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Abstract

Land surface air temperature is one of the most important hydroclimatic variables, and its
extremes are of paramount importance. For this reason, it is imperative not only to know
the exact shape of the temperature tails, but also their temporal evolution. The aim of this
work is to investigate the stochastic behavior of land surface air temperature using
Knowable (K-)moments. K-moments were chosen for this study, as they enable reliable
estimation from samples and effective description of high order statistics, useful for
marginal and joint distributions of stochastic processes. Multiple timeseries of the
average, maximum and minimum air temperature are standardized with respect to the
monthly variability of each record. We generate segments of the whole timeseries using
consecutive rolling 30-year periods, from which we extract extreme values corresponding
to four specific return period levels. Furthermore, timeseries of each air temperature
variable (average, maximum and minimum) are used as input to an aggregated
Climacogram, for deriving the Hurst parameter, through optimization of the parameters
of a hybrid Hurst-Kolmogorov and Markov model. The Hurst parameter is later employed
in a Monte Carlo simulation to produce synthetic records of similar stochastic properties
through the Symmetric Moving Average (SMA) scheme. The synthetic records produced
are processed in a similar manner as the observed, in order to compare them. Furthermore,
the longest single records for each air temperature variable are selected and compared to

the ensemble of observations, as well as the synthetic records.

Key words: Stochastics; Air temperature; Extreme temperature; Temperature tails;
Standardized records; Symmetric Moving Average; Climacogram; Hurst-Kolmogorov

behavior; Monte-Carlo simulation.

eoe






Exktevic NMepiAnyn / Extended Abstract in Greek

Elcaywyn

H Bepuokpaoia Bewpeital pia amno Tig o onUoVILKEG USPOUETEWPOAOYLIKEG LETABANTEG,
Kal pall pe tTn BpoxOmMTwon UMOPEL var XOpaKTNPLOEL OE LKAVOTIONTIKO BaBuod to KAlpa
Hilag meploxng. Tig TeAeuTaieg SeKAETIEG, N KALLOTIKN aAAQyr KoL OL ETUMTWOELG TNG TOCO
otov avBpwro 600 Kal oTo PuoLKO TEPLBAANOV £XOUV KATOOTEL ONUAVTLIKA {NTALOTO OTO
TIOALTLKO, OLKOVOMULKO KOl EMLOTNMOVLKO Tedio. E€attiag TG TpwIdTNTAG TWV UTIOSOUWY,
KaBwg emiong koL oAOKANPOU TOU CUOTHMOTOC CUYKOULONG KoLl Epmopiou Tpodipwy Katl
EVEPYELAG, UIKPEG SLATAPOXEC O TOAU €UOONTEC KALUATIKEG OUVONKEG Umopel va
TIPOKAAECOUV ONUAVTIKA TipoPARuata. M’ autd Ttov AOyo elval EMITAKTIKO va
KOTAVONOOUE, OXL HOVo TNV €€€ALEN tnNC HEong Bepuokpaociag otnv emidavela tng ng,
OAAQ KOl TNG €AAXLOTNG KOl HEYLOTNG. 2TO EMLOTNUOVIKO emimedo, emPalietal va

KatavooU e €va MpoPAnua, tplv emibobol e o€ mpoonabeleg eMiAUGCNC TOU.

H katavonon tng e€€€AEnG tng Bepuokpaciag otnv emiddvela tng ng, o Opoug
KATAVOUNG, €lval emiong BondnTiki oTnV MPOCTIABELA LAG VO OVAYVWPLOOUE Ta BaCIKA
altia TG KALLATIKAG aAAaynG, KOl av, KOl LLE TIOLO TPOTO, UIMOPOUUE VO LETPLACOULE TLG
OUVETIELEC TNG, LE OKOTIO TNV KAAUTEPN IPOCOpPUOYN Hag. YIIdpxouv TIOAAOL GUVTEAEDTEG
TOU KALHQTOG, TOOO £0WTEPLKOL, 600 Kol e€wteplkol. H eowtepikr) peTaBAntoOTNTA TOU
KAlpatog meplAapBavel mapdyovieg OMwG N UETAPANTOTNTA ATUOODALPAG-WKEAVOU
(Brown et al., 2015; Hasselmann, 1976), kaBwg emniong kot T emdpAacels tng froodalpag
HEOW TWV KUKAWV TOU VEPOU Kal Tou dvBpaka. ZToug e€wyeveic mapdyovieg Aappdavovtal
ur’ oPv ta agpta tou Beppoknmiou (Cronin, 2010), oL TpoXLAKEC METAPOAEC, N NALOKN
Spaotnplotnta kol n ndatotelakn Spaotnplotnta HeTaty AAwv. O EVIOTIOMOC TWV
okplBwv petafolwv tng Bepuokpaciag otnv emdpavela ¢ Mg, o cuvduaouo UE
SlemoTnUoVIKN TIPoogyyion, 6a cuUPBAAEL OTNV AMOKPUTITOYPADNON TWV UNXOVIOUWV

Tou KAtlpatog tn¢ Mne.



O oKOTIOG TNC TapoUoag SUTAWMOTLIKAG EPYOOLOC EIVAL VO EVTOTILOOULLE TN XPOVLKNA EEEALEN
TWV YEYOVOTWV oKpaiwv Beppokpaclwyv otnv emipavela tnG NG, O OUYKEKPLUEVA
emnineda neplodwv enavadopag, kot vo afLOAOY|COULE EAV OL TIPOKUTITOUCECG UETABOAEC
elval evtog Twv opilwv ToU avapEVOUEVOU o Tn oToxaoTiki Slepyacia mou meplypadel
uia puoikn petaPAntn onwg tn Bepuokpaoia. MNa 1o okomd auto, e€eTAlOUE TILOAVEG
TAOoELG TNG Bepuokpaciag oto mapeABOv Kol To MAPOV, KAl WG OUTEG EVIACCOVTAL OTO

YEVIKOTEPO MAQLOLO TWV MAYKOOULWY KALULATIKWY LETABOAWV.

MOAAQTAEG ETILOTNOVLIKEG LEAETEC €XxOUV Oel€el OTL N HEon Bepuokpacia Tou MAavhTh
€xeL auénBel onuavtika katd tov 200 alwva. 20pdwva Pe tnv 5n Avadopd Anotipnong
Tou IPCC (2018), n dekaetia 2009-2018 ntav Bepuotepn katd 0.93 + 0.07 °C o€ cUyKpLOoN
HE TNV mpoflounxavikr Bepuokpacia Baong (1850-1900). MapoAo Tou UTAPXEL Wi
amokAivouoa ouumepldopd HETAED TWV OOTIKWV KOl QYPOTIKWV HUETEWPOAOYLKWY
uetpnoewv (Peterson et al. 1999), n yeviki taon ¢aivetal va eival avodikr, Onwg

daivetal kat oto oxApa 1.
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Mpadnua 1: MetaBoAEC TOU TAYKOOLOU LECOU OPOU TNG TROLAG Bepokpaciog otny emidavela Tng Mg
(LSAT) cuykpLTikd pe Thv KAyuatoAoyia tou 1961-1990, 6mweg MPOoKUTTEL Ao TLG TEAEUTALEG EKEOOELG
tecodpwv dtadopetikwy Bacswv dedopévwy (Berkeley, CRUTEM, GHCN and GISS) | Mnyn: Stocker et al.
(2013)
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OL £pEUVEC, TIOU €XOUV YIVEL yLO TN HEYLOTN Kal TNV eAdxLotn Beppokpacia Seixvouv OTL N
eh\dylotn Beppokpaocia Telvel va aufAvetal He ypnyopotepo pubuod am’ OtTL n UEyLoTn
Bepuokpaoia. AmotéAeopa autig TG SLadopEeTIKAG cUUTEPLPOPAC Elval TO NUEPHOLO
€UPOG TNG BepuoKpOOIlaC VO HELWVETAL OTIC TIEPLOCOTEPEC TEPLOXEG TOU TAQVATN.
JUuyKekpléva, Katd toug Easterling et al. (1997) n nuepnowa Stakvpovon TNg

Bepuokpaoiag petwvetal pe pubuod 0.1 °C/dekaetia.

EvtouTtolg, oL peAéteg tng Bepuokpaciag tng Mg mou €XouV YIVEL HEXPL OTLYUARG €XOUV
napaleiPel va AaBouv urt’ oYLy TNV yyevn €MoxLKN HeTaBANTOTNTA TNG BEpUoOKpaCiag,
n omola Suvatal va cupnepAndBel HEow TNG TUTIOTIOINONG TWV NUEPHOLWYV Kataypadwyv
NG Bepuokpaociog oe oxEon e TOV avTioToL o UNva. Z€ AUTA TNV €peuva BewpnoapE TNV
ETOXIKN METOPANTOTNTA OVATIOOTIACOTO KOUMUATL TNG MEAETNG TNG Oepuokpaociag,
aneUnMAEkovTag Ta anoteAéoparta anod onotadnnote pepoAnia, mou mBavov emEpxeTal

QMo EMOWPEVEC, OTATLOTLKA AOHMOVTES, KATAYPADEC.

ErutAéov, kavape xprion tTwv K-pomwv, oL omoieg eivatl dlaitepa eVPWOTEG TNV UEAETN
akpaiwv dedopévwy (Koutsoyiannis, 2020). Eva amod ta onUOVTIKOTEPQ TTAEOVEKTALOTA
TOUG €lval OTL elval YWWOTEG, UE AUEPOANTITEG EKTIUATPLEG, TwV omoiwv N afefalotnta
EKTIUNONG elval TAelg peyEBOUC MIKPOTEPN amod TIG KAAOOIKEC poméc. EmutAéov, ot
EKTIUATPLEG Hmopouv va AdBouv urt’ ov omoladnmote undpyxouvoa doun e€daptnong,
EVW, EMLONG, LITOPOUV VA TOUG VTLOTOLXIOOUHE APEDA TTIEPLOSOUC eEmavadopAc, OTIWG Kal

otn xprion order statistics.

Ztoeia Oswplag

Qoawopuevo Hurst

KAlpatikég kot ubpoAoyLkeg Slepyaoieg, Omwe n Bepuokpacia Tou aépa, n Bpoxomtwaon
kKat n efatpion ouxva efetalovtol w¢ OTACLUEC OTOXOOTIKEG Slepyaoieg Slakpltol
Xxpovou. Eotw X; pia diepyaocia pe i = 1,2,3, ... va SnAwvel dtakpttd xpovo (onwg PEPES).
Eniong, éotw ot éxel uéon A u = E[X;], autoouvdiakbpavon y; = cov[Xl-XHj] KoL
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QUTOOUOXETION  pj = corr[Xl-XHj] =Y¥j/Ye, Omouv j=0,%1,%2,43,.. . Eav

unoBéooupe § va eival n KAlpoka xpovou mou pag evliadépel, tote o Oeiktng i

QVOTIOPLOTA TO OUVEXEG peoo-Sldotnua xpovou [(i — 1)6,i6]. Eotw kS pia kAipoka

XpOvou peyaAvtepn amd tn §, omou k eival Betikdg aképalo¢. H ouvabpolopévn

OTOXaOTIKN Slepyacio o€ autn tn xpovikn KAlpaka cupoAiletal pe Zi(k) Kal elval lon pe:
ik

7® = Z X, (1)
1=(i-1)k+1

ATO QUTOV TOV 0PLOUO, €lval eUKOAO va cuvdAyoupue otLyla k = 1, Zl.(l) =X;,ywak =2,
Zﬁz) =X; +X,, ZZ(Z) = X3 + X,, K.0.K.. OL OTATIOTIKEG LOLOTNTEG TNG Zi(k) UTopoUV va
e€axBolv amod autég tng dadikaoiog X;. Na mapadelypa, n péon (QVOPEVOUEVN) TIUN

umnopet va Bpebei wc:

k
E[Zf )] = ku (2)
€VWw N SlakVuAVON KAl N QUTOCUCYXETLON ATO TIG OXEOELG:

k (+Dk
Y]-(k) = COV[Zi(k)'Zi(g'] - z z Ym-1, J=0,£1,%£2,%3, ... (3)

I=1 m=j-k+!

O Hurst NTav 0 MPWTIOG TOU AVAKAAUWYE TNV HAKPOXPOVIA EUHOVH) OTLG PUOLKEG
Slepyaoieg (1951), evroutolg, o Kolmogorov (1940) rjTav o mpwTtoc Tou TNV nepLéypaye
HoOnuatikd, étav peAetoloe auTO-OUoLEG Slepyaoieg o TupBwdn media (Koutsoyiannis,
2011). Aut n ouumepipopa (dnAadny n tdon uPnilwv 1N XOUNAWV TUWV va
ouoowpeLOVTOL O WEYAAEG XPOVIKEC KAlHaKeG) elval yvwot wg dawvouevo Hurst,
ouuneptpopa Hurst-Kolmogorov (HK), ) Suvapikr Hurst-Kolmogorov (HK) (Mandelbrot,
1983; Koutsoyiannis, 2011). Mia otoxaotikr Stepyacia pe cupnepidpopad HK eivat emiong
yvwoty cav Slepyaocia Hurst-Kolmogorov 1 kAaopatikog Gaussian 66pufog (fGn).
Qotooo o fGn mpolmoBétel OtL 0 BOPUPOC €xEL KavoVLIKN Katavour (Gaussian), KATL TO

omoio &ev oxvel mavta. O fGn umopel va oplotel oe Slakpltd xpovo (mou eival Kal to
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{ntoluevo oOTNV TOpouca e€pyacia) HE TPOMO TOAPOUOLO HE TOV OUVEXH XPOVO.

JuyKeKpLpéva, o fGn opiletal wg pia diepyaoia, mou tkavomolel TV akoAouBn cuvOnkn:

(@ -) = (5) (2 - ) @

n omnola epapuoleTal Hovo oe (MEMEPACUEVWY SLOOTACEWVY KOLvN) Katavoun. H eivatl pia
Betkny otaBepd (0 < H < 1) yvwotA kot wg cuvteheotng Hurst. H g€iowon woxVeL ya
KaOe aképata TR Twv i Kot j (Me TN otaocwotnta tng Siepyaciag va eival
TiPOoAMALTOUEVO) Kol KABe Xpovikr KAipaka k kat [ (Koutsoyiannis, 2002). Emopévwg, yla

i =j =1=1npokomnteL otL:

Vo(k) — kZHVO (5)

KAwwakoypapua

To kKAwpakoypappa (Cg) mpoépxetal amo Tig AEEELg «KALHAEY Kal «ypappa» Kot lval éva
Slodlaotato ypadnua tng TUTkng amokAtong SD(k) Tng péong cuvabpolopEvng OELPAG
™¢ Tuxaiag petaPAnTic Z otov Katakopudo afova kot tng cuvabpolopévng KAlpakag k

oto opLlovtio afova (Koutsoyiannis, 2010):

1 uk
2= > 7 (6)
i=(u-1k

OToU oL PETaPANTEG Z Kal Z,, avaraplotolv To tuxaio nedio evéladépovtog kal To LECO
ouvaBpolopévo medio avrtiotolya, evw u eival to Stdvuopa-Seiktng tou mediou, mou

Seiyvel tnv votépnon, 6nAadn tn B€on oto nedio.

To KALLOKOYPOUUO XPNOLLOTIOLEITAL YLl TOV EVTOTILOUO HOKPOXPOVIWV UETABOAWY Hiag
Slepyaociag kat tnv eppovh (7 €€aptnon) mou auth Umopel va mapouctdlel. Auth n
EUMOVNA UTIOPEL Vo ToooTikomoLnBel péow tou cuvteleotn Hurst, o omolog pmopsl va
e€ayxOel amo TNV KALoN TOU KALLOKOYPAUUATOG e AoyaplOuikoug agoveg (H=1-kAion). Mo
TIHEG O<H<0.5 n Siepyaoia eivat avtiéppovn, evw yla 0.5<H<1 givat éppovn (o ocuvning
ouuneplpopa vy Puolkég Slepyaoieg) kat yia H=0.5 n Siepyaocio eival mANpwg

aouoxEtotn (Aeukog B6pufog).



Y€ KATIOLEG TIEPUTTWOELG, TTAPON’ auTa, (0w Kal oTnVv mapovoa pyacia) n mpooapuoyn
piog euBelag ypapUnRg oto KAMOKOYypappa yla tnv e€aywyn tT¢ KAlong, kot apa tng
TOoOoTLKOTIOlNONG TNG EUMHOVAG Sev elval n BEATLoTN AUON, AOyw TNG TBAvV g amokALoNng
TOU KALLOKOYPAUUATOG Qmd TNV TPOCAPUOCHEVN «looduvaun» guBeia ylo HEYAAEC
KAlMOKEG. Ta To AOYyOo QUTO, Xpnoldomoljoape €va iong PBaputntag ocuvduacuod
Stepyaouwv Hurst-Kolmogorov kat Markov, e OKOTO TN LEYLOTOTONGN TNG TAPAYWYNAG
EVTPOTILAC, TOOO OTLC LLKPEG, OO0 KAl OTLG LEYAAEG XPOVLIKEG KAlpMaKkeC (Koutsoyiannis et

al., 2018).

H e€lowaon tou povtélou elvat:

H-1 — e~¥a
V(k)=%(1+(k/a)2M) " +,f (1—1 ke ) (7)
: /a /a

omou H, M kalL a elvat oL Tpelg ave€aptnteg mapapetpol kot A gival pia efaptnuévn
TIAPAUETPOG, TIOU TPOKUTITEL Ao TNV €¢lowaon Tou PoviéAou yla KAlpoka k = 1. Ot

napapetpol H kat M eival ppayuéveg amo 1o 0 Kalto 1, evw n mMapAUETPOG a eivat BeTik.

K-porég

Ag urtoBeoou e OTLN X glval pio 0TOXOOTIKA HETOBANTA KA Xq,X5, ..., Xp ElVaL QVTIYPADQ
NG, ave€apTnTa KoL OpoLa KaTavenuéva, anoteAwvtag eva Seiyua. To LéEyLoTo OAwV, TO

ormolo tauTileTal LE TO pOoTO OTOXAOTLKO, eival €’ oplopoL:

X(py *= Max (X1, Xp, .. , Xp) (8)
Eav F(x) eival n ouvdptnon katavoung tng x kat f(x) elvat n ouvaptnon mukvotnNTag

TuBavoTNTOG, TOTE OL AVILOTOLKEG CUVAPTIOELG TNG X(p) ElVAL:

-1
FP(x) = (F)?, fP0) =pf)(F@®)’ (©)

OToU N MPWTN €lval To ywouevo p spdavicewv tng F(x) (mou Sikatoloyeitat and tnv

umOBeon ave€ApTNTNC Kl OPOLAG KOTOVON TOUG), evw N SeUTepn £lval n mapaywyog tne

F® (x) wc mpoc x.



Mo v ggaywyn twv K-(knowable, énAadn yvwotwv) portwv oe uPnAn duvaun p, He
OKOTIO TOV OPLOPO TNG PNG POTIRG, VP WVOURE Tov 0po (x — u) oe xaunAdtepn duvaun
q<p KoL ywa@ Toug UToAeutdpevoug ToOAAamAaclaotikolg o6pous  (p —q),
avtikadbiotolpe to (x — ) pe (2F(x) — 1), omou F(x) eival n ouvaptnon KoTovoung.
Auto odnyet otov akdAouBo oplopd g kevtpkng K-pomng taéng (p, q) (Koutsoyiannis,

2019):

p-q q
Kpq=(@—q+DE[(2F(x) -1)" "(x-n)’] p=2q (10
Avtiotolxa, n pn-kevrpikn K-pomn ta&ng (p, q) opiletal (Koutsoyiannis, 2019):

K'pg=@—-q+1E [(F(g))p_q &q], p=q (11)
Ol TIOGOTNTEC (F(g))p_q kav (2F(x) — 1)p_q EKTLLWVTAL artd éva Seiypa, xwpic ™
Xpnon Twv OUVAHEWV TOU X, KAvVOVTaC £TOL TNV EKTipnon ToAU 1o aflomotn.
ZUYKEKPLUEVQ, yla TO {00TO otolxelo tou belypatog x(;) MeyEBoug n, Tafvounuévo oe
avgouca oelpd, ot F (x(;)) kat (2F (x(;)) — 1) umoloyifovran we:

Plxe) =5, 2F(xp) -1 =22 (12)

naipvovtag tipég ota Staotiuata [0,1] kat [-1,1], avtiotowa, avedpTnTa OO TG TLUEG
NG X(;). EMOMEVWG, OL eKTLUATPLEG TwV K-poTtwv eiva:

n

-, p—q+1 i—1\P 71
K'pq = n z<n—1> E(qi) (13)

=1

n

iy p—q+1 2i —n—1\P1 .
Kpq = o Z( 1 > (X — )1 (14)
i=1

Nepiodot emavadopac

Onwg elval katavontd, n xpnon twv order statistics €xel oNUAVTIKA TAEOVEKTHATA
€VavTlL GAAWV OTATIOTIKWY €PYOAEiwY O0TO TMAALOLO TWV TEPLOSdWV emavadopdc, Kabwg
ETLONC KL OTNV AVTLOTOLXLoON Miag EEXWPLOTAG TIUNE CUVAPTNONG KOTOVOUNC O KAOE pia
oo autéC. Autd Tuxaivel va loxUel kal pe TG K-pomég, kabwg eival dppnkta
ouvdedepévec pe ta order statistics.

