾0⁄ , 

where 𝑗 = 0,±1, ±2,±3,… . 

If we assume 𝛿 to be the time scale of interest, then 𝑖 represents the continuous time 

interval [(𝑖 − 1)𝛿, 𝑖𝛿]. Let 𝑘𝛿 be a time scale larger than 𝛿 where 𝑘 is a positive integer. 

The aggregated stochastic process on that time scale is denoted as 𝑍𝑖
(𝑘)

 and is equal to: 

 𝑍𝑖
(𝑘)

∶= ∑ 𝑋𝑙

𝑖𝑘

𝑙=(𝑖−1)𝑘+1

 (3.2) 



58 

 

From this definition, it is easy to deduce that for 𝑘 = 1, 𝑍𝑖
(1)

= 𝑋𝑖, for 𝑘 = 2, 𝑍1
(2)

=

𝑋1 + 𝑋2, 𝑍2
(2)

= 𝑋3 + 𝑋4, etc. The statistical properties of  𝑍𝑖
(𝑘)

 can be derived from those 

of the process 𝑋𝑖 . For instance, the mean of is found by: 

 E[𝑍𝑖
(𝑘)

] = 𝑘𝜇 (3.3) 

whilst the variance and autocorrelation can be found by: 

 𝛾𝑗
(𝑘)

= cov[𝑍𝑖
(𝑘)

, 𝑍𝑖+𝑗
(𝑘)

] = ∑ ∑ 𝛾𝑚−𝑙

(𝑗+1)𝑘

𝑚=𝑗∙𝑘+!

𝑘

𝑙=1

,     𝑗 = 0,±1,±2,±3,… (3.4) 

Hurst was the first to discover long-term persistence in natural processes (1951), yet 

Kolmogorov (1940) was the first to mathematically describe it, when working on self-

similar processes of turbulent fields (Koutsoyiannis, 2011). This behavior (i.e. the 

tendency of low or high values to aggregate in larger time scales) is known as the Hurst 

phenomenon, Hurst-Kolmogorov (HK) behavior, or Hurst-Kolmogorov (HK) dynamics 

(Mandelbrot, 1983; Koutsoyiannis, 2011). A stochastic process with HK behavior is also 

known as Hurst-Kolmogorov process (HKp) or Fractional Gaussian noise (fGn); although 

fGn assumes that the noise is Gaussian, which is not always the case. Fractional Gaussian 

noise can be defined in discrete time (which is the scope here) in a manner similar to that 

used in continuous time. Specifically, FGN can be defined as a process satisfying the 

condition: 

 (𝑍𝑖
(𝑘)

− 𝑘𝜇) = (
𝑘

𝑙
)

𝐻

(𝑍𝑗
(𝑙) − 𝑙𝜇) (3.5) 

which is applicable only in (finite-dimensional joint) distribution. H is a positive constant 

(0 < 𝐻 < 1) known as Hurst exponent (or coefficient). This equation is valid for any 

integer 𝑖 and 𝑗 (with the process being stationary as a prerequisite) and any time scale 𝑘 

and 𝑙 (Koutsoyiannis, 2002). As a result, for 𝑖 = 𝑗 = 𝑙 = 1 one obtains: 

 𝛾0
(𝑘)

= 𝑘2𝐻𝛾0 (3.6) 

Hence, the standard deviation of the aggregate stochastic process is power law of 𝑘 with 

exponent 𝐻, which corroborates the observations on real-world cases as described by 
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Koutsoyiannis (2002). This extremely simple equation serves as the basis for estimating 

𝐻 (Montanari et al., 1997). 

 

3.3 Climacogram 

The Climacogram (Cg) is an amalgam of the Greek words climax (meaning scale) and gram 

(from the word γράμμα meaning letter) and is a two dimensional plot of the standard 

deviation SD(k) of the mean-aggregated series of the random variable 𝑍 on the vertical 

axis, and the aggregated scale 𝑘 on the horizontal axis (Koutsoyiannis, 2010): 

 𝑍𝑢
(𝑘)

=
1

𝑘
∑ 𝑍𝑖

𝑢𝑘

𝑖=(𝑢−1)𝑘

 (3.7) 

where 𝑍 and 𝑍𝑢 represent the random field of interest and the mean aggregated field 

respectively, while u is the vector index of the field showing the lag; i.e. the location in the 

field. 

There are multiple definitions of Climacogram (Dimitriadis and Koutsoyiannis, 2015), 

depending on the nature of the stochastic process; there is fundamental difference 

between continuous and discrete time processes: 
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Table 3.1 Climacogram definition and expressions for processes in continuous as well as discrete time, as 

well as the properties of the estimator 

Type Climacogram 

Continuous 𝛾(𝑚) ∶=
𝑉𝑎𝑟 [∫ 𝑥(𝜉)𝑑𝜉

𝑡+𝑚

𝑡
]

𝑚2
=

𝑉𝑎𝑟[∫ 𝑥(𝜉)𝑑𝜉
𝑚

0
]

𝑚2
⁄  

where 𝑚 ∈ ℝ⁺ and 𝛾(0) ∶= 𝑉𝑎𝑟[𝑥(𝑡)] 

Discrete 
𝛾𝑑

(𝛥)(𝑘) ∶=
𝑉𝑎𝑟[∑ 𝑥𝑙

(𝛥)𝑘𝑖
𝑙=𝑘(𝑖−1)+1 ]

𝑘2
=

𝑉𝑎𝑟[∑ 𝑥𝑙
(𝛥)𝑘

𝑙=1 ]

𝑘2
= 𝛾(𝑘𝛥) 

where 𝑘 ∈ ℕ is the dimensionless scale for a discrete time 

process 

Classical estimator 𝛾𝑑
(𝛥)(𝑘) =

1

𝑛 − 1
∑ (

1

𝑘
(∑ 𝑥𝑙

(𝛥)
𝑘𝑖

𝑙=𝑘(𝑖−1)+1
) −

∑ 𝑥𝑙
(𝛥)𝑛

𝑙=1

𝑛
)

2
𝑛

𝑖=1
 

Expectation of 

classical estimator 𝐸 [𝛾𝑑
(𝛥)(𝑘)] =

1 −
𝛾𝑑

(𝛥)(𝑛)

𝛾𝑑
(𝛥)(𝑘)

⁄

1 − 𝑘
𝑛⁄

𝛾𝑑
(𝛥)

(𝑘) 

 

The Climacogram is used for the detection of long-term change of a process and the 

persistence (or else dependence, clustering) it may present. This persistence can be 

effectively quantified through the Hurst coefficient (H). H can usually be derived from the 

slope of the Cg in a log-log plot (H=1-slope).  For 0<H<0.5 the process is anticorrelated, 

for 0.5<H<1 the process is correlated (most common behavior of geophysical processes) 

and for H=0.5 the process is purely random (with zero autocorrelation, hence white noise 

behavior).  

However, in some cases, such as in this study, fitting of straight line in the climacogram 

derived from the observed data results in considerable divergence in the area of large 

scales. That is why an equally weighted sum of Hybrid Hurst-Kolmogorov and Markov 

processes was used to maximize entropy production both at small- and large-time scales 

(Koutsoyiannis et al, 2018). 
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The equation of the model is: 

 𝛾(𝑘) =
𝜆

2
(1 + (𝑘 𝑎⁄ )2𝑀)

𝐻−1
𝑀

+
𝜆

𝑘
𝑎⁄

(1 −
1 − 𝑒−𝑘

𝑎⁄

𝑘
𝑎⁄

) (3.8) 

where 𝐻, 𝑀 and 𝑎 are the three independent parameters and 𝜆 is a dependent parameter, 

resulting from the value of the climacogram for scale 𝑘 = 1. The parameters 𝐻 and 𝑀 are 

bounded between zero and one inclusive, while parameter 𝑎 is positive. 

3.4 K-moments 

Classical moments, raw or central, express important theoretical properties of probability 

distributions, but cannot be estimated from typical samples for order beyond 2 – cf. 

Lombardo et al. (2014): “Just two moments!”. 

L-moments are better-than classical moments-estimated, but they are all of first order in 

terms of the random variable of interest. They enable the characterization of independent 

series or inference of the marginal distribution of stochastic processes, but not even the 

second order dependence of processes. 

For the aforementioned reasons, K-moments were introduced, which combine advantages 

of both classical and L-moments. K-moments enable reliable estimation from samples, 

and in some cases even more reliable than L-moments. They also describe effectively high 

order statistics, which is useful for marginal and joint distributions of stochastic 

processes. 

Let 𝑥 be a stochastic variable and 𝑥1, 𝑥2, … , 𝑥𝑝 be copies of it, independent and identically 

distributed, forming a sample. The maximum of all, which is identical to the 𝑝th order 

stochastic, is by definition: 

 𝑥(𝑝) ∶= max (𝑥1, 𝑥2, … , 𝑥𝑝) (3.9) 

It is readily obtained that if 𝐹(𝑥) is the distribution function of 𝑥 and 𝑓(𝑥) its probability 

density function, then those of 𝑥(𝑝) are: 
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 𝐹(𝑝)(𝑥) = (𝐹(𝑥))𝑝, 𝑓(𝑝)(𝑥) = 𝑝𝑓(𝑥)(𝐹(𝑥))
𝑝−1

 (3.10) 

where the former is the product of 𝑝 instances of 𝐹(𝑥) (justified by the independent and 

identically distributed assumption), while the latter is the derivative of 𝐹(𝑝)(𝑥) with 

respect to 𝑥. The expected maximum order of 𝑝 of 𝑥, i.e. the expected value of 𝑥(𝑝), is 

therefore: 

 𝐸[𝑥(𝑝)] = 𝐸[𝑚𝑎𝑥(𝑥1, 𝑥2, … , 𝑥𝑝)] = 𝑝𝐸 [(𝐹(𝑥))
𝑝−1

𝑥] (3.11) 

It is worth to stress that the variables 𝑥1, 𝑥2, … , 𝑥𝑝 considered here, are not meant in 

temporal succession and, in this respect, do not form a stochastic process, but are rather 

regarded to be an ensemble of copies of 𝑥. In other words, the possible dependence in 

time of a stochastic process is not considered to be prerequisite for the application. 

To derive knowable moments for high orders 𝑝, in the expectation defining the 𝑝th 

moment, we raise (𝑥 − 𝜇) to a low power 𝑞 < 𝑝 and for the remaining (𝑝 − 𝑞) 

multiplicative terms, we replace (𝑥 − 𝜇) with (2𝐹(𝑥) − 1), where 𝐹(𝑥) is the distribution 

function. This leads to the following definition of central K-moment of order (𝑝, 𝑞) 

(Koutsoyiannis, 2019): 

 𝐾𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E[(2𝐹(𝑥) − 1)
𝑝−𝑞

(𝑥 − 𝜇)
𝑞
], 𝑝 ≥ 𝑞 (3.12) 

Likewise, the non-central K-moment of order (𝑝, 𝑞) is defined (Koutsoyiannis, 2019): 

 𝐾′𝑝𝑞 ≔ (𝑝 − 𝑞 + 1)E [(𝐹(𝑥))
𝑝−𝑞

𝑥𝑞] , 𝑝 ≥ 𝑞 (3.13) 

The quantities (𝐹(𝑥))
𝑝−𝑞

 and (2𝐹(𝑥) − 1)
𝑝−𝑞

 are estimated from a sample, without the 

use of powers of 𝑥, thus making the estimation more reliable. Specifically, for the 𝑖th 

element of a sample 𝑥(𝑖) of size 𝑛, sorted in ascending order, 𝐹(𝑥(𝑖)) and (2𝐹(𝑥(𝑖)) − 1) 

are estimated as: 

 𝐹̂(𝑥(𝑖)) =
𝑖−1

𝑛−1
 ,     2𝐹̂(𝑥(𝑖)) − 1 =

2𝑖−𝑛−1

𝑛−1
 (3.14) 

taking values in [0,1] and [-1,1], respectively, irrespective of the values 𝑥(𝑖). Hence, the 

estimators of K-moments are: 
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 𝐾̂′𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑(

𝑖 − 1

𝑛 − 1
)
𝑝−𝑞

𝑥(𝑖)
𝑞

𝑛

𝑖=1

 (3.15) 

 𝐾̂𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑(

2𝑖 − 𝑛 − 1

𝑛 − 1
)
𝑝−𝑞

(𝑥(𝑖)

𝑛

𝑖=1

− 𝜇̂)𝑞 (3.16) 

The rationale of the definition is very relatively easy to grasp. Assuming that the 

distribution mean is close to the median, so that 𝐹(𝜇) ≈ 1
2⁄  (this is precisely true for a 

symmetric distribution), the quantity whose expectation is taken from the definition of 

the central K-moment of order (𝑝, 𝑞) is: 𝐴(𝑥) ∶= (2𝐹(𝑥) − 1)𝑝−𝑞(𝑥 − 𝜇)𝑞 and its Taylor 

expansion is: 

 
𝐴(𝑥) = (2𝑓(𝜇))𝑝−𝑞(𝑥 − 𝜇)𝑝 + (𝑝 − 𝑞)(2𝑓(𝜇))

𝑝−𝑞−1
𝑓′(𝜇)(𝑥 − 𝜇)

𝑝+1

+ 𝑂((𝑥 − 𝜇)
𝑝+2

) 

(3.17) 

where 𝑓(𝑥) is the probability density function of 𝑥. Clearly then, 𝐾𝑝𝑞 depends on 𝜇𝑝 as 

well as on classical moments of 𝑥 of order higher than 𝑝. The independence of 𝐾𝑝𝑞 from 

classical moments of order smaller than 𝑝 is the reason why it is a competent surrogate 

of the unknowable 𝜇𝑝. 

