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Abstract

The aim of the Ph.D thesis is the foundation of a new temperature-based model since simplified
PET estimation proves very useful in absence of a complete data set. In this respect, the Parametric
model is presented based on a simplified formulation of the well-established Penman-Monteith
expression, which only requires mean daily or monthly temperature data. The model was applied at
both global and local regions and the outcomes of this new approach are very encouraging, as
indicated by the substantially high validation scores of the proposed approach across all examined
data sets. In general, the parametric model outperforms well-established methods of the everyday
practice. A second analysis which was examined as part of this thesis is related to which spatial
techniques is the optimal in order to transform the point scale estimate in regional. A thorough
analysis of different geostatistical model was carried out (Kriging, IDW, NN, BSS) and it can be
concluded that the IDW even is the most simplify geostatistical model, it can be produce consistent
spatial PET results.

Another part of the thesis was the development of an R function for testing the trend significance of
time series. The function calculates the trend significance using a modified Mann- Kendall test,
which takes into account the well-known physical behavior of the Hurst-Kolmogorov dynamics. The
function is tested in 10 stations in Greece, with approximately 50 years of PET data with the use of a
recent parametric model.

Finally, a number of hydrological, agronomist and climatologist applications are presented for
lighting the robustness of the new Parametric approach in multidiscipline areas.

Keywords: Potential evapotranspiration; Parametric model; Penman- Monteith method; large
scale hydrology, Calibration, Remote Sensing; Spatial analysis; trend; Hurst; R-script; CLIMWAT;
CIMIS



Hepinyn

0 oxomdg ™G Adaxtopikng Alatppng elval n Bepediwon pag véag oxéong Beppokpaciog yia v
ektTiumon ™¢ SuvnTikng eEatuodlamvong, kKabws Ta amAoTompuéva HovTEAQ EKTiunoMG eival
efalpeTikd xpnoa o kabeotws EAAelmg mpwtoyevwy Sedopévwyv. e autd TO TAaloLO,
Tapovotdletal to Iapapetpikdé Movtédo OV ATOTEAEl ATTAOTIOMOT TOU KATAELWUEVOU UOVTEAOV
Penman-Monteith kat Tto omolo amoattel TN péon nuepnowx Beppoxpacio 1 TN péon pnviaia
Bepuokpacia ws Sedopévo 10060v. To POVTEAD EQAPUOCTNKE GE TTAYKOOULO KAl O€ TOTILKO Tredio
KOl TA ATIOTEAEOPATA (VAL TIOAD evOAPPUVTIKE, KABWG GUVOSEVETAL ATIO PEYAAT] ATIOSOTIKOTN T OF
oAa ta eSia e@apUoyns Tov. ['eVIKAE, TO TAPAUETPLKO HOVTEAD VTIEPLOXVEL OAWVY TWV ESPALWUEVWV
HOVTEAWV akTvofBoAlag kat Stac@aiilel tn BEATIOTN ekTiunom ™G SuvnTikng e§atpodiamvor. ‘Eva
SevTepo emimedo peEAETNG TNG TTapoVoaS SLATPLPNG OXETITETAL UE TO TIOLO LOVTEAD YEWOTATIOTIKNG
glval To BEATIOTO Yyl TN LETATPOTIN TNG ONUELXKNG TIANpoopiag oe xwpukn. [IpaypatomomOnke
OUOTNUATIKY UEAETT) SLAPOPETIKWV TEXVIKWOV YEWYPUPIKNG OAOKAT|pWONG KAL TO ATOTEAEGUA Elval
O0TL 1 néBodog Avtiotpo@ou Ztabuouévng Amootaong eivat 1 BEATIOTN TapdAo Tou elval 1
amAoVOTEPT ATIO OGEG EQAPUOCTNKAV.