Xi



M'evika@, n mepiodog emavadopdc pnopet va ekppactel anod tn oxéon:

T(K’pl)
—5 = Ayp

omou D elval n xpovikn avadopd yla tTnv mpodlaypadr tng nepLtodou enavadopag Kot

(15)

Ap glval evag CUVTEAECTIG TTOU YEVIKA EEOPTATAL OO TNV CUVAPTNON KATAVOUAG KA TV
Taén p.
O akpBrig oplopdg toud, eivar (Koutsoyiannis, 2019):

1
A, =
P op(1-FK',D))

EMeldeL avaAutiking AUong, pia akplBng oxéon Hetagl tou p kal tou T €xeL kaBlepwOel

(16)

HEOW TNG €KTEAEONG aplOUNTIKWY UToAoylopwv yla Stddopeg Tég tou p. H pkpn
Slakupaven tou A, pe to p umopel va umoAoyloTel MOAU kaAd €dv eival yWwoTég ol
ELOIKEG TILEG TwV Ag KAl Ag. H TLun tou Ay umtoloyiletat moAU UKo, adoU TIPAKTIKA
Tautiletal pe tnv epiodo enavadopag TnG LECNG TLUNAC:

1 T
1-F@uw D

Ay (16)

ErmutAéov, oe éva mMANB0C¢ ouvnNOLOPEVWY KATAVOUWY, ELIKA OIUTEG TIOU OVI|KOUV OTLC
Extreme Value Type 1 katavopég, 1o A, €xel otabepr Twn, aveédptntn amd tnv

katavoun. Onwg anédeiée kal o Koutsoyiannis (2019), n Ty autn eivat:

A =e¥ =1.781 (17)

omnou y eivat n otaBepd Euler—Mascheroni.
Mo tov UTOAOYLOUO Tou A, XPNOLUOTOLE(TOL N TOPAKATW OXEON, N omoia eival
LKOVOTIOLNTLKA LA TLG TIEPLOCOTEPEG KATAVOUEG:
1
Ap ~ Ay + (Al - Aoo)_ (18)
p
AUTO cuVETAYETAL Yia YPOUULKY oX€on LETAEL TNG tepLodou emavadopdc T kal Tng taéng

p:
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T(K’pl)
D

Mo TNV KOWVOVIKI KATAVOI, TTOU TPOOEYYi{el KAAUTEPA TNV KATOVON TNG TPAYUATIKAG

=pA, = Aep + (A1 — A) (19)

Bepuokpaoiag otnv emipavela TNG NG, oL TPOOEYYLOTIKEG TIUEG Twv Ay Kal Ay. €lval:

A, =2 kAt Ay, = e /2 = 1.649.

Asdopéva

H GHCN (Global Historical Climatology Network)-Daily eivat n Baon 6edouévwv mou
XPNOLUoTooape ota mMAaiola TnG mapovoag UEAETNG. Mep\apBAVEL XpOVOOELPEG Ao
MANBwpa UETEWPOAOYIKWY oToOuwv amd OAo tov koopo. lNa tn Bepuokpaocia,
nephappavel dedopéva and 106.283 otabuoug ano 180 SdtadopeTikeég xwpPeS. TGoo TO
UNKOC TwV Kataypadwyv, 000 KoL Ol KOAUTITOUEVEC XPOVLIKEG Ttepiodol, Stadépouv amo
otaBuo og oTabuo, To CUVOALKO UNRKOG TWV Omolwv Uropet va Eemepva kal ta 175 €.
Ao OAa Ta KaTaysypappéva PeyEDN mou meplhapPAavovtol oTn CUYKEKPLUEVN Baon
6ebopévwy, epelc efetacape tn HEoN, HEYLOTN KoL eAaylotn Bepuokpacia otnv

emupavela tng Ing.

Ta &edopéva mou xpnolpomolcape umoPAnBnkav o€ TOAUAPLOUOUG TIOLOTIKOUC
eAéyxouc, Tooo amno tnv EBvikn Yrninpeoia Atpoodaipag kat Qkeavwyv (NOAA) twv H.M.A.,
n omoia Siatnpei tn Bacn, 600 kalL and €uds. Ol AUTOUATOTIOLNUEVOL EAEYXOL, TOU
SlevepynOnkav amnd tn NOAA, odrynoav otnv €MOHUAVON TWV TIPORANUATIKWY TLULWV
Twv xpovooelpwv (flagging). Ztov mivaka 1, mou akoAouBel dpaivovtal oL eMONUAVOELS,

TIoU TIOAVWG UTINPXOV OTLC XPOVOOELPEC TNG BEPUOKPACLOG, TIC OTIOLEC XPNOLUOTIOLCALE.

a Toug oKomoU ¢ TNG MOPOoU oG EPYACiaC, XPNOLUOTIOLOAUE LOVO TLG N ETILONUAOUEVEC
TIUEG TWV XPOVOOELPpWV (UE KeEVA eyypadn otn B€on tn¢ emonpavong), kabwg BewprOnke
OTL OTOLASATOTE QMO TI TOPATIAVW EMIONUAVOELC UTOSNAwvVE TPOPANUA oTnVv

kataypadn T mpayuatikng Oepuokpaciag.
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EmAé€ape xpovooelpEC oTaBUWY, Ol OTIOLEG ElxavV CNUELO EKKIVNONC TTPOYEVECTEPO TOU
1935, kabwg auto emétpePe v e€aywyn mapanavw amnd 50 SladoxIKEG KUALOUEVEC
TPLOKOVTAETIEG. MAPOAO TTOU AUTOC O TIEPLOPLOUOC KATECTNOE TO SEYUA TWV XPOVOCELPWV
oadwWC TMEPLOPLOPEVO, EVTOUTOLG, HOG ETMETPEYPE VA OVAYVWPLOOUUE OE PEYAAEG XPOVIKEG
KALLOKEG poTiBa eppovng. Autdo bev Ba ntav duvatd He tn xpnon &vog Slapkwg

HeTaBaiAopevou delypatog BpaxUBLwy XPOVOOELPWV.

Ané Ttov mpoavadepBEvia TEPLOPLOUO, O TEAKA XPNOLLOTIOLOUUEVOSC apLlOUOG

XPOVOOELPWV yla KABe péyebog eivat:
e [la tn HeAETN TG HEONG Beppokpaciag: 245 XpOVOOELPEG
e [0 TN HEAETN TNG HEYLOTNG Bepuokpaaiag: 5,006 XpOVOOELPEC

e [ tn peAéTn TG eAaxlotng Beppokpaciog: 5,006 XpovooeLpEG

Me0BobdoAoyia

H ueBodoloyia, mou akoloubBrioape vyl KABE TAPAUETPO TNG EMPOAVELOKAG
Bepuokpaoiag, ouvoiletal oto akoAoubo Siaypappa pong. AnAadn, ot elKoVI{OUEVEG

EVEPYELEG EyLlvav EEXWPLOTA YLa TN LEDN, TN HEYLOTN KoL TNV EAdxLoTn Beppokpaocia.
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Mpadnua 2: AldypapLpa porG EPYONCLWV YLa KABE TapAUETPO (UEn, LEYLOTN, EAAXLOTN) TNG Bepuokpaaciag

Ta otddla mou akoAouBroape otnv PHEAETN TNG cupmepldopdg TnG Bepuokpaciag otnv
empavela tng 'ng os maykoopLa kKAipako cuvoyilovral oto ypadnua 2 mou mponyeital.
AtileL va avadepbei, otL ta Brpata ou daivovtal oto ypadpnua, emavalindbnkav yia
KAOe pia amod TG Tpelg LeTaPANTEG TNG Beppokpaciag, SnAadn tn YEan, TN HEYLOTN Kal

™V eAdLOTN.

210 MPWTO 0TAdL0, KateBdcape OAa ta anapaitnta dedouéva, o€ nUepRoLa KALLaKa, Ao
™ Baon GHCNDA, ota omoia Kavape EKKaOAPLoN, YLO VO OTIOLOVWOOU HE TLG XPOVOOELPEC
mou Ba e€eTAlaUE TEPALTEPW. TN CUVEXELA TUTIOTIOLCAE TLG XPOVOOELPEC, UE BAon Tov

unva tng kabe eyypadng ylo TOV EKACTOTE METEWPOAOYLIKO otabud. Metd tnv
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tumonoinon, Pplokoviag ta XPOVIKA Opla TtnNG KABe XPOVOOELPAG, OTOUOVWOOE

OUVEXOUEVEC KUALOUEVEG TPLAKOVTOETLEG.

MNa KABe TPLOKOVTIAETIO, XPNOLUOTOLOAUE TIC OUEPOANTITEC EKTIUATPLEG TWV HN-
KEVTPLKWV K-poTiwV, WOTE 0€ CUYKEKPLUEVA eMineda MepLOdwV emavadopdc, ToU EiXaE
TPoeTIAEEEL, va BpoUpe TOo UéyeBog Twv enelcodiwv vPnANg f xaunAng avtiotolya
Bepuokpaoiag. Anod 1o oUVOAO Twv SeSOUEVWY AUTWY, TIOU amokTnOnkav amod Kabe
XPOVOOELPQ, Kal yla KaBe péyebog, eTAEEQIE CUYKEKPLUEVOL EKOTOOTNUOPLA, TA OTola
KOl QTEKOVioOpE Ot ypadnuata, o oUYKPLON ME Tn XpovoAoyia €vapéng twv

QVTIOTOLXWV KUALOUEVWV TPLOKOVTAETLWV.

MNapdAAnAa, OUWC, HE TNV €EETOON TWV TIPAYHUATIKWY XPOVOOELPWY, €EETACOUE TN
OTOXQOTIK) S0OUR TOUG, LE OKOMO TNV TMOPOywyH OUVOETIKWV XPOVOOELpwV. AUTO
ETUTEVXONKE PLECW TOU CUVAOPOLOUEVOU KALUAKOYPAUHOTOC. JUYKEKPLUEVA, UETA TNV
Tumonoinon OAwvV TWV TPAYUATIKWY XPOVOOELPWY, UTIOAOYIOQUE TIC TIMEC TOU
KALLOKOYpAupatog anod tnv kKAipaka k=1 péxpt k=n/10, 6mou n To HAKOG TNG EKACTOTE
XPOVOOELPAG. TN OUVEXELX, UTIOAOYlOQUE TOV HECO OpO TWV TWHWV TwWV
KALLOKOYPOAUUATWY yLa TTANB0C KALLAKWY (00 UE TN HECN TN TNG LEYLOTNG KALHakag. Me
0UTO TOV TPOTO, SNULOUPYNCAUE VO CUVOOPOLOUEVO KALLAKOYPOAULO, TIOU EUTEPLELXE

TNV OTOXAOTLKA CUUTEPLPOPA TNG BEpUOKPATLAG OAWY TWV XPOVOCELPWV.

Ito ouvaBpolopévo  KAlpakoypapupo edpoappocape 1o UPPLOIKO povtéAo  Hurst-
Kolmogorov kat Markov, To onolio gixe tpelc avefaptnteg mapapérpoug (H, M kat a) kat
pio e€aptnuévn (A). Emedn o avaAuTIKOG UTIOAOYLOUOG TWV TIHWV TWV OVEEAPTNTWV
uetapAntwyv  kpiBnke OSUokoAog, emAEXBnke n  TEXVIKA TNC PeATiotomnmoinonc.
ZUYKEKPLUEVQ, Xpnolpomotioape tov GRG2-Nonlinear kot tov e€eAKTIKO aAyoplOuo, mou
ipoodEPETaL 0TO TTAKETO “Solver” tou umoAoylotikou dpuANou “Microsoft Office Excel”,
LLE OKOTIO TNV €AOXLOTOTIONGCN TOU HECOU TETPAywWVIKOU odpaApatog (RMSE) petafl twv

BeWpPNTIKWY KAl TWV TTPAYHUATIKWY TILWV TOU CUVABPOLOUEVOU KALLOKOYPAMUATOG.

O ouvteAeotr¢ Hurst, mou mpoékuPe amo to KALLaKOypappa (yio KOs pio amo Tig TpeLg
TIAPAUETPOUC TNG BEpOKpaTiag) XpnoLpomnotiinke, ylo va TpodoSoTHOEL TNV apaywyn
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OUVOETIKWV XPOVOOELPWV HE XPHON TOU HOVIEAOU OCUUUETPLKOU KUALOUEVOU HECOU
(SMA). NMépa amod tov ocuvteheotr) Hurst, loaydyope 0TO HOVTEAO TIG TECOEPLG TIPWTEG
KAQLOOLKEG POTIEC TNG KAOE XPOVOOELPAC, KOL TO KAKOG TNG, TO omoio to AdaBape (oo pe tov

HEYLOTO UAKOG TWV XPOVOOELPWV.

AtileL va avadepbel OTL yla UTIOAOYLOTIKN) OLKOVOULa, aAAd Kal embiwen NG HEYLOTNG
duvatng petafAnTOTNTOC TOU CUVOETIKOU SelylaTOq TWV XPOVOOELPpWY, ETAEEQUE Va
TmapAafoupe 245 OUVOETIKEG XPOVOOELPEC e Xprion Tou povtéAou SMA yla kaBe éva amo
Ta tplar peyédn tng OBepupokpaciog (péon, Héylotn, eldaxiotn). Ma va yivel Opwg
OUEPOANTITA 1N €AoYyl TWV XPOVOOELPWV-60TWV TwV OTATIOTIKWYV  HEYEBwVY
SnuoupynBnke éva Bpdyxog Tuxaiag mpoomnélaong, omou Slalefe pe TuXaio TPOTO TOUG

otaBuoug, Twv omolwv oL 4 MPWTECG POTIEG XPNOLUomoL)OnKav.

2TO ONUELO AUTO, TIOU ELXAUE TIOPALEL TIC OUVOETIKEG XPOVOOELPEC, aAKOAOUBNROAUE TNV
dla aAAnAouxia epyactwy, yLo ToV UTTOAOYLOUO TwV K-pomwv o€ oUyKeKpLUEVA emimeda

neplodwv enavadopdag, Ta onoia Kal aneKOViocapE o Slaypapparta.

Oswpnoape eniong xpnoLo, and 6Aoucg Toug oTabpoUc, TOUG OTOLOUG AVTILETWTICAE
oav oUVOAO, VO QITOUOVWOOUE TOUG HaKpOBLOTEPOUG, KAl VO ATTOTUTIWOOUUE TN SLKNA
ToUuG oupmepldopd oTn SLAPKELA TOU XPOVOU, YLl va EEETAICOUE LE TIOLOV TPOTIO AuTOoL oL
otaBuol tautilovtal | OxL UE TO OUVOAO TwV oTaBuwv. O HOoKPOPBLOTEPOG OTABUOG
kataypadnc tng néong Bepuokpaciag Atav ¢ Ayiag MetpoumoAng otn Pwola pe 136
Xpovia Kataypodwv, evw Kataypadrng téoo TnG HEYLOTNG, OCO KAl TNG €AAXLOTNG,

Bepuokpaciag Atav oto Mldvo tng ItaAiag pe 146 xpovia kataypadwv.

AnoteAéopata

Ta anoteAéopata ¢ €peVVAg pag daivovtal ota akoAouba Staypdppata. Me ypaupEC
HOUPOU XPWHATOG £XOUV OXESLOOTEL T ypOPrHATA TWV TTAPATNPNHEVWV XPOVOOELPWY,
EVW HE UMAE XPpWMO, Ta ypadAuoTo TwWV OUVOETIKWV XPOVOoEelpwv. TEAOG, oL
UEUOVWUEVEC YPAUUEC HOUPOU Xpwpoto¢ ota ypadrnuata 11-14 aviiotolouv o€
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neplodo Asttoupylag TwV HEUOVWHEVWY OTOOUWY TOU TaUTIlETAL UE TO CUVOAO TWV
TIOPOTNPAOEWY, EVW HE KOKKLVN OLUKEKOUUEVN YPOUUA, OTEKOVIIETOL TO XPOVIKO

SlaoTnua Tou ponyeital Twv UTIOAOUTWY APATNPHOEWV.

Start of 30 year period

Return period (years)

Ipadnua 3: Emdvw oupd tng mapatnpnuévng Héong Oepuokpaciog
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4.6

4.8

Start of 30 year period
Retur period (years)

Ipadnua 6: KAtw oupd tn¢ mapatnpnuévng eAaxLotng Bepuokpaciag

Start of 30 year period

Return period (years)

padnua 7: Emavw oupad Tng oUVOETIKAG LEonG Bepuokpaaciag
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4.2

4.4
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Start of 30 year period
Return period (vears)

Mpadnua 8: Katw oupd tng cUVOETIKAG HEonG Oepokpaciog

Start of 30 year period

Return period (years)

Mpadnua 9: EmMavw oupd TNG CUVBETIKAG HéyLoTng Beppokpaciag
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Start of 30 year period

Return period (years)

Mpadnua 10: Katw oupd tng cuVOETIKNAG eAdxLotng Beppokpaaciag

Start of 30 year period
Retum period (years)

padnua 11: Emdvw oupd tTnG péong Beppokpaciog (otabudc: Aylag Netpoumoln, Pwola)
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Start of 30 year period

Return period (years)

Mpadnua 14: Katw oupd tng eAdxiotng Oeppokpaciog (otabuog: Mavo, Itaiia)

Tuunepaopato

Me Bdon Ta AnmoTEAECUATA TIOU TIPOKUTITOUV Ao TN HEAETN TNG MAPATNPNHUEVNG HEONC
Bepuokpaciag TPOKUTITEL OTL N EMAVW OUPA Telvel va auénBel og maxog, evw n KATw oupa
telvel va AemtUvel. Emeldn, opwg, ol PeTafoAEég auteg daivetal va eival ioeg og OAa ta
enineda Twv nepPLOdwv enavadopag, n Hetafoln paAlov odelletol o€ PETATOTILON TNG
HEONG TWWAG TNG Katavoung (mpog ta mavw) kot oxt oe petaPfoAn tng diaomopdg. H
mapotnpnuUévn Léylotn Bepuokpaoia epudavilel oupd, n omoia ¢ailvetal va MTAPAPEVEL
OXETLKA OPETABANTN OTO XPOVO, KAl PAALOTA Ta TEAEUTAL XPOVLIA (OWG KOl VO AETTTallVEL
ehadpd. H KATw oupd tTnG €AAXLOTNG Mapatnpnuevng Bepuokpaciag sudaviletal va
TapapEVEL oTabepn, HEXPL mepimou tn dekaetia tou 1990 (6nAadn tplaKkovIasTiag, mou
gekwvouv tn Sekaetia tou 1960), aA\d petd spdaviletal vo ASTTTALVEL ONUOVTIKA OE O\

Ta enineda neplodwv enavadopds. H PETATOMION QUTH, OMWC KAl OTNV TIEPLITTWON TNG
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mapatnpenUéVNS Heong Beppokpaciog paAlov odeiletal oe PeTOBOAN TNG MECNC TIUNAC

Kalt OXL TNG SLaoTopdg TNG KATAVOUAG.

Amo ta ypadnpaTa TwV OUPWV TWV CUVOETIKWY XPOVOooElpwv KataAaBaivoupe OtL, OTIC
TIEPLOOOTEPEC TEPUTTWOELG, N CUMTEPLPOPA TWV OUPWV €ival PECA OTA TAALOLO TWV
OVOUEVOUEVWY peToBoAwv. Onwe daivetal amd ta ypadipoto TwV OCUVOETIKWY
XPOVOOELPWYV, TOGO N €€EALEN TNG MEONG TG, 00O KAl TO €UPOC TwV SUO aKpaAlwv
ekatootnuopiwv ¢aivetal va tautilovtal pe ta mapoatnpnuéva dedopéva. Movadikni
e€aipeon amoteAel n KATW oupd TG LEONG BepUOKPACLAC, N Omola oTa MapATNPNUEVA
debopéva dpaivetal va eival mo xovipn art’ 0Tl ota cUVOETIKA Sedopéva. AUt onuaivel
OTL KOO KOL TO LOVTEAO TOU SLOHAEEQUE yLla TNV EKTIUNON TOU ouvteAeotr Hurst Kal To
HoVTEAO SMA yLa TNV avamapaywyr tng OTOXAOTIKAG cupnepldopag, eV NTAV OPKETA,

ylaL VOl OTTIELKOVIOOUV PEAALOTLIKA TN CUYKEKPLUEVN cupnepldopd.

