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Abstract: Predictive hydrological uncertainty can be quantified by using ensemble 

methods. If properly formulated, these methods can offer improved predictive 

performance by combining multiple predictions. In this work, we use 50-year-long 

monthly time series observed in 270 catchments in the United States to explore the 

performances provided by an ensemble learning post-processing methodology for 

issuing probabilistic hydrological predictions. This methodology allows the utilization of 

flexible quantile regression models for exploiting information about the hydrological 

model’s error. Its key differences with respect to basic two-stage hydrological post-
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processing methodologies using the same type of regression models are that (a) instead 

of a single point hydrological prediction it generates a large number of “sister 

predictions” (yet using a single hydrological model), and that (b) it relies on the concept 

of combining probabilistic predictions via simple quantile averaging. A major 

hydrological modelling challenge is obtaining probabilistic predictions that are 

simultaneously reliable and associated to prediction bands that are as narrow as 

possible; therefore, we assess both these desired properties of the predictions by 

computing their coverage probabilities, average widths and average interval scores. The 

results confirm the usefulness of the proposed methodology and its larger robustness 

with respect to basic two-stage post-processing methodologies. Finally, this 

methodology is empirically proven to harness the “wisdom of the crowd” in terms of 

average interval score, i.e., the average of the individual predictions combined by this 

methodology scores no worse –usually better− than the average of the scores of the 

individual predictions. 

Key words: ensemble learning; hydrological model; probabilistic prediction; quantile 

averaging; quantile regression; uncertainty quantification 

1. Introduction 

Uncertainty is a subject of ongoing discussions in hydrology (see e.g., Beven 1993, 2000, 

2001; Vogel 1999; Beven and Feer 2001; Krzysztofowicz 2001a; Pappenberger and 

Beven 2006; Koutsoyiannis and Montanari 2007; Montanari 2007; Koutsoyiannis et al. 

2009; Koutsoyiannis 2010, 2011; Kuczera et al. 2010; Ramos et al. 2010, 2013; Weijs et 

al. 2010; Juston et al. 2012; Nearing at al. 2016). Hydrological modelling uncertainty is 

traditionally recognised within the model calibration and validation phases (Montanari 

2011) in the context of the widely accepted evaluation framework proposed by Klemeš 

(1986). Within this framework “uncertainty treatment” serves the verification of 

hydrological model’s reliability (Montanari 2011). The large number of relevant studies 

and their high significance are summarised, for instance, in the review papers by 

Efstratiadis and Koutsoyiannis (2010), and Pechlivanidis et al. (2011). 

As discussed in Koutsoyiannis (2010), an appropriate modelling approach for any 

uncertain hydrological system should necessarily include quantification of its 

uncertainty within a stochastic framework. Uncertainty is naturally quantified using the 
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probability theory, i.e., in terms of probability distribution function (PDF; Todini 2007; 

see also Todini 2004, 2008). Todini (2007; quoting Krzysztofowicz 1999) emphasizes 

the fact that in engineering applications the targeted uncertainty quantification should 

be no other than the quantification of the predictive uncertainty, i.e., the total 

uncertainty of the predictand. Along with this strong engineering-oriented interest of 

hydrologists (which might be underestimated in some cases but is of vital significance 

for hydrology, as for any applied science; Shmueli 2010), understanding of predictive 

performance and uncertainty in hydrological modelling is undoubtedly a major science-

oriented target (see e.g., Clark et al. 2008; Renard et al. 2010, 2011; Montanari 2011; 

Pechlivanidis et al. 2011; Beven 2012; Montanari and Koutsoyiannis 2012; Clark et al. 

2015; Farmer and Vogel 2016; Széles et al. 2018; Khatami et al. 2019).  

The preference for process-based (including conceptual) hydrological models (over 

the data-driven ones; Toth et al. 1999), along with both the practical relevance of 

predictive uncertainty quantification in hydrology and the attentiveness of hydrologists 

towards increasing understanding in (probabilistic) hydrological modelling, has led to 

the development of a wide range of methodologies for the integration of process-based 

and statistical models. This range includes (but is not limited to) various types of 

methodologies that statistically post-process the output of process-based models 

(hereafter referred to as “post-processing” methodologies). Considering information 

from deterministic models within uncertainty assessment frameworks (instead of 

exclusively using statistical methods) is a state-of-the-art methodological approach that 

is also adopted in contiguous fields (see e.g., Tyralis and Koutsoyiannis 2017). This 

approach holds a prominent position in the field of probabilistic hydrological modelling, 

in contrast to purely statistical probabilistic methodologies, which are rarely preferred; 

therefore, the below-provided outline exclusively focuses on it. 

Perhaps the most frequently exploited methodology for predictive uncertainty 

quantification in hydrological modelling is the Generalized Likelihood Uncertainty 

Estimation (GLUE; Beven and Binley 2014). This approach has been proposed by Beven 

and Binley (1992), and is based on the concept of equifinality (see, e.g., Beven 2006; 

Khatami 2019). It has been discussed, for example, in Montanari (2005), Mantovan and 

Todini (2006), Stedinger et al. (2008), Vrugt et al. (2009b), and Sadegh and Vrugt 

(2013); see also the related comments in Todini (2007). 

Another predictive uncertainty quantification methodology that has received 
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attention both by researchers and practitioners is the Bayesian Forecasting System 

(BFS). The BFS has been introduced by Krzysztofowicz (1999, 2001a, 2002), 

Krzysztofowicz and Kelly (2000), and Krzysztofowicz and Herr (2001) for producing 

probabilistic river stage forecasts. It consists of three discrete components, namely the 

Precipitation Uncertainty Processor (PUB), the Hydrologic Uncertainty Processor (HUP) 

and the INTegrator (INT). Information about these components can be found in Kelly 

and Krzysztofowicz (2000), Krzysztofowicz and Kelly (2000), and Krzysztofowicz 

(2001b) respectively. This Bayesian methodology is conceived for real-time forecasting 

and relies on the assumption that uncertainty is mainly introduced by rainfall forecast 

errors. 

There are also Bayesian post-processing methodologies that explicitly consider the 

contribution of input and output data uncertainty (which also affects the quantification 

of parameter uncertainty; see Coxon et al. (2015), Di Baldassarre et al. (2012), Di 

Baldassarre and Montanari (2009), Kauffeldt et al. (2013), McMillan et al. (2010), 

McMillan et al. (2012), Montanari and Di Baldassarre (2013), and Tomkins (2014) for 

information on rainfall-runoff data errors). Perhaps the most characteristic example of 

such a methodology is the Bayesian Total Error Analysis (BATEA) framework by 

Kavetski et al. (2002; see also Kavetski et al. 2006a, Kuczera et al. 2006), implemented, 

for instance, in Thyer et al. (2009) and Renard et al. (2010, 2011). This Bayesian 

framework facilitates the joint modelling of parameter uncertainty, data uncertainties, 

and model error, i.e., of all sources of uncertainty that are often assumed to collectively 

compose the predictive uncertainty. Other Bayesian post-processing methodologies 

introduced for parameter and predictive uncertainty quantification are described by 

Kuczera (1983), Schoups and Vrugt (2010), Evin et al. (2013; see also Evin et al. 2014), 

Hernández-López and Francés (2017) and Romero-Cuellar et al. (2019); see also the 

literature review in Hernández-López and Francés (2017). 

Non-Bayesian post-processing methodologies that in their majority focus on the 

modelling of a single error term conditional on hydrological point predictions and 

historical information are also available in the hydrological modelling literature (see e.g., 

Bock et al. 2018; Bourgin et al. 2015; Farmer and Vogel 2016; Montanari and Brath 

2004; Montanari and Grossi 2008; Dogulu et al. 2015; López López et al. 2014; 

Solomatine and Shrestha 2009; Wani et al. 2017). Adopting the terminology by Evin et 

al. (2014), such methodologies are hereafter referred to as “two-stage” post-processing 
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methodologies, as their hydrological and error models are estimated in two subsequent 

stages. It is relevant to note at this point that Bayesian and two-stage post-processing 

methodologies are rather not directly comparable, since they are characterized by 

different statistical-modelling-culture traits and distinguishing features, which in their 

turn lead to different advantages and disadvantages (see Appendix A). For extensive 

discussions on the statistical modelling cultures, the reader is referred to Breiman 

(2001) and Shmueli (2010). 

In the context described so far, Montanari and Koutsoyiannis (2012) introduced a 

flexible two-stage post-processing methodology (hereafter referred to as “MK blueprint 

methodology”) that facilitates both probabilistic modelling and understanding from a 

stochastic perspective of rainfall-runoff (and other stochastic) relationships. In its basic 

configuration, this methodology utilizes a single hydrological model to generate a large 

number of point predictions (hereafter referred to as “sister predictions”; adopting a 

similar terminology to the one by Nowotarski et al. 2016, Wang et al. 2016, and Liu et al. 

2017). As implied by its post-processing nature, it also utilizes a second −necessarily 

statistical− model for modelling the error of the hydrological model (hereafter referred 

to as “error model”). 

Different variants of the MK blueprint methodology can be found in Sikorska et al. 