In addition, as 𝑝 becomes large, by virtue of the multiplicative term (𝑝 − 𝑞 + 1) in the 

definition of K-moments, 𝐾𝑝𝑞 shares similar asymptotic properties with 𝜇̂𝑝

𝑞
𝑝⁄  (the 

estimate, not the true 𝜇𝑝

𝑞
𝑝⁄ ). To illustrate this for 𝑞 = 1 and for independent variables 

𝑥𝑖 , we consider the variable 𝑧𝑝 ∶= 𝑚𝑎𝑥1≤𝑖≤𝑝𝑥𝑖 and denote 𝑓( ) and ℎ( ) the probability 

densities of 𝑥𝑖 and 𝑧𝑖 respectively. Then (Papoulis, 1990): 

 ℎ(𝑧) = 𝑝𝑓(𝑧)(𝐹(𝑧))𝑝−1 (3.18) 

and thus, by virtue of the definition of non-central K-moment of order (𝑝, 𝑞): 

 𝛦[𝑧𝑝] = 𝑝𝐸[(𝐹(𝑥))𝑝−1𝑥] = 𝐾′𝑝1 (3.19) 

On the other hand, for positive 𝑥 and large 𝑝 → 𝑛, 
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(𝐸 [𝜇′̂𝑃])
1

𝑝⁄
= (𝐸 [(

1

𝑛
∑ 𝑥𝑖

𝑝
𝑛

𝑖=1
)])

1
𝑝⁄

≈ (𝐸 [(
1

𝑛
𝑚𝑎𝑥1≤𝑖≤𝑛(𝑥𝑖

𝑝))])

1
𝑝⁄

≈ 𝑛−1
𝑝⁄ 𝐸[𝑚𝑎𝑥1≤𝑖≤𝑛(𝑥𝑖)] ≈ 𝐸[𝑧𝑛] 

(3.20) 

It is also worth noting that the multiplicative term (𝑝 − 𝑞 + 1) in the definitions of central 

and non-central 𝐾𝑝𝑞 and 𝐾′𝑝𝑞 makes K-moments generally increasing functions of 𝑝. 

Furthermore, a pivotal point of K-moments theory is their asymptotic properties of their 

estimates. The following rules apply: 

• In general, as 𝑝 becomes large approaching 𝑛∗, estimates of both classical and K 

moments, central or non-central, become estimates of expressions involving 

extremes such as (𝑚𝑎𝑥1≤𝑖≤𝑝𝑥𝑖)
𝑞

or 𝑚𝑎𝑥1≤𝑖≤𝑝(𝑥𝑖 − 𝜇)𝑞. For negatively skewed 

distributions these quantities can also involve minimum, instead of maximum 

quantities. 

• For the K-moments, this is consistent with their theoretical definition. For the 

classical moments this is an inconsistency. 

• A common property of both classical and K moments is that symmetrical 

distributions have all their odd moments equal to zero. 

• For unbounded variables, both classical and K moments are non-decreasing 

functions of 𝑝, separately for odd and even 𝑝. 

• In geophysical processes it is justifiable to assume that the variance 𝜇2 ≡ 𝛾1 ≡

𝜎2 ≡ 𝛫22 is finite (since an infinite variance would presuppose infinite energy to 

materialize, which is absurd). Thus, high order K-moments 𝐾𝑝2 will be finite as well, 

even if classical moments 𝜇𝑝 diverge to infinity beyond a certain 𝑝 (i.e., in heavy 

tailed distributions). 

K-moments have not been constructed in such a way as to be isolated from other 

moments, but have an integral relationship with them, which stems from their definition. 
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• The classical moments can be recovered as a special case of K-moments: 𝑀𝑝 ≡

𝐾𝑝𝑝. In particular, in uniform distribution, classical and K-moments are 

proportional to each other: 

𝐾′
𝑝𝑞 ∶= (𝑝 − 𝑞 + 1)𝜇′𝑝,  𝐾𝑝𝑞 ∶= (𝑝 − 𝑞 + 1)𝜇𝑝 

• The probability weighted moments (PWM) can also be recovered from the K- 

moments. The typical PWM form 𝛽𝑝 ∶= 𝐸[𝑥(𝐹(𝑥))
𝑝
] is a special case of K- 

moments corresponding to 𝑞 = 1: 

𝐾′𝑝1 = 𝑝𝛽𝑝−1 

• The L-moments are defined as 𝜆𝑝 ∶=
1

𝑝
∑ (−1)𝑘(𝑝−1

𝑘
)𝐸[𝑥(𝑝−𝑘):𝑝]

𝑝−1
𝑘=0 , where 𝑥𝑘:𝑝 is 

the 𝑘th order statistic in a sample of size 𝑝. L-moments are also related to PWM 

and through them to K-moments. The relationships for the different types of 

moments for the first four orders are: 

𝐾′11 = 𝜇 = 𝛽0, 𝐾11 = 0  

𝐾′21 = 2𝛽1, 𝐾21 = 2(𝐾′
21 − 𝜇) = 4𝛽1 − 2𝛽0 = 2𝜆2  

𝐾′31 = 3𝛽2, 𝐾31 = 4(𝐾′
31 − 𝜇) − 6(𝐾′

21 − 𝜇) = 12𝛽2 − 12𝛽1 + 2𝛽0 =

2𝜆3  

𝐾′41 = 4𝛽3, 𝐾41 = 8(𝐾′
41 − 𝜇) − 16(𝐾′

31 − 𝜇) + 12(𝐾′
21 − 𝜇) =

32𝛽3 − 48𝛽2 + 24𝛽1 − 4𝛽0 =
8

5
𝜆4 +

12

5
𝜆2  

• Both PWM and L-moments are better estimated from samples than classical 

moments but they are all of first order in terms of the random variable of interest. 

PWM and L-moments are good to characterize independent series or to infer the 

marginal distribution of stochastic processes, but they cannot characterize even 

second order dependence of processes; K-moments can. 

Within the framework of K-moments, while respecting the rule of thumb “Just two 

moments” in terms of the power of 𝑥, i.e. 𝑞 = 1 or 2, it is easy to obtain knowable 

statistical characteristics from much (even enormously) higher orders 𝑝. 

In this manner, for 𝑝 > 1 there are two alternative options to define statistical 

characteristics related to moments of the distribution, as in the following table. Whichever 

of the two option is to be used for the estimation of the statistical characteristics depends 
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on the statistical behavior, and in particular, the mean, mode and variance of the estimator 

(Koutsoyiannis, 2019). 

 

Table 3.2 Characteristics of marginal distribution using K-moments 

Characteristic Order p Option 1 Option 2 

Location 1 𝐾′11 = 𝜇 (𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑛) 

Variability 2 
𝐾21 = 2(𝐾′

21 − 𝜇)

= 2𝜆2 

𝐾22 = 𝜇2 = 𝜎2 

(𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

Skewness 3 
𝐾31

𝐾21
=

𝜆3

𝜆2
 

𝛫32

𝛫22
 

Kurtosis 4 
𝛫41

𝛫21
=

4

5

𝜆4

𝜆2
+

6

5
 

𝛫42

𝛫22
 

 

 

3.5 Return periods 

Let 𝑍(𝜏) be a stochastic process that characterizes a natural process evolving in 

continuous time 𝜏. As human instruments cannot make observations at truly continuous 

time, these observations are made in discrete time defined by constant time intervals Δ𝜏. 

This interval is therefore considered to be the unit of time. By sampling 𝑍(𝜏), we consider 

the corresponding discrete-time process at spacing Δ𝜏 (Volpi et al., 2015): 

 𝑍𝑗 = 𝑍(𝑗Δ𝜏) (3.21) 

where 𝑗(=1,2,3,…) denotes discrete time. For ease of understanding, let 𝑡 = 𝑗 − 𝑗0 be the 

expression of discrete time, where 𝑗0 is the current time step. By extending this notion, 

the discrete-time process is indicated as 𝑍𝑡 and 𝑡 = 0 denotes the present time. In order 

for the process to be fully describable up to the second order properties by its marginal 

probability function and its autocorrelation structure, we need to assume that 𝑍𝑡 is a 

stationary process (Papoulis, 1991). 
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We are interested in possible exceedances of the values of process 𝑍𝑡 above or below a 

specific level (threshold) 𝑧, which may determine the extremity or not of a specific 

observation. In particular, let 𝐴 = {𝑍 > 𝑧} be a dangerous event, which is an extreme. 𝐴 

could very well be either maximum or minimum. We denote by 𝑝 the probability of the 

event 𝐵 = {𝑍 ≤ 𝑧}, which is the complement set of 𝐴; the probability of occurrence of 

event 𝐴 is given by 1 − 𝑝 = Pr{𝑍 > 𝑧} = 𝑃𝑟𝐴. 

In civil engineering applications, it is usually assumed that the event 𝐴 will occur on 

average every return period 𝑇, where 𝑇 is a time interval (Volpi et al., 2015). For example, 

a great-magnitude earthquake or a flash-flood event occur on average every 𝑇 time. In 

other words, the average time until the threshold 𝑧 is met, or exceeded, equals 𝑇 years 

(Stedinger et al., 1993), such as: 

 
𝑇

Δ𝜏
= Ε[𝛸] = ∑𝑡𝑓𝑋(𝑡)

∞

𝑡=1

 (3.22) 

where 𝑋 is the number of discrete time steps required for an event 𝐴 to occur, 𝑓𝑋(𝑡) =

Pr {𝑋 = 𝑡} is the probability mass function and E[ ] denotes expectation. The above 

definition of return period of an event logically reasonably to the formulation of the 

probability of failure 𝑅(𝑙), which measures the probability that the event 𝐴 occurs at least 

once over a specific time span: the design life or study period 𝑙 of a system, where 𝑙/Δ𝜏 is 

a positive integer. The mathematic relationship engulfing the aforementioned definitions 

is as follows: 

 
𝑅(𝑙) = Pr {𝑋 ≤

𝑙

Δ𝜏
} = ∑ 𝑓𝑋(𝑡)

1
Δ𝜏⁄

𝑡=1

 (3.23) 

At this point, it is easy to deduce that the probability of failure 𝑅(𝑙) is nothing else than 

the distribution function computed at 𝑡 = 𝑙/Δ𝜏.  

As it can be easily understood, order statistics have a substantial advantage over other 

statistics in the context of return periods, as we can assign a distinct value of the 

distribution function to each one of them, hence pair them with the equivalent return 
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period. This turns out to be the case with K-moments as well, as they are closely related 

to order statistics. Intuitively, we anticipate that the return period corresponding to the 

non-central K-moment of orders (𝑝, 1), the value 𝑥 = 𝐾′𝑝1 will correspond to a return 

period of about 2𝑝. This is accurate for a symmetric distribution and for 𝑝 = 1, as 𝐾′11 is 

the mean value, which has return period 2, and as explained by Koutsoyiannis (2019), it 

cannot be much lower than 2𝑝 for any 𝑝 and for any distribution. 

Generally, the return period can be expressed by the relationship: 

 𝑇(𝐾′
𝑝1)

𝐷
= 𝛬𝑝𝑝 (3.24) 

where 𝐷 is a time reference for the specification of return period and 𝛬𝑝 is a coefficient 

generally depending on the distribution function and the order 𝑝. 

The precise definition of 𝛬𝑝 is (Koutsoyiannis, 2019): 

 𝛬𝑝 ∶=
1

𝑝(1 − 𝐹(𝐾′
𝑝1))

 (3.25) 

For given 𝑝 and distribution function 𝐹(𝑥), 𝐾′𝑝1 is analytically or numerically determined 

from its definition. Then 𝑇(𝐾′𝑝1) and 𝛬𝑝 are determined from their definitions. 

In absence of an analytical solution, an exact relationship between 𝑝 and 𝑇 has been 

established by doing numerical calculations for several 𝑝. The slight variation of 𝛬𝑝 with 

𝑝 can be very well approximated if first the specific values 𝛬1 and 𝛬∞ are accurately 

determined. The value of 𝛬1 is easily determined, as practically is equal to the return 

period of the mean: 

 𝛬1 =
1

1 − 𝐹(𝜇)
=

𝛵(𝜇)

𝐷
 (3.26) 

In addition, in a number of customary distributions, specifically those belonging to the 

domain of the Extreme Value Type 1 distribution, 𝛬∞ has a constant value, independent 

of the distribution. As shown by Koutsoyiannis (2019), this value is: 

 𝛬∞ = 𝑒𝛾 = 1.781 (3.27) 
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where 𝛾 is the Euler–Mascheroni constant. 

For the approximation of 𝛬𝑝, the following simple relationship is used, which is 

satisfactory for several distributions: 

 𝛬𝑝 ≈ 𝛬∞ + (𝛬1 − 𝛬∞)
1

𝑝
 (3.28) 

This yields a linear relationship between the return period 𝑇 and 𝑝: 

 𝑇(𝐾′
𝑝1)

𝐷
= 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (3.29) 

For the Normal distribution, which most closely resembles the real distribution of the 

surface temperature, the approximated values of 𝛬1 and 𝛬∞ are: 𝛬1 = 2 and 𝛬∞ = 𝑒
1

2⁄ =

1.649. 

However, in some distributions, like the lognormal and Weibull, the decays of 𝛬𝑝 with 

increasing 𝑝 is very slow. Furthermore, in some cases 𝛬𝑝 is not always a decreasing 

function of 𝑝, as implied by its relationship with 𝛬∞. To account for such cases, the 

definition of 𝛬𝑝 is generalized to the form: 

 𝛬𝑝 = 𝛬∞ + (𝑎𝑝𝛬1 − 𝛬∞)𝛽𝑝 (3.30) 

where 𝑎𝑝 and 𝛽𝑝 are non-increasing functions of 𝑝, such that 𝑎1 = 𝛽1 = 1 and 

𝑙𝑖𝑚𝑝→∞𝛽𝑝 = 0. Generally, if 𝑎𝑝 = 1 then the above equation is again a monotonic 

(decreasing) function of 𝑝 for all values of 𝑝. A criterion to decide whether this is the case 

for a particular distribution requires at least one more 𝛬 value, most conveniently 𝛬2. The 

following criterion (related to the convexity of the curve of 𝛬𝑝 as a function of 1/𝑝) has 

been tested and found suitable 

 
𝐶𝑇 =

𝛬1 + 𝛬∞

2 − 𝛬2

𝛬1 − 𝛬2
 (3.31) 

The monotonic property holds when 𝐶𝑇 < 0. In this case the following approximations 

were tested on both the lognormal and Weibull distribution and found satisfactory 

𝑎𝑝 = 1, 𝛽𝑝 ≈ (
𝑙𝑛(1+𝑐1)

𝑙𝑛(𝑝+𝑐1)
)
𝑐2

, 𝑐1 = 1.4, 𝑐2 = 1.9 − 1.1√|𝐶𝑇| 



70 

 

When 𝐶𝑇 < 0, 𝛬𝑝 initially decreases with 𝑝, but for larger values of 𝑝 becomes and 

increasing function. In this case, the approximation takes the form: 

𝑎𝑝 =
1

𝑝0.16
, 𝛽𝑝 ≈ (

𝑙𝑛(1+𝑐1)

𝑙𝑛(𝑝+𝑐1)
)
𝑐2

, 𝑐1 = 3.5, 𝑐2 = 2.4 − 1.1√|𝐶𝑇| 

Summarizing the above, 𝛬-coefficients have the following important properties: 

• They vary in a narrow range (close to 2) and this facilitates the determination of 

the complete series by only a few of them (namely, 𝛬1 and 𝛬∞, and occasionally 

𝛬2). 