AA\0 KoppATL TNG SaTpPnc NTav 1 avamtudn evog epyadelov o mepBdAiov R ywx tnv extipnon
TwV TAoewV o€ xpovooelpéc. H pebodoroyia eKTIUA TIG TAOELG UE EVO TPOTIOTIOUEVO GTATIOTIKO
éAleyxo Mann-Kendall Aapfdavovtag vmoym 1 @uowkn ouvpmepupopd ¢ Suvapkng Hurst-
Kolmogorov.

TéAog, HEOW UVEPOAOYIKWY, YEWTOVIKOV KOl KAUATOAOYIK®OV EQAPUOYWV afloAoyeital 1
XPNOWOTNTA TOV MopAUETPLKOV HOVTEAOV GE SLAUPOPETIKA ETOTNUOVIKA TTES Q.

Keywords: Avvntikny Efatpodiamvon; IMapapetpikd Movtélo; Penman- Monteith péfodog;
Y8poAoyla MeydAng KAlpakag, BaBuovounon; TnAemiokomnon; Xwpikny Avaivon; Taon; Hurst; R-
script; CLIMWAT; CIMIS



Evyapiotisg

«KAgivovtag» autdv Tov AT PT KUKAO aKaSNUAiKWVY 6TIOVS®VY IOV HEAAOV 060V a@opd TN Habnon
elval g mpdé€n advam, viwbw Alyo Kevlag yia va ek@paow og Alyeg A£EElg Ta alobnuata pov.
AvaykaoTika Opws 8o amoTeEpadm va TO KAV®.

Kata éva mapagevo tpoTo Kol A0Yw Tou OTL eipat Mnxavikog g mpdaéng pe mbava avOTapKTn
AKOSTUATKN TIPOOTITIKY], HEVW HE TO EPWTNHA YIXTL EVAG ATO TOU YVWOTAOTEPOUS YEPOAGYOUS TNG
Maykoopag Iotoplag, o IpAavdéog James Clement Dooge, &exiviioe v kapiépa tov oav amAdg
V8POAGYOG-UNXaVIKOG YA Tiepimou 15 xpoOvia TPV OAOKANPWOEL EMITUXWS TIG OSLEAKTOPLKES
oTOVSEG KAl YIVEL Evag oTtd TOUG ONUAVTIKOTEPOUS EMIOTHLOVES 0To TeSio NG YSpoAoyias. Nouilw
OTL LOVO QUTO TO EPWTNHUA UE KPATNOE TIPOCIAWUEVO TNV 0AOKATIpwaT NG StatplPng kat mbava
a@opd oTtNV AB0AN aydTn ylx TNV €Eepevvon TPAKTIKWV LOEWVY UTIO KaBeoTwS eAevBepiag. Elpoat
BEBaog 6TL TO TEAOG aUTNG TNG Topeiag Pe BPloKeEL XPNOLLOTEPO EMATNUOVA KUl ATIOSOTIKOTEPO
Mnyavikoé ™G KabnuepvotnTa .