(2015), Quilty et al. (2019) and Papacharalampous et al. (2019b; companion to the 

present paper). The original blueprint and the variant by Sikorska et al. (2015) are 

formulated to explicitly consider input data uncertainty, while in both related papers a 

large number of hydrological model parameters are obtained by using the DREAM 

algorithm by Vrugt et al. (2009a; see also Vrugt 2016). This algorithm (see, e.g., Schoups 

and Vrugt 2010; Laloy and Vrugt 2012; Vrugt et al. 2013; Sadegh and Vrugt 2014) is a 

popular Markov chain Monte Carlo (MCMC) algorithm for sampling from the posterior 

parameter distribution of hydrological models (see also the related implementations in 

Sadegh et al. 2015; Hernández-López and Francés 2017; Vrugt et al. 2008; Volpi et al. 

2017). Other (non-Bayesian) methodologies could also be used for obtaining a large 

number of hydrological model parameters (Montanari and Koutsoyiannis 2012), while 

in absence of relevant information the MK blueprint methodology can also be applied 

without explicitly considering input data uncertainty (see e.g., the implementations in 

Quilty et al. 2019 and the formulations of the variants in Papacharalampous et al. 

2019b). Quilty et al. (2019) perform probabilistic water demand forecasting using 
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exogenous variables; therefore, their variants constitute integrations within the MK 

blueprint framework of concepts particularly useful and/or popular for this task, such as 

bootstrapping, variable selection and wavelet decomposition. 

In spite of their (larger or smaller) differences in terms of conceptualization, 

underlying modelling cultures and inherent modelling assumptions, all the above-

outlined state-of-the-art techniques aim at filling a common knowledge gap that 

currently exists in the probabilistic hydrological modelling and forecasting literatures, 

specifically at answering the following research question: How to reduce modelling 

uncertainty as much as possible? Risk reduction in (probabilistic) hydrological 

modelling is the 20th of the 23 major “unsolved” hydrological problems, as posed by 

Blöschl et al. (2019, Section 3) through a community-based process. The present study 

aspires to contribute to the large efforts made towards solving this problem. 

We extensively test the hydrological modelling capabilities provided by the variants 

of the MK blueprint methodology introduced in Papacharalampous et al. (2019b) 

(hereafter collectively referred to as “working methodology”), when these variants are 

applied using the quantile regression model by Koenker and Bassett (1978; see also 

Koenker 2005) as error model. The quantile regression model is a balanced choice 

between interpretable and more flexible algorithms from the statistical learning 

literature. It has already been applied for post-processing hydrological predictions 

within hydrological modelling case studies (see e.g., Dogulu et al. 2015, López López et 

al. 2014, Solomatine and Shrestha 2009, Wani et al. 2017), while its use is more common 

in the field of hydrological forecasting (see e.g., Tyralis et al. 2019a and the references 

therein); see also the references in Dogulu et al. (2015), and Abbas and Xuan (2019) for 

applications of this model in other geoscience concepts. 

For benchmarking purposes, we also apply the working methodology using the 

linear regression model (see e.g., James et al. 2013; Hastie et al. 2009) as error model, 

and two naïve probabilistic data-driven schemes. For the merits of using benchmarks in 

hydrological modelling, the reader is referred to Pappenberger et al. (2015); see also 

benchmarking examples in Montanari and Brath (2004), Papacharalampous and Tyralis 

(2018), Papacharalampous et al. (2018a,b,c, 2019a,b,d), Quilty et al. (2019), Evin et al. 

(2014), Sikorska et al. (2015), Tyralis and Papacharalampous (2017, 2018),  Tyralis et 

al. (2018, 2019a,c), and Xu et al. (2018). 
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The working methodology is implemented within a large-sample real-world 

experiment. In the latter, we probabilistically solve monthly rainfall-runoff modelling 

problems for 270 catchments in the United States (US). Large-sample hydrological 

studies are increasingly carried out in the literature (see e.g., Bock et al. 2018; Bourgin et 

al. 2015; Coxon et al. 2015; Farmer and Vogel 2016; Langousis et al. 2016; Mouelhi et al. 

2006a,b; Papacharalampous et al. 2018a,b, 2019a,d; Papalexiou and Koutsoyiannis 

2013; Perrin et al. 2001; Ren et al. 2016; Sawicz et al. 2011; Tyralis and Koutsoyiannis 

2017; Tyralis and Papacharalampous 2017, 2018; Tyralis et al. 2018, 2019a,c; Weijs et 

al. 2013; Xu et al. 2018, 2019), while this is the first study performing a large-scale 

assessment of the MK blueprint methodology. 

The aims of the study (that can be addressed only within a large-sample 

hydrological study) are to: 

1) Validate the working methodology. 

2) Compare its variants both in terms of predictive performance and computational 

requirements. 

3) Quantify the improvement in performance when using the quantile regression 

model instead of the linear regression model as error model. In contrast to the latter 

model, the former model is known to be appropriate for modelling 

heteroscedasticity (Koenker and Hallock 2001; Koenker 2005). 

4) Demonstrate in real-world applications the larger robustness in performance of the 

working methodology compared to two-stage post-processing methodologies 

producing a single point hydrological prediction (hereafter referred to as “basic” 

two-stage post-processing methodologies). 

5) Provide an empirical proof of the ability of the working methodology to harness the 

wisdom of the crowd. This ability stems from the concept of combining probabilistic 

predictions via simple quantile averaging, on which this methodology relies, while 

in Lichtendahl et al. (2013, Section 5) it is defined as follows: The average of 

predictions scores no worse −usually better− than the average of the scores of the 

combined predictions. According to the same study, this ability has to be empirically 

proven for the problem and scores of interest, since the proofs in Lichtendahl et al. 

(2013) are made for stylized versions. 
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2. Data and methods 

In this section, we present the experimental methodology of the study by emphasizing 

implementation details, as it is suggested by the guidelines by Abrahart et al. (2008). 

Statistical software information is summarized in Appendix B. The working 

methodology is outlined in Appendix C, while the reader is referred to 

Papacharalampous et al. (2019b) for its detailed and formal presentation. 

2.1 Rainfall-runoff dataset 

We use the US Model Parameter Estimation Experiment (MOPEX) dataset, which is 

documented in Schaake et al. (2006; see also Schaake et al. 2000, Duan et al. 2006, 

Wagener et al. 2006). This dataset comprises hydrometeorological and land-surface-

characteristic data originating from US catchments of intermediate size, and has been 

extensively used in hydrological studies (see e.g., Kavetski et al. 2006b; Sawicz et al. 

2011; Huang et al. 2013; Evin et al. 2014; Weijs et al. 2013; Ye et al. 2014; Ren et al. 

2016; Hernández-López and Francés 2017). All included catchments are unregulated; 

therefore, the modelling assumption of stationarity is reasonable on these real-world 

data (see e.g., Koutsoyiannis 2011; Montanari and Koutsoyiannis 2014; Koutsoyiannis 

and Montanari 2015). 

From the original dataset we retrieve daily information about mean areal 

precipitation, climatic potential evaporation and streamflow discharge for 431 US 

catchments. The retrieved data span from January 1st, 1948 to December 31st, 2003, thus 

covering a 56-year period, yet containing a large amount of missing and negative 

(unrealistic) values. We process the retrieved data aiming to simultaneously achieve two 

objectives, i.e., (a) extracting time series blocks covering a long common period of 

complete historical information (with no missing or unreliable values), and (b) retaining 

historical information for a large number of catchments. A satisfactory compromise 

between these two objectives is reached when using as sampling period each of the 

periods 1950−1999 and 1949−1998. Both these samplings result in 50 (calendar) years 

of complete daily time series data for 270 catchments. We adopt the former option, as it 

offers (slightly) more recent data compared to the alternative one. The retained time 

series data are aggregated to produce total monthly precipitation, potential evaporation 

and streamflow discharge time series, each comprising 600 values. The resulted total 

monthly time series constitute the herein examined dataset. The locations of the 
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examined MOPEX catchments are depicted in Figure 1. A wide range of climate regimes 

is well-represented by this sample set of catchments (see Kottek et al. 2006). 

  
Figure 1. Locations of the 270 MOPEX catchments examined within the large-sample 
experiment of the study. The data are sourced from Schaake et al. (2006). 

2.2 Prediction interval obtainment 

2.2.1 Overview of modelling methodology 

The monthly data of Section 2.1 are handled as described in Section 2.2.2. We use these 

data to assess two basic and six ensemble schemes in obtaining interval predictions. 

Two statistical learning regression models (see Section 2.2.3) and one hydrological 

model (see Section 2.2.4) are utilized for this assessment. We define the prediction 

problem to be solved as the problem of predicting the quantiles with probability p 

∊ {0.005, 0.0125, 0.025, 0.05, 0.10, 0.90, 0.95, 0.975, 0.9875, 0.995} of monthly 

streamflow discharge in the period T3 (hereafter referred to as “quantiles of interest”) 

given monthly precipitation and monthly potential evaporation observations for the 

period {T0, T1, T2, T3} and monthly streamflow discharge observations for the period {T0, 

T1, T2}. These periods are defined in Section 2.2.2. 