• They are well approximated by generic functions, irrespective of the particular 

distribution function. 

• Their definition in terms of return period renders them suitable for studying 

extreme values, as is the case of the present study of land surface air temperature. 

• Moreover, their definition, in connection to their generic approximators, supports 

the indirect but quick determination of theoretical (true) values of K-moments of 

any order in absence of analytical relationships. 

The last property indicates that a similar approach can be followed for the calculation of 

K-moments for higher values of 𝑞. Specifically, an alteration of the precise definition of 𝛬𝑝 

for precisely calculating the 𝛬-coefficients of orders (𝑝, 𝑞) is: 

 
𝛬′𝑝𝑞 ∶=

1

(𝑝 − 𝑞 + 1) (1 − 𝐹 (𝐾′𝑝𝑞

1
𝑞⁄ ))

 
(3.32) 

for non-central moments, while for central ones is: 

 
𝛬𝑝𝑞 ∶=

1

(𝑝 − 𝑞 + 1) (1 − 𝐹 (𝐾𝑝𝑞

1
𝑞⁄

+ 𝜇))

 
(3.33) 

It is easily observable that for 𝑞 = 1: 

 𝛬′𝑝1 = 𝛬𝑝1 = 𝛬𝑝 (3.34) 
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as is 𝐾′𝑝1 = 𝐾𝑝𝑞 + 𝜇. However, for 𝑞 > 1, 𝛬′𝑝1 ≠ 𝛬𝑝1, except in the limit as 𝑞 → ∞. Like 

the 𝛬-coefficients of 𝑞 = 1, 𝛬𝑝𝑞 will also vary in a narrow range. In particular, as the tail 

index of the distribution of 𝑥𝑞 will be 𝑞𝑘, the limit 𝛬′∞𝑞 = 𝛬∞𝑞 can be readily determined. 

 

3.6 Optimization 

A significant part of theory of optimization is the definitions of a real function of a vector 

variable and maxima conditions of a function. 

Real function of a vector variable 

Let us assume 𝑓 to be a real function of a vector variable, such that 𝑓:ℝ𝑛 → ℝ 

The derivative of function 𝑓 with respect to the vector variable 𝐱 is given by the vector: 

 
𝑑𝑓

𝑑𝐱
∶= [

𝑑𝑓

𝑑𝑥1
,
𝑑𝑓

𝑑𝑥2
, … ,

𝑑𝑓

𝑑𝑥𝑛
] (3.35) 

The gradient of function 𝑓(𝐱) of vector variable 𝐱 is given by vector (Marlow, 1993): 

 𝑔𝑟𝑎𝑑(𝑓) ∶= ∇𝑓 = [
𝑑𝑓

𝑑𝑥1
,
𝑑𝑓

𝑑𝑥2
, … ,

𝑑𝑓

𝑑𝑥𝑛
]
𝑇

= (
𝑑𝑓

𝑑𝐱
)
𝑇

 (3.36) 

The second derivative of 𝑓(𝐱) of vector variable 𝐱 is given by the Hessian matrix (Gunning 

and Rossi, 1965): 

 
𝑑2𝑓

𝑑𝐱2
=

[
 
 
 
 
 
 
 

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥𝑛
2 ]

 
 
 
 
 
 
 

 (3.37) 
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Extrema of a function 

In mathematics, the maxima and minima of a function 𝑓, known collectively as extrema, 

are the largest and smallest value of the function, either within a given (i.e. bounded) 

range, or on the entire domain of the function (Stewart, 2008; Larson and Edwards, 2009). 

Let us assume 𝑓(𝐱) to be a real function of a vector variable, which is continuous ∀ 𝐱 ∈

ℝ𝑛 . In these conditions, the problem of finding the minimum value of function 𝑓 evolves 

into finding the vector 𝐱, such that: 

 𝑓(𝐱∗) = 𝑚𝑖𝑛[𝑓(𝐱)] (3.38) 

In order for 𝐱∗ to be the global minimum of function 𝑓, the following necessary conditions 

have to be met: 

• 𝐱∗ has to be stationary point of function 𝑓, meaning: 

 (
𝑑𝑓(𝐱∗)

𝑑𝐱
) = 𝐎𝑇 (3.39) 

• The Hessian matrix of function 𝑓 has to be positive definite matrix in point 𝐱∗: 

 𝐲𝑇 (
𝑑2𝑓(𝐱∗)

𝑑𝐱2
)𝐲 > 0   ∀ 𝐲 ∈ ℝ𝑛 − {0} (3.40) 

The aforementioned necessary conditions are sufficient, in the case that function 𝑓 is 

convex, namely in the case that its Hessian matrix is positive definite for every 𝐱, 

 𝐲𝑇 (
𝑑2𝑓(𝐱∗)

𝑑𝐱2
)𝐲 > 0   ∀ 𝐱 ∈ ℝ𝑛, ∀ 𝐲 ∈ ℝ𝑛 − {0} (3.41) 

If this is not the case, 𝑓(𝐱) may have more than one stationary points, which, as shown in 

the following figure, could be local minima (a), local maxima (b) or neither of the above; 

the latter-case points are named saddle points (c). 
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Figure 3.1 Cases of more than one-stationary points of a function. (a) Local minima, (b) Local maxima, (c) 

Saddle point | Source: LibreTexts library 

 

There are numerous algorithms used worldwide to find an optimum solution to a problem, 

whose numerical solution is too hard, or time and resource consuming to calculate. One 

such method is gradient-based – a technique of optimization, which uses the differentials 

of the objective function. Sometimes optimization problems do have constraints, but this 

is not always the case. Problems without constraints, ordinary differential calculus method 

is considered to be the best approach in achieving an optimum solution. Problems that do 

have constraints can be solved using differential calculus methods (such as Lagrangean 

and Kuhn-Tucker) and search methods (such as Linear Programming). 

 

Generalized Reduced Gradient algorithm (GRG2) 

The Generalized Reduced Gradient method belongs to a family of optimization techniques 

called reduced-gradient methods, which are based on extending methods for linear 

constraints to apply to non-linear constraints (Gill et al., 1981). The reduced-gradient 

methods adjust the variables, in order for the active constraints to continue to be satisfied, 

as the optimization process moves from one point to another. 

The GRG2 scheme is based on the concept of eliminating variables using the equality 

constraints imposed. The idea of generalized reduced gradient method is to convert the 
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constrained problem into an unconstrained one through the use of direct substitution 

(Arum, 2014). 

Many commercial spreadsheet programs use the Generalized Reduced Gradient (GRG2) 

algorithm for optimizing problems. They do so, by combining the functions of a graphical 

user inter-phase (GUI) and algebraic modelling language for linear, nonlinear and integer 

programs. 

 

Evolutionary algorithm 

One of the most widely used optimization algorithms is the evolutionary algorithm. 

Evolutionary algorithm is a subset of evolutionary computation method, which uses 

mechanisms inspired by biological processes, such as reproduction, mutation, 

recombination and natural selection, in order to find the optimal solution to the problem. 

The inspired-by-nature procedures being used by an Evolutionary Algorithm are: 

• Population: Contrary to most classical optimization methods, which maintain a 

single best solution at each stage of the optimization, an evolutionary algorithm 

maintains a population of candidate solutions. Only one of these individual 

solutions is the “best”, but the other members of the population act as “sample 

points” in other regions of the search space, from which a better solution may later 

derive from. 

• Randomness: An evolutionary algorithm relies on random sampling, so as to 

minimize, or nearly eliminate, the bias in choosing which individual solutions to 

“reproduce” for the next repetition of the optimization method. In addition, 

random choice traverses all the mechanisms of the algorithm, from the possibility 

of mutation to reproduction. 

• Mutation: Inspired by the mechanisms of mutating specific parts of the genetic 

code in natural evolution, the evolutionary algorithm periodically, yet randomly, 

makes specific changes to parts of the “genome” of each solution. This mutation 
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usually yields genetically inferior; i.e. worst, solutions, but it is extremely useful of 

disengaging the algorithm from trapping in local minima of the search space. 

• Crossover: Like in the natural world, where sexual reproduction promotes useful 

genes to the next generation by combining genes from two different parents, an 

evolutionary algorithm attempts to combine elements of existing solutions, in 

order to produce superior solutions. The elements (e.g. decision-making values) of 

existing solutions of the population are combined in a “crossover” operation, 

resulting in a solution with mixed attributes from both “parent” solutions. 

• Selection: Much like in natural selection of organisms, an evolutionary algorithm 

performs a selection process, in which the most “competent” members of the 

population survive, and the least “competent” members are eliminated. In a 

constrained optimization process, the notion of “competence” depends partly on 

the feasibility of the solution and partly on its objective function value. The 

selection process is the step that leads the evolutionary algorithm towards ever-

improving solutions. 

Since evolutionary algorithms are a time-consuming process, the operation of the 

algorithm stops, when an adequately “good” accurate solution of the target function has 

been achieved.  

The following figure presents a schematic representation of the basic processes an 

evolutionary algorithm uses to find the optimum solution. 
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Figure 3.2 General scheme of an evolutionary algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

3.7 Stochastic simulation 

Stochastic simulation (also known as Monte-Carlo simulation) is an important 

computerized mathematical technique for resolving problems that have no analytical 

solution, or whose analytical solution is an extremely time and resource-consuming 

process. A pivotal point of the simulation is the production of synthetic timeseries. In the 

case of a stationary stochastic process with long-term persistence, like temperature 

timeseries, the production of synthetic timeseries requires the preservation of such 

behavior. An elaborate method of doing so, is the symmetric moving average scheme. 

The symmetric moving average (SMA) method (Koutsoyiannis, 2000; Koutsoyiannis, 

2016) can exactly simulate a Gaussian process, with no limitations to its arbitrary 

autocovariance function (provided that it is mathematically feasible). In addition, it can 

Initialization 

Selection 

Selection 

Crossover 

Mutation 
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approximate, with controlled accuracy, any non-Gaussian stochastic process with an 

arbitrary autocovariance function and any marginal distribution function. 

Like the conventional (backward) moving average (MA) process, the SMA scheme 

transforms a white noise sequence 𝑉𝑖 into a process with autocorrelation by taking the 

weighted average of a number of 𝑉𝑖 . In the SMA process, the weights 𝑎𝑗 are symmetrical 

about a center (𝑎0), that corresponds to the variable 𝑉𝑖 , i.e.: 

 𝑋𝑖 = ∑ 𝑎|𝑗|𝑉𝑖+𝑗 = 𝑎𝑞𝑉𝑖−𝑞+. . . +𝑎1𝑉𝑖−1 + 𝑎0𝑉𝑖 + 𝑎1𝑉𝑖+1+. . . +𝑎𝑞𝑉𝑖+𝑞

𝑞

𝑗=−𝑞

 (3.42) 

where 𝑞 theoretically is infinity, but, in practice, is restricted to a finite number, as the 

sequence of weights 𝑎𝑗 tends to zero for increasing 𝑗. Furthermore, as shown by 

Koutsoyiannis (2000), the discrete Fourier transform 𝑠𝑎(𝜔) of the 𝑎𝑗 sequence is related 

to the power spectrum of the process 𝑠𝛾(𝜔) by: 

 𝑠𝑎(𝜔) = √2𝑠𝛾(𝜔) (3.43) 

which enables the direct calculation of 𝑠𝑎(𝜔), which in the case of FGN will be: 

 𝑠𝑎(𝜔) ≈ 2√(2 − 2𝐻)𝛾0(2𝜔)0.5−𝐻 (3.44) 

Knowing that the power spectrum of a process can by derived as: 

 𝑠𝛾
(𝑘)(𝜔) = 2 ∑ 𝛾𝑗

(𝑘) cos(2𝜋𝑗𝜔) ≈ 4∫ 𝑎𝜏2𝐻−2 cos(2𝜋𝜏𝜔) 𝑑𝜏

∞

0

∞

𝑗=−∞

 (3.45) 

which, in order to preserve exactly the process variance 𝛾0, can be rewritten as: 

 𝑠𝛾
(𝑘)(𝜔) = 4(1 − 𝐻)𝛾0

(𝑘)(2𝜔)1−2𝐻 (3.46) 

it is observable that 𝑠𝑎(𝜔) is approximately equal to the power spectrum of another FGN 

process with Hurst exponent 𝐻′ = (𝐻 + 0.5) 2⁄  and variance 𝑎0. As shown by 

Koutsoyiannis (2000), the approximation of the inverse Fourier transform of 𝑠𝑎(𝜔), i.e. 

the sequence of 𝑎𝑗 itself, is: 
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𝑎0 =
√(2−2𝐻)𝛾0

1.5−𝐻
,    𝑎𝑗 ≈

𝑎0

2
[(𝑗 + !)𝐻+0.5 + (𝑗 − 1)𝐻+0.5 − 2𝑗𝐻+0.5]    𝑗 > 0 

Τhe generation scheme of SMA with coefficients 𝑎𝑗 can lead to a very easy algorithm for 

generating FGN. This method can also preserve the process skewness 𝜉𝛸 by appropriately 

choosing the skewness of the white noise 𝜉𝑉 . As for the weights 𝑎𝑗 , there are 𝑞 + 1 in 

number, so that the model can preserve the first 𝑞 + 1 terms of the autocovariance 𝛾𝑗 of 

the process 𝑋𝑖 . The relevant equations for the statistics of 𝑉𝑖 are: 

(𝑎0 + 2∑ 𝑎𝑗
𝑠
𝑗=1 )𝐸[𝑉𝑖] = 𝜇, 𝑣𝑎𝑟[𝑉𝑖] = 1, (𝑎0

3 + 2∑ 𝑎𝑗
3𝑞

𝑗=1 )𝜉𝑣 = 𝜉𝑥𝛾0

3
2⁄  

The number 𝑞 must be chosen wisely, so as to be at least equal to the desired number of 

autocorrelation coefficients 𝑚 that are to be preserved. In addition, the ignored terms 𝑎𝑗 

beyond 𝑎𝑞 must not exceed an acceptable tolerance 𝛽𝑎𝑗 . These two conditions, in 

combination with the terms of the sequence 𝑎𝑗 , result in: 

 𝑞 ≥ 𝑚𝑎𝑥 [𝑚, (
𝐻2 − 0.25

2𝛽
)

1
1.5−𝐻⁄

] (3.47) 

The number 𝑞 can be very high (thousands or even hundreds of thousands) if 𝐻 is large 

(e.g. 𝐻 > 0.9) and 𝛽 is small (e.g. 𝛽 < 0.001). The accuracy of the method depends on 𝑞. 