Ol UEUOVWHEVEG XPOVOOELPEC TwV HaKpoPlotepwv otabuwv eudavidouv pio tdon
B€puavong, Onwe autr petadpaletal anod tnv avénaon Tou MAX0oUC TNG TAVW 0UPAC KOl
N Helwon TNG KATW oupag. Auto miBavov odeiletal og yewypadikn pepoAnia, pLag ko
oL 8Uo otabuol Bplokovtal otnv Eupwrn, 1) TNV ACTIKOTOLNON TWV U0 AUTWV TTOAEWYV, O
TANBUOUOC TWV omolwv (Kal KaT €MEKTOON N OLOTLKA XPon yng) €xet moAAamAacLaoTel

otn Sldpkela TnG mepLddou kataypadns Twv BEPUOKPACLWV.
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1. Introduction

1.1 Research scope

The aim of the present diploma thesis is to identify the temporal evolution of the extreme
land surface air temperature events, at specific return period levels, and to evaluate if
such variations are within the expected inherent fluctuations of a stochastic process
representing a natural process like temperature. In this respect, we investigate possible
past and current trends of land surface air temperature, and how these are related within

the context of global climate variations.

Over the last decades, climate change and its effects on both humans and the natural
world have emerged to be at the forefront of political, financial and scientific agendas. Due
to the vulnerability of human infrastructure, as well as the entire system of food and
energy harvesting and logistics chain, slight disturbances in very delicate climatic
conditions can cause severe disruptions. That is why it is imperative to understand, not
only the trend of the average land surface air temperature, but also the evolution of the
maximum and minimum land surface air temperature. In the scientific level, we need to be

able to understand the problem, before attempting to mitigate, let alone solve it.

The understanding of the evolution of air temperature, in terms of distribution, is also
beneficial in helping us identify the major factors of climate change, and if, and how, we
will be able to moderate its effect, in order for us to better adapt. There are numerous
causes of climate change, both internal and external. The internal variability of the climate
includes factors like ocean-atmosphere variability (Brown et al., 2015; Hasselmann, 1976)
as well the effects of the biosphere through the carbon and water cycles. In the external
forcing mechanisms, we take into account greenhouse gases (Cronin, 2010), orbital
variations, solar output and volcanic activity among others. Identifying the exact changes
of the air temperature, together with an interdisciplinary approach, will facilitate the

deciphering of how the Earth’s climate works.
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1.2 State-of-the-art

The vast majority of scientific studies of the land surface air temperature has focused on
the evolution of the average (arithmetic mean) temperature, while the maximum and
minimum temperature have remained largely out of the spotlight. As shown by Peterson
et al. (1999) and Peterson and Vose (1997), there is slightly diverging behavior of the
average air temperature among the rural and urban meteorological records. While there
is little difference in the long-term (1880 to 1998) rural (0.70 °C/century) and full set of
station temperature trends (actually less at 0.65 °C/century), more recent data (1951 to
1989) do suggest a slight disparity in the rural (0.80 °C/century) and full set of station
trends (0.92 °C/century). More recent independently produced instrumental datasets
confirm that the 2009-2018 decade was 0.93 = 0.07 °C warmer compared to the pre-
industrial baseline (1850-1900) (IPCC, 2018). Overall, the trend seems to be increasing

in both cases.

In addition, multiple studies (Lawrimore et al., 2011; Hansen et al., 2010; Jones et al,
2012; Rohde et al., 2013a), which have accounted for urban impact, have used additional
station series and newly homogenized versions of many individual record stations, attest
to the increase of the land surface air temperature, particularly after 1900. Global average

land surface air temperature has increased substantially, as shown in the figure 1.1.
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Figure 1.1 Global annual average land-surface air temperature (LSAT) anomalies relative to a 1961-1990
climatology from the latest versions of four different data sets (Berkeley, CRUTEM, GHCN and GISS) |
Source: Stocker et al. (2013)

Since the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate
Change (Trenberth et al., 2007) many theoretical challenges of the veracity of global land
surface air temperature records have arisen (Pielke et al., 2007). Globally, different
methods have been used to evaluate such claims, such as sub-sampling (Parker et al.,
2009; Jones et al., 2012) and the creation of an entirely new and structurally complete
products (Rohde et al., 2013b). None of these have yielded significant variations of the
global land surface air temperature records. Further controversy has arisen over the siting
quality of weather stations, especially in the United States, which does not correspond to
the WMO suggestions and may be expected to suffer potentially large siting-induced
absolute biases (Fall et al., 2011). However, it has been pointed out by numerous studies
(Menne et al., 2010; Williams et al., 2012) that any such bias has been probably caused by
replacement of Stevenson’s screens with maximum minimum temperature recorders

rather than siting.

As for the maximum and minimum land surface air temperature, as reported in the Second
Assessment Report (SAR) of the Intergovernmental Panel on Climate Change (1995) and
later updated by Easterling et al. (1997), the daily minimum temperature has increased

faster than the daily maximum temperature. This has caused a decrease in the diurnal
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temperature range (DTR) in many parts of the world. In the relatively narrow time window
between 1950 and 1993, the overall global trend for the maximum temperature appears
to be approximately 0.1 °C/decade, while the minimum temperature increases at a rate
of 0.2 °C/decade Thus the DTR is decreasing by about 0.1 °C/decade (Easterling et al.,
1997). Further studies include different trend estimates (—0.04 = 0.01 °C per decade over
1950-2011 (Rohde et al., 2013b) and —0.066 °C per decade over 1950-2004 (Vose et
al., 2005)), which are much smaller than the smallest estimated global mean average land
surface air temperature trend over 1951-2012, which is 0.175 + 0.029 °C (Rohde et al.,
2013b).
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Figure 1.2 Trends in annual diurnal temperature range (DTR, °C/decade), from 1950 to 1993, for non-
urban stations only, updated from Easterling et al. (1997). Decreases are in blue and increases in red. |

Source: Folland et al. (2001)

What the aforementioned studies have omitted to take into account, however, is the
inherent seasonal variability of the land surface air temperature, which can only be taken
into account be standardizing the record values with respect to their specific season. As
presented by Lindzen (2010) winter daily temperature in the arctic has a much greater

variability (often as large as 20 °C) than the summer daily, thus the increase most
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researchers find in the minimum temperature in these areas may be within the boundaries
of natural variability. By not regarding the inter-seasonal variability into account and
focusing, instead, solely on the average air temperature is inconsistent with the scientific

intuition and may be misleading.

In the present study we consider the inter-seasonal variability of the air temperature to
be an integral part of the expected trend, thus releasing ourselves from any bias imposed

by persistent slightly increased, yet normal, temperature recordings.

Furthermore, in the present study we introduce the concept and make use of K-moments,
which have several advantages, compared to both classical and L-moments, and are
particularly strong for an extreme-oriented modelling (Koutsoyiannis, 2020). The

following three properties are highlighted:

1. They are knowable with unbiased estimators for high orders, up to the sample size
n, while the estimation uncertainty is by orders of magnitude lower than in the
classical moments.

2. The estimators can explicitly (albeit approximately) take into account any existing
dependence structure.

3. The K-moment values, can be directly assigned return periods, through A
coefficients, similar to happens with order statistics, but with some advantages

over the latter.

1.3 Work structure
The thesis is structured into eight distinct chapters, all of whom are sorted in a way similar

to the line of reasoning required for the understanding of the objective.

In this first chapter we introduce a preamble to the subject, as well as the research

objectives and the points that differentiate it from similar state-of-the-art research.
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In the second chapter we provide some insight of the importance of land surface air
temperature, as well as lay out the prime factors of climate variations, on which increased
scientific importance has been given. We also present a brief historical overview of the

instruments used for recording air temperature.

In the third chapter we make an extensive presentation of the basic theoretical tools used,
as well as the rudimentary mathematical and statistics theory behind it. As part of it we
also explain all the information required for the understanding of the methodology and
procedures followed, including the very nature of stochastic processes and its

quantification introduced by Hurst.

In the fourth chapter we introduce a concise presentation of the computational tools
used for the purpose of this study, namely MathWorks Matlab and Microsoft Office Excel
spreadsheet. To this purpose, we scrutinize all the ready-to-use functions utilized, their

fundamental properties, as well the operation of the software used.

In the fifth chapter we present the database, from which the data studied were
downloaded and the quality checks performed to isolate flagged problematic data entries.
In addition, we explain the qualitative and quantitative criteria with which data were

selected for processing, as well the preliminary data processing of them.

In the sixth chapter we present an extensive overview of the methodology followed. We
explain all the steps of the procedures, both in depth and in relation to the previous and
following steps. Furthermore, we present all the intermediate calculation steps, as well as

the intermediate findings used for the identification of air temperature trends.

In the seventh chapter we present the results of the study of both the observed
temperature records and the synthetic ones produced by the calculation of the Hurst
coefficient and basic moments of the former. Moreover, we present the temporal
evolution of the longest-lived individual instrumental records, with the objective of

comparing them with general trend.
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In the eighth chapter we make an allusion to the methodology followed and present the
major conclusions deduced from the findings, regarding them both individually and
together. In addition, we take a closer look at what these findings mean for the tail of the

surface air temperature and provide suggestions for future research.
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2. Air temperature

2.1 Importance of air temperature
Temperature is a physical quantity measuring the kinetic energy of matter. Temperature
is a widely studied quantity within meteorology, and thermometers exposed to air, but

sheltered from direct solar radiation, are used to record it (Huschke, 1959; Glickman,

2000).

Near-land-surface air temperature, which is measured at meteorological stations at a
typical height of 1.5 or 2m, is one of the most important physical variables used to
evaluate climatic trends in multiple scales, as well as the exchange of thermal energy
between the Earth’s surface and the atmosphere (Prihodko and Goward, 1997). Because
of its paramount importance for a variety of physical processes, such as photosynthesis,
evapotranspiration, and energy flows, land surface air temperature is essential in all land
surface process models, including, but not limited to, climatology and hydrology (Huld et

al., 2006).

Climate change, whether driven by natural or human forcings, can lead to changes in the
likelihood of the occurrence or strength of extreme weather (Seneviratne et al., 2012).
The probability of occurrence of values of a climate or weather variable can be described
by a probability density function (PDF) that for some variables (e.g., temperature) is
shaped similar to a Gaussian curve (Stocker et al., 2013). Since the definition of extreme
events varies, it is important to identify the evolution of the whole distribution of land
surface air temperature, because changes in the mean or variance have a profound impact
on extreme weather. The figure 2.1 depicts the changes likely to happen form some

probable changes in the mean and variance of air temperature.

In agricultural areas, where there is a strong, yet volatile, mixing of hot and cold air masses,
such as in the Mediterranean, slight changes in the extreme occurrence may have impact

of paramount importance to the food supply of many countries, including those which
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receive exports of the region. In addition, a change of the extremes’ magnitude will
inadvertently alter the definition of norm as well. Heatwaves and winter storms may have
a different meaning for the people of the future, since their very definition relies upon the
probability of happening.

Temperature
(a) Increase in mean

Fewer cold extremes - More hot extremes

Cold Average Hot

Temperature
(b) Increase in variance .---.

More cold extremes ., More hot extremes

Cold Average Hot

Temperature
(c) Increase in mean and variance

More/Fewer cold exlrem’és More hot extremes

Cold Average Hot

Figure 2.1 Schematic representations of the probability density function of daily temperature, which tends
to be approximately Gaussian. Dashed lines represent a previous distribution and solid lines a changed
distribution. The probability of occurrence, or frequencies of extremes are affected by changes (a) in the
mean, (b) in the variance or shape, and (c) in both the mean and the variance | Source: Stocker et al.

(2013)

2.2 Physical drivers for air temperature changes

Factors affecting the air temperature of an area, as well as the whole planet, include:
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Solar irradiation

The climate of Earth has undergone serious changes during our planet’s lifetime.
Alternating ice ages have shaped, not only the surface of the ground, but have, also,
changed the evolutionary path of many organisms. A major factor of such great changes
is no other than the variations of incoming solar radiation, caused by either change of the
activity of Sun’s magnetic field, or by astronomical factors. Solar radiation, and heated
plasma particles, i.e. solar wind, emitted by the surface of the Sun are the fundamental
drives of our climatic system. Even small variations in solar irradiance can have a profound
impact on Earth’s climate with both regional and global-scale responses (Lean and Rind,

2009).

Despite the correlation between the Sun’s activity and climate change is considered to be
evident, lack of longtime records of solar activity inhibits statistically important research.
For many years, the Earth Climate-Solar Activity relationship belonged to the sphere of
ambiguity. Yet recent space probes’ recordings show that total solar irradiance changes

at multiple time scales, ranging from minutes up to the solar circle.

Due to the ongoing debate of the human interaction with the climate of Earth, more
research has been done in the field of total solar irradiance. In order for the quantification
of the climate change, attributed to human activities, to be precise, first the portion of the
naturally-caused climate change needs to be assessed. One of the most important natural

factors is solar activity.

Climatic models show that the total amount of solar radiation change may be responsible,
to a great degree, for the pre-industrial change of Earth’s air temperature. During the 20t
century. however, the relative influence of solar activity changes to climate change has

been reduced, thus making probable that other, non-natural, factors may alter the climate.

Solar irradiance (SI) is the power per unit area (watt per square meter, W/m?), in the form
of electromagnetic radiation, that is emitted by the Sun, and is recorded by instruments,

according to each instrument wavelength range. Solar irradiance can be measured in space
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or in the Earth’s surface, after atmospheric absorption and scattering, and after
compensating for the inclination of the solar rays in relation to the surface, as well as

atmospheric conditions, like cloud coverage.

SOLAR RESOURCE MAP WORLD BANK GROUP

DIRECT NORMAL IRRADIATION amonns e MESMUAP LARGIS ]

Long-term average of daily/yearly sum
Daily sum: < 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 >
m . kWh/m’
Yearlysum: < 365 730 1095 1461 1826 2191 2556 2922 3287 3652 >

by the World Bank Group. funded by ESMAP. ar ared by Solargis. For v information and te f use, please visit http://globalsolaratlas.info

Figure 2.2 Global map of direct normal irradiation | Source: World Bank Group

El Nifio Southern Oscillation

The El Nifio Southern Oscillation (ENSO) is the strongest climate fluctuation on
interannual time scales and has global impacts, despite originating only from the tropical
Pacific Ocean. Many methods have been used to quantify the severity of El Nifio Southern
Oscillation events, but the Multivariate ENSO Index (MEI) is considered as the most
comprehensive, since it links six different meteorological parameters measured over the

tropical Pacific. (Mazzarella et al., 2013)

Historically El Nifio events occur about every 3 to 7 years and alternate with the opposite

phase of below-average temperature in the eastern tropical Pacific, called La Nifia.
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Variations in the trade winds, atmospheric circulation patterns, precipitation and
associated atmospheric heating cause responses outside of the tropics. Ripple-like
extratropical teleconnections are accompanied by changes in the jet streams and storm
tracks in mid-latitudes (Chang and Fu, 2002). The El Nifio-Southern Oscillation has global
impacts, apparent most vividly in the northern winter months (November—March).
Anomalies in Mean Sea Level Pressure are much greater in the temperate and arctic zones,
while the tropics feature large precipitation variations. Associated patterns of surface
temperature and precipitation anomalies around the globe are given in the following
figure (Trenberth and Caron, 2000), and the evolution of these patterns and links to global

mean temperature disturbances are given by Trenberth et al. (2002).

Darwin Southern Oscillation Index

standard deviations
o
1
1

L. = T L | T 1
1860 1890 1920 1950 1980 2010

Figure 2.3 Correlations with the SOI, based on normalized Tahiti minus Darwin sea level pressures, for
annual (May to April) means for sea level pressure (top left) and surface temperature (top right) for 1958
to 2004, and GPCP precipitation for 1979 to 2003 (bottom left), updated from Trenberth and Caron
(2000). The Darwin-based SOI, in normalized units of standard deviation, from 1866 to 2005 (Kénnen et
al., 1998; lower right) features monthly values with an 11-point low-pass filter, which effectively removes
fluctuations with periods of less than eight months (Trenberth, 1984). The smooth black curve shows
decadal variations. Red values indicate positive sea level pressure anomalies at Darwin and thus El Nifio

conditions. | Source: Trenberth et al. (2007)
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Suspended particles

Although suspended particles constitute only a small fraction of our atmosphere, they
have a great influence on it. They scatter and absorb solar radiation, while also alter the
dynamics of the clouds. Because of their great spatiotemporal variations, the study of
suspended particles is rendered extremely important for the understanding of the

mechanisms behind the physics of the atmosphere.

Suspended particles are solid or liquid particles of the atmosphere, without be constrained
to a specific of chemical composition. Their size varies between 10 nm and 100 pm. They
originate from either natural processes (like desert sand, sea salt or volcanic ash), or
human activities (such as fossil fuel burning). In urban areas, where there are multiple

human activities emitting particles, it is easy to discern their increased concentration.

Presence of suspended particles is mostly limited to the lower layers of the atmosphere,
due to the fact that most of their sources are on the surface of the planet. Almost 80%
of their total mass is found within 1 km from the surface. However, natural processes like
volcanic eruptions may cause suspended particles to transcend the lower layers and
infiltrate the upper layers. Atmospheric suspended particles affect the Earth’s climate by
changing the amount of incoming solar radiation and outgoing infrared radiation retained.
This occurs through a wide variety of mechanisms, which have been categorized into direct

and indirect (Haywood and Boucher, 2000; Twomey, 1977)

The direct aerosol effect includes any direct interaction between radiation and suspended
particles, such as absorption and scattering. It affects both short (UV) and longwave
(infrared) radiation to produce a net negative equilibrium, meaning more energy gets

trapped on Earth than escapes it (Charlson et al., 1992)

Indirect effects of suspended particles include their influence on the radiation balance and
hydrology through their effect on cloud microphysical processes (first indirect effect) and
amount (second indirect effect). There is a semi-direct effect as well, in which the heating

by aerosol particles, because of the absorption of solar radiation, results in a decrease of
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cloud amount. The indirect effect is a significant source of uncertainty for climatologists,
due to the complexity and number of the atmospheric interactions involved, as well as the

wide range of scales in which these interactions occur (Fan et al., 2009)

Aerosol Optical Depth 2007-2011

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 2.4 NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Terra aerosol optical depth
at 550nm. Average (arithmetic mean) data of period 2007-01 to 2011-12. | Source: Acker and Leptoukh
(2007)

Greenhouse gases

The greenhouse effect is the natural process by which outgoing radiation from a planet’s
surface gets trapped by the planet’s atmosphere, and, through re-emitting as heat, warms
the planet’s surface to a temperature above what it would be without the atmosphere

(Claussen et al., 2001).

Relatively active gases (i.e. greenhouse gases or GHG) absorb and emit radiate energy
within the thermal infrared range. Part of this emitted radiation heads toward the surface,

leading to its warming (Vaclav, 2003). The intensity of this downward radiation depends
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on both the atmosphere’s temperature, as well as the concentration of greenhouse gases
that it contains. To understand the scale of their effect, it is worth noting that if the
greenhouse gases had not been present in the Earth’s atmosphere, the average
temperature of the planet would be about -18 °C, rather than the present 15 °C (Le Treut
et al.,, 2007).

The contribution of each gas to the greenhouse effect relies upon its abundance, its
characteristics and any possible indirect effect it may have. For instance, in a period of 20
years, a mass of methane is about 84 times more potent than carbon dioxide in trapping

outgoing infrared radiation.
In order, the most abundant greenhouse gases in Earth’s atmosphere are:

e Water vapor (H,0)

e Carbon dioxide (CO,)

e Methane (CH,)

e Ozone (0s)

e Chlorofluorocarbons (CFCs)
e Hydrofluorocarbons (HFCs)

The most effective greenhouse gases in the atmosphere, are (Kiehl and Trenberth, 1997):

Table 2.1 Effectiveness of greenhouse gases

Chemical
Compound Contribution
formula
Water vapor H20 36-72%
Carbon dioxide CO; 9-26%
Methane CH. 4-9%
Ozone (O] 3-7%
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The precipitable water over the globe, which basically is the water vapor, has been
fluctuating with lowest values during the 1980s and highest values during the 1950s and
2010s (Koutsoyiannis, 2018). Thus, the estimation of its exact contribution to the

greenhouse effect at each specific time is extremely precarious.

Radiative forcing (or climate forcing) is the difference between insolation (sunlight)
absorbed by the Earth’s atmosphere and energy radiated back to space (Shindell, 2013).
The factors that cause alterations to the Earth's complex climate system changing Earth's
radiative balance, forcing temperatures to rise or fall, are called climate forcings. For the
past 100-150 years concentration of greenhouse gases, and consequently global radiative

forcing, have been steadily increasing, causing much concern to the scientific community.