The basic schemes are “linear regression” and “quantile regression”. Both of them 

are implemented by training the regression model directly on monthly data for the 

period {T0, T1, T2} and, subsequently, by using the trained regression model to predict 

the quantiles of interest (for the period T3). The predictor variables in regression are 

monthly precipitation at time t and monthly potential evaporation at time t, while the 

response variable is monthly streamflow discharge at time t. We note that these 

benchmark implementations of the regression models can only be viewed as naïve data-
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driven approaches to probabilistic hydrological modelling (because of the small number 

of predictor variables utilized). For more sophisticated implementations (which are 

outside of the scope of the study), more predictor variables could be used. 

On the other hand, the ensemble schemes can be perceived as different 

configurations of the working methodology (allowing us to address the aims of the 

study). Ensemble schemes 1−3 (4−6) are based on variants 1−3 respectively of this 

methodology. Moreover, ensemble schemes 1−3 utilize a different statistical learning 

regression model as error model with respect to ensemble schemes 4−6. Specifically, 

ensemble schemes 1−3 utilize the linear regression model, while ensemble schemes 4−6 

utilize the quantile regression model. The same ensemble schemes are also 

implemented in Papacharalampous et al. (2019b); however, their implementation 

therein is made by using toy hydrological models. 

We describe here below the application of the ensemble schemes for a single 

catchment; the extension to all catchments is straightforward. The following steps are 

made once for all ensemble schemes: 

1) We use monthly precipitation, potential evaporation and streamflow discharge 

observations for the period T1 to obtain 600 sets of the hydrological model’s 

parameters, as detailed in Section 2.2.4. This number of parameter sets offers a good 

compromise between computational requirements and predictive performance. We 

use these parameters to define 600 sister model realizations. 

2) We obtain 600 sister predictions for the period {T2, T3}. Each sister prediction is 

obtained by implementing a different sister model realization given the monthly 

precipitation and potential evaporation observations for the same period. Each 

sister prediction contains 444 values. 

3) We compute the sister model realizations’ errors in the period T2 by using the parts 

of the sister predictions extending in the same period alongside with their 

corresponding target values. The total number of the computed error values is 600 

× 144 = 86 400. 

The following steps are made independently by each ensemble scheme: 

4) We train the error model in the period T2. Specifically, we regress the sister model 

realizations’ error at time t (response variable) on the sister prediction at time t 

(predictor variable). Ensemble schemes 1 and 4 train the error model 600 times, 
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each time using a different sister prediction and its corresponding sister model 

realization’s errors (use of 600 training datasets of size 144). Ensemble schemes 2 

and 5 train the error model once by using all sister predictions and their 

corresponding sister model realizations’ errors (use of one training dataset of size 

86 400). Ensemble schemes 3 and 6 train the error model once by using a randomly 

selected sister prediction and its corresponding sister model realization’s errors 

(use of one training dataset of size 144). The result of this step is 600 trained 

versions of the error model (each corresponding to a specific sister prediction) for 

each of the ensemble schemes 1 and 4, and one trained version of the error model 

for each of the ensemble schemes 2, 3, 5 and 6. 

5) We apply the trained versions of the error models, obtained in the preceding step, to 

predict the quantiles with probability p ∊ {0.005, 0.0125, 0.025, 0.05, 0.10, 0.90, 

0.95, 0.975, 0.9875, 0.995} of each sister model realization’s errors in the period T3 

given their corresponding sister prediction. For each ensemble scheme, the result of 

this step is 600 probabilistic predictions, each consisting of 10 quantile predictions. 

6) We obtain 600 auxiliary probabilistic predictions of the process of interest, each 

consisting of 10 quantile predictions, by subtracting each of the 600 × 10 = 6 000 

quantile predictions from its corresponding sister prediction. 

7) The finally delivered predictive quantile with probability p ∊ {0.005, 0.0125, 0.025, 

0.05, 0.10, 0.90, 0.95, 0.975, 0.9875, 0.995} at time t ∊ T3 is the average over all 

auxiliary predictive quantiles with the same probability p at time t, i.e., the average 

of 600 in number auxiliary predictive quantiles. The finally delivered predictive 

quantiles of the process of interest form the 99%, 97.5%, 95%, 90% and 80% 

central prediction intervals. 

The total number of sister predictions produced herein is 270 × 600 = 162 000, each 

containing 444 values, while the total number of auxiliary quantile predictions is 270 × 

600 × 10 × 6 = 9 720 000, each containing 300 values, and the finally delivered quantile 

predictions are 270 × 10 × 8 = 21 600, each containing 300 values. For addressing aim 2 

of the study, we measure the computational time consumed by each ensemble scheme. 

2.2.2 Data handling and related remarks 

Following the notations provided in Appendix C, we define the periods T1 = {13, …, 156}, 

T2 = {157, …, 300} and T3 = {301, …, 600} (corresponding to years 1951−1962, 
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1963−1974 and 1975−1999 respectively). We include a large amount of the available 

information in the period T3 to facilitate proper testing. We also define period T0 = {1, …, 

12} (corresponding to year 1950). This period is used for warming-up the hydrological 

model (see Section 2.2.4). One-year warming-up periods are often assumed adequate for 

achieving an optimal state initialisation, while also allowing the full exploitation of the 

available historical information (see e.g., Edijatno et al. 1999; Perrin et al. 2003; Kim et 

al. 2018; see also the implementations in Xu 2001; Perrin et al. 2001; Mouelhi et al. 

2006b; Vrugt et al. 2008). 

We note that the data are used without any transformation applied to it. We 

attempted to apply the linear regression and quantile regression schemes to river 

discharge data that were pre-processed by using the square-root transformation. 

Nevertheless, this pre-processing (not presented here for reasons of brevity) had a 

negative effect on the quality of the naïve probabilistic predictions, mainly to those 

delivered by the linear regression scheme; therefore, it was abandoned. Moreover, a 

logarithmic transformation was not feasible, due to some zero monthly values of river 

discharge. We also attempted to apply the Yeo-Johnson and ordered quantile 

normalization transformations on the response, when solving the error modelling 

problems outlined in Section 2.2.1 (steps 4−5 of the application of the ensemble 

schemes). These transformations were also abandoned due to infinite predicted values. 

The square-root and logarithmic transformations on the response variable, i.e., the error 

of the hydrological model at time t, are not feasible due to the existence of negative error 

values. 

2.2.3 Regression models and related procedures 

We implement the linear regression and quantile regression models. Koenker and 

Hallock (2001) comprehensively discuss the difference in rationale behind these two 

models, as summarized subsequently. The training outcome in linear regression (i.e., 

least-squares regression with i.i.d. Gaussian errors with zero mean and constant 

variance; James et al. 2013) is a conditional mean function. The latter is a function 

describing how the mean of the response variable changes with the changes of the 

predictor variables. This function is obtained by minimizing a sum of squared residuals. 

On the contrary, the training outcome in quantile regression is a set of conditional 

quantile functions, obtained by minimizing the average quantile score. While in linear 
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regression the PDF of the response variable is assumed to have the exact same variance 

and distributional shape independently of the values of the predictors, quantile 

regression does not make any particular assumption about this PDF; therefore, allowing 

a more representative description of the relationship between predictors and 

predictand. We use these two models to solve the regression problems described in 

Section 2.2.1. We train the quantile regression model by implementing the training 

algorithm by Koenker and d'Orey (1987, 1994). 

2.2.4 Hydrological model and related procedures 

We implement the monthly GR2M model by Mouelhi et al. (2006b), a parsimonious 

lumped conceptual model comprising only two parameters, that has been widely 

applied in the literature (see e.g., Paturel et al. 1995; Niel et al. 2003; Huard and Mailhot 

2008; Louvet et al. 2016). This model was developed by adopting a stepwise procedure 

aiming to identify the most useful components of a five-parameter model. The latter was 

inspired from the structures of the monthly model by Makhlouf and Michel (1994), and 

the daily GR4J model by Perrin et al. (2003; see also Edijatno et al. 1999, Perrin et al. 

2001). The first parameter (θ1) is the maximum capacity of the soil moisture reservoir 

expressed in mm, while the second one (θ2) represents water exchange between the 

studied and adjacent catchments. Values of the second parameter larger (smaller) than 1 

indicate water supply from (to) adjacent catchment(s). 

We simulate the posterior distribution of the parameters of the GR2M model 

conditional on the observations of the period T1 within a Bayesian MCMC framework. 

We use flat priors for both the parameters θ1 and θ2. The likelihood error function is 

defined by Equation (1), where yt is the monthly streamflow discharge observations at 

time t, ut(θ1, θ2) is the prediction of the GR2M model at time t and |T1| is the number of 

target data points included in the period T1. We run 3 parallel Markov chains with 

different initial values, each comprising 2 000 iterations. The iterative simulation is 

performed by using the DRAM algorithm by Haario et al. (2006). 