However, even when 𝑞 → ∞, the method does not become exact, because of its 

approximate character. Despite Koutsoyiannis (2000) having introduced even more 

accurate estimates of the 𝑎𝑗  series, which can be obtained numerically, the given estimates 

are sufficiently accurate for the purpose of this study. This is verified by the following 

figure, where theoretical and approximate autocorrelation functions are almost 

indistinguishable for all 𝐻-coefficients. 
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Figure 3.3 Approximate autocorrelation functions based on equations of SMA scheme versus the exact 

autocorrelation functions of Fractional Gaussian Noise for various values of the Hurst exponent H and the 

number of weights q. | Source:  Koutsoyiannis (2002)  
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4. Computational tools 

4.1 MathWorks Matlab 

MATLAB is a programming platform designed by MathWorks specifically for engineers 

and scientists. It integrates computation, visualization, and programming in an easy-to-

use environment where problems and solutions are expressed in familiar mathematical 

notation. MATLAB is an interactive system whose basic data element is an array that does 

not require dimensioning. This allows you to solve many technical computing problems, 

especially those with matrix and vector formulations, in a fraction of the time it would 

take to write a program in a scalar noninteractive language such as C or Fortran. 

In this study we took advantage of the efficiency and array structure of MATLAB 

programming, in order to perform complex scientific calculations in a large amount of 

length air temperature time-series. Specifically, the functions of the Statistics and 

Machine Learning and Optimization toolboxes of the MATLAB, that we used are the 

following: 

• beta: B = beta(Z,W) returns the beta function evaluated at the elements of Z and 

W. Both Z and W must be real and nonnegative. 

• exp: Y = exp(X) returns the exponential ex for each element in array X. 

• factor: f = factor(n) returns a row vector containing the prime factors of n. Vector 

f is of the same data type as n. 

• fsolve: Nonlinear system solver. Solves a problem specified by F(x) = 0 for x, where 

F(x) is a function that returns a vector value. and x is a vector or a matrix 

x = fsolve(fun,x0) starts at x0 and tries to solve the equations fun(x) = 0, an array 

of zeros. 

• gamma: Y = gamma(X) returns the gamma function evaluated at the elements of 

X. 

• gammaln: Y = gammaln(A) returns the logarithm of the gamma function, 

gammaln(A) = log(gamma(A)). Input A must be nonnegative and real. The 
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gammaln command avoids the underflow and overflow that may occur if it is 

computed directly using the expression log(gamma(A)). 

• nanvar: y = nanvar(X) is the variance var of X, computed after removing NaN 

values. For vectors x, nanvar(x) is the sample variance of the remaining elements, 

once NaN values are removed. For matrices X, nanvar(X) is a row vector of column 

sample variances, once NaN values are removed. nanvar removes the mean from 

each variable (column for matrix X) before calculating y. If n is the number of 

remaining observations after removing observations with NaN values, nanvar 

normalizes y by either n – 1 or n, depending on whether n > 1 or n = 1, respectively. 

• norminv: x = norminv(p) returns the inverse of the standard normal cumulative 

distribution function (cdf), evaluated at the probability values in p. 

• quantile: Y = quantile(X,p) returns quantiles of the elements in data vector or 

array X for the cumulative probability or probabilities p in the interval [0,1] 

• rand: X = rand returns a single uniformly distributed random number in the 

interval (0,1). 

• sort: B = sort(A) sorts the elements of A in ascending order. If A is a vector, then 

sort(A) sorts the vector elements. 

 

4.2 Microsoft Excel 

Microsoft Excel is a software program produced by Microsoft that allows users to 

organize, format and calculate data with formulas using a spreadsheet system. Excel has 

the same basic features as all spreadsheet applications, which use a collection of cells 

arranged into rows and columns to organize and manipulate data. They can also display 

data as charts, histograms and line graphs. 

Excel includes a tool called “solver” that uses techniques from the operations research to 

find optimal solutions for all kind of decision problems. “Solver” works with a group of 

cells, called decision variables or simply variable cells, that are used in computing the 

formulas in the objective and constraint cells. “Solver” adjusts the values in the decision 
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variable cells to satisfy the limits on constraint cells and produce the desirable result for 

the objective cell. One of the many advantages of the “solver” plug-in of Microsoft Excel 

is the ability to solve non-linear programming problems using a variety of solving methods, 

including the Generalized Reduced Gradient and the Evolutionary method. 

The Excel solver has three primary components, all of whom are integral parts of the 

optimization process. These components are: 

• Target cell: This cell represents the goal or ultimate objective of the problem 

expresses in mathematical formulation. As part of this study, the target cell had 

to be minimized as possible. 

• Variable cells: These cells can and are modified, in order for the target cell to 

achieve its optimal values. 

• Constraints: There are limitations to what values the solver can assign to the 

variable cells in order to optimize the solution. Most of the constraints are natural 

(e.g. temperature has an absolute minimum), while others are for practicality, since 

the approximate domain of the solution can be approximated. 

It is worth mentioning, that while optimization could have been performed in MathWorks 

MATLAB environment, we preferred the use of spreadsheet, so as to be able to evaluate 

the intermediate results of the optimization procedure, before it concludes. 
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5. Data 

In the current study we focus on temperature persistence patterns on different time 

scales and, in order for the study to be complete, we pursued the usage of daily 

temperature data, instead of hourly or monthly aggregated values. There are many 

databases offering the required data, but we preferred the GHCND database (Menne et 

al., 2012) offered by the National Oceanic and Atmospheric Administration of the Federal 

Government of the United States, since it offers an extended directory of very long time 

series from around the globe. 

 

5.1 Database 

GHCN (Global Historical Climatology Network)-Daily is a database that addresses the 

critical need for historical daily temperature, precipitation, and snow records over global 

land areas. GHCN-Daily is a composite of climate records from numerous sources that 

were merged and then subjected to a suite of quality assurance reviews. It contains 

temperature records from 106,283 stations in 180 countries and territories. Both the 

record length and period of record vary be station and cover intervals ranging from less 

than one year to perennial periods of more than 175 years. 

The process, with which the data from multiple resources were integrated into the Global 

Historical Climatology Network-Daily dataset took place in three consecutive steps: 

1. Screening the source data for meteorological stations, whose identity is unknown 

or questionable. In order for a station within a source dataset to be considered for 

inclusion in GHCND, it had to meet all of the following criteria: 

• It could be identified with a string of metadata that includes name, latitude, 

longitude and which accompanied the source dataset. 

• Its record included at least 100 values for more than one of the GHCND 

elements. 
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• It did not fail the interstation duplicate check, which eliminated stations 

with record commonality of more than 50% with any other station. 

2. Classifying each station in a source dataset either as one that was already 

represented in GHCN-Daily or as a new site. Whenever possible, stations were 

matched on the basis of network affiliation and station identification number. If 

there was no such match, there was consultation from different networks for 

existing cross-referenced lists that identify the correspondence of station 

identification numbers. 

3. Mingling the data from the different sources. The implementation of the above 

classification strategies yielded a list of GHCN-Daily stations and an inventory of 

the source datasets for integration of each station. This list formed the basis for 

integrating, or mingling, the data from the various sources to create GHCN-Daily. 

Mingling took place according to a hierarchy of data sources and in a manner that 

attempted to maximize the amount of data included while also minimizing the 

degree to which data from sources with different characteristics were mixed. 

 

5.2 Quality control 

As expected of any scientific integrated database, the National Centers for Environmental 

Information overlooking the gathering, edited and uploaded the GHCND and performed 

quality control of the data, to avoid specific types of erroneous values. During each 

reprocessing cycle, the data were first passed through a filter called “format checking 

program” that examined the date for problems, such as impossible months or days, invalid 

characters in data fields and so forth. In case the program dealt with such inconsistencies, 

the routine set the offending records to missing. The primary objective of this program 

was to ensure that the data integration did not either introduce or retain data records 

that violated the intended data format of the GHCND. In a next step, a comprehensive 

sequence of fully-automated QA procedures identified daily values that violated one of 

the predetermined quality tests. Described in detail by Durre et al. (2010), these quality 
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tests identified an array of data problems, such as the excessive duplication of the records; 

exceedance of physical, absolute or climatological limits; immoderate temporal 

persistence; overwhelmingly large gaps in the distributions of values; internal 

inconsistencies among elements; and inconsistencies with observations of neighboring 

weather stations.  

The quality tests performed in all the temperature data of the GHCND, as part of the 

automated QA procedures, in order to identify inconsistencies between them are as 

follows: 

• Naught check: Checked for days on which maximum and minimum temperature 

were both equal to 0 °C at stations not operated by the United States or were 

both equal to -17.8 °C (0 °F) at United States stations. 

• Duplicate data check: Checked for duplication of the data between entire years, 

different years in the same calendar month, and different months within the same 

year. 

• World record exceedance check: Identified values that fall outside the world 

extremes for the highest and lowest ever observed. 

• Streak check: Checked for unrealistic sequences of identical values in time series 

of non-missing values. Flagged sequences of 20 or more consecutive identical 

values in time series of non-missing daily maximum, minimum, and observation 

time air temperature. 

• Gap check: Identified unrealistic breaks in the period-of-record distribution of 

elements for a particular calendar month. Flagged maximum/minimum air 

temperatures that were at least 10 °C warmer or colder than all other 

corresponding maximum/minimum temperatures for a given station and calendar 

month. 

• Z-score-based climatological outlier check: Checked for daily surface air maximum 

and minimum temperatures that exceeded the respective 15-day climatological 

means by at least six standard deviations. 
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• Internal temperature consistency check: Checked for consistency among 

maximum, minimum, and time of observation temperature within a three-day 

window. 

• Temporal consistency check (spike or dip) - Checked whether a daily maximum 

(minimum) temperature exceeded the maximum (minimum) temperatures on the 

preceding and following days by more than 25 °C. 

• Lagged temperature range check: Identified maximum temperatures that were at 

least 40 °C warmer than the minimum temperatures on the preceding, current, 

and following days as well as minimum temperatures that were at least 40 °C 

colder than the maximum temperatures within the three-day window. 

• Spatial consistency check (regression): Checked for temperatures that differed 

greatly from a predicted value generated from a linear-regression-based estimate 

generated from neighboring values. Flagging of a target temperature was 

performed when the regression-based predicted value differed by more than 8 °C 

from the observed value, and the standardized residual of the predicted value 

exceeded four standard deviations on the target day. 

• Spatial consistency check (corroboration of anomalies): Checked for temperatures 

whose anomalies differed by more than 10 °C from the anomalies at neighboring 

stations on the preceding, current, and following days. 

• Mega consistency check: Flagged daily maximum surface air temperatures that 

were less than the lowest minimum surface air temperature for the respective 

station and calendar month; daily minimum temperatures that were greater than 

the highest maximum temperature for the station and calendar month; and 

observation-time temperatures that were higher than the highest maximum 

temperature or lower than the lowest minimum temperature for the station and 

calendar month. 
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5.3 Data observations and flags 

Each record represents all selected observations (values) available for a given station-day. 

The initial section of each record is ordered as follows with the following definitions: 

• STATION (17 characters) is the station identification code. 

• STATION_NAME (max 50 characters) is the name of the station (usually 

city/airport name). This is an optional output field. 

• GEOGRAPHIC_LOCATION (31 characters) is the latitude (decimated degrees 

w/northern hemisphere values > 0, southern hemisphere values < 0), longitude 

(decimated degrees w/western hemisphere values < 0, eastern hemisphere values 

> 0) and elevation above mean sea level (tenths of meters). This is an optional 

output field as well. 

• DATE is the year of the record (4 digits) followed by month (2 digits) and day (2 

digits). 

Following this initial section of the record, all selected observations and flags are given in 

the following order: Observation(s) | Measurement Flag | Quality Flag | Source Flag | Time 

of Observation | repeat for next element (when more than one element is selected). 

Observation value is related to the recorded core value. Measurement flag refers to the 

specific calculation of each data entry from the raw data obtained by the station, and how 

they were possibly aggregated in time. 

Quality Flag (Attribute) of each record entry of air temperature relates to the success or 

failure of the data to each of the aforementioned quality assurance tests. It could take one 

of the following values: 
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Table 5.1 Quality flags (Attributes) of data 

Blank Did not fail any quality assurance check  

D Failed duplicate test 

G Failed gap check 

I Failed internal consistency check 

K Failed streak/frequent-value check 

L Failed check on length of multiday period 

M Failed mega-consistency check 

N Failed naught check 

O Failed climatological outlier check 

R Failed lagged range check 

S Failed spatial consistency check 

T Failed temporal consistency check 

X Failed bounds check 

Z Flagged as a result of an official Datzilla 

investigation 

 

Source flag refers to the source of the recorded data, in the context of the participating 

meteorological agencies from all over the world. 

Time of Observation is the (2-digit hour, 2-digit minute) 24-hour clock time of the 

observation given as the local time at the station of record. 

For the purpose of this study, we considered useful, and actually utilizable, only blank 

values of quality flags, thus we dismissed all non-blank quality flagged values from the 

first stage of data gathering and processing. 

 

5.4 Record data selection 

For the investigation of the behavior of surface temperature, we used records of minimum, 

average and maximum air temperature. We chose these specific meteorological variables, 
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because they have the most profound impact on ecosystems and the function of human 

societies. Specifically: 

• Minimum temperature affects to a great degree agricultural production, electricity 

demand for heating and correlates with frost and snow. 

• Average temperature relates to the general level of ambience and is characteristic 

of the average climate of a region. 