To kaBeotwe EAsuBepiag to xpwotdw otov emiPBAémovta ¢ Satppng Anunitpn Kovtooyidvvn,
Kabnynt) E.M.II, mov ywa mepimov 15 xpovia tpryvpvdaw SimAa Tou Kot KaBOTL elval A&Tpng g
Pwowrng Emiomung eipat olyoupog OTL OAol/e¢ pag «8ev Ba UTIOPECOUHE TOTE VA TOU
EemAnpwoovpe 60a TOU YpwoTaue». IloAAég evyaploties oto Niko Mapdon, AvamAnpwti
Kabnynt E.M.IT kot péAog TG oL BOUAEVTIKNG EMLTPOTNG TNG TIapovoag Statplf3ng yia tn fornbeta
TOU OAa qUTA T XpOVLIX e TO S1kd Tou avbevTikd TpoTo. TéAog, ato Ap. Kwvotavtivo l'ewpyakdxo,
Sc. D emiong pérog TG GUUPBOVAEVTIKNG ETMITPOTIG TOU NTAV TAVTA TAPOV OTNV €EEALEN NG
mapovoag A.A kalL o€ pia oElpd AWV EMOTNHOVIKWV OePdTwY. Egywplota 0w va Ttovicw Vv
ONUAVTIKOTATI GUVELCEOP& Tou Ap. AvSpéa EvoTpatiadn yla v €mpovr Tou va yivel autn 1
gpyaoia kal TIG GAAeG 16€ec OV pag evwoav Kal Tou Ap. Nikoda Maidpov, Emikovpouv Kabnynt)
Kot pédog g Emtaperovg Emitpommg, Tov omolov 11 supfoAr} Tou o€ OAES TIG PATELS TNG SlaTpLPS
NTav KaBoploTikn Kot VOUi{w OTL HOLPACTNKAUE Pl TN XOPA TWV KOAWY ATOTEAECUATWV TNG
TPoVOAG EPYACING. OEPUEG EVYXUPLOTIES VIO TN GUVELCQOPA KL TNV ETTOLKOSOUNTLKY) TOUG KPLTLKT
ota péAN ¢ Emtpomng EEétaong k. Ap. Ztavpo Aiegavdpn, Avaminpwty Kabnynt) T.ILA, Ap.
ABavaclo Aovkd, Avaminpwt) Kabnyntj AJLO kat Evdayyedo MmoAta Kabnyntm E.MIL  ‘Eva
akoun euxaplotw otov Kabnynt) Avépéa AvEpeaddxn yla TNV Tapox} GUGTATIKIG ETMIOTOANG YL
™V eyypa@n pov ws Y.A kot og 6Aa T aKASNUATKA HEAN TOU TOMEX KAl TNG OGXOANG TOU
ETIKVPWOAV TNV EYYPAPT] Lov. Mmopel va VTN PEAV ONUAVTIKEG SLA@WVIES Yo TNV KATAAANAGTNTO
1oL AOYWw “Tipoxwpnuévns NAkiag” kat (0wg GAAWV AdywV Tov 8ev yvwpilw aAAG TEAIKA KATOANY W
0€ OXETIKA WIKPO XPOVIKO Slaomnua va mapadidw éva TOAUCUVOETO EMIOTNUOVIKO £pY0, OTIWG
amoSelkVVETAL amd To A0S TwV UTIO Kpion SNUOCLEVCEWY HOU KAL AVA@POPWV GAAWV HEXPL
onuepa. Ot 6moleg Stupwvieg Kat evotdoelg kapia onpacia dev Exouv onpepa, kabwg «To Aésl kat
&va TpayoldL mov pag uabatvay Taild, o yauévos tTa maipver odax.

Oa 10eda va KaTtabéow Kol YPATITWS TNV EVYVWUOGUVT LoV KAL TNV AYATN LOU O€ OAX TK HEAT TNG
ITIAZ yix ™ @i kot T ovvepyacio 6Aa autd Ta xpovia. Ztov Avtwvn KovkouBivo yia ta Stk



uas oxedia, atov Xpnoto TUPaAN yla TNV OTPATIWTIKA amoSOTIKY) TOU cuvepyacia, otov Ap.
[Tavaylwm Anuntpadn mov eivatl kKadog aAAdd Sev e akovel ote, otov [avaywwtn Kooolépn yia
NV opop@LA ToL Kal Tov Ap. Iwdvvn ToOOUKAAG Yl TNV «EVYEVIKT] xopnYia ¢ evuiag Toux». TéAog
yw ™ @l Toug kat ) cuvepyaoia tou to I'iavvn Mapkovn, to Zipwva MamaAetiov kot to oifio
TapyEvn.