 L(θ1, θ2)  (∑t (yt − ut(θ1, θ2))2)−|T1|/2 (1) 

We assess the approximate convergence of these chains by implementing the 

algorithm of Brooks and Gelman (1998), i.e., a multivariate version of the algorithm of 

Gelman and Rubin (1992). Amongst the outputs of this algorithm is a point estimate that 

is assumed to be informative about the approximate convergence, while it is based on a 
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comparison of within-chain and between-chain variances. Point estimates substantially 

larger than 1 indicate lack of convergence. The simulation process is repeated until a 

point estimate smaller than 1.10 is delivered. Once the simulation is over, we retain the 

last 200 values of each chain, i.e., 600 values in total for each catchment. An example of 

simulated and retained parameters is presented in Figure 2. 
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Figure 2. Simulated chains in (a−b), and retained parameter values in (a−c) obtained 
using precipitation, potential evaporation and streamflow discharge information for the 
period T1 (years 1951−1962) for a randomly selected catchment. 

2.3 Prediction interval assessment 

We assess the quality of the interval predictions by computing their coverage 

probabilities, average widths and average interval scores. These metrics are used 
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according to Table 1 to assess two desired properties in probabilistic modelling, i.e., the 

reliability and sharpness of interval predictions. The former property is defined as the 

statistical correspondence between the probabilistic forecasts and the observations, 

while the latter is the concentration of the predictive PDFs in absolute terms (Gneiting 

and Katzfuss 2014; see also Gneiting et al. 2007; Gneiting and Raftery 2007). For 

illustrative purposes, we also present examples of prediction intervals. We do not 

present QQ-plots for the following two reasons: i) we deliver predictive quantiles with 

probabilities that are either equal or smaller than 0.10, or equal or larger than 0.90 

(since we are interested in specific prediction intervals; see Section 2.2.1), while QQ-

plots are ideal when PDF predictions (or at least sets of predictive quantiles with 

probabilities running on a grid from 0 to 1) are delivered, and ii) we are interested in 

objectively assessing on a massive scale the predictive performance of several 

prediction schemes (separately for each of them) in 270 catchments, while QQ-plots are 

particularly useful for assessments made on a smaller scale. 

Table 1. Metrics used for assessing the prediction interval (1 – α), 0 < α < 1. 
Metric Definition Possible values Preferred values Criterion/criteria 

Coverage probability (CPα) Equation (2) [0, 1] Smaller |CPα – (1 – α)| Reliability 
Average width (AWα) Equation (3) [0, +∞) Smaller AWα Sharpness 

Average interval score (AISα) Equation (4) [0, +∞) Smaller AISα Reliability, sharpness 

For a specific central prediction interval of level (1 – α), 0 < α < 1, extending in the 

period T3, the coverage probabilities, average widths and average interval scores are 

defined with Equations (2−4) respectively, where vp,t is the predictive quantile with 

probability p ∊ {α/2, 1 − α/2} of monthly streamflow discharge at time t, I(∙) is the 

indicator function and |T3| is the number of the target data points included in the period 

T3.  

 CPα := ∑t I(yt  [v(α/2),t, v(1 − α/2),t])/|T3| (2) 

 AWα := ∑t (v(1 − α/2),t – v(α/2),t)/|T3| (3) 

 AISα := ∑t ((v(1 − α/2),t – v(α/2),t) + (2/α) (v(α/2),t – yt) I(yt < v(α/2),t) + (2/α) (yt – v(1 − α/2),t) I(yt > v(1 − α/2),t))/|T3| (4) 

Some remarks should be made on the (average) interval score. This score is 

appropriate for assessing probabilistic predictions in the form of prediction intervals 

(Gneiting and Raftery 2007, Section 6.2). It has three components (see Equation 4 

above). The first component is the width of the prediction interval. As smaller values of 

the (average) interval score indicate better predictions than larger values (for a specific 

prediction problem), this component penalizes more the wider prediction intervals than 
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the narrower ones (thereby rewarding narrow prediction intervals). The two remaining 

components quantify the distance between each of the two predictive quantiles forming 

the prediction interval and the observed value, in case that the latter falls outside of the 

prediction interval, and penalize larger distances more than smaller distances. In 

general, the (average) interval score should become smaller as we move from the outer 

to the inner prediction intervals. The reader is referred to Gneiting and Raftery (2007, 

Section 6.2) for detailed information on how to interpret this score. 

Since the magnitude of the average interval score largely depends on the examined 

dataset, we mostly base our conclusions on relative improvements in terms of average 

interval score. The relative improvement in terms of average interval score, obtained 

when using a prediction interval P1 (provided by a predictor of interest) with respect to 

another prediction interval P2 of the same level (provided by a benchmark predictor), 

and denoted with RIP1,P2, is computed according to Equation (5). In this equation, AISP1 

and AISP2 denote the average interval scores of prediction interval P1 and prediction 

interval P2 respectively when they are computed over the whole time series; see 

Equation (4). 

 RIP1,P2 := (AISP2 – AISP1)/AISP2 (5) 

Specifically, for addressing aims 1−3 of the study we compute the relative 

improvements provided all prediction schemes with respect to the linear regression and 

quantile regression schemes, and the relative improvements provided by ensemble 

schemes 4−6 with respect to ensemble schemes 1−3. For addressing aim 4 of the study, 

we use all auxiliary quantile predictions (9 720 000 in number) and the finally delivered 

quantile predictions (21 600 in number) to compute the relative improvements in terms 

of average interval score, when using the output of each ensemble scheme instead of 

each of the auxiliary interval predictions combined to obtain this output, according to 

Equation (6). In this equation, AISOUT denotes the average interval score of the output 

interval prediction (obtained by using the method), AISINi the average interval score of 

one from the auxiliary interval predictions {INi,  i = 1, …, 600} that are averaged by the 

method to obtain the output interval prediction (with average interval score equal to 

AISOUT), and RIOUT,INi the relative improvement of interest. 

 RIOUT,INi := (AISINi – AISOUT)/AISINi (6) 

Finally, for addressing aim 5 of the study we use the same quantile predictions used 
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for addressing aim 4 to compute the relative differences between the average interval 

score computed for the outputs of the ensemble schemes, i.e., the average of 600 

probabilistic predictions (denoted with AISOUT; see above), and the average of the 

average interval scores computed for each of the combined auxiliary interval predictions 

{AISINi, i = 1, …, 600} (denoted with AAISIN; see also Equation (7) for its definition), the 

latter used as reference for the former. The computation of these relative differences is 

made using an equation analogous to Equations (5) and (6) above, specifically Equation 

(8), where RDOUT,AAISIN denotes the relative difference of interest. 

 AAISIN := ∑ (AISINi)/600 (7) 

 RDOUT,AAISIN := (AAISIN – AISOUT)/AAISIN (8) 

3. Results and discussions 

3.1 Addressing aims 1−3 of the study 

This section is devoted to addressing aims 1−3 of the study. The presentation is mostly 

made in an aggregated form across all the examined catchments, while emphasis is 

placed on the average interval scores computed for the obtained prediction intervals 

and on the relative improvements provided by the ensemble schemes with respect to 

the basic schemes in terms of the same metric. This choice is implied by the fact that an 

objective co-assessment regarding reliability and sharpness provided, for instance, by 

the interval score is of the most practical relevance in technical applications; for a 

justification see Papacharalampous et al. (2019b); see also Gneiting and Katzfuss (2014). 

In spite of this placed emphasis and keeping pace with studies, such as those of Renard 

et al. (2010, 2011), Evin et al. (2013, 2014), Papacharalampous et al. (2019d) and 

Tyralis et al. (2019a), we start the presentation by separately summarizing the 

information that is purely related to the assessment of reliability from the information 

that is purely related to the assessment of sharpness. In this way, we facilitate an 

adequate degree of interpretability and understanding of what follows. 

In Figure 3, we present several examples of prediction intervals, all delivered by 

ensemble scheme 5, in comparison to the targeted data points. As extracted from Figure 

3, this scheme offers a (rather) high degree of reliability, i.e., it delivers prediction 

intervals that mostly contain the desired percentage of data points. The same applies to 

the remaining prediction schemes. Herein the related information is objectively 
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summarized with Figure 4 and Table 2. In Figure 4, we comparatively present the 

boxplots of the coverage probabilities computed for all delivered and assessed solutions 

to the 270 examined rainfall-runoff problems. These coverage probabilities are rather 

good (than bad). The latter characterization holds, especially if we consider that the 

examined monthly time series are of only 600 values. In particular, the coverage 

probabilities for the 95% prediction intervals are comparable to those computed for the 

probabilistic predictions of Bock et al. (2018). 
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Figure 3. Prediction intervals provided by ensemble scheme 5 for four arbitrary 
catchments and a common 4-year sub-period of the period T3 (years 1996−1999). Black 
dots denote the targeted points, while light orange and dark orange ribbons denote the 
95% and 80% prediction intervals respectively. 
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Figure 4. Coverage probabilities computed for the 99%, 97.5%, 95%, 90% and 80% 
prediction intervals (from top to bottom) delivered by the compared schemes for the 
period T3 (years 1975−1999). Each boxplot summarizes 270 values. The optimal values 
are denoted with red thick vertical lines. 
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Table 2. Average coverage probabilities computed for the prediction intervals delivered 
by the compared schemes for the period T3 (years 1975−1999). Each presented value 
summarizes 270 metric values. 