• Maximum temperature has a profound impact on crop yields, plant growth, forest 

fires and electricity demand for cooling of living spaces. 

In addition, these three variables are available for long time periods, since air temperature 

was easy to be precisely recorded using mercury thermometers, which was invented by 

physicist Daniel Gabriel Fahrenheit in Amsterdam (1714). 

We derived the data from the pool of 106,283 available weather stations of GHCND from 

all over the globe, by selecting the most old-living temperature records. Specifically, only 

stations, whose record starting point preceded the year 1935, were utilized, as they 

enabled comparison of more than fifty consecutive rolling 30-year periods. Although this 

limitation, made the pool of utilized temperature records less diverse, yet it enabled us to 

identify, at various scales, persistence patterns, which would not have been possible with 

the use of a constantly alternating sample of short records. 

From the aforementioned limitation, the number of records that were used is as follows: 

• For the study of behavior of the average land surface air temperature we used 245 

stations 

• For the study of behavior of the maximum land surface air temperature we used 

5,006 stations 

• For the study of behavior of the minimum land surface air temperature we used 

5,006 stations 

The following graphs depict the time evolution of the number of the selected weather 

stations records for each of the three studied parameters. 
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Figure 5.1 Evolution of records availability for the average temperature 
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Figure 5.2 Evolution of records availability for the maximum temperature 

 

 

Figure 5.3 Evolution of records availability for the minimum temperature 
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As for the spatial distribution of the weather stations, of whom the data were utilized, it 

is worth mentioning that they are unevenly distributed. Weather stations with records of 

the average surface temperature were mainly located in Europe and Asia, while weather 

stations with records of the maximum or minimum surface temperature were spread 

across all the continents, with increased density in North America and Western Europe. 

The following graphs depict the spatial variability of the selected weather stations records 

for each of the three studied parameters. 

 

 

Figure 5.4 Spatial distribution of weather stations recording average temperature 
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Figure 5.5 Spatial distribution of weather stations recording maximum temperature 

 

 

 

Figure 5.6 Spatial distribution of weather stations recording minimum temperature 
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5.5 Preliminary data processing 

In order for the identification of the “suitable” weather records to be fast and efficient, we 

created multiple MATLAB scripts, in order to automatically accept or reject each 

individual station’s timeseries. 

The processing involved the following steps: 

1. Reading of the directory, containing the files of all the records downloaded from 

GHCND and writing in an Excel (.xlsx) file format. 

2. Calculation of the start year, end year and total length of recording period for every 

station. 

3. For those stations with a non-zero length of record, all flagged individual entries 

were removed (replaced with NaN entries). 

4. The stations with record beginning date before 1935 were isolated and from 

those, only stations with more than 30 years of recording were used. 

For each weather station, which passed from all criteria 1 to 4, we isolated consecutive 

30-year periods, so as to extract from them the extreme temperature events, which 

corresponded to specific return period levels. 
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6. Methodology 

6.1 Methodology overview 

The stages followed in the integrated study of the behavior of land surface air 

temperature in global scale are presented in figure 6.1 that follows. It is worth mentioning, 

that the procedure outlined in the figure was repeated for each of the three elements of 

air temperature that were studied; average, maximum and minimum temperature. 

At the first stage, we downloaded the data from the GHCND database, and performed 

multiple quality tests and removal of flagged values and short timeseries. At the next 

stage, we standardized the remaining timeseries. After the standardization, we isolated 

rolling 30-year periods, so as to calculate the K-moments of each timeseries, that led to 

the quantile values selection. After this chain of actions was realized for all years, we 

plotted the quantile values against the starting point their respective of 30-year periods 

and their return period level. 

In parallel with these steps, we utilized the standardized timeseries to create an 

aggregated Climacogram. From this Climacogram, we derived the H parameter, which was 

used at the next stage as an input to the Symmetrically Moving Average scheme to create 

synthetic timeseries. From these synthetic timeseries, we calculated K-moments, as well 

as selected and plotted the quantile values, as performed for the observed (real) 

timeseries. 
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Figure 6.1 Methodology Layout 

 

 

 

 

 

 

 

 

 

 

  

 

 

6.2 Timeseries standardization 

In order for the input data, as well the results, to be comparable it was imperative to 

standardize the timeseries, in a way that it would be easy to identify the extreme values. 

Since multiple studies conclude that the distribution of the land surface air temperature 

closely resembles the Gaussian, it was determined to standardize the timeseries according 

to the Gaussian distribution. 

However, since the study is focused on the behavior of the temperature in global scale, it 

was deemed reasonable to proceed with the standardization in a perennial time frame. 

This is because of the fact that so many weather stations around the world are located in 

climate zones with great variance of temperature among the different seasons. Had it not 
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been foreseen; we would have misconstrued “usual” winter temperatures as persistent 

low extremes and “usual” summer temperatures as long-lasting heatwaves. 

In regard to the aforementioned paradox, we decided to standardized all timeseries values 

according to the arithmetic mean (average) and standard deviation of their specific 

month. Thus, only extreme, for the season, values would stand out, clearing out the 

extremes from the expected norm. It is worth mentioning, that we performed monthly 

standardization with respect to the arithmetic mean and standard deviation of each 

month, derived from the whole timeseries and not just the 30-year section of the 

timeseries, that was studied independently. 

 

6.3 Rolling 30-year periods 

A pivotal point of this study is the use of rolling 30-year periods, as independent 

timeseries, from which specific extreme values corresponding to pre-selected return 

periods were extracted. We determined that the time length of each sub-series should be 

30-years long, because three decades is an adequate enough amount of time to 

characterize the climate of an area. Moreover, 30 years is an average time interval 

between generations, giving greater gravity to any changes. Longer time frames (e.g. 50 

years) would significantly minimize the number of available rolling periods that could be 

extracted from each primary timeseries. Shorter time frames (e.g. 10 years) would inhibit 

the extraction of valuable extreme values occurring at larger time intervals, such as 

extreme values occurring once every 30 years. 

The procedure with which each rolling 30-year period was isolated from the lengthy 

timeseries of the database is quite simple. First of all, we calculated the first and last year 

of each primary timeseries, and consequently the total length of it. At the next step, with 

the use of an iteration, using a single variable taking values ranging from the start year to 

the end year of the timeseries minus 29 years, we managed to identify the years, at which 
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each rolling 30-year period started. At this point, since the beginning of the 30-year period 

had been identified, and the total length of it was known, we extracted the 30-year period. 

In the figure 6.2 a schematic depiction of some random, yet consecutive, 30-year periods 

is shown, so as to clarify the procedure. 

 

 

Figure 6.2 Example of consecutive 30-year periods 

 

6.4 K-moments calculation of observed record data 

After each 30-year long timeseries section had been standardized, in relation to 

corresponding months, we sorted the timeseries accordingly. For study of the upper tail 

we sorted the timeseries in ascending order, while for study of the lower tail, the 

timeseries was sorted in descending order. 

At this point, we calculated the necessary return periods, in terms of days, not years, like 

the resolution of the temperature data available. The return periods, that were selected, 

in order to get isolated from the ensemble of K-moments are: 
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Table 6.1 Day intervals studied 

Return period Years Days 

T1 3 1096 

T2 10 3653 

T3 20 7305 

T4 30 10958 

 

However, since the exact definition of return period yields a linear relationship between T 

and coefficients ΛP that depend on the distribution function (we have assumed Gaussian), 

the precise return period for the number of days that we selected is different, as described 

by the equation 6.1: 

 𝑇(𝐾′
𝑝1)

𝐷
= 𝑝𝛬𝑝 ≈ 𝛬∞𝑝 + (𝛬1 − 𝛬∞) (6.1) 

Hence, the real return periods that we studied are: 

 

Table 6.2 Return periods studied 

Return period Days Years (for Gaussian distribution) 

T1 1096 4.95 

T2 3653 16.49 

T3 7305 32.98 

T4 10958 49.47 

 

For these day intervals (shown in the second column of table 6.2) corresponding to these 

return periods, we used a repetition to calculate both the fixed term of each moment, 

which depends on only p and the length of the sample, but also the added terms, which 

depend on the index and the value of each specific entry, in relation to the size of the 
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sample. The differentiation between the fixed and the non-fixed term is apparent in the 

definition of the estimator of K-moments: 

 𝐾̂′𝑝𝑞 =
𝑝 − 𝑞 + 1

𝑛
∑(

𝑖 − 1

𝑛 − 1
)
𝑝−𝑞

𝑥(𝑖)
𝑞

𝑛

𝑖=1

 (6.2) 

After we had calculated K-moments for the entirety of the suitable time-series and for all 

30-year periods of their time span, we performed a rudimentary statistical analysis to 

extract valuable information from all these results. Hence, it was decided to isolate the 

distribution of each return period and each 30-year time-frame and extract the values 

corresponding to the 25th, 50th (median) and 75th percentiles. 

A pivotal, yet usually underestimated, part of the results representation is the plotting of 

only the estimated quantile values and not of all the values calculated. Had we not isolated 

the quantiles, the resulting plot would have been a nebula-like shape, approximating a 

surface corresponding to the extremes of the average station for all time scales. 

 

6.5 Climacogram and H coefficient 

All the data, that had been standardized from the previous steps of the methodology were 

save in a file format, suitable for large size data. This file was read by a specifically created 

MATLAB script, so as to create the Climacogram for every single timeseries, for scale 1 

through n/10, where n is the total size of each timeseries. 

After this procedure was realized for all timeseries, we summed the values of respective 

scales of all these Climacograms, so as to produce the arithmetic mean (average) of the 

Climacogram for each scale. As scale of the ensemble of the timeseries was selected the 

arithmetic mean of the lengths ni of all timeseries. 

The resulting aggregated Climacogram was exported as an xlsx format file, so as to be 

read from an Excel spreadsheet. The reason, why we chose the Excel spreadsheet over 

MATLAB programming was the ease of use and the wide variety of optimization tools. 

The values of the Climacogram, that resulted from observations, were juxtaposed with the 
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theoretical expected values of the Climacogram for a timeseries of imaginary length nimag, 

equal to the average of the lengths ni of all timeseries. 

The theoretical values of the Climacogram for a combined Hybrid Hurst-Kolmogorov and 

Markov process derive from the following equation: 

 𝛾(𝑘) =
𝜆

2
(1 + (𝑘 𝑎⁄ )2𝑀)

𝐻−1
𝑀

+
𝜆

𝑘
𝑎⁄

(1 −
1 − 𝑒−𝑘

𝑎⁄

𝑘
𝑎⁄

) (6.3) 

We calculated the three independent parameters H, M and α in such a way, so as to create 

a theoretical Climacogram that coincided with the Climacogram of the observed 

timeseries. In order for us to perform such an optimization, a target-cell was created that 

represented the root mean square error (RMSE). 

 𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑋𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙)2
𝑛𝑖𝑚𝑎𝑔

𝑖=1
 (6.4) 

The optimization problem of minimizing the value of a RMSE was modeled in Microsoft 

Excel spreadsheet using a combination of the Generalized Reduced Gradient (GRG2) 

algorithm and the Evolutionary algorithm. We used the GRG method to quickly identify 

the global minimum of the domain, while the Evolutionary algorithm was used, so as to 

improve even further the margin of error. In order for us to avoid unnecessary time-

consuming operation of the Evolutionary algorithm in finding the optimal solution, we 

limited the number of iterations to 100,000. 

The target cell was the one containing the RMSE value between the theoretical value of 

the Climacogram and the expected one. The three independent parameters H, M and α 

were the variable parameters of the optimization process. As for the constraints, the three 

variable parameters were bounded as follows: 

• 0.5 < 𝐻 < 1 

• 0 < 𝑀 < 1 

• 𝛼 > 0 

It is worth mentioning that the complete range of possible values of H is [0,1]. Yet it is 

impossible for a natural process like temperature to present a H-coefficient value less 



102 

 

than 0.5, because that would mean that it is negatively correlated, which is intuitively 

wrong. Since temperature is actually the result of energy transfer, it cannot be negatively 

correlated. 

From these optimizations resulted the unbiased H coefficient, indicating the degree of 

persistence of the three air temperature variables. 

 

Table 6.3 H coefficient of air temperature 

Air Temperature H 

Average 0.760 

Maximum 0.752 

Minimum 0.806 

  

The empirical and theoretical values of the Climacogram for all three studied variables, 

average, maximum and minimum air temperature are being presented in figures 6.3 – 6.5. 

 

Figure 6.3 Climacogram of the average air temperature 
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Figure 6.4 Climacogram of the maximum air temperature 

 

 

Figure 6.5 Climacogram of the minimum air temperature 
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6.6 Production of synthetic timeseries 

A rigorous and general method for producing synthetic timeseries of a physical quantity, 

like temperature, by preserving its dependence structure is the symmetric-moving 

average (SMA) scheme introduced by Koutsoyiannis (2000), further improved by 

Koutsoyiannis (2016) and implemented within the Castalia computer package 

(Efstratiadis et al., 2014). The SMA method has the advantage of fully preserving in an 

exact way any second-order structure of a process and, simultaneously, the complete 

multivariate distribution function if it is Gaussian, like in the case of air temperature 

(because of the preservation of the Gaussian attribute within linear transformations). As 

extended by P. Dimitriadis et al. (2018), the SMA generation scheme can replicate a 

natural process by preserving its first four central moments, which has been found to be 

more-than-adequate for various distributions commonly applied in geophysical processes. 

The algorithm to produce timeseries with the SMA scheme, created by P. Dimitriadis 

(2018), required the first four central moments, the H coefficient of each physical quantity 

(average, maximum and minimum temperature) and the length of the timeseries as well. 

For each observed timeseries that passed the multiple quality checks, we calculated the 

first four central moments. The H coefficient was common for all timeseries of the same 

physical quantity, as well as the length of the timeseries, which equaled the maximum 

length of all the utilizable timeseries. 