H epyacia dev Ba oAokAnpwvovtav av dev {ovoa otnv IpAavsia mov 1 KaBoAKN gUYEVELX TOU
TANOLVOUOY TNG AKOUA KoL OTIC KAOMUEPIVEG UETOKIVNOELS UE TO TPEVO SLAUOPPWVOUV Eva
KATOAANA0 TepBaAAov yia va S0VAEPELS Kol OTIS AoV avTiE0eC oUVONKEG e TNV avayKkala
mpoonAwaon. Euxaplotw Aowmov avovope IpAavdé kat IpAavééla! Xe autd to onueio va
EUXOPLOTNOW KAl EMWVUUWS TOUS IpAavdols cuvadéd@oug k.k. Dr. Connie O'Driscoll, Dr. Maebh
Grace, Dr. Tracey Lydon xat Dr. Raymond Brendan yia 1o TpwTo «OKOVAPLOHA» TOU SISAKTOPLKOV
KOIL TG ETTOLKOSOUNTIKESG TOUG TIHPATNPT)OEL.

Ao TOV ETMAYYEAUXTIKO YWPO TwVv unxavikwv 8gv Ba Eexdow to Ap. IMavayuwtn- Awovioio
[TavayomovAo ov AOYw TNG Kabnuepwng Hag TePNG TAALOTEPA, HOU UETEPEPE TNV AYATN TIOU
TIPETEL VA £XEL O UNXAVIKOG OTNV ETILOTIUN KL TO VEO. AKOUT TOV VEOTEPO ouvadep@o AAEEavSpo
Kapavaoclo mov 1 emifAedmn TnG SIMAWUATIKAG TOU £pyaciag NTav oNUavTIKO OTOLKEID TNG
Tapovoas pyaciag.

TéAog TOAAEG euxaploTieg oy K. [InveAdTm Taoipa yia TV LVTTOPOVY TNG, TNV TEPLTOINON Kol TNV
ayamm OAd auTA Ta XPOVLIA Kol PUOIKA ot Tadld pag Mapidéva kot Xprioto mov 6tav Ba €pBeL
wpa Oa amoKwWSIKOTIOooUVV UE TO SIKO TOUG TPOTO TL TMPOOTAONOE VA TOUG KANPOSOTHOEL O
[Tatépag Toug.

IpAavdia 2019,

Aplototédng Téyog






Contents

1
1.1
1.2

2.1
2.2

4.1
4.2
43
4.4
4.5
4.6
47
4.8
4.9
4.10

IETOAUCTION ettt ettt es st s e s s s R AR R s R s R bbb 1
0T 2) o7 U TP 1
Scientific iINNOVAtiONS Of the ThESIS ..t es s b saens 2

OVErVIEW Of PET IMOMEILS ..ottt sssess s sssss s sssssssssssss s st st ssssssssesns 4
The potential evVapotranSPiration PrOCESS ... ererieneeseesesseessersess s sses st ssssssssssssssassssses 4
Historical overview of PET MOAEIliNG ..ot ssesssessse s sssessssssssssesssssssssssssssasees 5

2.2.1  GENETAL ceierreeeeeeereetseise e se e s s bbb AR RS R e RRRRRReEReeEeeEEREREe 5

2.2.2 Radiation-based MOAEIS......onrninninieinesessess st sssss s sssesanes 8

2.2.3 The value of the calibrated radiation- based PET models.......cnenenmirnneenneeneeenseenseeseesseeens 9

2.2.4 PET impacts in hydrological MOdEelling .......cocrmemienernmennrinseseineessensesssssssssesssssssssssssssssssssssssesnes 9

2.2.5  OULSTANAING ISSUES ..o ieueeeeurereessersee e seesseesesssesssessessse s s e s s s e s s s s s bbb 11

Global Parametric model deVelOPIMENT ... sess s seesssessseessesssessssssesssesssessssees 12
50U (0 10 ot 1) o U TP 12