Prediction scheme 99% 
prediction 
intervals 

97.5% 
prediction 
intervals 

95% 
prediction 
intervals 

90% 
prediction 
intervals 

80% 
prediction 
intervals 

Linear regression 0.969 0.955 0.937 0.904 0.835 
Quantile regression 0.973 0.961 0.936 0.889 0.793 
Ensemble scheme 1 0.962 0.946 0.926 0.895 0.834 
Ensemble scheme 2 0.959 0.943 0.923 0.892 0.834 
Ensemble scheme 3 0.962 0.946 0.926 0.895 0.837 
Ensemble scheme 4 0.965 0.953 0.928 0.881 0.781 
Ensemble scheme 5 0.969 0.956 0.932 0.886 0.789 
Ensemble scheme 6 0.961 0.948 0.923 0.874 0.773 
While the average-case reliability of all prediction schemes is remarkably high (see 

Table 2), the performance of the prediction schemes in terms of coverage probabilities 

varies from catchment to catchment (see Figure 4). The observed differences in 

performance become larger, e.g., in terms of interquartile range of the formed datasets, 

as we move from the 99% to the 80% prediction intervals. Moreover, although 

differentiations are observed between prediction schemes, the overall performance of 

most schemes is rather of the same quality (in particular for the outer prediction 

intervals), with the quantile regression scheme and ensemble scheme 5 to be the best-

performing, especially the former one. 

The average widths, on the other hand, clearly favour the ensemble schemes over 

the basic schemes (see Figure 5), with ensemble schemes 4−6 providing sharper 

predictions than ensemble schemes 1−3. In terms of the same criterion, ensemble 

schemes from the former (latter) category exhibit remarkably close performance to each 

other. The same applies in terms of coverage probabilities. As already expected because 

of the large differences observed in the river discharge regimes of the examined 

catchments, the average widths of the prediction intervals may differ significantly from 

catchment to catchment. These differences become smaller, as we move from the outer 

to the inner prediction intervals, i.e., from the 99% to the 80% prediction intervals. 
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Figure 5. Average widths computed for the 99%, 97.5%, 95%, 90% and 80% prediction 
intervals (from top to bottom) delivered by the compared schemes for the period T3 
(years 1975−1999). Each boxplot summarizes 270 values. 

The above-outlined information is objectively summarized in the average interval 

scores. The latter are collectively presented in Figure 6. The main information extracted 

from this figure is that (a) ensemble schemes 1−3, as well as ensemble schemes 4−6, 

exhibit very close performance to each other, (b) each ensemble scheme exhibits a 

better overall performance than its corresponding basic scheme, and (c) ensemble 

schemes 1−3 perform better than the quantile regression scheme for the 90% and 80% 



24 
 

prediction intervals. Observation (b) indicates that the herein adopted implementations 

of the working methodology have an advantage over the naïve implementations of the 

data-driven (or purely statistical) models. This advantage should be further investigated 

before any generalization is made; nevertheless, this additional investigation involving, 

for instance, utilization of more predictor variables, goes beyond the aim of the present 

study. 

 
Figure 6. Average interval scores computed for the 99%, 97.5%, 95%, 90% and 80% 
prediction intervals (from top to bottom) delivered by the compared schemes for the 
period T3 (years 1975−1999). Each boxplot summarizes 270 values. 
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We also note that both observations (a) and (b) are roughly expected already from 

the examination of Figures 4 and 5. By examining the aggregated average interval scores 

we additionally observe that the differences with respect to this metric are in average 

smaller for the inner prediction intervals than for the outer ones (as expected; see 

Section 2.3). Some small differences in the performance of ensembles schemes 1−3, 

favouring to a small extent ensemble schemes 1 and 3 over ensemble scheme 2, are 

mostly noticeable for the 99% and 97.5% prediction intervals. Similarly, ensemble 

scheme 5 seems to perform slightly better than ensemble scheme 4 for the same 

prediction intervals. It is also more effective than ensemble scheme 6 for all five 

prediction intervals. 

To further inspect all differences, both the smaller and larger ones, in terms of 

rankings, the latter resulted for each catchment and for each examined prediction 

interval according to the computed average interval scores, we present Figures 7 and 8. 

The maps displayed in the former figure correspond to the upper side-by-side boxplots 

displayed on Figure 6, while allowing the examination of the rankings resulted both per 

catchment and per prediction scheme. From these maps we perceive that ensemble 

scheme 5 is ranked in a better average position than the remaining prediction schemes 

for the 99% prediction intervals, closely followed by ensemble schemes 4 and 6. 

Moreover, the quantile regression scheme is mostly ranked above the linear regression 

scheme and ensemble schemes 1−3. These schemes are mostly ranked in the last four 

positions. Importantly, there is not a fixed ranking position for any of the prediction 

schemes across the various catchments, while there are also some few catchments in 

which the four less competitive ones perform better than some the remaining. The 

quantile regression scheme is also ranked in the first three positions for a sufficient 

number of catchments. These latter observations provide us with a good reason to 

always perform large-scale benchmark experiments instead of (or alongside with) case 

studies.  
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Figure 7. Rankings of (a) linear regression, (b) quantile regression and ensemble 
schemes (c−h) 1−6 according to the average interval scores computed for the 99% 
prediction intervals delivered for the period T3 (years 1975−1999). The prediction 
schemes are ranked from best (1st) to worst (8th). 
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Figure 8. Average rankings of the prediction schemes according to the average interval 
scores computed for the 99%, 97.5%, 95%, 90% and 80% prediction intervals (from top 
to bottom) delivered by the compared schemes for the period T3 (years 1975−1999). 
The prediction schemes are ranked from best (1st) to worst (8th). Each bar summarizes 
270 values. 

Overall, the image depicted in Figure 7 is rather neat when contrasted with its 

corresponding image in a similar visualization by Tyralis and Papacharalampous 

(2018); see Figure 4 therein. The latter study presents a large-scale comparison of point 
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prediction methods that are equivalent to each other in a long run; therefore, no pattern 

is observed in their performance when the latter is depicted in maps. The pattern clearly 

observed in Figure 7, favouring the quantile regression model over the linear regression 

one, is due to the suitability of the former algorithm for modelling heteroscedasticity. 

Thus, it is our knowledge on the examined problem and the difference in the 

appropriateness of the adopted methodologies that created this pattern rather than 

anything else. 

As emphasized in Papacharalampous et al. (2019a), only our knowledge on the 

system could make a tangible difference in (predictive) modelling in a long run. In fact, 

the homoscedasticity assumption is known to be inefficient when made during the 

probabilistic modelling of hydrological variables, such as the monthly river discharge 

variables that are of interest herein (see the comments, e.g., in Schoups and Vrugt 2010; 

Montanari and Koutsoyiannis 2012; Evin et al. 2013, 2014). Therefore, more flexible 

algorithms not assuming homoscedasticity are a reasonable choice to be made in such 

cases, while the same algorithms do not offer anything in comparison with less flexible 

algorithms in modelling cases where the homoscedasticity assumption is reasonable; 

see also Papacharalampous et al. (2019b), in particular the results displayed in Tables 4 

and 5 for an illustration-justification of this fact. 

The greatest part of the ranking-related information extracted from Figure 7 applies 

as well to the remaining prediction intervals, while a summary of this information for 

the 99%, 97.5%, 95%, 90% and 80% prediction intervals, presented in Figure 8, 

provides additional observations. The latter effectively complement those obtained from 

Figure 6. In fact, for all prediction intervals ensemble scheme 5 exhibits the best 

average-case ranking, closely followed by ensemble schemes 4 and 6. Moreover, the 

quantile regression scheme exhibits a significantly better (comparable) average-case 

ranking than (with) ensemble schemes 1−3 for the 99% and 97.5% (95%, 90% and 

80%) prediction intervals, while the linear regression scheme is the worst performing in 

terms of average rankings, as it could be expected already from Figure 6. 

To obtain a more faithful image of the gain or loss in performance when using each 

prediction scheme over the remaining ones, in Figure 9 we present the side-by-side 

boxplots of the relative improvements in terms of average interval score with respect to 

the linear regression scheme, while in Figure 10 we present the respective information 

using the quantile regression scheme as a reference. The closeness in the performance of 
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ensembles schemes 1−3 is also perceivable by the examination of these figures. The 

same applies to the closeness in the performance of ensemble schemes 4−6. 

Nevertheless, the small differences favouring ensemble schemes 1 and 3 over ensemble 

scheme 2, and ensemble scheme 5 over ensemble schemes 4 and 6 are also highlighted. 

Additionally, we observe that the differences in the relative performance of a specific 

prediction scheme can be large, while there are cases in which the ensemble schemes 

are (far) worse than their respective basic schemes. However, the long-run image clearly 

favours the former over the latter, as already expected from the preceding 

visualizations. 
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Figure 9. Relative improvements in terms of average interval score with respect to the 
linear regression scheme for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 
(from top to bottom) delivered by the compared schemes for the period T3 (years 
1975−1999). Each boxplot summarizes 270 values. The reference values (zero values) 
are denoted with red thick vertical lines. 
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Figure 10. Relative improvements in terms of average interval score with respect to the 
quantile regression scheme for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 
(from top to bottom) delivered by the compared schemes for the period T3 (years 
1975−1999). Each boxplot summarizes 270 values. The reference values (zero values) 
are denoted with red thick vertical lines. 