Since the timeseries had been standardized according to the Gaussian distribution, the 

first two central moments were equal, or close to, zero and one respectively, while the 

latter two (third and fourth central moment) were left unchanged. In figures 6.6 – 6.11 

we present the histograms of third and fourth central moments of the three studied air 

temperatures. 
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Figure 6.6 Third central moment of average temperature timeseries 

 

 

Figure 6.7 Fourth central moment of average temperature timeseries 
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Figure 6.8 Third central moment of maximum temperature timeseries 

 

 

Figure 6.9 Fourth central moment of maximum temperature timeseries 
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Figure 6.10 Third central moment of minimum temperature timeseries 

 

 

Figure 6.11 Fourth central moment of minimum temperature timeseries 
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Since creating a single synthetic timeseries, with respect to preserving its dependence 

structure, was a time-lengthy procedure, we decided to produce for each of the three 

physical quantities (average, maximum and minimum temperature) a fixed number of 

synthetic timeseries. This number of produced timeseries is equal to the least number of 

observed, yet utilizable, timeseries for each of the three temperature qualities. The 

number of observed timeseries for the average air temperature was 245, while for the 

maximum and minimum temperature was 5,006. Thus, 245 synthetic timeseries were 

created for each air temperature quality. 

The fact that, for the maximum and minimum temperature, the number of synthetic 

timeseries was smaller than the number of the observed ones, created some concern over 

the unbiased selection of the central moments from the pool of the total. This was 

resolved by creating a random number generator, which produced 245 times an index 

ranging from 1 to 5,006, which corresponded to the index of an observed timeseries, 

whose first four central moments were to be taken as input for the production of the 

synthetic record. 

 

6.7 K-moments calculation of synthetic record data 

As for the observed data, we followed the same procedure for the analysis of the synthetic 

timeseries. For the day intervals (see Table 6.2) corresponding to the return periods that 

had been selected, we used a repetition to calculate both the fixed term of each moment, 

which depends on only p and the length of the sample, but also the added terms, which 

depend on the index and the value of each specific entry, in relation to the size of the 

sample. 

After calculating the K-moments for the entirety of the synthetic time-series and for all 

30-year periods of their time span, a rudimentary statistical analysis was performed to 

extract valuable information from all these results. Hence, as with the case of observed 
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data, we decided to isolate the distribution of each return period and each 30-year time-

frame and extract the values corresponding to the 25th, 50th (median) and 75th percentiles. 

Finally, the plotting of only the estimated quantile values and not of all the values 

calculated was performed. Again, had the quantiles not been isolated, the resulting plot 

would have been a cloud-like shape, approximating a surface corresponding to the 

extremes of the average station for all time scales. 

 

6.8 Detection of the longest individual records 

As part of an unbiased study of the behavior of air temperature, we considered useful to 

compare the aggregate behavior of all the available timeseries, with the behavior of the 

longest timeseries, to identify possible similarities of variations between them. In order to 

identify the most long-lived records, we created an algorithm for the isolation of the 

maximum time-length of each recording. This algorithm revealed that the most long-lived 

air temperature records for each aspect of land surface air temperature are as follow: 

 

Table 6.4 Longest recording individual stations 

Air Temperature Station ID Location Record Length 

Average RSM00026063 St. Petersburg, Russia 136 years 

Maximum ITE00100554 Milan, Italy 246 years 

Minimum ITE00100554 Milan, Italy 246 years 

 

6.9 K-moments calculation of individual record data 

After we identified the longest records, we applied a similar procedure as the one followed 

in the study of the sum of observed records. First, we standardized timeseries. After the 

standardization, we calculated the K-moments of each timeseries, that led to the quantile 

values selection, that corresponded to the examined return period levels. After this chain 
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of actions was realized for all years, we plotted these values against the starting points of 

30-year periods and their return periods. 

In order for the comparison to be applicable, we depicted the length of the individual 

timeseries that coexisted with the time period of all the other timeseries with the same 

color (i.e. black) and solid line, while for the preceding time period, the data were depicted 

with different color (i.e. red) and dashed line. 
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7. Results 

7.1 Observed timeseries 

As resulted by the study of the actual recorded timeseries of air temperature, the behavior 

of the different aspects of air temperature is inconsistent when compared to each other. 

The irregularities are more apparent between the upper tails, while lower tails present a 

somewhat more expected pattern.  

Upper tail of the average air temperature appears to become thicker as time progresses, 

with the standardized extreme values of each return period to increase by about 0.2 for 

the smaller return periods and about 0.4 for the larger return periods. Another interesting 

finding is the slight increase of variance of each return period tail progression, even 

though the number of the available records slowly decreases. 

 

Figure 7.1 Upper tail of the observed average air temperature at return period T1 
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Figure 7.2 Upper tail of the observed average air temperature at return period T2 

 

 

Figure 7.3 Upper tail of the observed average air temperature at return period T3 
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Figure 7.4 Upper tail of the observed average air temperature at return period T4 

 

Lower tail of the average air temperature presents a more complex behavior. From 1900 

until roughly 1980’s it is relatively steady, yet with minor fluctuations, which probably owe 

their existence to the entry of more and more records as time progresses. From around 

the years 1980-1990 (corresponding to 30-year periods starting around 1950-1960), 

however, in all of the return periods, temperature appears to increase systematically. All 

in all, at all return periods level of the lower tail, air temperature appears to be relatively 

increasing, as presented by the figures 7.5 – 7.8, leading to a thinner lower tail. 
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Figure 7.5 Lower tail of the observed average air temperature at return period T1 

 

 

Figure 7.6 Lower tail of the observed average air temperature at return period T2 
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Figure 7.7 Lower tail of the observed average air temperature at return period T3 

 

 

Figure 7.8 Lower tail of the observed average air temperature at return period T4 
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Upper tail of the maximum air temperature appears to become progressively thinner as 

time progresses. The general trend of each respective return period, excluding the very 

first years until the end 30-year periods starting up to the end of the 19th century, is 

slightly decreasing. Until the 1930’s there is a barely noticeable thickening of the tail (in 

the order of 0.1), but after that time and until today there is a substantial decrease of the 

thickness of the upper tail of maximum air temperature by about 0.2. 

 

 

Figure 7.9 Upper tail of the observed maximum air temperature at return period T1 
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Figure 7.10 Upper tail of the observed maximum air temperature at return period T2 

 

 

Figure 7.11 Upper tail of the observed maximum air temperature at return period T3 
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Figure 7.12 Upper tail of the observed maximum air temperature at return period T4 

 

Lower tail of the minimum air temperature presents for the most part an astonishingly 

steady behavior, contrary to the upper tail of the maximum air temperature. From 1880’s 

until 1970’s there is an incredible plateau on the graph, not only in terms of the mean 

(50th percentile), but also of the 25th and 75th percentiles. After the 1970’s though, (i.e. 

30-year periods that start to include years from the 21st century) a substantial increase 

of the minimum temperature results in the thinning of the lower tail of minimum 

temperature. 
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Figure 7.13 Lower tail of the observed minimum air temperature at return period T1 

 

 

Figure 7.14 Lower tail of the observed minimum air temperature at return period T2 
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Figure 7.15 Lower tail of the observed minimum air temperature at return period T3 

 

 

Figure 7.16 Lower tail of the observed minimum air temperature at return period T4 



121 

 

7.2 Synthetic timeseries 

As expected by the production of synthetic timeseries and the quantile selection in each 

specific time scale, the behavior of the temperature presents homogeneity, not only in 

terms of variance, but also in terms of the average trend in time. A small differentiation 

of the synthetic timeseries compared to the observed timeseries is the slightly larger 

variance in each specific return period, even though the plotted quantiles are, as before, 

the 25th, the 50th and the 75th. In addition, the synthetic records of the lower tail of the 

average air temperature correspond to a thinner tail, than the one derived from the 

observed timeseries. 

 

 

Figure 7.17 Upper tail of the simulated average air temperature behavior 
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Figure 7.18 Lower tail of the simulated average air temperature behavior 

 

 

Figure 7.19 Upper tail of the simulated maximum air temperature behavior 
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Figure 7.20 Lower tail of the simulated minimum air temperature behavior 

 

7.3 Individual long-lived observed records 

We realized this part of the study of the land surface air temperature in order to compare 

the general trend of the ensemble of the recorded timeseries with the longest recorded 

available timeseries. The individual weather stations, whose records we investigated 

separately are the station of St. Petersburg, Russia for the upper and lower tails of the 

average air temperature and the station of Milan, Italy for the upper tail of the maximum 

and the lower tail of the minimum air temperature. 

Upper tail of the average air temperature, as presented by the data of the St. Petersburg 

station, corroborate the slightly increasing trend of the thickness of the tail observed from 

the sum of the weather stations around the globe. However, intense, yet isolated, 

heatwaves seem to alter substantially the stability of this trend. Specifically, in years 1972, 

1986, 2010 (shown in periods starting 30 years earlier) a noticeable increase of the 

thickness of the tail of up to 0.6 can be observed in the larger return period. Interestingly, 

the latter one, corroborates the extreme heatwave experienced in the Northern 

hemisphere during the summer of 2010. 
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Figure 7.21 Upper tail of the average air temperature of St. Petersburg, Russia station 

 

Lower tail of the average air temperature, as presented by the data of the St. Petersburg 

station, present great instability. The very first years of the record, i.e. 30-year periods 

starting up to 1893, show a stable behavior, but after that period and until the 30-year 

periods starting up to 1949, a considerable upward dislocated plateau indicate a 

persistent period of low average temperatures spanning for more than 50 years. After 

this plateau, however, a considerable plummeting of the average temperature translates 

to a decrease of the standardized average temperature by about 0.8 in one year and 

further 0.2 after 7 years, indicating persistent freezing of the region. After 2010 the effect 

seems to be mitigated, and the lower tail returns to an average level. 
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Figure 7.22 Lower tail of the average air temperature of St. Petersburg, Russia station 

 

Upper tail of the maximum air temperature, as presented by the data of the Milan station 

in Italy, does not corroborate the slightly decreasing trend of the thickness of the tail 

observed from the sum of the weather stations. In particular, for the common record 

period between 1881 and 2010 an ascending trend is apparent in all the return periods. 

Especially in the two larger return periods, in the 30-year period starting 1955 a robust 

increase of about 1 (of the standardized timeseries) alter the steady behavior of the 

record present the previous 100 years. 
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Figure 7.23 Upper tail of the maximum air temperature of Milan, Italy station 

 

Lower tail of the minimum air temperature, as presented by the data of the Milan station 

in Italy, does not show to corroborate the relatively stable trend of the thickness of the 

tail observed from the sum of the weather stations. Specifically, for the 30 years periods 

starting between 1900 and 1940 a severe fall of the minimum temperature, of the scale 

of about 1, happens, which contradicts the general upward, i.e. thinning, of the tail of the 

minimum temperature. 
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Figure 7.24 Lower tail of the minimum air temperature of Milan, Italy station 

 

The great differences individual records present with the sum of the records from all over 

the globe are reasonable to appear, since aggregate behavior tends to present milder 

variations, thus attenuating local and isolated extreme heat or cold waves. Despite this, it 

is extremely useful to compare the behavior of the whole with the records that are the 

most long-lived, so as to identify possible baseless generalizations that may emerge from 

the over-focusing on individual records. 
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8. Conclusions 

The aim of this study is to investigate the extreme land surface air temperature temporal 

evolution in global scale, by studying long timeseries of the average, maximum and 

minimum air temperature. Despite all the interest that has been given to the study of the 

air temperature trends in recent years, this is the first study to normalize the temperature 

records with respect to the respective months. Thus, statistically unimportant variations, 

within the scope of usual natural variation do not skew the study of the temperature in 

macroscopic scale, free of any microvariations bias. 

First, we retrieved all the necessary timeseries data from the GHCN (Global Historical 

Climatology Network)-Daily database for the three studied variables; i.e. average, 

maximum and minimum air temperature. Then, after performing a series of quality checks, 

to clear out the data containing any false entries, we standardized (according to the 

Gaussian distribution) each timeseries, with respect to the monthly average (arithmetic 

mean) and standard deviation. From each standardized timeseries, consecutively rolling 

30-year long sections were isolated, in order for the study of the extreme occurrence to 

take place. 

Secondly, for each rolling 30-year section of the timeseries, we extracted, through the use 

of the K-moments, the extreme values corresponding to 4 pre-selected return periods, 

representative of the whole tail of the temperature distribution. These values were saved 

in a separate file, from which, after repeating this procedure for all the observed 

timeseries, the 25th, 50th and 75th percentile values were isolated for each year 

(corresponding to the start of a 30-year period) and were plotted in a boxplot. 

Thirdly, and in parallel with the study of the observed timeseries, we calculated an 

aggregated climacogram for the ensemble of the timeseries was created, from which the 

persistence of the temperature variables. This was achieved through the utilization of a 

hybrid Hurst-Kolmogorov and Markov theoretical model being optimized, through a 
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Monte-Carlo analysis, to fit the Climacogram. We then used the Hurst coefficients of each 

temperature variable to create synthetic records with the same statistical characteristics 

as the observed timeseries. These synthetic timeseries were finally studied, using K-

moments at specific return periods, in a similar process as the one followed in observed 

timeseries. 

 

8.1 Remarks on observed record behavior 

The study of the observed land surface air temperature records brought interesting facts 

to the surface. All three of the air temperature variables (namely average, maximum and 

minimum) present an unstable behavior, with fluctuations not easily negligible. 

The average land surface air temperature presents the most persistent behavior, which is 

a progressive increase. The upper tail seems to become more and more thick, while the 

lower tail appears to become thinner as time progresses. This means that the average air 

temperature increases as a whole, with important effects on the lives of both humans and 

other species. Water dependence, agricultural practices and transportation of goods and 

people will have to adapt, in order to better cope with the change of the mean expected 

temperature. 
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Figure 8.1 Upper tail of the observed average air temperature 

 

 

Figure 8.2 Lower tail of the observed average air temperature 
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An interesting and, quite frankly, unexpected finding is the thinning of the upper tail of 

the maximum land surface air temperature. Contrary to our expectations, it appears that 

the behavior of the maximum temperature does not necessarily follow that of the average, 

meaning that temperature is a more complex climatic variable than previously thought. 

Even though, the maximum recorded temperature is an integral part of the set of data 

from which the average temperature derives, it appears that its effect is not so intelligible. 

From a statistical point of view, it would be reasonable to assume that an increase of the 

upper extreme of a finite set would increase its expected mean. Yet the case is that the 

intermediate values of temperature are what affect the average the most. 