3.1.1 Theoretical BaCKGIOUNM ...t sssessesse s ssesssessesssssss s ssssse s ssssssssssessesssessees 14

3.1.2 The Parametric FOTIMULA ...ttt es s ssse et ssssse s ssse s sasessees 15

3.1.3 Modified Parametric MOAE] ... ssssssssss st sssssssssssssssssssssssssssasessnes 16

3.1.4 The CLIMWAT Database: Preliminary ANalySis .....oeeenenerneesseeseesessesseesssssessessesees 16

3.1.5  CONCIUSIONS c.uertrcereereseesetssessessesss et seesse s ssss bbb b s s b bR s 37

Parametric model in CIMIS NETWOTK ...t es s ss s ssssssssssesas 39
INETOAUCTION ..ttt ettt R R R s bR 39
ParametriC fOTMULA.... ettt bbb 39
Radiation-Based and temperature-based MOdels........ooeenenerneeneenereeseeseesssessessesssessseesnees 40
Hydrometeorological data and computational toolS .........ceeeneenreeneeneenseneeesseeseeseeseseesseesseaseens 41
SEATISTICAL CITEETTA e eeueueee ettt b s R s bbb s 42
RESUILS .ottt s s s AR R R 43
Comparison with radiation-based MeEthOds ... seeeeees 44
Comparison with temperature-based Methods......cc.coenenneneeeeree e 47
Spatial analysis Of the PAramMELETrS.. ... se e s s s srase b sa s 48

Correlation to latitude and leVATION ..t se e e se e b s e e e nas 48



411 Spatial interpolation over CalifOrnia ... ————. 49

412  Discussions and CONCIUSIONS ..cuuieemeererreessensseeseesssssessssssssesssesssesssesssessssssssesssessssssssssssesssessssesssssssssmsssases 54
5 Global PET maps based on monthly remote teMPeratures......oeceemeensesernseseessesseessesssessesssesseens 56
5.1 0 (0T L (o1 () N 56
5.2 Materials and Methods ... 56
53 R 1 PPN 57
5.4 L7 U ) o PP 59
5.5 FUIrther PET IMPIrOVEIMENES. . ssssssssss s ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssas 59
5.6 03 D 1 [ ) O 60
5.7 (000} 4 T L1 13 T ) o130 60
6 Investigation of long-term persistence in PET ... sssesssesssessssees 62
6.1 A summary on the long-term persistence behavioUr ... 62
6.2 INEFOAUCTION ettt s 62
6.3 Materials and METNOAS ... sees s s s 63
6.3.1 Mann-Kendall test under the scaling hypothesis.......ooeeneneeneeeeeeeeseesseeeeees 63
6.3.2  Study area and PrOCEAUIES ... eeeeeeeeeseesseeseesssesssesssessseesseesssesssesssesssessssssssesssesssessssssssesssesssesssessssees 64
6.3.3  RESUILS . ——————————— 64
6.3.4 Discussion and CONCIUSIONS ....uereceeeeeeeseesssersseessees s seessesssesssessssesssesssesssesssesssssssesssesssesssessssees 67
6.4 Temperature variability over Greece : Links between space and time.......c.ceeeneenreeneenseeseenneenn. 67
7 Applications in agricultural dESIZN ... et es e s es s sees 71
7.1 Spatial interpolation methods in PET @StMALE ......coccreereemreesreerseeeseeseesseesssesssessseessessssessesssesssesssssssnees 71
/2% 5 S 4 U 0 Ya L1 Ut [ ) o UFPUN PP 71
7.1.2  Study area and meteorological stations NETWOTK........coerereeereeenrernmeeneesseessseeseesseesseessessesanes 71
7.1.3 Spatial interpolation MEthOAS ... ses e sasesees 73
7.1.4 ReSUItS and diSCUSSION ..ucreeueemieseerseerrersseesseesseesssessesssess s ssesssessssessesssss s sssesssssssssssssssssessessasssasesanes 73
8 S T 000 3 o) T o) 3 PP 78
7.2 Regional daily/monthly parametric model in Arta valey .......eeeeeeeeeseesseeennees 78
28705 G §'s U 0T L U o (o )'s UV sSSP 78
7.2.2  Daily PET Spatial Variability ... ssesssessessssssessessssssessssssssssssssssssssesssessees 79
7.2.3 Monthly PET Spatial variabDility.......ceeneenereeseesssesssessessssessssssessssssesssesssssssssssssssssssssssssessnes 81