We subsequently provide a numerical summary of the gain in performance when 

using specific schemes over others, as extracted from the real-world experiment of the 

study. In Figures 11 and 12 we present the average-case relative improvements in terms 

of average interval score with respect to the linear regression and the quantile 

regression schemes respectively. These two figures objectively summarize the 
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information presented in Figures 9 and 10, while they are particularly useful in 

assessing how small the differences between ensemble schemes 1−3, as well as between 

ensembles schemes 4−6, are; see also Figures S.1 and S.2 of the supplementary material 

(see Appendix D) for inspecting these differences in terms of median relative 

improvements. For the former category of ensemble schemes, we observe that the 

difference in the average-case improvements is at maximum 3.65%. The latter 

difference is computed for ensemble schemes 1 and 2 for the 99% prediction intervals, 

while it is smoothened to 1.94%, 1.07%, 0.48% and 0.13% for the 97.5%, 95%, 90% and 

80% prediction intervals respectively. The average relative improvements when using 

ensemble scheme 1 instead of ensemble scheme 2 are 4.24%, 2.39%, 1.36%, 0.63% and 

0.18% for the obtained 99%, 97.5%, 95%, 90% and 80% prediction intervals. The 

respective median improvements are 3.75%, 2.18%, 1.20%, 0.53% and 0.15%, while the 

cost in terms of computational time is about 12 min for all 270 catchments. Ensemble 

scheme 3 offers comparable profit in performance alongside with a 28-minute profit in 

terms of computational time compared to ensemble scheme 1. 
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Figure 11. Average relative improvements in terms of average interval score with 
respect to the linear regression scheme for the 99%, 97.5%, 95%, 90% and 80% 
prediction intervals (from top to bottom) delivered by the compared schemes for the 
period T3 (years 1975−1999). Each bar summarizes 270 values. 
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Figure 12. Average relative improvements in terms of average interval score with 
respect to the quantile regression scheme for the 99%, 97.5%, 95%, 90% and 80% 
prediction intervals (from top to bottom) delivered by the compared schemes for the 
period T3 (years 1975−1999). Each bar summarizes 270 values. 

Moreover, the mean (median) profit when using ensemble scheme 5 instead of 

ensemble scheme 4 is found to be 3.09%, 0.99%, 0.48%, 0.34% and 0.25% (2.07%, 

0.54%, 0.32%, 0.27% and 0.18%) for the 99%, 97.5%, 95%, 90% and 80% prediction 

intervals respectively, while the concomitant cost in terms of computational time is 

about 36 min. The respective profit when using ensemble scheme 6 over ensemble 
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scheme 4 is about 12 min. Nonetheless, the use of the latter scheme instead of the 

former scheme offers an average (median) relative improvement equal to 2.23%, 1.77%, 

1.11%, 1.00% and 0.85% (0.31%, 0.47%, 0.24%, 0.28% and 0.31%) for the 99%, 97.5%, 

95%, 90% and 80% prediction intervals respectively. Moreover, the respective average 

(median) relative improvements provided by ensemble scheme 5 with respect to 

ensemble scheme 6 are 5.46%, 2.74%, 1.60%, 1.36%, 1.10% (3.39%, 1.44%, 0.73%, 

0.57%, 0.45%). The gain in performance from the incorporation into the working 

methodology of the quantile regression model instead of the linear regression model can 

be summarized by the average-case (median) relative improvements in terms of average 

interval score provided when using ensemble scheme 5 instead of ensemble scheme 1. 

These are 37.00%, 31.62%, 26.82%, 22.10% and 17.22% (37.97%, 31.32%, 25.85%, 

20.95% and 15.84%) for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 

respectively. 

3.2 Addressing aims 4−5 of the study 

Two key properties of the working methodology, as identified in Papacharalampous et 

al. (2019b) based on the seminal work by Lichtendahl et al. (2013, Section 5), are its 

larger robustness in performance compared to basic two-stage post-processing 

methodologies and its ability to harness the wisdom of the crowd, both stemming from 

the concept of prediction averaging. These properties can also be considered as the 

result of an optimal exploitation of the possibilities offered by the MK blueprint 

methodology. The demonstration of these properties has only been made so far within 

toy examples, while it is still pending for rainfall-runoff problems. This section is 

devoted to empirically proving these two properties of the working methodology using 

the results of the herein conducted real-world experiment, i.e., to addressing aims 4−5 of 

the study. These aims are of particular importance in justifying the conceptualization 

and rationale behind the working methodology. 

In Figure 13 we present the relative improvements when using the output of 

ensemble scheme 5, i.e., the average of 600 quantile predictions, instead of separately 

using each of them (i.e., the relative improvements {RIOUT,INi, i = 1, …, 600}, defined with 

Equation 6, for ensemble scheme 5), computed for all catchments and for all prediction 

intervals. We observe that these relative improvements are approximately symmetric 

around zero, in average slightly higher than zero. Specifically, the average relative 
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improvements corresponding to Figure 13 are found to be equal to 0.82%, 0.83%, 

0.74%, 0.70% and 0.71% for the 99%, 97.5%, 95%, 90% and 80% prediction intervals 

respectively (see Table S.1). The interpretation of this outcome is straightforward, while 

indicating an advantage in terms of robustness of the working methodology over basic 

two-stage post-processing methodologies using a single probabilistic prediction. 
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Figure 13. Relative improvements {RIOUT,INi, i = 1, …, 600} (defined with Equation 6) for 
ensemble scheme 5. The relative improvements are computed for all catchments, and 
for the (a) 99%, (b) 97.5%, (c) 95%, (d) 90% and (e) 80% prediction intervals obtained 
for the period T3 (years 1975−1999). The horizontal axis has been truncated at −30% 
and 30%. Each histogram summarizes 270 × 600 = 162 000 values. 

In fact, while approximately half of the probabilistic predictions score better (or 

worse) than the finally delivered by the working methodology probabilistic prediction, 

there is no way to know in advance which hydrological model’s parameters will lead in 
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better average interval score in the period T3. While this lack of knowledge could 

significantly affect (in terms of performance) the delivered probabilistic prediction for a 

basic two-stage post-processing methodology, this effect is largely reduced by the 

working methodology. 

Moreover, by comparing the degree of spread in the five histograms displayed in 

Figure 13, we also perceive that the degree of the offered stabilization in performance 

seems to become larger as we move from the inner prediction intervals to the more 

outer ones. Nevertheless, even for the 80% prediction intervals the provided 

stabilization is significant.  

Furthermore, in Figure 14 we present the relative differences between the average 

interval score of the output of ensemble scheme 5 and the average of the average 

interval scores of each of the combined (for obtaining this output) individual 

predictions, the latter used as reference for the former (i.e., the relative differences 

RDOUT,AAISIN, defined with Equation 8, for ensemble scheme 5), computed for all 

catchments and for all prediction intervals. Importantly, all computed relative 

differences are positive (or approximately zero) with no exception; therefore, the 

average of quantile predictions scores no worse than the average score of the combined 

individual predictions, i.e., the working methodology harnesses the wisdom of the crowd 

in terms of average interval score when applied for solving monthly rainfall-runoff 

problems (see also Lichtendahl et al. 2013, Section 5). The average relative differences 

corresponding to Figure 14 are 1.30%, 1.12%, 0.94%, 0.85% and 0.84% for the 99%, 

97.5%, 95%, 90% and 80% prediction intervals respectively (see Table S.2). 
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Figure 14. Relative differences RDOUT,AAISIN (defined with Equation 8) for ensemble 
scheme 5. The relative differences are computed for all catchments, and for the (a) 99%, 
(b) 97.5%, (c) 95%, (d) 90% and (e) 80% prediction intervals obtained for the period T3 
(years 1975−1999). The horizontal axis has been truncated at 5%. Each histogram 
summarizes 270 values. 

Analogous observations are extracted from analogous investigations for all 

remaining ensemble schemes (see Figures S.3−S.12 and Tables S.1−S.2 of the 

supplementary material). In summary, the relative improvements when using the 
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output of an ensemble scheme, i.e., the average of 600 quantile predictions, instead of 

separately using each of these predictions range from −327.10% to 91.42%. The average 

of these relative improvements ranges between 0.13% and 1.13%. Similarly, the average 

relative differences favouring the average interval score computed for the output of an 

ensemble scheme over the average of the average interval scores computed for each of 

the combined (for obtaining this output) individual predictions range between 0.19% 

and 1.83%. The average relative improvement (difference) is in general larger for the 

outer prediction intervals than for the inner ones, while its magnitude also depends on 

the ensemble scheme.  

As also emphasized in Papacharalampous et al. (2019b), the overall trade-off to be 

considered when someone has to choose between the working methodology and a basic 

two-stage post-processing methodology allowing the utilization of the same type of 

flexible error models (see e.g., López López et al. 2014; Dogulu et al. 2015; 

Papacharalampous et al. 2019d) is the one between (a) the larger robustness in 

performance offered by the former methodology (demonstrated in Figures 13, S.3, S.5, 

S.7, S.9 and S.11, and Table S.1) and the ability of this methodology to harness the 

wisdom of the crowd (empirically proven based on Figures 14, S.4, S.6, S.8, S.10 and S.12, 

and Table S.2), and (b) the significantly less computational requirements of the latter 

methodologies. 