 

 

Figure 8.3 Upper tail of the observed maximum air temperature 

 

As for the lower tail of the minimum land surface air temperature, it becomes clear that 

despite the increasing trend of the average air temperature (even of its lower values), it 

remains surprisingly steady, at all return period levels, and only in the last 10-20 years 

presents an increasing trend. This shows that the temperature changes are not 
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simultaneous through all the spectrum of the temperature variance. Thus, the climate 

presents stamina and is able to mitigate, to some extent, changes in factors of the energy 

balance of the atmosphere. The fact that almost the same level of upward trend of all the 

return period levels of the lower tail suggest a change of the average of the distribution 

is more probable than a change of standard deviation, assuming that the minimum 

temperature presents a Gaussian-like distribution. 

 

 

Figure 8.4 Lower tail of the observed minimum air temperature 

 

8.2 Remarks on synthetic record behavior 

The point of producing synthetic timeseries and investigating them in comparison with 

the observed timeseries was to identify similarities and differences between them, that 

would lead to a divergence of the actual natural behavior of air temperature from a 

simulated stochastic one. 

The average land surface air temperature synthetic records produced present an 

ambiguous behavior. On the one hand, the upper tail presents a similar pattern as the one 
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of the observed data, with the exception of the increasing trend. The variance of the trend, 

as expressed through the interquartile range at each return period level, is almost the 

same, which point to “well” produced pool of synthetic data. On the other hand, the lower 

tail, despite having the same variance at all the return period levels, is much thinner than 

in reality. This could mean that the extreme cold waves, affecting the lower tail of the 

average temperature, are much more common than anticipated by the reproduction of the 

observed stochastic behavior. Despite having a uniquely fit hybrid Hurst-Kolmogorov and 

Markov process to estimate the persistence of the average air temperature, as witnessed 

by the Climacogram, it still was not enough to decipher, and consequently reproduce, the 

complex behavior of the average air temperature. Consequently, the selected model may 

not be adequate to describe such a complex behavior as the one presented by the lower 

tail of the average air temperature. 

As for the maximum land surface air temperature synthetic records produced, the 

variance of the trend, as expressed through the interquartile range at each return period 

level, is greater than that of the observed data, hence proving that any upward trend of 

the upper tail of it is perfectly within the boundaries of expected. Furthermore, the slightly 

increasing trend of the upper end (i.e. 75th percentile) of the interquartile range present 

at higher return periods is completely opposite form the same limit performance of the 

observed data. 

The minimum land surface air temperature synthetic records produced present many 

comparative similarities with the maximum air temperature. Specifically, the size of the 

interquartile range is greater than the one derived from observed data and in fact 

overspreads it. This means that any changes present in the observed timeseries are 

perfectly explainable from the study of the statistical behavior. Moreover, the slightly 

increasing trend of the extreme values of the lower tail may suggest a return to normality 

and not a spiraling towards global overheating. 
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8.3 Remarks on individual long-lived record behavior 

Individual long-lived observed records were studied individually, in order to compare the 

temporal evolution of the ensemble of instrumental records, with those individuals that 

have the longest length. This enables us to assess the land surface air temperature 

evolution unbiased from differentiations on the number of temporally co-existing 

instrumental records. However, it has the disadvantage of local bias, thus making risky 

any generalization to the global scale. 

The longest-lived instrumental records of the average land surface air temperature are 

those of Saint Petersburg, Russia. As shown from the analysis made, the upper tail 

presents a systematically thickening, across all levels of return periods. Especially from 

the point where years of the 1990’s and after were added to the rolling 30-year periods 

(i.e. 30-year periods starting after 1960’s), the increasing trend of the thickness is almost 

free of any micro-variations. This shows that a persistent local or superregional has been 

affecting the climate of Saint Petersburg after the 1990’s.  

The lower tail of the average land surface air temperature presents a somewhat more 

tumultuous behavior, yet with a relatively stable general trend of thinning. At the larger 

return period levels, the variations of the thickness of the tail are of the order of 0.8-1.0, 

and are apparent from the beginning of the 20th century. At the lowest return periods, 

however, the variations are significantly smaller, but the latest years (i.e. 30-year periods 

starting after 1980) present a thinning of the lower tail of about 0.4-0.8, that cannot be 

ignored. 

As for the maximum and minimum land surface air temperature, the longest-lived 

instrumental records are those of Milan, Italy. From the proceeding analysis, we 

understand that from the 1770’s until the 1840’s the maximum air temperature had a 

relatively stable upper tail. Yet around the end of the 1840’s and beginning of 1850’s a 

strong force caused the upper tail to thicken almost uniformly by about 1.0, which implies 

a displacement of the upper tail to the right (i.e. an increase of the average of the 

distribution and not of the variance). Then until about 1980’s the behavior of the upper 
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tail is surprisingly stable, considering the more-than-centennial length of the period. After 

the 1908’s, however, the upper tail follows an similar pattern as the one of the of the 

1850’s period, with a substantial thickening of about 1.3-1.5 across all return period 

levels, suggesting another displacement of the upper tail to the right (i.e. an increase of 

the average of the distribution and not of the variance). 

The lower tail of the minimum land surface air temperature appears to have a similar 

behavior as the one of the lower tail of the average land surface air temperature. It is quite 

turbulent, with variations of about 0.6-0.8, even at the lower return period levels, but the 

changes seem to cancel each other, giving a stable trend up to about the 1990’s. After 

that period, however, the lower tail seems to thin a lot, with the decreases of the 

respective return period values to be more than 0.5. 

What we infer from these two individual long-lived instrumental records is a systematic 

increase of the thickness of the upper tail and a systematic thinning of the lower tail. One 

of the reasons that may explain this observation is the possibility that Europe may 

experience a general warming compared to the rest of the world.  

A more potent factor for the increase of the mean land surface air temperature in both 

Saint Petersburg and Milan could be the increase of the population of the two cities, 

accompanied by a change of land cover. This could intensify the heat island effect, which 

would systematically affect the warming of the regions, which host the weather stations. 

As shown from data of the Italian National Institute of Statistics (Istat, 2014), the 

population of the urban center of Milan increased from 267,000 to 1,368,000 between 

1861 and 2016, which indicates a five-fold increase. As for the Saint Petersburg federal 

subject, the resident population increased from 843,000 to about 4,597,000 between the 

years 1880 and 2003 (Elyseeva and Gribova, 2003). This increase is more than five-fold, 

thus making plausible the suspicion of severe change in land cover affecting the 

temperature in the city. 
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8.4 Implications on the land surface air temperature tails 

The assessment of the changes that occur in the tails of average, maximum and minimum 

land surface air temperature is essential for the understanding of the exact nature of 

climate change. Changes in the average (arithmetic mean) of the equivalent distribution 

of air temperature are completely different from changes in variance. An increase of 

variance leads to greater instability and more frequent and intense extreme events. On 

the other hand, a change of the average of the distribution translates to a displacement 

of the whole distribution, but not of the occurrence of extremes; the only thing changing 

is the definition of extremes, since events of different temperature will correspond to the 

same probability of happening. 

As shown by the investigation of the tail behavior of surface temperature on global scale 

using K-moments performed by Glynis et al. (2019), the tails of the temperature 

distribution are not exactly Gaussian. The upper tail is lighter than that of the Gaussian, 

while the lower is heavier. With this in mind and giving greater gravity to the results of 

the maximum and minimum temperature study, which incorporated data from 20 times 

more instrumental records than the equivalent of the average temperature (namely more 

than 5,000 records compared to less than 250 records), it is reasonable to deduce the 

following: 

• The upper tail of the land surface air temperature has remained relatively 

unchanged throughout the past 130 years (both in terms of average and variance 

of its distribution). 

• The lower tail of the land surface air temperature had remained unchanged until 

the 1990’s from which point is started to become thinner, due to a change of the 

average and not the variance of its distribution. 

• The main body of the distribution of land surface air temperature, which closely 

relates to the average (arithmetic mean) air temperature has moved to warmer 

temperatures, which was caused by an increase of the average and not the variance 

of its distribution. 
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Thus, it is valid to say that extreme heatwaves remain the same probable as in the past, 

extreme cold waves have become slightly scarcer. However, the expected (average) daily 

temperature has increased, especially in the last 30 years. One such possible explanation 

is the change of the air temperature density function, as shown in the figure 8.5.  

 

 

Figure 8.5 One possible historical evolution of the air temperature probability density function. Note that 

its purpose is purely perceptional. 

 

This behavior strongly suggests the existence of certain physical laws that enable the 

Earth’s climate to absorb any temperature increases by increasing the minimum 

temperature, but avoiding increasing the maximum temperature. This is unexpected, since 

the only known boundary of temperature is the absolute zero (-273.15 °C), while an upper 

limit does not exist. 

All these changes make the land surface air temperature to have a narrower range, since 

the lower extremes have decreased, while the upper extremes have remained relatively 
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constant. However, we cannot be certain of how the internal variability of the climate is 

going to change, since persisting warm or cold events may increase.  

 

8.5 Suggestions for future research 

The array of possibilities that engenders the scientific methodology that we followed in 

this research is huge. A prime example of possible follow-up study is the implementation 

of K-moments and the Hurst-Kolmogorov approach on the satellite-measured surface air 

temperature records, which include both land and ocean areas of the planet, thus 

increasing significantly the spatial coverage. In such case, though, attention should be 

given to the time of the day at which each measurement has been taken, as well as the 

interference of cloud and air currents above the surface. 

Another promising field of follow-up study is the spatial, and temporal of course, analysis 

of the temperature persistence and change. This would enable the derivation of valuable 

information on which climatic regions do get affected the most from the climate change 

and in which way. Furthermore, it could be used to correlate it with precipitation patterns 

alterations in order to produce a reliable model for temperature and precipitation 

macroscopic prediction. 

Last, but not least, the same tools that we used here to assess the changes of the extreme 

values of land surface air temperature could be used to study the surface dew point. This 

would enable the understanding of how the air saturation patterns have changed in 

relation to the past, and what consequences this has for the precipitation. Especially in 

arid and semi-arid areas, the high seasonality of rainfall makes exigent the accurate 

prediction of how these patterns are changing, in order for the ecosystem and humans to 

better adapt. 
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Appendix 

In this appendix we provide all the important scripts and functions, which we used (in 

Matlab environment) for the scientific purposes of this study. 

 

Script 1: Search for non-zero files 

clc; clear all; close all; tic; 

  
%Search for non-zero data files 
[~,stations] = xlsread('Data_List_Tmax.xlsx'); 
for i = 1:length(stations); 
    filename = strcat('NOAA_GHCND_TMAX/',string(stations(i))); 
    load(filename,'S'); %loading of time series 
    m(i,1) = numel(find(S(:,4)))/365.25; 
end 
save('numyears_Tmax.mat','m'); 
toc; 

 

Script 2: Plotting of observed timeseries 

minimum = 30; %minimum record length 
maximum = inf; %maximum record length 

  
limit1 = 1935; %latest year of record start 
tail = 1; %1 for Upper tail; 2 for Lower tail 
[~,stations] = xlsread('Data_List_Tavg.xlsx'); 
load('numyears_Tavg.mat'); 
size = 245; %number of stations which entered service before 1935 

  
start_year = 1881; 
end_year = 1988; 
Kp_alpha = NaN(size,end_year-start_year+1); 
Kp_beta = NaN(size,end_year-start_year+1); 
Kp_gamma = NaN(size,end_year-start_year+1); 
Kp_delta = NaN(size,end_year-start_year+1); 
temp1 = 0; 
all = 106283; 
for number = 1:all; 
   filename = strcat('NOAA_GHCND_TAVG/',char(stations(number))); 
   load(filename); 
   if number == 43375; 
       S = S(2273:end,:); 
   end 
   n=numel(S(:,4)); 
   if n > 0; 
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       years = S(n,1)-S(1,1)+1; 
       S = new_cleaning(Q,S); 
        if S(1,1) <= limit1; 
           if and(and(years >= minimum,years <= maximum),and(n/365.25 

>= minimum,n/365.25 <= maximum)); 
               temp1 = temp1+1;              
               clear point1; clear point2; clear x; clear y; 
               for j = 1:years-29 %number of distinct 30-year periods 
                   point1 = min(round(1+(j-1)*365.25),n-10957); %start 

point of 30-year period 
                   point2 = min(point1+10957,n); %end point of 30-year 

period 
                   pos = S(point1,1)-(start_year-1); 
                   

[Kp_alpha(temp1,pos),Kp_beta(temp1,pos),Kp_gamma(temp1,pos),Kp_delta(te

mp1,pos)] = K_calc(S(point1:point2,:),tail); 
               end 
           end 
        end 
   end 
end 
y_alpha = new_organize(Kp_alpha,end_year-start_year+1); 
y_beta = new_organize(Kp_beta,end_year-start_year+1); 
y_gamma = new_organize(Kp_gamma,end_year-start_year+1); 
y_delta = new_organize(Kp_delta,end_year-start_year+1); 
years = [start_year:1:end_year]; 
figure(1) 
hold on; grid on; 
for i=1:end_year-start_year+1; 
    plot3([years(i) years(i) years(i)],[4.95 4.95 4.95],y_alpha(:,i),'-

*k'); 
    plot3([years(i) years(i) years(i)],[16.49 16.49 

16.49],y_beta(:,i),'-*k'); 
    plot3([years(i) years(i) years(i)],[32.98 32.98 

32.98],y_gamma(:,i),'-*k'); 
    plot3([years(i) years(i) years(i)],[49.47 49.47 

49.47],y_delta(:,i),'-*k'); 
end 
xlim([1881 1988]); 
title(['Lower tail of Tavg | Number of stations: ', num2str(temp1), ' | 

Record beginning before: ', num2str(limit1)]); 
xlabel('Start of 30 year period'); 
ylabel('Return period (years)'); 
hold off 

 

Script 3: Aggregation of climacogram values 

minimum = 30; %minimum record length 
maximum = inf; %maximum record length 
limit1 = 1935; %latest year of record start 
[~,stations] = xlsread('Data_List_Tavg.xlsx'); 
load('numyears_Tavg.mat'); 
size = 5006; 
start_year = 1881; 
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end_year = 1989; 
all = 106283; 
temp1 = 0; 
for number = 1:all; 
    filename = strcat('NOAA_GHCND_TAVG/',char(stations(number))); 
    load(filename); 
    n=numel(S(:,4)); 
    if n > 0; 
       years = S(n,1)-S(1,1)+1; 
       S = new_cleaning(Q,S); 
       if S(1,1) <= limit1; 
           if and(and(years >= minimum,years <= maximum),and(n/365.25 