As presented in the following graph (figure 2.5), from 1979 to 2018, the global radiative
forcing has increased from about 0.67 W/m? to about 1.07 W/m?. Data for the creation

of the graph were derived from the NOAA Annual Greenhouse Gas Index (AGGI).
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Figure 2.5 Global Radiative Forcing for the period 1979-2018 | Source: Butler and Montzka (2011)
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Despite the greater emphasis given to greenhouse gases emitted by nature, as well as
humans (such as carbon dioxide), water vapors account for the largest portion of the
greenhouse effect. Water vapor concentration fluctuates regionally, but human activities
are extremely difficult to directly affect them, except for large-scale operations, such as
extended-area irrigated fields. Indirectly, however, if human activities do cause an increase
of global temperatures, then water vapor concentrations are likely to increase, in a process

known as “water vapor feedback” (Held and Soden, 2000).

2.3 Instrumental air temperature recording

The land surface air temperature is measured at meteorological observatories and
weather stations, either manned or automatic, with the latter being the most common.
Usually thermometers used to record the temperature are enclosed in a shelter to prevent
either precipitation or direct heat radiation to tamper the real air temperature recording.
According to the setup suggested by the World Meteorological Organization (WMO), the

thermometers ought to be positioned 1.2 to 2 m above the surface.

A popular, yet increasingly obsolete, instrument of measuring air temperature is
Stevenson screen, a standardized well-ventilated instrument shelter. The screen consists
of a white-painted box, with louvres in all its vertical sides to enable ventilation, a
ventilated floor and upper part and an air space between an inner and an outer roof. The
innovative protecting layout of Stevenson screen enables the unobstructed flow of air
through the louvres, without adulterating the results with influences such as direct solar
radiation, as well as radiation emitted from surrounding objects (Allaby, 2019). Scottish
civil engineer Thomas Stevenson (1818-1887) invented the homonym screen, which can

be seen in the figure 2.6.

51



Double roof with lid
keeps out rain

= —e—— ' White paint - , —T=
g B € reduces heat -
; : Y| absorption H
Door  — — ; —
faces F>——— i Louvres E .
south — allow air to — —
circulate — 1:1 elative
Py >~ Humidity
; g - RH) probe
'Resistance i (RH) p
temperature
device' (RTD) |
thermometer
1.2 m from ~—
thermometer
to ground

Figure 2.6 Stevenson screen | Source: Allaby (2019)

Since the advent of technology slowly takes over the temperature instrument area,
Stevenson screen is replaced by more standardized and automated instruments, such as
automatic weather stations. An automatic weather station (AWS) is defined as a
“meteorological station at which observations are made and transmitted automatically”
(WMO, 1992). The automatic weather station (AWS) is similar in function with the
traditional weather station, with the difference that no human work is required for its
operation. Major reasons for adopting AWS are human labor saving and the potential of

measuring in remote or inhospitable areas.

In an automatic weather station, the instrument (including temperature) measurements
are read out or received by a central data-acquisition unit. The data collected by the
autonomous measuring devices can be processed either locally at the AWS or elsewhere,
for example, at the central processor of the network (WMO, 2010a). Automatic weather
stations may be designed as an integrated concept of various measuring devices in

combination with the data-acquisition and processing units. Such a combined system of
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instruments, interfaces and processing and transmission units is usually called an
automated weather observing system (AWOS) or automated surface observing system
(ASOS). It has become common practice to refer to such a system as an AWS, although

it is not a “station” fully in line with the stated definition.

Automatic weather stations are used in order to expand the pool of instrumental
measurements available to scientists, while also increasing the reliability of surface

measurements. They achieve this for the following reasons (WMO, 2008):

e Densification of an existing network increases available data, by including data
from new sites and from sites that are difficult to access;

e AWS are able to supply, for manned stations, data outside the normal working
hours;

e Use of sophisticated technology and modern, digital measurement techniques
increase the reliability of measurements;

e Preservation of the homogeneity of networks by standardizing the measuring
techniques;

e Satisfying new observational needs and requirements;

e Reduction of human errors, since all procedures are automated,;

e Reduction of the number of observers, thus lowering the cost of operation;

e Measuring and reporting with high frequency or even continuously.

Automatic weather stations fulfill many different needs, ranging from a simple aid-to-the
observer, at already manned stations, to complete replacement of observers at fully
automatic stations. According to the respective functions, it is possible to classify
automatic weather stations into not very easily distinguishable groups. A general criterion
for the classification is the ability to provide recorded data in real time or post hoc. The
need for real-time transmission of data depends on the necessity of data analysis (WMO,

2008).

The two most fundamentally different categories of AWS are (WMO, 2008):
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e Real-time AWS: Stations providing data to users of meteorological observations
in real time, typically at programmed times, but also in emergency conditions or
upon external request. Typical real-time use of an AWS is the provision of synoptic
data and the monitoring of critical warning states such as storms and river or tide
levels.

e Off-line AWS: Stations recording data on site on internal or external data storage
devices possibly combined with a display of actual data. The intervention of an
observer is required to send stored data to the remote data user. Typical stations

are climatological and simple aid-to-the-observer stations.

Since the cost of AWSs can be substantial, the stations’ facilities can also be used to
satisfy the common and specific needs and requirements of several applications, like
synoptic, aeronautical and agricultural meteorology, hydrology and climatology. They may
also be used for special purposes, such as nuclear power safety, air and water quality, and
road meteorology. Some automatic weather stations, therefore, transcend the boundaries

of these categories and are actually multipurpose automatic weather stations.

It is very often that an AWS forms part of a network of meteorological stations, each
transmitting its recorded and processed data to a central network processing unit by
various data transmission means (WMO, 2008). As the tasks to be executed by this
central system are strongly related, and often complementary, to the tasks of the AWSs,
the functional and technical requirements of both the central system and the AWSs
should be very well coordinated, in order to avoid faulty or incomprehensible from the

main system measurements.

The time period for which reliable temperature instrumental records exist is generally
considered to begin around 1830-1850. Earlier records do exist, but their limited
availability, sparse coverage and less standardized instrument calibration renders them

problematic for most scientific applications.

Satellite temperature measurements are also used to assess the temperature changes

both in local and in global scale. However, weather satellites do not measure temperature
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directly, but rather radiances in various wavelength bands. When measuring the land
surface air temperature, the influence of stratospheric contamination on the radiance
emitted by the surface may alter the recorded data. Because of this, land-based
instrumental records are used to calibrate satellite records, in order to use the latter for

|arge scale temperature variations assessment.
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3. Theoretical tools

3.1 Basic statistics

The primary goal of statistics is the evaluation of real-life observations, in order to deduce
generalized conclusions about the physical processes around us. The basic “unit”, on which
it relies is the observation, while the results come from processing the set of observations.
This set is named sample and is basically part of the ensemble of possible observations,

i.e. the population.

In classical statistics, sample size n of a random variable X, with probability density
function f(X) is a sequence of n independent random variables X, X, ..., X, with joint
probability density function f(x), which is defined in the domain 2" =02 X 2 X ...0
(Papoulis, 1990). Each one of the variables X; corresponds to the possible outcomes of a
measurement. Since we are to have one measurement for each variable, we are to have
the sequence x4, x5, ..., X,,, which we call observed sample or observations (Koutsoyiannis,
1997). There must be given great attention in taking a representative sample of the

population, in order to avoid any bias, and consequently a misleading outcome.

Suppose a fixed parameter 0 needs to be estimated. Then estimator is the function that
maps the sample space to a set of sample estimates. The estimator of 0 is denoted by the
symbol f. If X is the random variable, the estimator (itself a random variable) is

symbolized as a function of X; 8(X). The estimate for a particular observation x is 8 (x).

Another important term of statistics, extremely useful in stochastic investigation, is that

of expectation. The expectation of X is defined as:

k
BIX] = ) xipr =10y + 02 + - + X (3.)

i=1
Since all probabilities p; add up to 1 (p; + p, + - + pr = 1), the expected value of the

weighted average, with p;’s being the weights. In the case that all outcomes are
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equiprobable, (ie. p; = p, = - = p, then the weighted average turns into simple

average.

A stochastic process is defined as a collection of random variables defined on a common
probability space (2, F,P), where 2 is a sample space, F is a c-algebra, and P is a
probability measure. The random variables, indexed by some set T, take values in the same
mathematical space S, which has to be measurable with respect to some o-algebra X
(Lamperti, 1977). In other words, for a given probability space ({2, F, P) and a measurable

space (S, ), a stochastic process is a set of S-valued random variables (Florescu, 2014),

ie. {X(t):teT}

In the context of this study, the land surface air temperature evolution is the stochastic
process, and the observations, with which we work, are part of the random variable, whose

estimation is the ultimate goal.

3.2 Hurst phenomenon

Climatic and hydrological processes, such as temperature, rainfall, evaporation, are often
modelled as stationary discrete-time stochastic processes. Let X; be such a process with
i = 1,2,3, ... denoting discrete time (e.g. days). In addition, let its mean be u = E[X;], its
autocovariance y; = COV[XiXi_l_j] and its autocorrelation p; = Corr[Xl-XHj] = yj/yo,

where j = 0,+1,+2,43, ...

If we assume & to be the time scale of interest, then i represents the continuous time
interval [(i — 1)8,i6]. Let k6 be a time scale larger than § where k is a positive integer.
The aggregated stochastic process on that time scale is denoted as Zi(k) and is equal to:
ik
79 = Z X, (3.2)
I=(i-1)k+1
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From this definition, it is easy to deduce that for k = 1, Z(l) X;, for k = 2, Ziz) =
X1+ X5, Zgz) = X3 + X4, etc. The statistical properties of Zl.( ) can be derived from those

of the process X;. For instance, the mean of is found by:

k
E|z{| = ku (3.3)
whilst the variance and autocorrelation can be found by:

k (+Dk
y( ) — cov[Z(k) Zl(g] z Z Ymet, Jj=0,+1,+2,43,.. (3.4)

=1 m=j-k+!
Hurst was the first to discover long-term persistence in natural processes (1951), yet
Kolmogorov (1940) was the first to mathematically describe it, when working on self-
similar processes of turbulent fields (Koutsoyiannis, 2011). This behavior (i.e. the
tendency of low or high values to aggregate in larger time scales) is known as the Hurst
phenomenon, Hurst-Kolmogorov (HK) behavior, or Hurst-Kolmogorov (HK) dynamics
(Mandelbrot, 1983; Koutsoyiannis, 2011). A stochastic process with HK behavior is also
known as Hurst-Kolmogorov process (HKp) or Fractional Gaussian noise (fGn); although
fGn assumes that the noise is Gaussian, which is not always the case. Fractional Gaussian
noise can be defined in discrete time (which is the scope here) in a manner similar to that
used in continuous time. Specifically, FGN can be defined as a process satisfying the

condition:

(7 - ) = (§) (- ) @)

which is applicable only in (finite-dimensional joint) distribution. / is a positive constant
(0 < H < 1) known as Hurst exponent (or coefficient). This equation is valid for any
integer i and j (with the process being stationary as a prerequisite) and any time scale k

and | (Koutsoyiannis, 2002). As a result, for i = j = [ = 1 one obtains:

y9 = k2, (3.6)

Hence, the standard deviation of the aggregate stochastic process is power law of k with

exponent H, which corroborates the observations on real-world cases as described by
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Koutsoyiannis (2002). This extremely simple equation serves as the basis for estimating

H (Montanari et al., 1997).

3.3 Climacogram

The Climacogram (Cg) is an amalgam of the Greek words climax (meaning scale) and gram
(from the word ypdupa meaning letter) and is a two dimensional plot of the standard
deviation SD(k) of the mean-aggregated series of the random variable Z on the vertical

axis, and the aggregated scale k on the horizontal axis (Koutsoyiannis, 2010):

1 uk

k

2, =7 Z Z; (3.7)
i=(u-1)k

where Z and Z,, represent the random field of interest and the mean aggregated field
respectively, while vis the vector index of the field showing the lag; i.e. the location in the

field.

There are multiple definitions of Climacogram (Dimitriadis and Koutsoyiannis, 2015),
depending on the nature of the stochastic process; there is fundamental difference

between continuous and discrete time processes:
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Table 3.1 Climacogram definition and expressions for processes in continuous as well as discrete time, as

well as the properties of the estimator

Type Climacogram

Var [fth x(f)df] _ Var[fomg(f)df]

Continuous y(m) := ) m2
where m € R* and y(0) := Var[x(t)]

- Var[Zﬁk(l-_l)ﬂ &1(4)] _ Var[Zic:l KI(A)]

va" (k) = = = y(kd)
Discrete . . . . .
where k € N is the dimensionless scale for a discrete time
process
1 n (1 ki yn x@ 2
Classical estimator )765“)(]() = _Z _ (Z xl(A)) _i=1%
- n—1 i=1\ k I=k(i-1)+1 n
@)
Expectation of 1-"Ya (n) " ©
classical estimator E [)7(5“) (k)] = 7 Ya yé“)(k)
— 1- /n

The Climacogram is used for the detection of long-term change of a process and the
persistence (or else dependence, clustering) it may present. This persistence can be
effectively quantified through the Hurst coefficient (H). H can usually be derived from the
slope of the Cg in a log-log plot (H=1-slope). For 0<H<0.5 the process is anticorrelated,
for 0.5<H<1 the process is correlated (most common behavior of geophysical processes)
and for H=0.5 the process is purely random (with zero autocorrelation, hence white noise

behavior).

However, in some cases, such as in this study, fitting of straight line in the climacogram
derived from the observed data results in considerable divergence in the area of large
scales. That is why an equally weighted sum of Hybrid Hurst-Kolmogorov and Markov
processes was used to maximize entropy production both at small- and large-time scales

(Koutsoyiannis et al, 2018).
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The equation of the model is:

yi H-1 A 1— —k/a
y00 =5 (1+ &™) ™ + - (1-— (3.8)
/a /a

where H, M and a are the three independent parameters and A is a dependent parameter,

resulting from the value of the climacogram for scale k = 1. The parameters H and M are

bounded between zero and one inclusive, while parameter a is positive.

3.4 K-moments
Classical moments, raw or central, express important theoretical properties of probability
distributions, but cannot be estimated from typical samples for order beyond 2 — cf.

Lombardo et al. (2014): “Just two moments!".

L-moments are better-than classical moments-estimated, but they are all of first order in
terms of the random variable of interest. They enable the characterization of independent
series or inference of the marginal distribution of stochastic processes, but not even the

second order dependence of processes.

For the aforementioned reasons, K-moments were introduced, which combine advantages
of both classical and L-moments. K-moments enable reliable estimation from samples,
and in some cases even more reliable than L-moments. They also describe effectively high
order statistics, which is useful for marginal and joint distributions of stochastic

processes.

Let x be a stochastic variable and x;, x5, ..., X;, be copies of it, independent and identically
distributed, forming a sample. The maximum of all, which is identical to the pth order
stochastic, is by definition:

&(p) ‘= max (11' X2y oot 'zp) (39)

It is readily obtained that if F(x) is the distribution function of x and f(x) its probability

density function, then those of x(,, are:
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F®(x) = F)P, P ) =pf)(F@)" (3.10)

where the former is the product of p instances of F(x) (justified by the independent and
identically distributed assumption), while the latter is the derivative of F(p)(x) with
respect to x. The expected maximum order of p of x, i.e. the expected value of x(;, is

therefore:

Elxgy] = Elmax(as s, - 2)] = pE[(F@) 2] Gan)

It is worth to stress that the variables x;, x,, ..., X,, considered here, are not meant in
temporal succession and, in this respect, do not form a stochastic process, but are rather
regarded to be an ensemble of copies of x. In other words, the possible dependence in

time of a stochastic process is not considered to be prerequisite for the application.

To derive knowable moments for high orders p, in the expectation defining the pth
moment, we raise (x —pu) to a low power g <p and for the remaining (p — q)
multiplicative terms, we replace (x — @) with (ZF(K) - 1), where F(x) is the distribution
function. This leads to the following definition of central K-moment of order (p,q)

(Koutsoyiannis, 2019):

Kpg= (P —q+DE[2F(x) - 1) "(x-n)'], p2q (312

Likewise, the non-central K-moment of order (p, q) is defined (Koutsoyiannis, 2019):

K'ye=(—q+1E [(F(g))p_q 21|, pzq (3.13)

The quantities (F(g))p_q and (ZF(g) - l)p_q are estimated from a sample, without the
use of powers of x, thus making the estimation more reliable. Specifically, for the ith
element of a sample x;) of size n, sorted in ascending order, F(x(;) and (ZF(x(i)) — 1)
are estimated as:

2i—n—-1

(3.14)

Plxw) =17, 2F(xq)—1=

n—1
taking values in [0,1] and [-1,1], respectively, irrespective of the values x;). Hence, the

estimators of K-moments are:
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n

- p—q+1 =1\ |
= 3.15
Kpa =" Z(n—l) 20 319
i=1
n
_ p—gt+lvo2i—n—1\P1 A
i=1

The rationale of the definition is very relatively easy to grasp. Assuming that the
distribution mean is close to the median, so that F(u) = 1/2 (this is precisely true for a
symmetric distribution), the quantity whose expectation is taken from the definition of
the central K-moment of order (p, q) is: A(x) := (ZF(E) — 1)P79(x — u)? and its Taylor

expansion is:
Ax) = QFWP 9 — WP + (0 — (2 W) -

+0((x—w)"

where f(x) is the probability density function of x. Clearly then, K, depends on p,, as

(3.17)

well as on classical moments of x of order higher than p. The independence of K, from
classical moments of order smaller than p is the reason why it is a competent surrogate

of the unknowable y,,.

In addition, as p becomes large, by virtue of the multiplicative term (p —q + 1) in the
q
definition of K-moments, K,, shares similar asymptotic properties with f, /v (the

q
estimate, not the true u, /p). To illustrate this for ¢ = 1 and for independent variables
X;, we consider the variable z, := max;<;<,X; and denote f() and h() the probability

densities of x; and z; respectively. Then (Papoulis, 1990):

h(z) = pf(2)(F(2))P~* (3.18)

and thus, by virtue of the definition of non-central K-moment of order (p, q):

E[zp] = pE[(F(x))P"'x] = K'py (3.19)

On the other hand, for positive x and large p — n,
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(E [Ep])l/p _ (E [(%ijlxi’f’)])l/p
<E I(%manSisn(xlp))l) b (3.20)

n_l/pE[maxmiSn(Ei)] ~ E|zy]

Q

Q

It is also worth noting that the multiplicative term (p — q + 1) in the definitions of central

! . . .
and non-central K, and K',,, makes K-moments generally increasing functions of p.

Furthermore, a pivotal point of K-moments theory is their asymptotic properties of their

estimates. The following rules apply:

In general, as p becomes large approaching n*, estimates of both classical and K
moments, central or non-central, become estimates of expressions involving
extremes such as (maxlsispxl-)qor max;<i<p(x; — n)?. For negatively skewed
distributions these quantities can also involve minimum, instead of maximum
quantities.

For the K-moments, this is consistent with their theoretical definition. For the
classical moments this is an inconsistency.

A common property of both classical and K moments is that symmetrical
distributions have all their odd moments equal to zero.

For unbounded variables, both classical and K moments are non-decreasing
functions of p, separately for odd and even p.

In geophysical processes it is justifiable to assume that the variance u, = y; =
0? = K,, is finite (since an infinite variance would presuppose infinite energy to
materialize, which is absurd). Thus, high order K-moments Ky, will be finite as well,
even if classical moments ,, diverge to infinity beyond a certain p (i.e,, in heavy

tailed distributions).

K-moments have not been constructed in such a way as to be isolated from other

moments, but have an integral relationship with them, which stems from their definition.
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The classical moments can be recovered as a special case of K-moments: M,, =
Kpp. In particular, in uniform distribution, classical and K-moments are
proportional to each other:

K'pqgi=®@—q+ D'y, Kpgi=@—q+ Dy
The probability weighted moments (PWM) can also be recovered from the K-
moments. The typical PWM form g, :=E[§(F(§))p] is a special case of K-
moments corresponding to g = 1:

K,pl = P:Bp—l

The L-moments are defined as 4, := %Zi;é(—l)k(pgl)E[g(p_k):p], where xy.,, is
the kth order statistic in a sample of size p. L-moments are also related to PWM
and through them to K-moments. The relationships for the different types of
moments for the first four orders are:

K'yy=p=p, Ki=0

K'51 = 2B, K1 = 2(K'31 — ) = 4By — 2B = 24,

K'31 =3B, K3y =4(K'3 — ) — 6(K'yy — ) = 128, — 12, + 2, =
22

K'y1 = 4B, Kyn =8(K'41 — ) —16(K 3y —p) + 12(K'5 — ) =
8 12
32ﬁ3 - 48ﬁ2 + 24ﬁ1 - 4ﬁ0 = E/14, + ?/‘{2

Both PWM and L-moments are better estimated from samples than classical
moments but they are all of first order in terms of the random variable of interest.
PWM and L-moments are good to characterize independent series or to infer the
marginal distribution of stochastic processes, but they cannot characterize even

second order dependence of processes; K-moments can.