4. Concluding remarks 

We have validated the probabilistic hydrological modelling methodology proposed in 

Papacharalampous et al. (2019b). This methodology adopts key concepts from the 

ensemble post-processing methodology by Montanari and Koutsoyiannis (2012), while 

also relying on the concept of probabilistic prediction combination from the forecasting 

field. It applies a single hydrological model using a large number of different parameter 

values to generate the same number of “sister predictions”. The parameters of the 

hydrological model can be obtained by using either Bayesian calibration schemes or 

informal calibration schemes (see the related investigations in Appendix E). Therefore, 

this methodology does not have any particular relationship with Bayesian methods by 

construction, as it also applies to its precursor. A statistical learning (or machine 

learning) regression model that is suitable for predicting quantiles (see e.g., the models 

exploited in Papacharalampous et al. 2019d) is then used to obtain information about 
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the hydrological model’s error. This information is used to convert the sister predictions 

into probabilistic predictions, which are finally combined in simple fashion to obtain the 

output probabilistic predictions. The assessed methodology is subdivided into three 

alternative variants, which differ only in the training of the regression model. 

We have conducted a large-sample real-world experiment at monthly timescale, set 

up using complete 50-year daily information for 270 catchments in the United States. 

Aiming to increase the understanding in probabilistic hydrological modelling, we have 

insisted on interpretability and benchmarking within all conducted tests. We have used 

the parsimonious GR2M hydrological model and two (largely) interpretable regression 

models, specifically the linear regression and the quantile regression ones, to implement 

six ensemble schemes, all of them based on the assessed methodology. Those ensemble 

schemes implemented using the linear model (three in number) have been used as 

benchmarks for the remaining schemes (also three in number). Those ensemble 

schemes using the same regression model rely on different variants of the assessed 

methodology. The performance of the ensemble schemes has been assessed by 

computing the coverage probabilities, average widths and average interval scores of the 

obtained interval predictions, and by also benchmarking their results using naïve 

probabilistic data-driven models.  

The obtained numerical results (metric values computed for 4 870 800 interval 

predictions) suggest the usefulness of the assessed methodology in obtaining 

probabilistic predictions of hydrological quantities. The best-performing variant, 

offering a mean relative improvement up to 5.46% with respect to its alternative 

variants, when implemented using the quantile regression model, is variant 2. This 

variant trains the regression model on a single large dataset formed by using 

information from all sister predictions. The average-case relevant improvements when 

using the quantile regression model instead of the linear regression one range up to 

about 37% in terms of average interval score. This latter numerical result should be 

appraised on the basis that only the former of these models can model 

heteroscedasticity. The homoscedasticity assumption is often made in the literature 

when modelling the hydrological model’s error. 

Finally, we have demonstrated the increased robustness of the assessed 

methodology with respect to the combined (by this methodology) individual predictors 

and, by extension, to basic two-stage post-processing methodologies. The ability to 
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“harness the wisdom of the crowd” has also been empirically proven. The quantile 

predictions obtained by all ensemble predictors are found to score no worse –usually 

better− than the average of the individual scores of the combined individual predictions 

in terms of average interval score. This outcome is in line with demonstrations for 

stylized cases by Lichtendahl et al. (2013). The computed relative differences favour the 

former quantity over the latter up to about 37%, while their mean values range between 

0.19% and 1.83%, depending both on the prediction interval and the variant of the 

assessed methodology. For the best-performing ensemble scheme the respective 

average relative differences are around 1%. Overall, the robustness and the ability to 

harness the wisdom of the crowd are identified as two key properties of the working 

methodology. 

Appendix A Background methodological considerations 

In this appendix, we summarize in terms of advantages and disadvantages some 

technical and theoretical considerations that currently guide the selection between 

Bayesian and two-stage post-processing methodologies for uncertainty assessment in 

the field. This summary is mainly presented through Tables A.1 and A.2. Moreover, in 

Table A.3 we list the advantages and disadvantages offered by statistical learning (or 

machine learning) quantile regression algorithms, since these algorithms serve as error 

models within the working methodology. 
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Table A.1. Advantages and disadvantages of Bayesian hydrological post-processing 
methodologies (see also Evin et al. 2014). These post-processing methodologies jointly 
infer (within a Bayesian framework) the parameters of the hydrological and error 
models by using the entire historical dataset. 
Advantages o If their assumptions are proper, they produce optimal probabilistic 

predictions by theory. This could be possible in principle, since the 
hydrological literature presents generalized findings on the distributions 
of hydrological variables with increasing frequency and reliability. 

o They can largely facilitate interpretability in modelling, since they allow 
the inspection of the impact of their assumptions on both parameter and 
predictive uncertainty. 

o Their performance depends less on the length of the historical dataset than 
the performance of two-stage post-processing methodologies (see Table 
A.2), since their fitting does not require sample splitting. 

Disadvantages o Their predictive performance largely depends on the appropriateness of 
their assumptions. 

o They might get over-parameterized in an effort to ensure the adoption of 
proper assumptions. 

o Their use is accompanied by computational limitations. 

Table A.2. Advantages and disadvantages of two-stage hydrological post-processing 
methodologies (see also Evin et al. 2014; Papacharalampous et al. 2019d, Section 5.2.2). 
These post-processing methodologies estimate their error models conditional on the 
predictions provided by their hydrological models. The latter have been calibrated by 
using an independent segment of the historical dataset. 
Advantages o They can be nearly assumption-free (i.e., their performance does not 

necessarily depend on the appropriateness of assumptions) when 
implemented with flexible machine learning quantile regression 
algorithms as error models. The advantages of these algorithms are listed 
independently in Table A.3. 

o Computational requirements and limitations are mostly few in their case. 
Therefore, their automation and application to big datasets is feasible. This 
is one of the main reasons why two-stage hydrological post-processing is 
popular in forecasting applications. This popularity is emphasized e.g., by 
Evin et al. (2014). 

o In light of the two points above, their performance can be maximized by 
adopting algorithmic strategies and well-established guidelines from the 
machine learning literature (see e.g., the experiment presented herein). 
The role of big datasets for achieving optimal modelling solutions under 
this new-era approach is emphasized e.g., in Tyralis et al. (2019b). 

Disadvantages o They largely lack interpretability by perception. Interactions between the 
hydrological model parameters and the trained version of the error model 
are ignored; therefore, their hydrological model parameter estimates are 
only auxiliary to predictive uncertainty quantification and cannot be used 
in any case for understanding parameter uncertainty. 

o Their performance depends more on the length of the historical dataset 
than the performance of Bayesian post-processing methodologies (see 
Table A.1), since their fitting requires sample splitting. 

o The adoption of flexible machine learning quantile regression algorithms 
as error models has an additional cost in terms of interpretability and 
further increases the large-sample requirements (see the disadvantages of 
Table A.3). These requirements are revealed and discussed e.g., in 
Papacharalampous et al. (2019b, Appendix D). 
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Table A.3. Advantages and disadvantages of statistical learning (or machine learning) 
quantile regression algorithms (see also Waldmann 2018; Papacharalampous et al. 
2019d, Sections 2.3.1, 5.2.2). Quantile regression algorithms issue quantile predictions 
instead of PDF predictions. 
Advantages o They are ideal when the conditional distribution of the dependent variable 

is not known or is hard to deduce. 
o They model heteroscedasticity by perception and construction. 
o In light of the above point, they are also straightforward to apply, as they 

do not need to be fitted separately for each season (or month), in contrast 
to distribution-based modelling approaches (e.g., conditional-distribution 
models). 

o They are robust with respect to outliers in the observations of the 
dependent variable. 

o They are available in open source and mostly optimally programmed. 
Disadvantages o They are trained separately for each quantile probability; therefore, the 

more the quantiles (or prediction intervals) we are interested in issuing, 
the more computationally costly the training process. 

o Quantile crossing is possible. 
o Parameter estimation is harder than in standard regression. 
o Their performance depends to some extent on the sample size. 
o They lack interpretability. Only their linear variant, i.e., the quantile 

regression model implemented herein, offers interpretability to some 
extent. 

 

Appendix B Statistical software information 

The analyses and visualizations have been performed in R Programming Language (R 

Core Team 2019). We have used the following contributed R packages: airGR (Coron et 

al. 2017, 2019), bestNormalize (Peterson 2017, 2019), coda (Plummer et al. 2006; 

2019), data.table (Dowle and Srinivasan 2019), devtools (Wickham et al. 2019c), 

dplyr (Wickham et al. 2019b), FME (Soetaert and Petzoldt 2010, 2016), gdata 

(Warnes et al. 2017), ggplot2 (Wickham 2016a; Wickham et al. 2019a), ggridges 

(Wilke 2018), hddtools (Vitolo 2017, 2018), knitr (Xie 2014, 2015, 2019), maps 

(Brownrigg et al. 2018), matrixStats (Bengtsson 2018), plyr (Wickham 2011, 

2016b), quantreg (Koenker 2019), readr (Wickham et al. 2018), reshape 

(Wickham 2007, 2018), rmarkdown (Allaire et al. 2019), tidyr (Wickham and Henry 

2019) and zoo (Zeileis and Grothendieck 2005; Zeileis et al. 2019). We have also 

followed procedures described in the contributed vignettes of the airGR R package 

(https://cran.r-project.org/web/packages/airGR/vignettes). 