8 (070) o Lol L0 E3 Te) s TSIz Vs Lol D) Ky 0 K7] (o) s NN 83



List of peer-review publications



Table Captions

Table 1. Distribution and types of applications of 166 PET models (source: McMahon et al. 2016)... 8

Table 2. Ranges of coefficient of determination, r2, between monthly ET0 and the two explanatory
variables, R, and T, across the full sample of 4300 CLIMWAT Stations. ......cooenemeeneesseensesseessesseesesseesseenns 22

Table 3. NSE quartiles for the Hargraves-Samani against the parametric model. .......ccoevereeneernrernnennne. 24

Table 4. Altitude distribution (%) of the calibration set of CLIMWAT stations (4088 stations, in

Table 5. Number of stations and associated NSE intervals across geographical zones. ......ccceeeureeuneenn. 29

Table 6. Number of stations and associated intervals of monthly MAE across geographical zones...29

Table 7. Number of stations and associated intervals of BIAS across geographical zones...........cc....... 29
Table 8. Statistical indices for the local validation dataset (CIMIS stations, California, USA). ............. 36
Table 9. Statistical indexes for the global validation dataset. ......ceeereeeneenrernmeeseesseerseeseesseesseessessesnnes 37
Table 10. Radiation-based methods for potential evapotranspiration estimation. ... 40

Table 11. Meteorological stations used for the evaluation of the potential evapotranspiration

Table 12: Meteorological stations numbers and corresponding parameter values for the parametric
110 L1 0 10X 000 PP 44

Table 13 Values of performance indices used to evaluate the parametric method, in the estimation
of mean annual potential evapotranspiration for the 39 CIMIS stations, against the other four

000 Yo L=) PP 45
Table 14 Distribution of CE values of radiation-based approaches in CIMIS network .........cccccoueeueneunne. 46
Table 15 Distribution of CE values of radiation-based approaches in European stations............cccuee.u.. 46
Table 16 Distribution of CE values of temperature-based approaches in CIMIS network.......cc.ccouueen.. 47
Table 17 Distribution of CE values of temperature-based approaches in European stations............... 47
Table 18 BSS parameters optimal values for the CIMIS network (California area).....c.ceseeeseerseennee 50

Table 19 Values of the statistical criteria used to assess the performance of the different kriging
SEMIVAriogram MOUELS. .S 50

Table 20 Values of the statistical criteria used to assess the performance of the spatial interpolation
methods with respect to the INPUt data SEL.......o e ses s s 52

Table 21 CIMIS Stations used for validation purposes and estimated parameters values in the case



Table 22 CE values for every interpolation method in validation procedure stations........ceenn. 53
Table 23. Meteorological stations with their latitude (°) and elevation (Z)......ccuereenereenmeereenseeneenseenne 64

Table 24. Summary results of the application of the Mann-Kendall modified test to the PET data.
The Hurst parameter was estimated using the maximum likelihood estimator (Tyralis and
Koutsoyiannis 2011). The trend identification is performed for a predefined level a = 0.05 in each

ST tueureeuerseeureeseesre b s e s s euse b ase bR AR £ ER £ R AR SRR RS ER R E AR AR SRR AR R R 65
Table 25. Penman-Monteith PET values at the locations of each of the six stations........ccocceeeveeveernennee. 74
Table 26. BSS optimal parameter values and performance indiCes .......coeneenseneensesseenseessesesseesseenns 77