Within the framework of K-moments, while respecting the rule of thumb “Just two
moments” in terms of the power of x, i.e. ¢ =1 or 2, it is easy to obtain knowable

statistical characteristics from much (even enormously) higher orders p.

In this manner, for p > 1 there are two alternative options to define statistical
characteristics related to moments of the distribution, as in the following table. Whichever

of the two option is to be used for the estimation of the statistical characteristics depends
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on the statistical behavior, and in particular, the mean, mode and variance of the estimator

(Koutsoyiannis, 2019).

Table 3.2 Characteristics of marginal distribution using K-moments

Characteristic | Order p Option 1 Option 2
Location 1 K'y, = u (the classical mean)
— ! — = = g2
Variability 2 Ky =2(K'5 — ) Kpp=u =0
=21, (the classical variance)
Skewness 3 & = /1_3 &
K1 A K>,
K 42, 6 K.

Kurtosis 4 A, —42

3.5 Return periods

Let Z(t) be a stochastic process that characterizes a natural process evolving in
continuous time 7. As human instruments cannot make observations at truly continuous
time, these observations are made in discrete time defined by constant time intervals At.
This interval is therefore considered to be the unit of time. By sampling Z(7), we consider

the corresponding discrete-time process at spacing At (Volpi et al.,, 2015):

Zj = Z(jA1) (3.21)

where j(=1,2,3,...) denotes discrete time. For ease of understanding, let t = j — j, be the
expression of discrete time, where j, is the current time step. By extending this notion,
the discrete-time process is indicated as Z; and t = 0 denotes the present time. In order
for the process to be fully describable up to the second order properties by its marginal
probability function and its autocorrelation structure, we need to assume that Z; is a

stationary process (Papoulis, 1991).
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We are interested in possible exceedances of the values of process Z; above or below a
specific level (threshold) z, which may determine the extremity or not of a specific
observation. In particular, let A = {Z > z} be a dangerous event, which is an extreme. A
could very well be either maximum or minimum. We denote by p the probability of the
event B = {Z < z}, which is the complement set of A; the probability of occurrence of

event A is given by 1 —p = Pr{Z > z} = PrA.

In civil engineering applications, it is usually assumed that the event A will occur on
average every return period T, where T is a time interval (Volpi et al., 2015). For example,
a great-magnitude earthquake or a flash-flood event occur on average every T time. In
other words, the average time until the threshold z is met, or exceeded, equals T years

(Stedinger et al.,, 1993), such as:

oo

T
== ElX] = ) tf(®) (3.22)

AT
t=1

where X is the number of discrete time steps required for an event A to occur, fx(t) =
Pr{X =t} is the probability mass function and E[ ] denotes expectation. The above
definition of return period of an event logically reasonably to the formulation of the
probability of failure R (1), which measures the probability that the event A occurs at least
once over a specific time span: the design life or study period [ of a system, where [ /At is
a positive integer. The mathematic relationship engulfing the aforementioned definitions

is as follows:

1/ At

l
R =prix <= £ (3.23)
At
t=1
At this point, it is easy to deduce that the probability of failure R(l) is nothing else than

the distribution function computed at t = [/At.

As it can be easily understood, order statistics have a substantial advantage over other
statistics in the context of return periods, as we can assign a distinct value of the

distribution function to each one of them, hence pair them with the equivalent return
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period. This turns out to be the case with K-moments as well, as they are closely related
to order statistics. Intuitively, we anticipate that the return period corresponding to the
non-central K-moment of orders (p, 1), the value x = K',,; will correspond to a return
period of about 2p. This is accurate for a symmetric distribution and forp = 1,as K';; is
the mean value, which has return period 2, and as explained by Koutsoyiannis (2019), it

cannot be much lower than 2p for any p and for any distribution.

Generally, the return period can be expressed by the relationship:

T(K’pl) =/ p

= ) (3.24)

where D is a time reference for the specification of return period and A,, is a coefficient

generally depending on the distribution function and the order p.

The precise definition of A, is (Koutsoyiannis, 2019):

1
A =
P op(1-FK',D))

For given p and distribution function F(x), Ky, is analytically or numerically determined

(3.25)

from its definition. Then T(K’,,) and A,, are determined from their definitions.

In absence of an analytical solution, an exact relationship between p and T has been
established by doing numerical calculations for several p. The slight variation of A, with
p can be very well approximated if first the specific values A; and A, are accurately
determined. The value of A; is easily determined, as practically is equal to the return
period of the mean:

1 T

A = =
'""1-Fw D

(3.26)

In addition, in a number of customary distributions, specifically those belonging to the
domain of the Extreme Value Type 1 distribution, 4., has a constant value, independent

of the distribution. As shown by Koutsoyiannis (2019), this value is:
A, =e¥ =1.781 (3.27)
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where y is the Euler—Mascheroni constant.

For the approximation of A,, the following simple relationship is used, which is

satisfactory for several distributions:

1
Ap = A + (A1 — AOO)E (3.28)
This yields a linear relationship between the return period T and p:

@ =pA, = Aep + (A1 — A) (3.29)
For the Normal distribution, which most closely resembles the real distribution of the
surface temperature, the approximated values of A; and A, are: A; = 2and A, = ez =
1.649.

However, in some distributions, like the lognormal and Weibull, the decays of A, with
increasing p is very slow. Furthermore, in some cases A, is not always a decreasing

function of p, as implied by its relationship with A,. To account for such cases, the

definition of A, is generalized to the form:

Ap = Aoo + (apAl - Aoo)ﬁp (3.30)

where a, and B, are non-increasing functions of p, such that a; =f; =1 and
limy_,Bp = 0. Generally, if a, =1 then the above equation is again a monotonic
(decreasing) function of p for all values of p. A criterion to decide whether this is the case
for a particular distribution requires at least one more A value, most conveniently A,. The
following criterion (related to the convexity of the curve of 4, as a function of 1/p) has

been tested and found suitable
Ay ‘;/100 _ 4,

(3.31)
Ay — Ay

CT:

The monotonic property holds when C; < 0. In this case the following approximations

were tested on both the lognormal and Weibull distribution and found satisfactory

C
m(1+c1)) =14 ¢ =19-11/]C]

ap = L ﬁp ~ (ln(p+c1)
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When Cr <0, A, initially decreases with p, but for larger values of p becomes and

increasing function. In this case, the approximation takes the form:

1 _ (In(1+cq) c2 . .
ap = Jote Bp = (M) , ¢ =35 c; =24-11|Cr|

Summarizing the above, A-coefficients have the following important properties:

e They vary in a narrow range (close to 2) and this facilitates the determination of
the complete series by only a few of them (namely, A; and A, and occasionally
Ay).

e They are well approximated by generic functions, irrespective of the particular
distribution function.

e Their definition in terms of return period renders them suitable for studying
extreme values, as is the case of the present study of land surface air temperature.

e Moreover, their definition, in connection to their generic approximators, supports
the indirect but quick determination of theoretical (true) values of K-moments of

any order in absence of analytical relationships.

The last property indicates that a similar approach can be followed for the calculation of
K-moments for higher values of q. Specifically, an alteration of the precise definition of 4,,

for precisely calculating the A-coefficients of orders (p, q) is:

A = 1
" (P—q+1) <1 —F (KZ?)) (3.32)
for non-central moments, while for central ones is:
Apq = ! -
p—q+1) (1 —-F (Kpéq + H)) (3.33)
It is easily observable that for g = 1:
A1 = A1 = 4y (3.34)
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asis K'y; = K,q + p. However, for ¢ > 1, A"y; # A1, except in the limit as ¢ — . Like
the A-coefficients of ¢ = 1, A, will also vary in a narrow range. In particular, as the tail

index of the distribution of x? will be gk, the limit A'ooq = Awq can be readily determined.

3.6 Optimization
A significant part of theory of optimization is the definitions of a real function of a vector

variable and maxima conditions of a function.

Real function of a vector variable

Let us assume f to be a real function of a vector variable, such that f: R™ - R

The derivative of function f with respect to the vector variable X is given by the vector:

af _1df df  df

dx  ldx, dx,” " dx,

(3.35)

The gradient of function f(X) of vector variable x is given by vector (Marlow, 1993):

aradty=vr = [f 2L A - (Y

3.36
dx, dx,” " dx, (3.36)

The second derivative of f(X) of vector variable X is given by the Hessian matrix (Gunning

and Rossi, 1965):

- azf azf 62f ;
0x?  0x,0x, " 9x,0x,
azr | 9f 9 o’ f
ax2z |0%20x;  0xF T 0xp0xy, (3.37)
o*f 0°f 0°f
[0x,0x; 0x,0x, a_x,%
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Extrema of a function

In mathematics, the maxima and minima of a function f, known collectively as extrema,
are the largest and smallest value of the function, either within a given (i.e. bounded)

range, or on the entire domain of the function (Stewart, 2008; Larson and Edwards, 2009).

Let us assume f(X) to be a real function of a vector variable, which is continuous V x €
R™. In these conditions, the problem of finding the minimum value of function f evolves

into finding the vector X, such that:

f(x.) =min[f(x)] (3.38)

In order for X, to be the global minimum of function f, the following necessary conditions

have to be met:

¢ X, has to be stationary point of function f, meaning:

af (x,
( At )) = or (3:39)
dx
e The Hessian matrix of function f has to be positive definite matrix in point X,:
r(4Pf (x.) n
y ST y>0 VyeR"— {0} (3.40)

The aforementioned necessary conditions are sufficient, in the case that function f is
convex, namely in the case that its Hessian matrix is positive definite for every X,

, <d2f(x*)
g7 (L)

I >y>0 VvxeR,VyeR"— {0} (3.41)

If this is not the case, f (x) may have more than one stationary points, which, as shown in
the following figure, could be local minima (a), local maxima (b) or neither of the above;

the latter-case points are named saddle points (c).
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Saddle point
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Figure 3.1 Cases of more than one-stationary points of a function. (a) Local minima, (b) Local maxima, (c)

Saddle point | Source: LibreTexts library

There are numerous algorithms used worldwide to find an optimum solution to a problem,
whose numerical solution is too hard, or time and resource consuming to calculate. One
such method is gradient-based — a technique of optimization, which uses the differentials
of the objective function. Sometimes optimization problems do have constraints, but this
is not always the case. Problems without constraints, ordinary differential calculus method
is considered to be the best approach in achieving an optimum solution. Problems that do
have constraints can be solved using differential calculus methods (such as Lagrangean

and Kuhn-Tucker) and search methods (such as Linear Programming).

Generalized Reduced Gradient algorithm (GRG2)

The Generalized Reduced Gradient method belongs to a family of optimization techniques
called reduced-gradient methods, which are based on extending methods for linear
constraints to apply to non-linear constraints (Gill et al., 1981). The reduced-gradient
methods adjust the variables, in order for the active constraints to continue to be satisfied,

as the optimization process moves from one point to another.

The GRG2 scheme is based on the concept of eliminating variables using the equality

constraints imposed. The idea of generalized reduced gradient method is to convert the
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constrained problem into an unconstrained one through the use of direct substitution

(Arum, 2014).

Many commercial spreadsheet programs use the Generalized Reduced Gradient (GRG2)
algorithm for optimizing problems. They do so, by combining the functions of a graphical
user inter-phase (GUI) and algebraic modelling language for linear, nonlinear and integer

programs.

Evolutionary algorithm

One of the most widely used optimization algorithms is the evolutionary algorithm.
Evolutionary algorithm is a subset of evolutionary computation method, which uses
mechanisms inspired by biological processes, such as reproduction, mutation,

recombination and natural selection, in order to find the optimal solution to the problem.
The inspired-by-nature procedures being used by an Evolutionary Algorithm are:

e Population: Contrary to most classical optimization methods, which maintain a
single best solution at each stage of the optimization, an evolutionary algorithm
maintains a population of candidate solutions. Only one of these individual
solutions is the “best”, but the other members of the population act as “sample
points” in other regions of the search space, from which a better solution may later
derive from.

¢ Randomness: An evolutionary algorithm relies on random sampling, so as to
minimize, or nearly eliminate, the bias in choosing which individual solutions to
“reproduce” for the next repetition of the optimization method. In addition,
random choice traverses all the mechanisms of the algorithm, from the possibility
of mutation to reproduction.

e Mutation: Inspired by the mechanisms of mutating specific parts of the genetic
code in natural evolution, the evolutionary algorithm periodically, yet randomly,

makes specific changes to parts of the “genome” of each solution. This mutation
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usually yields genetically inferior; i.e. worst, solutions, but it is extremely useful of
disengaging the algorithm from trapping in local minima of the search space.

e Crossover: Like in the natural world, where sexual reproduction promotes useful
genes to the next generation by combining genes from two different parents, an
evolutionary algorithm attempts to combine elements of existing solutions, in
order to produce superior solutions. The elements (e.g. decision-making values) of
existing solutions of the population are combined in a “crossover” operation,
resulting in a solution with mixed attributes from both “parent” solutions.

e Selection: Much like in natural selection of organisms, an evolutionary algorithm
performs a selection process, in which the most “competent” members of the
population survive, and the least “competent” members are eliminated. In a
constrained optimization process, the notion of “competence” depends partly on
the feasibility of the solution and partly on its objective function value. The
selection process is the step that leads the evolutionary algorithm towards ever-

improving solutions.

Since evolutionary algorithms are a time-consuming process, the operation of the
algorithm stops, when an adequately “good” accurate solution of the target function has

been achieved.

The following figure presents a schematic representation of the basic processes an

evolutionary algorithm uses to find the optimum solution.
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Figure 3.2 General scheme of an evolutionary algorithm

3.7 Stochastic simulation

Stochastic simulation (also known as Monte-Carlo simulation) is an important
computerized mathematical technique for resolving problems that have no analytical
solution, or whose analytical solution is an extremely time and resource-consuming
process. A pivotal point of the simulation is the production of synthetic timeseries. In the
case of a stationary stochastic process with long-term persistence, like temperature
timeseries, the production of synthetic timeseries requires the preservation of such

behavior. An elaborate method of doing so, is the symmetric moving average scheme.

The symmetric moving average (SMA) method (Koutsoyiannis, 2000; Koutsoyiannis,
2016) can exactly simulate a Gaussian process, with no limitations to its arbitrary

autocovariance function (provided that it is mathematically feasible). In addition, it can
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approximate, with controlled accuracy, any non-Gaussian stochastic process with an

arbitrary autocovariance function and any marginal distribution function.

Like the conventional (backward) moving average (MA) process, the SMA scheme
transforms a white noise sequence V; into a process with autocorrelation by taking the
weighted average of a number of V;. In the SMA process, the weights a; are symmetrical

about a center (a,), that corresponds to the variable V;, i.e.:

q
Xi = Z a|]|Vl+] = aqVi_q+. .. +a1Vi_1 + ClOVi + a1Vi+1+. . +aqVi+q (342)
j==-q
where q theoretically is infinity, but, in practice, is restricted to a finite number, as the
sequence of weights a; tends to zero for increasing j. Furthermore, as shown by

Koutsoyiannis (2000), the discrete Fourier transform s, (w) of the a; sequence is related

to the power spectrum of the process s, (w) by:

Sq(w) = /ZSy(w) (3.43)

which enables the direct calculation of s, (w), which in the case of FGN will be:

sa(@) = 2¢/(2 = 2H)y,2w)*5~H (3.44)

Knowing that the power spectrum of a process can by derived as:

sy(k)(w) -2 Z Yj(k) cos(2mjw) = 4f at?1=2 cos(2ntw) dt (3.45)
j:—OO 0

which, in order to preserve exactly the process variance y,, can be rewritten as:

s, (w) = 4(1 = H)y,® 2w)1~2# (3.46)

it is observable that s, (w) is approximately equal to the power spectrum of another FGN
process with Hurst exponent H' = (H + 0.5)/2 and variance a,. As shown by
Koutsoyiannis (2000), the approximation of the inverse Fourier transform of s,(w), i.e.

the sequence of a; itself, is:
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J(2-2H)yo aj ~ % [(j + DHOS 4 (j — 1)H+05 _ 2jH+05] 5

o =15y

The generation scheme of SMA with coefficients a; can lead to a very easy algorithm for
generating FGN. This method can also preserve the process skewness &y by appropriately
choosing the skewness of the white noise ¢.. As for the weights a;, there are ¢ + 1 in

number, so that the model can preserve the first g + 1 terms of the autocovariance y; of

the process X;. The relevant equations for the statistics of V; are:

3
(@ +2X5 q)EWV] =p, var[V]=1, (a§+2X7.,4d})& = &, /2

The number g must be chosen wisely, so as to be at least equal to the desired number of
autocorrelation coefficients m that are to be preserved. In addition, the ignored terms q;
beyond a, must not exceed an acceptable tolerance fa;. These two conditions, in

combination with the terms of the sequence a;, result in:

H? — 0.25) /15-#
) (3.47)

> _—
q = max m,( 25

The number g can be very high (thousands or even hundreds of thousands) if H is large
(e.g. H > 0.9) and B is small (e.g. B < 0.001). The accuracy of the method depends on gq.
However, even when q — oo, the method does not become exact, because of its
approximate character. Despite Koutsoyiannis (2000) having introduced even more
accurate estimates of the q; series, which can be obtained numerically, the given estimates
are sufficiently accurate for the purpose of this study. This is verified by the following
figure, where theoretical and approximate autocorrelation functions are almost

indistinguishable for all H-coefficients.
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Figure 3.3 Approximate autocorrelation functions based on equations of SMA scheme versus the exact
autocorrelation functions of Fractional Gaussian Noise for various values of the Hurst exponent H and the

number of weights q. | Source: Koutsoyiannis (2002)
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4. Computational tools

4.1 MathWorks Matlab

MATLAB is a programming platform designed by MathWorks specifically for engineers
and scientists. It integrates computation, visualization, and programming in an easy-to-
use environment where problems and solutions are expressed in familiar mathematical
notation. MATLAB is an interactive system whose basic data element is an array that does
not require dimensioning. This allows you to solve many technical computing problems,
especially those with matrix and vector formulations, in a fraction of the time it would

take to write a program in a scalar noninteractive language such as C or Fortran.

In this study we took advantage of the efficiency and array structure of MATLAB
programming, in order to perform complex scientific calculations in a large amount of
length air temperature time-series. Specifically, the functions of the Statistics and
Machine Learning and Optimization toolboxes of the MATLAB, that we used are the

following:

e beta: B = beta(Z,W) returns the beta function evaluated at the elements of Z and
W. Both Z and W must be real and nonnegative.

o exp: Y = exp(X) returns the exponential e* for each element in array X.

e factor: f = factor(n) returns a row vector containing the prime factors of n. Vector
f is of the same data type as n.

e fsolve: Nonlinear system solver. Solves a problem specified by F(x) = O for x, where
F(x) is a function that returns a vector value. and x is a vector or a matrix
x = fsolve(fun,x0) starts at x0 and tries to solve the equations fun(x) = 0, an array
of zeros.

e gamma: Y = gamma(X) returns the gamma function evaluated at the elements of
X.

gammaln(A) returns the logarithm of the gamma function,

e gammaln: Y

gammaln(A) = log(gamma(A)). Input A must be nonnegative and real. The
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gammaln command avoids the underflow and overflow that may occur if it is
computed directly using the expression log(gamma(A)).

nanvar: y = nanvar(X) is the variance var of X, computed after removing NaN
values. For vectors x, nanvar(x) is the sample variance of the remaining elements,
once NaN values are removed. For matrices X, nanvar(X) is a row vector of column
sample variances, once NaN values are removed. nanvar removes the mean from
each variable (column for matrix X) before calculating y. If n is the number of
remaining observations after removing observations with NaN values, nanvar
normalizes y by either n — 1 or n, depending on whether n > 1 or n = 1, respectively.
norminv: x = norminv(p) returns the inverse of the standard normal cumulative
distribution function (cdf), evaluated at the probability values in p.

quantile: Y = quantile(X,p) returns quantiles of the elements in data vector or
array X for the cumulative probability or probabilities p in the interval [0,1]

rand: X = rand returns a single uniformly distributed random number in the
interval (0,1).

sort: B = sort(A) sorts the elements of A in ascending order. If A is a vector, then

sort(A) sorts the vector elements.

4.2 Microsoft Excel

Microsoft Excel is a software program produced by Microsoft that allows users to

organize, format and calculate data with formulas using a spreadsheet system. Excel has

the same basic features as all spreadsheet applications, which use a collection of cells

arranged into rows and columns to organize and manipulate data. They can also display

data as charts, histograms and line graphs.

Excel includes a tool called “solver” that uses techniques from the operations research to

find optimal solutions for all kind of decision problems. “Solver” works with a group of

cells, called decision variables or simply variable cells, that are used in computing the

formulas in the objective and constraint cells. “Solver” adjusts the values in the decision
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variable cells to satisfy the limits on constraint cells and produce the desirable result for
the objective cell. One of the many advantages of the “solver” plug-in of Microsoft Excel
is the ability to solve non-linear programming problems using a variety of solving methods,

including the Generalized Reduced Gradient and the Evolutionary method.