>= minimum,n/365.25 <= maximum)); 
               temp1 = temp1+1; 
               for i = 1:12; 
                   pos = ismember(S(:,2),i); 
                   m(i,1) = nanmean(S(pos,4)); %monthly average 
                   m(i,2) = nanvar(S(pos,4)); %monthly variance 
                   S(pos,4) = (S(pos,4)-m(i,1))/sqrt(m(i,2)); %monthly 

standardization 
               end 
               m_one(temp1,1) = moment(S((~isnan(S(:,4))),4),1); 
               m_two(temp1,1) = moment(S((~isnan(S(:,4))),4),2); 
               m_three(temp1,1) = 

moment(S((~isnan(S(:,4))),4),3)/(sqrt(m_two(temp1,1))^3); 
               m_four(temp1,1) = 

moment(S((~isnan(S(:,4))),4),4)/(m_two(temp1,1)^2);; 
               clear Scale; 
               Scale = [1:100 110:10:1000 1100:100:round(n/10)]; 
               max_Scale(temp1) = Scale(1,end); 
               length_n(temp1) = n; 
               ExpectedOne(temp1,1:length(Scale)) = 

pdClandHfast(S(:,4),Scale)'; 
           end 
       end 
    end 
end 
Moments_Tavg = [m_one, m_two, m_three, m_four]; 
xlswrite('Moments_Tavg.xlsx',Moments_Tavg); 
ExpectedOne(:,find(ismember(Scale,100*floor(mean(length_n)/1000)))+1:en

d) = []; 
clear n; clear Scale; 
n = floor(mean(length_n)); 
Scale = [1:100 110:10:1000 1100:100:round(n/10)]; 
ExpectedAll = nanmean(ExpectedOne,1); 
xlswrite('HHK-Markov_Tmax.xlsx',ExpectedAll'); 

 

Script 4: Analysis of timeseries 

clc; clear all; close all; 

 

minimum = 30; %minimum record length 

maximum = inf; %maximum record length 

limit1 = 1935; %latest year of record start 
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tail = 2; %Lower tail 

 

tic; 

[~,stations] = xlsread('Data_List_Tavg.xlsx'); 

load('numyears_Tavg.mat'); 

size = 245; %number of stations which entered service before 1935 

 

start_year = 1881; 

end_year = 1988; 

Kp_alpha = NaN(size,end_year-start_year+1); 

Kp_beta = NaN(size,end_year-start_year+1); 

Kp_gamma = NaN(size,end_year-start_year+1); 

Kp_delta = NaN(size,end_year-start_year+1); 

 

temp1 = 0; 

all = 106283; 

for number = 1:all; 

   filename = strcat('NOAA_GHCND_TAVG/',char(stations(number))); 

   load(filename); 

   if number == 43375; 

       S = S(2273:end,:); 

   end 

   n=numel(S(:,4)); 

   if n > 0; 

       years = S(n,1)-S(1,1)+1; 

       S = new_cleaning(Q,S); 

        if S(1,1) <= limit1; 

           if and(and(years >= minimum,years <= maximum),and(n/365.25 

>= minimum,n/365.25 <= maximum)); 

               temp1 = temp1+1; 

               for i = 1:12; 

                   pos = ismember(S(:,2),i); 

                   m(i,1) = nanmean(S(pos,4)); %monthly average 

                   m(i,2) = nanvar(S(pos,4)); %monthly variance 

                   S(pos,4) = (S(pos,4)-m(i,1))/sqrt(m(i,2)); %monthly 

standardization 

               end 

               clear point1; clear point2; clear x; clear y; 

               for j = 1:years-29 %number of distinct 30-year periods 

                   point1 = min(round(1+(j-1)*365.25),n-10957); %start 

point of 30-year period 

                   point2 = min(point1+10957,n); %end point of 30-year 

period 

                   pos = S(point1,1)-(start_year-1); 

                   

[Kp_alpha(temp1,pos),Kp_beta(temp1,pos),Kp_gamma(temp1,pos),Kp_delta(te

mp1,pos)] = K_calc_2(S(point1:point2,:),tail); 

               end 

           end 

        end 

   end 

end 

 

y_alpha = new_organize(Kp_alpha,end_year-start_year+1); 

y_beta = new_organize(Kp_beta,end_year-start_year+1); 
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y_gamma = new_organize(Kp_gamma,end_year-start_year+1); 

y_delta = new_organize(Kp_delta,end_year-start_year+1); 

 

years = [start_year:1:end_year]; 

figure(1) 

hold on; grid on; 

plot(years,y_alpha(1,:)); 

plot(years,y_alpha(2,:)); 

plot(years,y_alpha(3,:)); 

xlim([1881 1988]); 

title('T_1_ = 4.95 years'); 

xlabel('Start of 30 year period'); 

legend('75th percentile','50th percentile','25th percentile') 

hold off 

figure(2) 

hold on; grid on; 

plot(years,y_beta(1,:)); 

plot(years,y_beta(2,:)); 

plot(years,y_beta(3,:)); 

xlim([1881 1988]); 

title('T_2_ = 16.49 years'); 

xlabel('Start of 30 year period'); 

legend('75th percentile','50th percentile','25th percentile') 

hold off 

figure(3) 

hold on; grid on; 

plot(years,y_gamma(1,:)); 

plot(years,y_gamma(2,:)); 

plot(years,y_gamma(3,:)); 

xlim([1881 1988]); 

title('T_3_ = 32.98 years'); 

xlabel('Start of 30 year period'); 

legend('75th percentile','50th percentile','25th percentile') 

hold off 

figure(4) 

hold on; grid on; 

plot(years,y_delta(1,:)); 

plot(years,y_delta(2,:)); 

plot(years,y_delta(3,:)); 

xlim([1881 1988]); 

title('T_4_ = 49.47 years'); 

xlabel('Start of 30 year period'); 

legend('75th percentile','50th percentile','25th percentile') 

hold off 

 

Function 1: Calculation of unbiased K-moments 

function [Kappa1,Kappa2,Kappa3,Kappa4] = K_calc(T,tail) 

  
for i = 1:12; 
    pos = ismember(T(:,2),i); 
    m(i,1) = nanmean(T(pos,4)); %monthly average 
    m(i,2) = nanvar(T(pos,4)); %monthly variance 
    T(pos,4) = (T(pos,4)-m(i,1))/sqrt(m(i,2)); %monthly standardization 
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end 
Ts = T(:,4); 
if tail == 1 %Upper tail 
    Ts = sort(Ts,'ascend'); %Sort in ascending order 
else         %Lower tail 
    Ts = sort(Ts,'descend'); %Sort in descending order 
end 
n = numel(Ts); %actual length of time series 
temp2 = 0; 
telos = min([max(find(Ts==max(Ts), 1, 'first'),find(Ts==min(Ts), 1, 

'first')) n]); 
for p = [1096 3653 7305 telos] 
    stath = log(p)+gammaln(telos-p+1)-log(telos)-gammaln(telos); 
    clear term; 
    for i = 1:telos; 
        if i >= p 
            term(i) = exp(stath+gammaln(i)-gammaln(i-p+1))*Ts(i); 
        else 
            term(i) = 0; 
        end 
    end 
    temp2 = temp2+1; 
    Kp(temp2) = nansum(term); 
end 

  
if abs(Kp(1)) >= 0.5; 
    Kappa1 = Kp(1); 
else 
    Kappa1 = NaN; 
end 
if abs(Kp(2)) >= 0.5; 
    Kappa2 = Kp(2); 
else 
    Kappa2 = NaN; 
end 
if abs(Kp(3)) >= 1; 
    Kappa3 = Kp(3); 
else 
    Kappa3 = NaN; 
end 
if abs(Kp(4)) >= 1; 
    Kappa4 = Kp(4); 
else 
    Kappa4 = NaN; 
end 

 

Function 2: Removal of flagged values 

% removes flagged values 
for i=1:length(S(:,4)); 
    if strcmp(Q(i,2),' ') ~= 1; 
        S(i,4) = NaN; 
    end 
end 
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Sout = S; 
end 

 

Function 3: Calculation of the climacogram for each timeseries 

CCl=NaN(numel(k),1); 
for I=1:numel(k); 
    C=S;  
    F=factor(k(I)); 
    if k(I)<50; 
        for J=1:numel(F); 
            if F(J)<=17; 
                A=zeros(numel(C)+F(J)-1,F(J)); 
                for L=1:F(J); 
                    A(L:end+L-F(J),L)=C; 
                end 
                B=nansum(A,2)/F(J); 
                C=B(F(J):F(J):end-F(J)+1); 
            else NN=numel(C); 
                A=zeros(floor(NN/F(J)),1); 
                for L=1:floor(NN/F(J)); 
                    A(L,1)=nansum(C(F(J)*(L-1)+1:F(J)*L,1))/F(J); 
                end; 
                C=A; 
            end 
        end 
    else 
        NN=numel(S); 
        A=zeros(floor(NN/k(I)),1); 
        for L=1:floor(NN/k(I)); 
            A(L,1)=nansum(S(k(I)*(L-1)+1:k(I)*L,1))/k(I); 
        end; 
        C=A; 
    end 
    CCl(I,:)=[nanvar(C)]; 
end 

 

Function 4: Production of synthetic timeseries 

%This is a Matlab script powered by Panayiotis Dimitriadis 

(https://scholar.google.gr/citations?user=L6hWcz0AAAAJ&hl=en) 
%based on the analysis of (https://www.itia.ntua.gr/el/docinfo/1656/) 
%P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis 

approximating any process dependence and distribution, Stochastic 

Environmental Research & Risk Assessment, 32 (6), 1493–1515, 

doi:10.1007/s00477-018-1540-2, 2018. for the stochastic simulation of a 

series with long-range dependence (HK model) by preserving explicitly 

(i.e. in a direct way without including transformations) the first four 

central moments of the target marginal distribution or of the sample 

series 

 
function [S]=SMA4_HK(Sm,Sv,Ss,Sk,H,N) 
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l=Sv; NA=N; MA=(1:NA)'; 
Ac=sqrt(2*gamma(2*H+1)*sin(pi*H)*l/(((gamma(H+1.5))^2)*(1+sin(pi*H))))*

(((abs([0;MA]+1)).^(H+0.5)+(abs([0;MA]-1)).^(H+0.5))/2-

(abs([0;MA])).^(H+0.5)); %Averaged Process (Kouts, 2015) 
SA=[Ac(1+N:-1:2)' Ac(1) Ac(2:N+1)']; Vm=0; Vv=1; 
Vs=Ss*((Ac(1)^2+2*sum(Ac(2:NA+1).^2)).^(3/2))/(Ac(1)^3+2*sum(Ac(2:NA+1)

.^3)); 
if Sk~=3; 
SUM=0; for I=2:NA; SUM=SUM+(Ac(I)^2)*sum(Ac(I+1:NA+1).^2); end 
Vk=abs(((((Ac(1)^2+2*sum(Ac(2:NA+1).^2)).^2)*Sk)-6*sum(Ac(2:NA+1).^4)-

12*(Ac(1)^2)*sum(Ac(2:NA+1).^2)-

24*SUM)/(Ac(1)^4+2*sum(Ac(2:NA+1).^4))); 
else 
Vk=3; 
end 
if (Ss==0)&&(Sk==3); 
CW=1; a=Vm; b=Vv; c=0; d=0; 
else 
if (Vk-5/3*(Vs)^2-3<=0); 
CW=2; 
KKF=@(x) [Vs-(2*(abs(x(2))*beta(1+1/abs(x(1)),abs(x(2))))^3-

3*abs(x(2))*beta(1+1/abs(x(1)),abs(x(2)))*abs(x(2))*beta(1+2/abs(x(1)),

abs(x(2)))+abs(x(2))*beta(1+3/abs(x(1)),abs(x(2))))/(abs(x(2))*beta(1+2

/abs(x(1)),abs(x(2)))-(abs(x(2))*beta(1+1/abs(x(1)),abs(x(2))))^2)^1.5; 
Vk-(-

3*(abs(x(2))*beta(1+1/abs(x(1)),abs(x(2))))^4+6*(abs(x(2))*beta(1+2/abs

(x(1)),abs(x(2))))*(abs(x(2))*beta(1+1/abs(x(1)),abs(x(2))))^2-

4*abs(x(2))*beta(1+1/abs(x(1)),abs(x(2)))*abs(x(2))*beta(1+3/abs(x(1)),

abs(x(2)))+abs(x(2))*beta(1+4/abs(x(1)),abs(x(2))))/(abs(x(2))*beta(1+2

/abs(x(1)),abs(x(2)))-(abs(x(2))*beta(1+1/abs(x(1)),abs(x(2))))^2)^2]; 
opt=optimset('Display','off'); warning('off','all'); 

[KKF,~]=fsolve(KKF,[1 10^2],opt); 
a=abs(KKF(1)); b=abs(KKF(2)); d=sqrt(Vv/(b*beta(1+2/a,b)-

(b*beta(1+1/a,b))^2)); c=Vm-b*d*beta(1+1/a,b); 
else 
CW=3; 
c=sqrt(3/Vv/(Vk-5/3*(Vs)^2-3)); 
b=(c^2)*Vs*sqrt(Vv)/3; 
d=(c^3)*Vv/(b^2+c^2); 
a=Vm-b*d/c; 
end 
end 
if CW==1; V=norminv(rand(N+2*NA,1),a,sqrt(b)); end 
if CW==2; V=d*(1-(1-rand(N+2*NA,1)).^(1/b)).^(1/a)+c; end 
if CW==3; 
V1=norminv(rand(N+2*NA,1),0,1); V2=V1.^2; V3=d/c+V2/2/c^2-

sqrt(4*V2*d/c+(V2/c).^2)/2/c; V4=rand(N+2*NA,1); 
Z=V3; Z(V4>1./(1+V3*c/d))=((d/c)^2)./V3(V4>1./(1+V3*c/d)); 
V=a+b*Z+sqrt(Z).*norminv(rand(N+2*NA,1),0,1); 
end 
S=zeros(N,1); if H~=0.5; for J=1:N; S(J,1)=SA*V(J:2*NA+J,1); end; else 

S=V(1:NA,1); end 
S=S/sqrt(l)*sqrt(Sv)+Sm; 

 