Table 27. Performance of BSS and IDW against PM PET values in the leave-one-out cross validation
00 01016 LR PP 78



Figure Captions

Figure 1. PET definitions milestones as presented in McMahon et al. 2016 .......oveoreneeerernecreenseeseensennees 6

Figure 2. Evaporation vs temperature plot from Halley’s experiment (source McMahon et al. 2016)

Figure 3. Food and Agriculture Organization (FAO CLIMWAT) hydrometeorological network (dark
areas indicate high altitUAES ). ..ottt bbb 17

Figure 4. Scatter plot of mean annuals of (a) solar radiation, (b) temperature, (c) relative humidity,
(d) wind speed, (e) sunshine duration, (f) extraterrestrial radiation vs. mean annual ETO.................. 19

Figure 5. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ET0 (a) and mean
monthly temperature, T, vs. ETO (b) at five stations in Australia, exhibiting loop-type patterns......20

Figure 6. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ETO (a) and mean
monthly temperature, T, vs. ETO (b) at five stations in Australia, exhibiting irregular patterns......... 20

Figure 7. Ranges of coefficient of determination for the linear regression functions of monthly
reference PET against Ra and T, and the nonlinear parametric model. .....c.coenenreenreeseeneeeneernseennee 24

Figure 8. CLIMWAT stations with Negative NSE........oceesessesessess s ssssssssssssesas 26

Figure 9. Normal probability plot of the empirical distribution function of the mode residuals using
Weibull plotting positions against normal distribution function N (0, 0.7), for stations with negative

NS E ettt esseeesssess s ee s es s s bR RS8R £ REEERERREEREEREEEERAEEREERERRRERRAERRRRERRR 27
Figure 10. Residuals vs parametric PET for stations with negative NSE. ......onnnenecnneenseeseesseeens 27
Figure 11. Residuals vs. humidity (a) and wind speed (b) for stations with negative NSE.................. 28
Figure 12. Distribution of NSE across CLIMWAT STatiOnS........cuceneesneenmeemeessessssssssssesssessssssssssssssssesssssens 30
Figure 13. Distribution of BIAS across CLIMWAT Stations. ......c.cceenesneeneeseessesssesssssssssessssssssssssesssssens 31
Figure 14. Scatter plot of optimized parameters through the final data sample of 4088 stations
exhibiting POSITIVE NSE VALUES. ...ttt ssse s s ss s s 33
Figure 15. Spatial distribution of parameter a’ over the globe. ......coeereeeneeeeeeeeseseseesseeeses 34
Figure 16. Spatial distribution of parameter ¢’ over the globe......eceneesesesssssssessssesns 35

Figure 17. Mean annual Penman-Monteith potential evapotranspiration (symbols) for the 39 CIMIS

stations against the parametric model and the other four methods.......c.ovrneconnnennenscseesse e 45
Figure 18. Scatter plots of parameters against latitude and elevation.........eenneenneenecneeesseeseesseeens 49
Figure 19 Study area and the CIMIS Stations used for spatial analysis .......ccomeenreneenneneesserneesseesseeseens 52
Figure 20 Parameters maps produced by the IDW method, for the California region.........ceeseeeneenn. 54

Figure 21 CLIMWAT meteorological stations NETWOTK. ......cccrirerienecuneenseeseeseeseesseessessessessessse s ssssssssssessesns 57



Figure 22 Eurasia PET map for August (PET: MM /dAY) .wvrrerrerreernmernmerseesseessmessseesssesseessesssssssssssesssessssssssssssesess 58

Figure 23 North America PET map for May- South America PET map for January (PET: mm/day)..58