The Excel solver has three primary components, all of whom are integral parts of the

optimization process. These components are:

e Target cell: This cell represents the goal or ultimate objective of the problem
expresses in mathematical formulation. As part of this study, the target cell had
to be minimized as possible.

e Variable cells: These cells can and are modified, in order for the target cell to
achieve its optimal values.

e Constraints: There are limitations to what values the solver can assign to the
variable cells in order to optimize the solution. Most of the constraints are natural
(e.g. temperature has an absolute minimum), while others are for practicality, since

the approximate domain of the solution can be approximated.

It is worth mentioning, that while optimization could have been performed in MathWorks
MATLAB environment, we preferred the use of spreadsheet, so as to be able to evaluate

the intermediate results of the optimization procedure, before it concludes.
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5. Data

In the current study we focus on temperature persistence patterns on different time
scales and, in order for the study to be complete, we pursued the usage of daily
temperature data, instead of hourly or monthly aggregated values. There are many
databases offering the required data, but we preferred the GHCND database (Menne et
al., 2012) offered by the National Oceanic and Atmospheric Administration of the Federal
Government of the United States, since it offers an extended directory of very long time

series from around the globe.

5.1 Database

GHCN (Global Historical Climatology Network)-Daily is a database that addresses the
critical need for historical daily temperature, precipitation, and snow records over global
land areas. GHCN-Daily is a composite of climate records from numerous sources that
were merged and then subjected to a suite of quality assurance reviews. It contains
temperature records from 106,283 stations in 180 countries and territories. Both the
record length and period of record vary be station and cover intervals ranging from less

than one year to perennial periods of more than 175 years.

The process, with which the data from multiple resources were integrated into the Global

Historical Climatology Network-Daily dataset took place in three consecutive steps:

1. Screening the source data for meteorological stations, whose identity is unknown
or questionable. In order for a station within a source dataset to be considered for
inclusion in GHCND, it had to meet all of the following criteria:

¢ It could be identified with a string of metadata that includes name, latitude,
longitude and which accompanied the source dataset.
e Its record included at least 100 values for more than one of the GHCND

elements.
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e It did not fail the interstation duplicate check, which eliminated stations
with record commonality of more than 50% with any other station.

2. Classifying each station in a source dataset either as one that was already
represented in GHCN-Daily or as a new site. Whenever possible, stations were
matched on the basis of network affiliation and station identification number. If
there was no such match, there was consultation from different networks for
existing cross-referenced lists that identify the correspondence of station
identification numbers.

3. Mingling the data from the different sources. The implementation of the above
classification strategies yielded a list of GHCN-Daily stations and an inventory of
the source datasets for integration of each station. This list formed the basis for
integrating, or mingling, the data from the various sources to create GHCN-Daily.
Mingling took place according to a hierarchy of data sources and in a manner that
attempted to maximize the amount of data included while also minimizing the

degree to which data from sources with different characteristics were mixed.

5.2 Quality control

As expected of any scientific integrated database, the National Centers for Environmental
Information overlooking the gathering, edited and uploaded the GHCND and performed
quality control of the data, to avoid specific types of erroneous values. During each
reprocessing cycle, the data were first passed through a filter called “format checking
program” that examined the date for problems, such as impossible months or days, invalid
characters in data fields and so forth. In case the program dealt with such inconsistencies,
the routine set the offending records to missing. The primary objective of this program
was to ensure that the data integration did not either introduce or retain data records
that violated the intended data format of the GHCND. In a next step, a comprehensive
sequence of fully-automated QA procedures identified daily values that violated one of

the predetermined quality tests. Described in detail by Durre et al. (2010), these quality
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tests identified an array of data problems, such as the excessive duplication of the records;
exceedance of physical, absolute or climatological limits; immoderate temporal
persistence; overwhelmingly large gaps in the distributions of values; internal
inconsistencies among elements; and inconsistencies with observations of neighboring

weather stations.

The quality tests performed in all the temperature data of the GHCND, as part of the
automated QA procedures, in order to identify inconsistencies between them are as

follows:

e Naught check: Checked for days on which maximum and minimum temperature
were both equal to 0 °C at stations not operated by the United States or were
both equal to -17.8 °C (0 °F) at United States stations.

e Duplicate data check: Checked for duplication of the data between entire years,
different years in the same calendar month, and different months within the same
year.

e World record exceedance check: Identified values that fall outside the world
extremes for the highest and lowest ever observed.

e Streak check: Checked for unrealistic sequences of identical values in time series
of non-missing values. Flagged sequences of 20 or more consecutive identical
values in time series of non-missing daily maximum, minimum, and observation
time air temperature.

e Gap check: Identified unrealistic breaks in the period-of-record distribution of
elements for a particular calendar month. Flagged maximum/minimum air
temperatures that were at least 10 °C warmer or colder than all other
corresponding maximum/minimum temperatures for a given station and calendar
month.

e Z-score-based climatological outlier check: Checked for daily surface air maximum
and minimum temperatures that exceeded the respective 15-day climatological

means by at least six standard deviations.
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Internal temperature consistency check: Checked for consistency among
maximum, minimum, and time of observation temperature within a three-day
window.

Temporal consistency check (spike or dip) - Checked whether a daily maximum
(minimum) temperature exceeded the maximum (minimum) temperatures on the
preceding and following days by more than 25 °C.

Lagged temperature range check: Identified maximum temperatures that were at
least 40 °C warmer than the minimum temperatures on the preceding, current,
and following days as well as minimum temperatures that were at least 40 °C
colder than the maximum temperatures within the three-day window.

Spatial consistency check (regression): Checked for temperatures that differed
greatly from a predicted value generated from a linear-regression-based estimate
generated from neighboring values. Flagging of a target temperature was
performed when the regression-based predicted value differed by more than 8 °C
from the observed value, and the standardized residual of the predicted value
exceeded four standard deviations on the target day.

Spatial consistency check (corroboration of anomalies): Checked for temperatures
whose anomalies differed by more than 10 °C from the anomalies at neighboring
stations on the preceding, current, and following days.

Mega consistency check: Flagged daily maximum surface air temperatures that
were less than the lowest minimum surface air temperature for the respective
station and calendar month; daily minimum temperatures that were greater than
the highest maximum temperature for the station and calendar month; and
observation-time temperatures that were higher than the highest maximum
temperature or lower than the lowest minimum temperature for the station and

calendar month.
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5.3 Data observations and flags
Each record represents all selected observations (values) available for a given station-day.

The initial section of each record is ordered as follows with the following definitions:

e STATION (17 characters) is the station identification code.

e STATION_NAME (max 50 characters) is the name of the station (usually
city/airport name). This is an optional output field.

e GEOGRAPHIC_LOCATION (31 characters) is the latitude (decimated degrees
w/northern hemisphere values > 0, southern hemisphere values < 0), longitude
(decimated degrees w/western hemisphere values < 0, eastern hemisphere values
> 0) and elevation above mean sea level (tenths of meters). This is an optional
output field as well.

e DATE is the year of the record (4 digits) followed by month (2 digits) and day (2
digits).

Following this initial section of the record, all selected observations and flags are given in
the following order: Observation(s) | Measurement Flag | Quality Flag | Source Flag | Time

of Observation | repeat for next element (when more than one element is selected).

Observation value is related to the recorded core value. Measurement flag refers to the
specific calculation of each data entry from the raw data obtained by the station, and how

they were possibly aggregated in time.

Quality Flag (Attribute) of each record entry of air temperature relates to the success or
failure of the data to each of the aforementioned quality assurance tests. It could take one

of the following values:
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Table 5.1 Quality flags (Attributes) of data

Blank

Did not fail any quality assurance check

Failed duplicate test

Failed gap check

Failed internal consistency check

Failed streak/frequent-value check

Failed check on length of multiday period

Failed mega-consistency check

Failed naught check

Failed climatological outlier check

Failed lagged range check

Failed spatial consistency check

Failed temporal consistency check

Failed bounds check

Nl X dAlwn n o|lZ2|Z|r| R

Flagged as a result of an official Datzilla

investigation

Source flag refers to the source of the recorded data, in the context of the participating

meteorological agencies from all over the world.

Time of Observation is the (2-digit hour, 2-digit minute) 24-hour clock time of the

observation given as the local time at the station of record.

For the purpose of this study, we considered useful, and actually utilizable, only blank

values of quality flags, thus we dismissed all non-blank quality flagged values from the

first stage of data gathering and processing.

5.4 Record data selection

For the investigation of the behavior of surface temperature, we used records of minimum,

average and maximum air temperature. We chose these specific meteorological variables,
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because they have the most profound impact on ecosystems and the function of human

societies. Specifically:

e Minimum temperature affects to a great degree agricultural production, electricity
demand for heating and correlates with frost and snow.

e Average temperature relates to the general level of ambience and is characteristic
of the average climate of a region.

e Maximum temperature has a profound impact on crop yields, plant growth, forest

fires and electricity demand for cooling of living spaces.

In addition, these three variables are available for long time periods, since air temperature
was easy to be precisely recorded using mercury thermometers, which was invented by

physicist Daniel Gabriel Fahrenheit in Amsterdam (1714).

We derived the data from the pool of 106,283 available weather stations of GHCND from
all over the globe, by selecting the most old-living temperature records. Specifically, only
stations, whose record starting point preceded the year 1935, were utilized, as they
enabled comparison of more than fifty consecutive rolling 30-year periods. Although this
limitation, made the pool of utilized temperature records less diverse, yet it enabled us to
identify, at various scales, persistence patterns, which would not have been possible with

the use of a constantly alternating sample of short records.
From the aforementioned limitation, the number of records that were used is as follows:

e For the study of behavior of the average land surface air temperature we used 245
stations

e For the study of behavior of the maximum land surface air temperature we used
5,006 stations

e For the study of behavior of the minimum land surface air temperature we used

5,006 stations

The following graphs depict the time evolution of the number of the selected weather

stations records for each of the three studied parameters.
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Figure 5.1 Evolution of records availability for the average temperature
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Figure 5.2 Evolution of records availability for the maximum temperature
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Figure 5.3 Evolution of records availability for the minimum temperature

91



As for the spatial distribution of the weather stations, of whom the data were utilized, it
is worth mentioning that they are unevenly distributed. Weather stations with records of
the average surface temperature were mainly located in Europe and Asia, while weather
stations with records of the maximum or minimum surface temperature were spread

across all the continents, with increased density in North America and Western Europe.

The following graphs depict the spatial variability of the selected weather stations records

for each of the three studied parameters.

Spatial distribution of Tavg recording stations

Figure 5.4 Spatial distribution of weather stations recording average temperature
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Spatial distribution of Tmax recording stations

a0

Figure 5.5 Spatial distribution of weather stations recording maximum temperature

Spatial distribution of Tmin recording stations

90

Figure 5.6 Spatial distribution of weather stations recording minimum temperature
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5.5 Preliminary data processing
In order for the identification of the “suitable” weather records to be fast and efficient, we
created multiple MATLAB scripts, in order to automatically accept or reject each

individual station’s timeseries.
The processing involved the following steps:

1. Reading of the directory, containing the files of all the records downloaded from
GHCND and writing in an Excel (.xIsx) file format.

2. Calculation of the start year, end year and total length of recording period for every
station.

3. For those stations with a non-zero length of record, all flagged individual entries
were removed (replaced with NaN entries).

4. The stations with record beginning date before 1935 were isolated and from

those, only stations with more than 30 years of recording were used.

For each weather station, which passed from all criteria 1 to 4, we isolated consecutive
30-year periods, so as to extract from them the extreme temperature events, which

corresponded to specific return period levels.
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6. Methodology

6.1 Methodology overview

The stages followed in the integrated study of the behavior of land surface air
temperature in global scale are presented in figure 6.1 that follows. It is worth mentioning,
that the procedure outlined in the figure was repeated for each of the three elements of

air temperature that were studied; average, maximum and minimum temperature.

At the first stage, we downloaded the data from the GHCND database, and performed
multiple quality tests and removal of flagged values and short timeseries. At the next
stage, we standardized the remaining timeseries. After the standardization, we isolated
rolling 30-year periods, so as to calculate the K-moments of each timeseries, that led to
the quantile values selection. After this chain of actions was realized for all years, we
plotted the quantile values against the starting point their respective of 30-year periods

and their return period level.

In parallel with these steps, we utilized the standardized timeseries to create an
aggregated Climacogram. From this Climacogram, we derived the H parameter, which was
used at the next stage as an input to the Symmetrically Moving Average scheme to create
synthetic timeseries. From these synthetic timeseries, we calculated K-moments, as well
as selected and plotted the quantile values, as performed for the observed (real)

timeseries.

95



Data collection,

Quality control

l

Standardization ———» Climacogram

l l

K-moments H coefficient
Plotting SMA model

l

K-moments

l

Plotting

Figure 6.1 Methodology Layout

6.2 Timeseries standardization

In order for the input data, as well the results, to be comparable it was imperative to
standardize the timeseries, in a way that it would be easy to identify the extreme values.
Since multiple studies conclude that the distribution of the land surface air temperature
closely resembles the Gaussian, it was determined to standardize the timeseries according

to the Gaussian distribution.

However, since the study is focused on the behavior of the temperature in global scale, it
was deemed reasonable to proceed with the standardization in a perennial time frame.
This is because of the fact that so many weather stations around the world are located in

climate zones with great variance of temperature among the different seasons. Had it not
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been foreseen; we would have misconstrued “usual” winter temperatures as persistent

In

low extremes and “usual” summer temperatures as long-lasting heatwaves.

In regard to the aforementioned paradox, we decided to standardized all timeseries values
according to the arithmetic mean (average) and standard deviation of their specific
month. Thus, only extreme, for the season, values would stand out, clearing out the
extremes from the expected norm. It is worth mentioning, that we performed monthly
standardization with respect to the arithmetic mean and standard deviation of each
month, derived from the whole timeseries and not just the 30-year section of the

timeseries, that was studied independently.

6.3 Rolling 30-year periods

A pivotal point of this study is the use of rolling 30-year periods, as independent
timeseries, from which specific extreme values corresponding to pre-selected return
periods were extracted. We determined that the time length of each sub-series should be
30-years long, because three decades is an adequate enough amount of time to
characterize the climate of an area. Moreover, 30 years is an average time interval
between generations, giving greater gravity to any changes. Longer time frames (e.g. 50
years) would significantly minimize the number of available rolling periods that could be
extracted from each primary timeseries. Shorter time frames (e.g. 10 years) would inhibit
the extraction of valuable extreme values occurring at larger time intervals, such as

extreme values occurring once every 30 years.

The procedure with which each rolling 30-year period was isolated from the lengthy
timeseries of the database is quite simple. First of all, we calculated the first and last year
of each primary timeseries, and consequently the total length of it. At the next step, with
the use of an iteration, using a single variable taking values ranging from the start year to

the end year of the timeseries minus 29 years, we managed to identify the years, at which
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each rolling 30-year period started. At this point, since the beginning of the 30-year period

had been identified, and the total length of it was known, we extracted the 30-year period.

In the figure 6.2 a schematic depiction of some random, yet consecutive, 30-year periods

is shown, so as to clarify the procedure.
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Figure 6.2 Example of consecutive 30-year periods

6.4 K-moments calculation of observed record data

After each 30-year long timeseries section had been standardized, in relation to
corresponding months, we sorted the timeseries accordingly. For study of the upper tail
we sorted the timeseries in ascending order, while for study of the lower tail, the

timeseries was sorted in descending order.

At this point, we calculated the necessary return periods, in terms of days, not years, like
the resolution of the temperature data available. The return periods, that were selected,

in order to get isolated from the ensemble of K-moments are:
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Table 6.1 Day intervals studied

Return period Years Days
T1 3 1096
T2 10 3653
T3 20 7305
T4 30 10958

However, since the exact definition of return period yields a linear relationship between 7

and coefficients Apthat depend on the distribution function (we have assumed Gaussian),

the precise return period for the number of days that we selected is different, as described

by the equation 6.1:

T(K’pl) —

D

pAp = Aoop + (Al - AOO)

Hence, the real return periods that we studied are:

Table 6.2 Return periods studied

Return period Days Years (for Gaussian distribution)
T1 1096 495
T2 3653 16.49
T3 7305 32.98
T4 10958 49.47

(6.1)

For these day intervals (shown in the second column of table 6.2) corresponding to these

return periods, we used a repetition to calculate both the fixed term of each moment,

which depends on only p and the length of the sample, but also the added terms, which

depend on the index and the value of each specific entry, in relation to the size of the
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sample. The differentiation between the fixed and the non-fixed term is apparent in the
definition of the estimator of K-moments:
n

=, p—q+1 i—1\P71
Koa =" 2 (n — 1> X (6.2)

=1

After we had calculated K-moments for the entirety of the suitable time-series and for all
30-year periods of their time span, we performed a rudimentary statistical analysis to
extract valuable information from all these results. Hence, it was decided to isolate the
distribution of each return period and each 30-year time-frame and extract the values

corresponding to the 25, 50t (median) and 75 percentiles.

A pivotal, yet usually underestimated, part of the results representation is the plotting of
only the estimated quantile values and not of all the values calculated. Had we not isolated
the quantiles, the resulting plot would have been a nebula-like shape, approximating a

surface corresponding to the extremes of the average station for all time scales.

6.5 Climacogram and H coefficient

All the data, that had been standardized from the previous steps of the methodology were
save in a file format, suitable for large size data. This file was read by a specifically created
MATLAB script, so as to create the Climacogram for every single timeseries, for scale 1

through /10, where nis the total size of each timeseries.

After this procedure was realized for all timeseries, we summed the values of respective
scales of all these Climacograms, so as to produce the arithmetic mean (average) of the
Climacogram for each scale. As scale of the ensemble of the timeseries was selected the

arithmetic mean of the lengths n; of all timeseries.

The resulting aggregated Climacogram was exported as an xIsx format file, so as to be
read from an Excel spreadsheet. The reason, why we chose the Excel spreadsheet over
MATLAB programming was the ease of use and the wide variety of optimization tools.
The values of the Climacogram, that resulted from observations, were juxtaposed with the
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theoretical expected values of the Climacogram for a timeseries of imaginary length 7.,

equal to the average of the lengths n; of all timeseries.

The theoretical values of the Climacogram for a combined Hybrid Hurst-Kolmogorov and

Markov process derive from the following equation:

H-1

A M A 1 — _k/a
y(k) = 5(1 + (k/a)ZM) + k/ (1 — k; ) (6.3)
a a

We calculated the three independent parameters H, Mand a in such a way, so as to create

a theoretical Climacogram that coincided with the Climacogram of the observed
timeseries. In order for us to perform such an optimization, a target-cell was created that

represented the root mean square error (RMSE).

Nimag 2
RMSE = z ) (Xobserved — Xtneoretical) (6.4)
i=

The optimization problem of minimizing the value of a RMSE was modeled in Microsoft
Excel spreadsheet using a combination of the Generalized Reduced Gradient (GRG2)
algorithm and the Evolutionary algorithm. We used the GRG method to quickly identify
the global minimum of the domain, while the Evolutionary algorithm was used, so as to
improve even further the margin of error. In order for us to avoid unnecessary time-
consuming operation of the Evolutionary algorithm in finding the optimal solution, we

limited the number of iterations to 100,000.

The target cell was the one containing the RMSE value between the theoretical value of
the Climacogram and the expected one. The three independent parameters H, M and a
were the variable parameters of the optimization process. As for the constraints, the three

variable parameters were bounded as follows:

e 05<HKI1
e <M1
e a>0

It is worth mentioning that the complete range of possible values of H is [0,1]. Yet it is

impossible for a natural process like temperature to present a H-coefficient value less
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than 0.5, because that would mean that it is negatively correlated, which is intuitively

wrong. Since temperature is actually the result of energy transfer, it cannot be negatively

correlated.

From these optimizations resulted the unbiased H coefficient, indicating the degree of

persistence of the three air temperature variables.

Table 6.3 H coefficient of air temperature

Air Temperature H
Average 0.760
Maximum 0.752
Minimum 0.806

The empirical and theoretical values of the Climacogram for all three studied variables,

average, maximum and minimum air temperature are being presented in figures 6.3 — 6.5.
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Figure 6.3 Climacogram of the average air temperature
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Figure 6.4 Climacogram of the maximum air temperature
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Figure 6.5 Climacogram of the minimum air temperature
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6.6 Production of synthetic timeseries

A rigorous and general method for producing synthetic timeseries of a physical quantity,
like temperature, by preserving its dependence structure is the symmetric-moving
average (SMA) scheme introduced by Koutsoyiannis (2000), further improved by
Koutsoyiannis (2016) and implemented within the Castalia computer package
(Efstratiadis et al., 2014). The SMA method has the advantage of fully preserving in an
exact way any second-order structure of a process and, simultaneously, the complete
multivariate distribution function if it is Gaussian, like in the case of air temperature
(because of the preservation of the Gaussian attribute within linear transformations). As
extended by P. Dimitriadis et al. (2018), the SMA generation scheme can replicate a
natural process by preserving its first four central moments, which has been found to be

more-than-adequate for various distributions commonly applied in geophysical processes.