Appendix C Working methodology 

This appendix is largely adapted from Papacharalampous et al. (2019b). It aims at 
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summarizing the working methodology. For this summary, we first define the time 

period T = {1, …, (n1+n2+n3)}, and its three distinct sub-periods T1 = {1, …, n1}, T2 = 

{(n1+1), …, (n1+n2)} and T3 = {(n1+n2+1), …, (n1+n2+n3)}. We also define the sister model 

realizations as variants of a single hydrological model, each using different parameter 

values. The latter are obtained by calibrating the hydrological model in the period T1. 

The calibration could be made by using either Bayesian schemes (e.g., Markov Chain 

Monte Carlo simulation sampling; see e.g., the procedures described in Section 2.2.4) or 

informal calibration schemes (see e.g., the procedures described in Appendix E). Let us 

assume that we obtain m sister model realizations, where m is adequately large. Each 

sister model realization is then applied in the period {T2, T3}. The m resulted sister 

predictions also extend in the period {T2, T3}. We subsequently compute the sister model 

realizations’ errors in the period T2 by using the sister predictions alongside with their 

corresponding target values. 

Information about the sister model realizations’ error is then obtained by training a 

statistical learning regression model that is suitable for predicting quantiles (hereafter 

referred to as “error model”; see e.g., the error models exploited in Papacharalampous et 

al. 2019d) in the period T2. In particular, we regress the sister model realizations’ error 

at time t (response variable) on selected predictor variables (e.g., the sister prediction at 

time t). For each sister prediction extending in the period T3, we (a) predict a set of 

quantiles (with selected probabilities) of the sister model realization's errors using the 

information obtained at the preceding step, and (b) transform these predictive quantiles 

to auxiliary predictive quantiles of the hydrological process of interest (by subtracting 

them from their corresponding sister prediction). Finally, at each time t ∊ T3 we group 

the auxiliary predictive quantiles of the hydrological process of interest based on their 

corresponding probability (e.g., probability 0.95) to average them over each group. The 

resulted time series are the output quantile predictions. 

The basic steps adopted within the working methodology are also summarized in 

Figure B.1. 
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Figure B.1. Schematic summarizing the working methodology (reproduced from 
Papacharalampous et al. 2019b). The sister model realizations are defined as variants of 
a single hydrological model, each using different parameter values. The latter can either 
be drawn from the respective simulated posterior distribution of model parameters or 
can be obtained by using informal calibration schemes. Each sister model realization is 
used for obtaining a single point prediction, referred to as “sister prediction”. The 
number of sister model realizations m should be adequately large. The realization of the 
hydrological process of interest, considered unknown at the time of the prediction, is 
denoted with a light grey dashed line. 

The working methodology is subdivided into three alternative variants. These 

variants differ in the error model’s training only. Specifically: 

o Variant 1 trains the error model m times, each time on a different dataset formed by 

using a different sister prediction; 

o Variant 2 trains the error model on a single dataset formed by using all sister 

predictions; 

o Variant 3 also trains the regression model once; however, the training here is made 

on a dataset formed by using one randomly selected sister prediction. 

We note that the three variants reduce to the same method in the case that a single point 

hydrological prediction is generated. In this case, the working methodology would fall 
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into the category of basic two-stage post-processing methodologies using regression 

models. 

Appendix D Supplementary material 

The supplementary material to this article is available in Papacharalampous et al. 

(2019c). This material includes Figures S.1–S.12, and Tables S.1 and S.2. The latter are 

extracted from the large-scale investigations presented in Section 3. 

Appendix E Additional investigations 

To investigate the possibility of using informal calibration schemes instead of Bayesian 

schemes for obtaining a large number of hydrological model’s parameters within the 

working methodology, in this appendix we repeat the large-sample experiment of the 

study (only for the ensemble schemes) by using different parameter values for the 

hydrological model. Specifically, for each catchment we retain the first 200 parameter 

values from each simulated chain (see Section 2.2.4) that have not converged to the 

posterior distribution of the parameters, instead of the last 200 values that were 

previously retained (for the application presented in Section 3). Hereafter, let us refer to 

the calibration scheme adopted for obtaining the parameters of the hydrological model 

in the original large-sample experiment of the study (presented in Section 3) and the 

calibration scheme that is adopted in this appendix as “Bayesian calibration scheme” 

and “informal calibration scheme” respectively. The remaining components of the 

ensemble schemes are retained as detailed in Section 2.2. 

Once we have obtained the interval predictions, we compute their interval scores 

and the relative improvements provided in terms of average interval score by the 

informal calibration scheme with respect to the Bayesian calibration scheme, when both 

these schemes are exploited as components of ensemble schemes 1–6. The 

computations are made as detailed in Section 2.3, while the related information is 

presented in Figure D.1. We mainly observe that (a) the relative improvements can be 

either positive or negative, and (b) the results favour the Bayesian calibration scheme to 

some extent, mostly due to outliers. These outliers may become fewer with increasing 

the length of the period T2. To objectively summarize the derived information, we also 

compute the mean and median relative improvements in terms of the same score. These 

are presented in Figures D.2 and D.3 respectively. 
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Figure D.1. Densities of the relative improvements in terms of average interval score 
provided by the Bayesian calibration scheme with respect to the informal calibration 
scheme, when both these schemes are used as components of (a–f) ensemble schemes 
1–6. The latter are implemented with their remaining components and parameters set 
common. The horizontal axis has been truncated at −100% and 100%. Each density 
summarizes 270 values. 
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Figure D.2. Average relative improvements in terms of average interval score provided 
by the Bayesian calibration scheme with respect to the informal calibration scheme, 
when both these schemes are used as components of ensemble schemes 1–6. The latter 
are implemented with their remaining components and parameters set common. The 
legend limits are common for Figures D.2 and D.3. Each presented value summarizes 
270 values. 

 
Figure D.3. Median relative improvements in terms of average interval score provided 
by the Bayesian calibration scheme with respect to the informal calibration scheme, 
when both these schemes are used as components of ensemble schemes 1–6. The latter 
are implemented with their remaining components and parameters set common. The 
legend limits are common for Figures D.2 and D.3. Each presented value summarizes 
270 values. 
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Appendix F Additional remarks 

We have extensively explored through benchmark tests the modelling possibilities 

provided by the working methodology, when this methodology is applied for solving 

monthly rainfall-runoff problems using the quantile regression model as error model. 

Our benchmark experiment is of large-scale; nevertheless, it could not highlight all 

aspects of the working methodology. For exploiting this methodology in an optimal way, 

the following key adjustments to its components and parameters could be made: 

o The historical dataset can be divided in various ways, i.e., different proportions of 

the available information could be devoted to hydrological model calibration and 

error model training. This adjustment could be made to maximize predictive 

performance by exploiting evidence extracted from properly designed large-sample 

investigations. It could also be made for reducing the computational requirements, 

also depending on our choices on the remaining components and parameters. 

Applications to hundreds of catchments at timescales finer than the monthly one 

may require achieving a balance between predictive performance and 

computational requirements (when our computational resources are limited). 

o Any hydrological model (e.g., a process-based hydrological model of our preference) 

can be selected. Predictive performance improvements may be achieved by 

selecting one hydrological model over another or by adopting multi-model 

approaches (as proposed in Vrugt 2018, 2019, yet with the interest being in 

producing and combining quantile predictions instead of PDF predictions), thereby 

extending the working methodology, as suggested by Montanari and Koutsoyiannis 

(2012) for the original blueprint. Properly designed large-sample investigations 

could effectively guide our related choices. 

o The parameters of the hydrological model can be obtained by using a large variety 

of calibration schemes, including informal calibration schemes. (Note that random 

selection of the parameters, i.e., no period T1, could also be an option). This point 

may be particular important for reducing the computational requirements. In 

Appendix E, we present large-sample investigations (on the monthly rainfall-runoff 

data exploited in the study) focusing on the comparison between Bayesian and 

informal calibration schemes for obtaining a large number of hydrological model 

parameters within the working methodology. 
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o The number of sister predictions can be selected based on the available 

computational resources. Nonetheless, the larger this number the larger the 

advantage of the methodology in terms of robustness (compared to basic two-stage 

post-processing methodologies). Properly designed benchmark experiments could 

also focus on optimizing this parameter of the working methodology (separately for 

the various timescales). 

o Any statistical learning regression model that is suitable for predicting quantiles 

(e.g., the error models exploited in Papacharalampous et al. 2019d) can be selected 

as error model. This point may be particularly important for maximizing predictive 

performance (see also the key remarks in Section 4). 

o Any set of predictor variables (e.g., the hydrological model predictions at times t, 

t−1, t−2, etc.) can be used in the application of the error model. This point may be 

important for maximizing predictive performance for timescales finer than the 

monthly one (see e.g., the findings in Papacharalampous et al. 2019d). 

o All the above adjustments and modelling choices can be made separately for each of 

the three variants and for each level of prediction interval (or level of predictive 

quantile). 
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