The algorithm to produce timeseries with the SMA scheme, created by P. Dimitriadis
(2018), required the first four central moments, the H coefficient of each physical quantity
(average, maximum and minimum temperature) and the length of the timeseries as well.
For each observed timeseries that passed the multiple quality checks, we calculated the
first four central moments. The H coefficient was common for all timeseries of the same
physical quantity, as well as the length of the timeseries, which equaled the maximum

length of all the utilizable timeseries.

Since the timeseries had been standardized according to the Gaussian distribution, the
first two central moments were equal, or close to, zero and one respectively, while the
latter two (third and fourth central moment) were left unchanged. In figures 6.6 — 6.11
we present the histograms of third and fourth central moments of the three studied air

temperatures.
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Figure 6.6 Third central moment of average temperature timeseries
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Figure 6.7 Fourth central moment of average temperature timeseries
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Figure 6.8 Third central moment of maximum temperature timeseries
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Figure 6.9 Fourth central moment of maximum temperature timeseries

106



1400

o
o
o~
i

1000

800

600

400

200

Figure 6.10 Third central moment of minimum temperature timeseries
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Figure 6.11 Fourth central moment of minimum temperature timeseries
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Since creating a single synthetic timeseries, with respect to preserving its dependence
structure, was a time-lengthy procedure, we decided to produce for each of the three
physical quantities (average, maximum and minimum temperature) a fixed number of
synthetic timeseries. This number of produced timeseries is equal to the least number of
observed, yet utilizable, timeseries for each of the three temperature qualities. The
number of observed timeseries for the average air temperature was 245, while for the
maximum and minimum temperature was 5,006. Thus, 245 synthetic timeseries were

created for each air temperature quality.

The fact that, for the maximum and minimum temperature, the number of synthetic
timeseries was smaller than the number of the observed ones, created some concern over
the unbiased selection of the central moments from the pool of the total. This was
resolved by creating a random number generator, which produced 245 times an index
ranging from 1 to 5,006, which corresponded to the index of an observed timeseries,
whose first four central moments were to be taken as input for the production of the

synthetic record.

6.7 K-moments calculation of synthetic record data

As for the observed data, we followed the same procedure for the analysis of the synthetic
timeseries. For the day intervals (see Table 6.2) corresponding to the return periods that
had been selected, we used a repetition to calculate both the fixed term of each moment,
which depends on only p and the length of the sample, but also the added terms, which
depend on the index and the value of each specific entry, in relation to the size of the

sample.

After calculating the K-moments for the entirety of the synthetic time-series and for all
30-year periods of their time span, a rudimentary statistical analysis was performed to

extract valuable information from all these results. Hence, as with the case of observed
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data, we decided to isolate the distribution of each return period and each 30-year time-

frame and extract the values corresponding to the 25%, 50t (median) and 75" percentiles.

Finally, the plotting of only the estimated quantile values and not of all the values
calculated was performed. Again, had the quantiles not been isolated, the resulting plot
would have been a cloud-like shape, approximating a surface corresponding to the

extremes of the average station for all time scales.

6.8 Detection of the longest individual records

As part of an unbiased study of the behavior of air temperature, we considered useful to
compare the aggregate behavior of all the available timeseries, with the behavior of the
longest timeseries, to identify possible similarities of variations between them. In order to
identify the most long-lived records, we created an algorithm for the isolation of the
maximum time-length of each recording. This algorithm revealed that the most long-lived

air temperature records for each aspect of land surface air temperature are as follow:

Table 6.4 Longest recording individual stations

Air Temperature Station ID Location Record Length
Average RSM00026063 St. Petersburg, Russia 136 years
Maximum ITEOO100554 Milan, Italy 246 years
Minimum ITEO0100554 Milan, Italy 246 years

6.9 K-moments calculation of individual record data

After we identified the longest records, we applied a similar procedure as the one followed
in the study of the sum of observed records. First, we standardized timeseries. After the
standardization, we calculated the K-moments of each timeseries, that led to the quantile

values selection, that corresponded to the examined return period levels. After this chain
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of actions was realized for all years, we plotted these values against the starting points of

30-year periods and their return periods.

In order for the comparison to be applicable, we depicted the length of the individual
timeseries that coexisted with the time period of all the other timeseries with the same
color (i.e. black) and solid line, while for the preceding time period, the data were depicted

with different color (i.e. red) and dashed line.
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7. Results

7.1 Observed timeseries

As resulted by the study of the actual recorded timeseries of air temperature, the behavior
of the different aspects of air temperature is inconsistent when compared to each other.
The irregularities are more apparent between the upper tails, while lower tails present a

somewhat more expected pattern.

Upper tail of the average air temperature appears to become thicker as time progresses,
with the standardized extreme values of each return period to increase by about 0.2 for
the smaller return periods and about 0.4 for the larger return periods. Another interesting
finding is the slight increase of variance of each return period tail progression, even

though the number of the available records slowly decreases.
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T2 = 16.49 years
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Figure 7.2 Upper tail of the observed average air temperature at return period T2
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Figure 7.3 Upper tail of the observed average air temperature at return period T3
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T4 = 49.47 years
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Figure 7.4 Upper tail of the observed average air temperature at return period T4

Lower tail of the average air temperature presents a more complex behavior. From 1900
until roughly 1980’s it is relatively steady, yet with minor fluctuations, which probably owe
their existence to the entry of more and more records as time progresses. From around
the years 1980-1990 (corresponding to 30-year periods starting around 1950-1960),
however, in all of the return periods, temperature appears to increase systematically. All
in all, at all return periods level of the lower tail, air temperature appears to be relatively

increasing, as presented by the figures 7.5 — 7.8, leading to a thinner lower tail.
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Figure 7.5 Lower tail of the observed average air temperature at return period T1
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Figure 7.6 Lower tail of the observed average air temperature at return period T2
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T3 = 32.98 years
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Figure 7.7 Lower tail of the observed average air temperature at return period T3
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Figure 7.8 Lower tail of the observed average air temperature at return period T4
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Upper tail of the maximum air temperature appears to become progressively thinner as
time progresses. The general trend of each respective return period, excluding the very
first years until the end 30-year periods starting up to the end of the 19* century, is
slightly decreasing. Until the 1930’s there is a barely noticeable thickening of the tail (in
the order of 0.1), but after that time and until today there is a substantial decrease of the

thickness of the upper tail of maximum air temperature by about 0.2.
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Figure 7.9 Upper tail of the observed maximum air temperature at return period T1
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Figure 7.10 Upper tail of the observed maximum air temperature at return period T2
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Figure 7.11 Upper tail of the observed maximum air temperature at return period T3
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T4 = 49.47 years
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Figure 7.12 Upper tail of the observed maximum air temperature at return period T4

Lower tail of the minimum air temperature presents for the most part an astonishingly
steady behavior, contrary to the upper tail of the maximum air temperature. From 1880’s
until 1970’s there is an incredible plateau on the graph, not only in terms of the mean
(50 percentile), but also of the 25t and 75™ percentiles. After the 1970’s though, (i.e.
30-year periods that start to include years from the 21 century) a substantial increase
of the minimum temperature results in the thinning of the lower tail of minimum

temperature.
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Figure 7.13 Lower tail of the observed minimum air temperature at return period T1
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Figure 7.14 Lower tail of the observed minimum air temperature at return period T2
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Figure 7.15 Lower tail of the observed minimum air temperature at return period T3
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Figure 7.16 Lower tail of the observed minimum air temperature at return period T4
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7.2 Synthetic timeseries

As expected by the production of synthetic timeseries and the quantile selection in each
specific time scale, the behavior of the temperature presents homogeneity, not only in
terms of variance, but also in terms of the average trend in time. A small differentiation
of the synthetic timeseries compared to the observed timeseries is the slightly larger
variance in each specific return period, even though the plotted quantiles are, as before,
the 25", the 50" and the 75™. In addition, the synthetic records of the lower tail of the
average air temperature correspond to a thinner tail, than the one derived from the

observed timeseries.

Start of 30 year period

Return period (years)

Figure 7.17 Upper tail of the simulated average air temperature behavior

121



4.2

4.4

42

Start of 30 year period
Return period (vears)

Figure 7.18 Lower tail of the simulated average air temperature behavior
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Figure 7.19 Upper tail of the simulated maximum air temperature behavior
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Figure 7.20 Lower tail of the simulated minimum air temperature behavior

7.3 Individual long-lived observed records

We realized this part of the study of the land surface air temperature in order to compare
the general trend of the ensemble of the recorded timeseries with the longest recorded
available timeseries. The individual weather stations, whose records we investigated
separately are the station of St. Petersburg, Russia for the upper and lower tails of the
average air temperature and the station of Milan, Italy for the upper tail of the maximum

and the lower tail of the minimum air temperature.

Upper tail of the average air temperature, as presented by the data of the St. Petersburg
station, corroborate the slightly increasing trend of the thickness of the tail observed from
the sum of the weather stations around the globe. However, intense, yet isolated,
heatwaves seem to alter substantially the stability of this trend. Specifically, in years 1972,
1986, 2010 (shown in periods starting 30 years earlier) a noticeable increase of the
thickness of the tail of up to 0.6 can be observed in the larger return period. Interestingly,
the latter one, corroborates the extreme heatwave experienced in the Northern
hemisphere during the summer of 2010.
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Figure 7.21 Upper tail of the average air temperature of St. Petersburg, Russia station

Lower tail of the average air temperature, as presented by the data of the St. Petersburg
station, present great instability. The very first years of the record, i.e. 30-year periods
starting up to 1893, show a stable behavior, but after that period and until the 30-year
periods starting up to 1949, a considerable upward dislocated plateau indicate a
persistent period of low average temperatures spanning for more than 50 years. After
this plateau, however, a considerable plummeting of the average temperature translates
to a decrease of the standardized average temperature by about 0.8 in one year and
further 0.2 after 7 years, indicating persistent freezing of the region. After 2010 the effect

seems to be mitigated, and the lower tail returns to an average level.
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Figure 7.22 Lower tail of the average air temperature of St. Petersburg, Russia station

Upper tail of the maximum air temperature, as presented by the data of the Milan station
in Italy, does not corroborate the slightly decreasing trend of the thickness of the tail
observed from the sum of the weather stations. In particular, for the common record
period between 1881 and 2010 an ascending trend is apparent in all the return periods.
Especially in the two larger return periods, in the 30-year period starting 1955 a robust

increase of about 1 (of the standardized timeseries) alter the steady behavior of the

record present the previous 100 years.
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Figure 7.23 Upper tail of the maximum air temperature of Milan, Italy station

Lower tail of the minimum air temperature, as presented by the data of the Milan station

in Italy, does not show to corroborate the relatively stable trend of the thickness of the

tail observed from the sum of the weather stations. Specifically, for the 30 years periods

starting between 1900 and 1940 a severe fall of the minimum temperature, of the scale

of about 1, happens, which contradicts the general upward, i.e. thinning, of the tail of the

minimum temperature.
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Figure 7.24 Lower tail of the minimum air temperature of Milan, Italy station

The great differences individual records present with the sum of the records from all over

the globe are reasonable to appear, since aggregate behavior tends to present milder

variations, thus attenuating local and isolated extreme heat or cold waves. Despite this, it

is extremely useful to compare the behavior of the whole with the records that are the

most long-lived, so as to identify possible baseless generalizations that may emerge from

the over-focusing on individual records.
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8. Conclusions

The aim of this study is to investigate the extreme land surface air temperature temporal
evolution in global scale, by studying long timeseries of the average, maximum and
minimum air temperature. Despite all the interest that has been given to the study of the
air temperature trends in recent years, this is the first study to normalize the temperature
records with respect to the respective months. Thus, statistically unimportant variations,
within the scope of usual natural variation do not skew the study of the temperature in

macroscopic scale, free of any microvariations bias.

First, we retrieved all the necessary timeseries data from the GHCN (Global Historical
Climatology Network)-Daily database for the three studied variables; i.e. average,
maximum and minimum air temperature. Then, after performing a series of quality checks,
to clear out the data containing any false entries, we standardized (according to the
Gaussian distribution) each timeseries, with respect to the monthly average (arithmetic
mean) and standard deviation. From each standardized timeseries, consecutively rolling
30-year long sections were isolated, in order for the study of the extreme occurrence to

take place.

Secondly, for each rolling 30-year section of the timeseries, we extracted, through the use
of the K-moments, the extreme values corresponding to 4 pre-selected return periods,
representative of the whole tail of the temperature distribution. These values were saved
in a separate file, from which, after repeating this procedure for all the observed
timeseries, the 25%, 50" and 75" percentile values were isolated for each year

(corresponding to the start of a 30-year period) and were plotted in a boxplot.

Thirdly, and in parallel with the study of the observed timeseries, we calculated an
aggregated climacogram for the ensemble of the timeseries was created, from which the
persistence of the temperature variables. This was achieved through the utilization of a

hybrid Hurst-Kolmogorov and Markov theoretical model being optimized, through a
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Monte-Carlo analysis, to fit the Climacogram. We then used the Hurst coefficients of each
temperature variable to create synthetic records with the same statistical characteristics
as the observed timeseries. These synthetic timeseries were finally studied, using K-
moments at specific return periods, in a similar process as the one followed in observed

timeseries.

8.1 Remarks on observed record behavior
The study of the observed land surface air temperature records brought interesting facts
to the surface. All three of the air temperature variables (namely average, maximum and

minimum) present an unstable behavior, with fluctuations not easily negligible.

The average land surface air temperature presents the most persistent behavior, which is
a progressive increase. The upper tail seems to become more and more thick, while the
lower tail appears to become thinner as time progresses. This means that the average air
temperature increases as a whole, with important effects on the lives of both humans and
other species. Water dependence, agricultural practices and transportation of goods and
people will have to adapt, in order to better cope with the change of the mean expected

temperature.
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Start of 30 year period
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Figure 8.1 Upper tail of the observed average air temperature
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Figure 8.2 Lower tail of the observed average air temperature
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An interesting and, quite frankly, unexpected finding is the thinning of the upper tail of
the maximum land surface air temperature. Contrary to our expectations, it appears that
the behavior of the maximum temperature does not necessarily follow that of the average,
meaning that temperature is a more complex climatic variable than previously thought.
Even though, the maximum recorded temperature is an integral part of the set of data
from which the average temperature derives, it appears that its effect is not so intelligible.
From a statistical point of view, it would be reasonable to assume that an increase of the
upper extreme of a finite set would increase its expected mean. Yet the case is that the

intermediate values of temperature are what affect the average the most.
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Figure 8.3 Upper tail of the observed maximum air temperature

As for the lower tail of the minimum land surface air temperature, it becomes clear that
despite the increasing trend of the average air temperature (even of its lower values), it
remains surprisingly steady, at all return period levels, and only in the last 10-20 years

presents an increasing trend. This shows that the temperature changes are not
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simultaneous through all the spectrum of the temperature variance. Thus, the climate
presents stamina and is able to mitigate, to some extent, changes in factors of the energy
balance of the atmosphere. The fact that almost the same level of upward trend of all the
return period levels of the lower tail suggest a change of the average of the distribution
is more probable than a change of standard deviation, assuming that the minimum

temperature presents a Gaussian-like distribution.

Start of 30 year period
Retur period (years)

Figure 8.4 Lower tail of the observed minimum air temperature

8.2 Remarks on synthetic record behavior

The point of producing synthetic timeseries and investigating them in comparison with
the observed timeseries was to identify similarities and differences between them, that
would lead to a divergence of the actual natural behavior of air temperature from a

simulated stochastic one.

The average land surface air temperature synthetic records produced present an

ambiguous behavior. On the one hand, the upper tail presents a similar pattern as the one
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of the observed data, with the exception of the increasing trend. The variance of the trend,
as expressed through the interquartile range at each return period level, is almost the
same, which point to “well” produced pool of synthetic data. On the other hand, the lower
tail, despite having the same variance at all the return period levels, is much thinner than
in reality. This could mean that the extreme cold waves, affecting the lower tail of the
average temperature, are much more common than anticipated by the reproduction of the
observed stochastic behavior. Despite having a uniquely fit hybrid Hurst-Kolmogorov and
Markov process to estimate the persistence of the average air temperature, as witnessed
by the Climacogram, it still was not enough to decipher, and consequently reproduce, the
complex behavior of the average air temperature. Consequently, the selected model may
not be adequate to describe such a complex behavior as the one presented by the lower

tail of the average air temperature.

As for the maximum land surface air temperature synthetic records produced, the
variance of the trend, as expressed through the interquartile range at each return period
level, is greater than that of the observed data, hence proving that any upward trend of
the upper tail of it is perfectly within the boundaries of expected. Furthermore, the slightly
increasing trend of the upper end (i.e. 75 percentile) of the interquartile range present
at higher return periods is completely opposite form the same limit performance of the

observed data.

The minimum land surface air temperature synthetic records produced present many
comparative similarities with the maximum air temperature. Specifically, the size of the
interquartile range is greater than the one derived from observed data and in fact
overspreads it. This means that any changes present in the observed timeseries are
perfectly explainable from the study of the statistical behavior. Moreover, the slightly
increasing trend of the extreme values of the lower tail may suggest a return to normality

and not a spiraling towards global overheating.
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8.3 Remarks on individual long-lived record behavior

Individual long-lived observed records were studied individually, in order to compare the
temporal evolution of the ensemble of instrumental records, with those individuals that
have the longest length. This enables us to assess the land surface air temperature
evolution unbiased from differentiations on the number of temporally co-existing

instrumental records. However, it has the disadvantage of local bias, thus making risky

any generalization to the global scale.

The longest-lived instrumental records of the average land surface air temperature are
those of Saint Petersburg, Russia. As shown from the analysis made, the upper tail
presents a systematically thickening, across all levels of return periods. Especially from
the point where years of the 1990’s and after were added to the rolling 30-year periods
(i.e. 30-year periods starting after 1960’s), the increasing trend of the thickness is almost
free of any micro-variations. This shows that a persistent local or superregional has been

affecting the climate of Saint Petersburg after the 1990’s.

The lower tail of the average land surface air temperature presents a somewhat more
tumultuous behavior, yet with a relatively stable general trend of thinning. At the larger
return period levels, the variations of the thickness of the tail are of the order of 0.8-1.0,
and are apparent from the beginning of the 20 century. At the lowest return periods,
however, the variations are significantly smaller, but the latest years (i.e. 30-year periods
starting after 1980) present a thinning of the lower tail of about 0.4-0.8, that cannot be

ignored.

As for the maximum and minimum land surface air temperature, the longest-lived
instrumental records are those of Milan, Italy. From the proceeding analysis, we
understand that from the 1770’s until the 1840’s the maximum air temperature had a
relatively stable upper tail. Yet around the end of the 1840’s and beginning of 1850’s a
strong force caused the upper tail to thicken almost uniformly by about 1.0, which implies
a displacement of the upper tail to the right (i.e. an increase of the average of the

distribution and not of the variance). Then until about 1980’s the behavior of the upper
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tail is surprisingly stable, considering the more-than-centennial length of the period. After
the 1908'’s, however, the upper tail follows an similar pattern as the one of the of the
1850’s period, with a substantial thickening of about 1.3-1.5 across all return period
levels, suggesting another displacement of the upper tail to the right (i.e. an increase of

the average of the distribution and not of the variance).

The lower tail of the minimum land surface air temperature appears to have a similar
behavior as the one of the lower tail of the average land surface air temperature. It is quite
turbulent, with variations of about 0.6-0.8, even at the lower return period levels, but the
changes seem to cancel each other, giving a stable trend up to about the 1990’s. After
that period, however, the lower tail seems to thin a lot, with the decreases of the

respective return period values to be more than 0.5.

What we infer from these two individual long-lived instrumental records is a systematic
increase of the thickness of the upper tail and a systematic thinning of the lower tail. One
of the reasons that may explain this observation is the possibility that Europe may

experience a general warming compared to the rest of the world.

A more potent factor for the increase of the mean land surface air temperature in both
Saint Petersburg and Milan could be the increase of the population of the two cities,
accompanied by a change of land cover. This could intensify the heat island effect, which
would systematically affect the warming of the regions, which host the weather stations.
As shown from data of the Italian National Institute of Statistics (Istat, 2014), the
population of the urban center of Milan increased from 267,000 to 1,368,000 between
1861 and 2016, which indicates a five-fold increase. As for the Saint Petersburg federal
subject, the resident population increased from 843,000 to about 4,597,000 between the
years 1880 and 2003 (Elyseeva and Gribova, 2003). This increase is more than five-fold,
thus making plausible the suspicion of severe change in land cover affecting the

temperature in the city.
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8.4 Implications on the land surface air temperature tails

The assessment of the changes that occur in the tails of average, maximum and minimum
land surface air temperature is essential for the understanding of the exact nature of
climate change. Changes in the average (arithmetic mean) of the equivalent distribution
of air temperature are completely different from changes in variance. An increase of
variance leads to greater instability and more frequent and intense extreme events. On
the other hand, a change of the average of the distribution translates to a displacement
of the whole distribution, but not of the occurrence of extremes; the only thing changing
is the definition of extremes, since events of different temperature will correspond to the

same probability of happening.

As shown by the investigation of the tail behavior of surface temperature on global scale
using K-moments performed by Glynis et al. (2019), the tails of the temperature
distribution are not exactly Gaussian. The upper tail is lighter than that of the Gaussian,
while the lower is heavier. With this in mind and giving greater gravity to the results of
the maximum and minimum temperature study, which incorporated data from 20 times
more instrumental records than the equivalent of the average temperature (namely more
than 5,000 records compared to less than 250 records), it is reasonable to deduce the

following:

e The upper tail of the land surface air temperature has remained relatively
unchanged throughout the past 130 years (both in terms of average and variance
of its distribution).

e The lower tail of the land surface air temperature had remained unchanged until
the 1990’s from which point is started to become thinner, due to a change of the
average and not the variance of its distribution.

e The main body of the distribution of land surface air temperature, which closely
relates to the average (arithmetic mean) air temperature has moved to warmer
temperatures, which was caused by an increase of the average and not the variance

of its distribution.
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Thus, it is valid to say that extreme heatwaves remain the same probable as in the past,
extreme cold waves have become slightly scarcer. However, the expected (average) daily
temperature has increased, especially in the last 30 years. One such possible explanation

is the change of the air temperature density function, as shown in the figure 8.5.

Past distribution

Present distribution

Frobahility density of air temperature

.

Figure 8.5 One possible historical evolution of the air temperature probability density function. Note that

its purpose is purely perceptional.

This behavior strongly suggests the existence of certain physical laws that enable the
Earth’s climate to absorb any temperature increases by increasing the minimum
temperature, but avoiding increasing the maximum temperature. This is unexpected, since
the only known boundary of temperature is the absolute zero (-273.15 °C), while an upper

limit does not exist.

All these changes make the land surface air temperature to have a narrower range, since

the lower extremes have decreased, while the upper extremes have remained relatively
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constant. However, we cannot be certain of how the internal variability of the climate is

going to change, since persisting warm or cold events may increase.

8.5 Suggestions for future research

The array of possibilities that engenders the scientific methodology that we followed in
this research is huge. A prime example of possible follow-up study is the implementation
of K-moments and the Hurst-Kolmogorov approach on the satellite-measured surface air
temperature records, which include both land and ocean areas of the planet, thus
increasing significantly the spatial coverage. In such case, though, attention should be
given to the time of the day at which each measurement has been taken, as well as the

interference of cloud and air currents above the surface.

Another promising field of follow-up study is the spatial, and temporal of course, analysis
of the temperature persistence and change. This would enable the derivation of valuable
information on which climatic regions do get affected the most from the climate change
and in which way. Furthermore, it could be used to correlate it with precipitation patterns
alterations in order to produce a reliable model for temperature and precipitation

macroscopic prediction.

Last, but not least, the same tools that we used here to assess the changes of the extreme
values of land surface air temperature could be used to study the surface dew point. This
would enable the understanding of how the air saturation patterns have changed in
relation to the past, and what consequences this has for the precipitation. Especially in
arid and semi-arid areas, the high seasonality of rainfall makes exigent the accurate
prediction of how these patterns are changing, in order for the ecosystem and humans to

better adapt.
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Appendix

In this appendix we provide all the important scripts and functions, which we used (in

Matlab environment) for the scientific purposes of this study.

Script 1: Search for non-zero files

clc; clear all; close all; tic;

%$Search for non-zero data files

[~,stations] = xlsread('Data List Tmax.xlsx');

for i = 1l:length(stations);
filename = strcat ('NOAA GHCND TMAX/',6string(stations(i)));
load(filename, 'S'"); %loading of time series
m(i,1) = numel (find(S(:,4)))/365.25;

end

save ('numyears Tmax.mat', 'm'");

toc;

Script 2: Plotting of observed timeseries

minimum = 30; %$minimum record length
maximum = inf; %$maximum record length

limitl = 1935; %latest year of record start

tail = 1; %1 for Upper tail; 2 for Lower tail

[~,stations] = xlsread('Data List Tavg.xlsx');

load ('numyears Tavg.mat');

size = 245; S%Snumber of stations which entered service before 1935

start year = 1881;
end year = 1988;
Kp alpha = NaN(size,end year-start year+l);
Kp beta = NaN(size,end year-start year+l);
Kp gamma = NaN(size,end year-start year+l);
Kp delta = NaN(size,end year-start year+l);
templ = 0;
all = 106283;
for number = 1l:all;
filename = strcat ('NOAA GHCND TAVG/',char (stations (number)));
load (filename) ;

if number == 43375;
S = 5(2273:end, :);
end
n=numel (S(:,4));
if n > 0;
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years = S(n,1)-S(1,1)+1;
S = new_cleaning(Q,S);
if S(1,1) <= limitl;
if and(and(years >= minimum, years <= maximum),and(n/365.25
>= minimum,n/365.25 <= maximum)) ;
templ = templ+l;
clear pointl; clear point2; clear x; clear y;
for j = l:years-29 %number of distinct 30-year periods
pointl = min(round(l+(j-1)*365.25),n-10957); S%start
point of 30-year period
point2 = min(pointl+10957,n); %end point of 30-year
period
pos = S(pointl,1l)-(start year-1);

[Kp_alpha (templ, pos),Kp beta (templ,pos),Kp gamma (templ,pos),Kp delta(te
mpl,pos)] = K calc(S(pointl:point2,:),tail);
end
end
end
end
end
y_alpha = new organize (Kp alpha,end year-start year+l);
y _beta = new organize (Kp beta,end year-start year+l);
y_gamma = new_organize (Kp gamma,end year-start year+l);
y_delta = new organize (Kp delta,end year-start year+l);
years = [start year:l:end year];
figure (1)
hold on; grid on;
for i=l:end year-start year+l;
plot3([years (i) years(i) years(i)],[4.95 4.95 4.95],y alpha(:,1),"'-
*kl) .

plot3([years (i) years(i) years(i)],[16.49 16.49
16.49],y beta(:,1),"'-*k");
plot3([years (i) years (i) years(i)]l,[32.98 32.98
32.98],y gamma (:,1i),"'-*k");
plot3([years (i) years (i) years(i)],[49.47 49.47
49.47]1,y delta(:,1),'-*k");
end
x1im([1881 1988]);
title(['Lower tail of Tavg | Number of stations: ', num2str (templ), '
Record beginning before: ', num2str (limitl)]);

xlabel ('Start of 30 year period');
ylabel ('Return period (years)');
hold off

Script 3: Aggregation of climacogram values

minimum = 30; %minimum record length

maximum = inf; %maximum record length

limitl = 1935; %latest year of record start
[~,stations] = xlsread('Data List Tavg.xlsx');

load ('numyears Tavg.mat');
size = 5006;
start year = 1881;
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end year = 1989;
all = 106283;

templ = 0;
for number = 1l:all;
filename = strcat ('NOAA GHCND TAVG/',char (stations (number)));

load (filename) ;
n=numel (S(:,4));

if n > 0;
years = S(n,1)-S(1,1)+1;
S = new_cleaning(Q,S);

if S(1,1) <= limitl;
if and(and(years >= minimum, years <= maximum),and(n/365.25
>= minimum,n/365.25 <= maximum)) ;
templ = templ+l;

i = 1:12;
pos = ismember (S(:,2),1);
(i,1) = nanmean(S(pos,4)); %monthly average
i,2) = nanvar (S(pos,4)); Smonthly variance
pos,4) = (S(pos,4)-m(i,1))/sqgrt(m(i,2)); %Smonthly

H

o

=

[
|

standardization
end
m one(templ,l) = moment(S((~isnan(S(:,4))),4),1);
m_two (templ,l) = moment (S((~isnan(S(:,4))),4),2);
m_three (templ,1) =

moment (S ((~isnan(S(:,4))),4), )/(sqrt(m_two(templ,l))A3);
m_four (templ,1l) =

moment (S ((~isnan(S(:,4))),4),4)/
clear Scale;

(m_two (templ,1)"2);;

Scale = [1:100 110:10:1000 1100:100:round(n/10) ]
max Scale (templ) = Scale(l,end);
length n(templ) = n;

ExpectedOne (templ, 1:1length(Scale)) =
pdClandHfast (S(:,4),Scale)';
end
end

end
end
Moments Tavg = [m one, m two, m three, m four];
xlswrite ('Moments Tavg.xlsx',6 Moments Tavg) ;
ExpectedOne (:, find (ismember (Scale,100*floor (mean (length n) /1000)))+1l:en
d) = [1;
clear n; clear Scale;
n = floor (mean (length n));
Scale = [1:100 110:10:1000 1100:100:round(n/10) ]
ExpectedAll = nanmean (ExpectedOne,l);
xlswrite ('HHK-Markov Tmax.xlsx',6 ExpectedAll');

Script 4: Analysis of timeseries

clc; clear all; close all;

minimum = 30; %minimum record length
maximum = inf; %maximum record length

limitl = 1935; %latest year of record start
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tail = 2; %Lower tail

tic;

[~,stations] = xlsread('Data List Tavg.xlsx');

load ('numyears Tavg.mat');

size = 245; %number of stations which entered service before 1935

start year = 1881;

end year = 1988;

Kp alpha = NaN(size,end year-start year+l);
Kp beta = NaN(size,end year-start year+l);
Kp gamma = NaN(size,end year-start year+l);
Kp delta = NaN(size,end year-start year+l);

templ = 0;
all = 106283;
for number = 1l:all;
filename = strcat ('NOAA GHCND TAVG/',char (stations (number)));
load (filename) ;
if number == 43375;
S = 5(2273:end, :);
end
n=numel (S(:,4));
if n > 0;
years = S(n,1)-S(1,1)+1;
S = new_cleaning(Q,S);
if S(1,1) <= limitl;
if and(and(years >= minimum, years <= maximum),and(n/365.25
>= minimum,n/365.25 <= maximum)) ;

templ = templ+l;
for 1 = 1:12;
pos = ismember (S(:,2),1);
m(i,1l) = nanmean (S (pos,4)); %monthly average
m(i,2) = nanvar(S(pos,4)); %monthly variance
S(pos,4) = (S(pos,4)-m(i,1))/sgrt(m(i,2)); S%Smonthly
standardization
end
clear pointl; clear point2; clear x; clear y;
for j = l:years-29 %number of distinct 30-year periods

pointl = min(round(l+(j-1)*365.25),n-10957); S%$start
point of 30-year period

point2 = min(pointl+10957,n); %end point of 30-year
period

pos = S(pointl,1l)-(start year-1);

[Kp_alpha (templ, pos),Kp beta(templ,pos),Kp gamma (templ,pos),Kp delta(te
mpl,pos)] = K calc 2 (S(pointl:point2,:),tail);
end
end
end
end
end

y_alpha = new organize (Kp_alpha,end year-start year+l);
y _beta = new organize (Kp beta,end year-start year+l);
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y_gamma new _organize (Kp gamma,end year-start year+l);
y_delta = new organize (Kp delta,end year-start year+l);

years = [start year:l:end year];
figure (1)

hold on; grid on;

plot (years,y alpha(l,:));

plot (years,y alpha(2,:));

plot (years,y alpha(3,:));
x1im([1881 1988]);

title('T_1 = 4.95 years');

xlabel ('Start of 30 year period');
legend ('75th percentile', '50th percentile', '25th percentile')
hold off

figure (2)

hold on; grid on;

plot (years,y beta(l,:));

plot (years,y beta(2,:));

plot (years,y beta(3,:));
x1im([1881 1988]);

title('T_2 = 16.49 years');
xlabel ('Start of 30 year period');
legend ('75th percentile', '50th percentile', '25th percentile')
hold off

figure (3)

hold on; grid on;

plot (years,y gamma(l,:));
plot (years,y gamma (2, :));
plot (years,y gamma(3,:));
x1im([1881 1988]);
title('T_3 = 32.98 years');

xlabel ('Start of 30 year period');

legend ('75th percentile', '50th percentile', '25th percentile')
hold off

figure (4)

hold on; grid on;

plot (years,y delta(l,:));

plot (years,y delta(2,:));

plot (years,y delta(3,:));

x1im([1881 19887);

title('T 4 = 49.47 years');

xlabel ('Start of 30 year period');

legend ('75th percentile', '50th percentile', '25th percentile')
hold off

Function 1: Calculation of unbiased K-moments

function [Kappal,KappaZ2,Kappa3,Kappad4] = K calc(T,tail)

for 1 = 1:12;

pos = ismember (T(:,2),1);

m(i,1l) = nanmean (T (pos,4)); %smonthly average

m(i,2) = nanvar(T(pos,4)); Smonthly variance

T(pos,4) = (T(pos,4)-m(i,1))/sqgrt(m(i,2)); %monthly standardization
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end
Ts = T(:,4);

if tail == SUpper tail

Ts = sort(Ts, 'ascend'); %$Sort in ascending order
else %$Lower tail

Ts = sort(Ts, 'descend'); %Sort in descending order
end
n = numel (Ts); %actual length of time series
temp2 = 0;

telos = min([max (find (Ts==max (Ts), 1, 'first'),find(Ts==min(Ts),
'first')) n]l);
for p = [1096 3653 7305 telos]
stath = log(p)+tgammaln (telos-p+l)-log(telos)-gammaln (telos)
clear term;

for i = 1l:telos;
if 1 >=p
term (i) = exp(stath+tgammaln (i)-gammaln (i-p+1))*Ts (1)
else
term(i) = 0;
end
end
temp2 = temp2+1;
Kp (temp2) = nansum(term) ;

end

if abs (Kp(l)) >= 0.5;
Kappal = Kp(1l);
else
Kappal = NaN;
end

if abs (Kp(2)) >= 0.5;
KappaZ = Kp(2);
else
Kappaz = NaN;
end

if abs(Kp(3)) >= 1;
Kappa3 = Kp(3);
else
Kappa3 = NaN;
end
if abs (Kp(4)) >= 1;
Kappa4 = Kp(4);
else
Kappad4 = NaN;
end

Function 2: Removal of flagged values

o)

% removes flagged values
for i=l:length(S(:,4));
if strcmp(Q(i,2),"' ") ~= 1;
S(i,4) = NaN;
end
end
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Sout = S;
end

Function 3: Calculation of the climacogram for each timeseries

CCl=NaN (numel (k) ,1);
for I=1:numel (k);
C=S;
F=factor(k(I));
if k(I)<50;
for J=1:numel (F);
if F(J)<=17;
A=zeros (numel (C)+F (J)-1,F (J));
for L=1:F(J);
A(L:end+L-F(J),L)=C;
end
B=nansum (A, 2) /F(J
C=B(F (J):F(J).end F(J)+1);
else NN=numel (C) ;
A=zeros (floor (NN/F
for L=1:floor (NN/F

(J3)),1);
(
A(L,1)=nansum(C

)i

J)
J)
(F(J)*(L-1)+1:F(J)*L, 1)) /F(J)

end

else
NN=numel (S) ;
A=zeros (floor (NN/k
for L=1:floor (NN/k

( ) 1)
(
A(L,1)=nansum (S

I)
I))
(k( *(L-1)+1:k(I)*L, 1)) /k(I);

end
CCl (I, :)=[nanvar(C)];
end

Function 4: Production of synthetic timeseries

%$This is a Matlab script powered by Panayiotis Dimitriadis
(https://scholar.google.gr/citations?user=L6hWcz0AAAAT&h]l=en)

$based on the analysis of (https://www.itia.ntua.gr/el/docinfo/1656/)
%P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis
approximating any process dependence and distribution, Stochastic
Environmental Research & Risk Assessment, 32 (6), 1493-1515,
doi:10.1007/s00477-018-1540-2, 2018. for the stochastic simulation of a
series with long-range dependence (HK model) by preserving explicitly
(i.e. in a direct way without including transformations) the first four
central moments of the target marginal distribution or of the sample
series

function [S]=SMA4 HK(Sm,Sv,Ss,Sk,H,N)
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1=Sv; NA=N; MA=(1:NA)'

Ac=sqrt (2*gamma (2*H+1) *sin (pi*H) *1/ ( ( (gamma (H+1.5) ) "2) * (1+sin (pi*H))))*
(((abs ([0;MA]+1)) .~ (H+0.5)+ (abs ([0;MA]-1)) .~ (H+0.5))/2-

(abs ([0;MA])) .~ (H+0.5)); %Averaged Process (Kouts, 2015)

SA=[Ac (1+N:-1:2)" Ac(l) Ac(2:N+1)"']; Vm 0; Vv=1;

Vs=Ss* ( (Ac (1) "24+2*sum (Ac (2:NA+1) ."2)) (3/2))/ (Ac (1) "3+2*sum (Ac (2 :NA+1)
.73))

if Sk~=3;

SUM=0; for I=2:NA; SUM=SUM+ (Ac(I)"2)*sum(Ac (I+1:NA+1)."2); end

Vk=abs (( (((Ac (1) "24+2*sum (Ac (2:NA+1) ."2)) ."2) *Sk) -6*sum (Ac (2:NA+1) ."4) -
12* (Ac (1) "2) *sum (Ac (2:NA+1) ."2) -

24*3SUM) / (Ac (1) “4+2*sum (Ac (2:NA+1) .%4))) ;

else

Vk=3;

end

if (Ss==0) && (Sk==3) ;

CW=1; a=Vm; b=Vv; c¢=0; d=0;

else

if (Vk-5/3* (Vs)"*2-3<=0);

CW=2;

KKF=Q (x) [Vs-(2* (abs(x(2)) *beta(1l+1l/abs(x(1l)),abs(x(2))))"3-
3*abs(x(2))*beta(l+l/abs( (1)) ,abs (x(2))) *abs (x(2)) *beta (1+2/abs (x (1)),
abs (x(2)))+abs(x(2)) *beta (1+3/abs(x(1)),abs(x(2))))/ (abs(x(2)) *beta (1+2
/abs (x(1)),abs(x(2)))-(abs(x(2)) *beta (1+1/abs (x(1)),abs(x(2))))"2)"1.5;
Vk- (-

3* (abs (x(2)) *beta (1+1/abs(x(1)),abs (x(2)))) ~4+6* (abs (x(2)
(x(1)),abs(x(2))))*(abs (x(2)) *beta (1+1/abs (x(1)),abs (x(2)
4*abs (x(2)) *beta (1+1/abs (x(1)),abs(x(2))) *abs (x(2)) *beta (
abs (x(2)))+abs (x(2)) *beta (1+4/abs (x (1)) ,abs (x(2))))/ (abs(
/abs(x(1)),abs (x(2)))-(abs(x(2)) *beta(l+1/abs(x(1l)),abs (x
opt=optimset ('Display', 'off'); warning('off','all');

[KKF, ~]=fsolve (KKF, [1 10"2],0pt);

a=abs (KKF (1)) ; b=abs (KKF(2)); d=sqrt(Vv/(b*beta(l+2/a,b) -
(b*beta (1+1/a,b))"2)); c=Vm-b*d*beta(l+1l/a,b);

else

CW=3;

c=sqrt (3/Vv/ (Vk=-5/3* (Vs)*2-3));

b=(c"2)*Vs*sqrt (Vv) /3;

d=(c"3)*Vv/ (b"2+c"2);

a=Vm-b*d/c;

)*beta (1+42/abs
))) "

l+3/abs( (1)),
X (2)) *beta (1+2
(2))))~2)~2];

end

end

if CW==1; V=norminv (rand (N+2*NA,1), a, sqrt( )); end

if CW==2; V=d* (1-(l-rand (N+2*NA,1)).~(1/b)).~(1/a)+c; end
if CW==

Vl=norminv (rand (N+2*NA,1),0,1); V2=V1."2; V3=d/c+V2/2/c"2-

sqrt (4*v2*d/c+(V2/c) ."2)/2/c; Vi=rand (N+2*NA, 1) ;

7z=V3; Z(V4>1./(1+V3*c/d))=((d/c)"2)./V3(V4>1./ (1+V3*c/d))

V=a+b*Z+sqgrt (Z) . *norminv (rand (N+2*NA,1),0,1);

end

S=zeros(N,1); if H~=0.5; for J=1:N; S(J,1)=SA*V(J:2*NA+J,1); end; else
=V (1:NA,1); end

S=S/sqrt (1) *sqgrt (Sv) +Sm;
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