Figure 24 Africa/Oceania PET map for January-Oceania PET for December (PET: mm/day)............. 59
Figure 25 Monthly PM point vs RASPOTION estimate (Davis Station).....coeenseeneenseeseeserneesseessesseens 60
Figure 26. ANNUAl PET At [OQNNINA ...t ssssssssssesssessssssssssessssssssssssssssssssssssss s sssasssessssssssssssssess 66
Figure 27. ANNUAl PET Qt KETKYTa ...ttt isesssssse s ssss s ssess s ssss s sssssssnsssssns 66
Figure 28. ANNUAL PET Gt LATISSA c.uuurcueereeseeeseesseesessessessssssssssssssssessssssssssssessssssssssssssssassssssssssasssssesssasssesssssssssssssssss 66
Figure 29. ANNUAL PET Gt LEIMNOS.....oieerieneineiseisecsseesesss s ssssssse s ssss s sssssse s s ssss bbb sssssssnssssas 67
Figure 30. Study Area- meteorological stations l0CAtIONS .....ccouereeneereenserseesersees e sseesseessesseens 68
Figure 31. Inter-annual temperature Variability ... sssessseesseesssessssesseeens 69
Figure 32. Study Area- locations of meteorological StatioNS......coeeneeenneeneeseesseessessse e seeesesseeseeens 69
Figure 33. ANNUAl PET VATTAtION coeueuceeereesseceecereeseessesseesssesssessseessessssesssssssessssssssssssesssessssssssssssssssesssesssessssssssesssseeas 70

Figure 34. The Arta plain along with the study area and the agrometeorological stations network.72

Figure 35. BSS PET maps for Julian dates 105, 135, 162, 199, 229, 259 of year 2015 .....cccovmerrrereerreenns 75
Figure 36. IDW PET maps for Julian dates 105, 135, 162, 199, 229, 259 of year 2015......cccourreereerreenne 76
FIGUTE 37. STUAY AT@a.....ceieereeureeeemseeecssessseseeseesseessesssess s s sessses s s esse s R R seEaesesae e R et 79
Figure 38. PET daily spatial Variability.......eeeeeeeseeseesseessessesssessssesssesssessssesssssssssssssssssssesssessssssssssssseens 80

Figure 39. PET MonNthly variability ... ss e ssse s ssesss s ssssssssssssssessssssssssssesas 82



1 Introduction

1.1 Overview

Evapotranspiration in all natural shapes (actual, potential) is a key component of the water balance
strongly linked with numerous geosciences such as hydrology, agronomy, climatology. The accurate
estimation in different time scale is a critical for the above mentioned scientific areas and numerous
models have been developed for achieving this challenge.

The main aim of the Ph.D Thesis is the development of a new Parametric PET model. The thesis
sections are organized as follows:

Chapter 2 presents an historical overview of the Potential Evapotranspiration definition, modeling
principles and its applicability in the water/ geosciences practice.

Chapter 3 presents the global parametric model development including a thorough analysis of the
PET key drivers, calibration of the parameters across the globe on calculated Penman-Monteith
sample, analysis of the insufficient results of the new model, comparison of the new approach with
the well known uncalibrated Hargreaves model and validation of the results in local PET Penman-
Monteith samples.

Chapter 4 introduces the new parametric model in a denser agrometeorological network of CIMIS
(California) and in meteorological stations of Spain and Germany. The parameters of the models are
calibrated in a long sample of Penman- Monteith timeseries and the efficiency of the model for a
calibration and validation period is tested. Moreover the comparison of the model with a number of
radiation-based (Hargreaves 1975, Jensen-Haise, Mcguiness-Borne) and empirical models
(Hargreaves- Samani 1985, Thornthwaite, Blaney- Criddle) was carried out for examining the
efficiency of the new approach. Finally, a spatial analysis was made through different
geostatististical methods for mapping the parameters, thus for transferring the PET information
from local to spatial scale.

Chapter 5 introduces a first attempt for providing PET remote sensing global maps by
incorporating the global parametric maps along with remote sensing aerial temperature data. The
advantages of the new promising PET remote product is discussed together with some contrsuctive
issues with regard to the reliability of the existing PET remote-sensing products.

Chapter 6 presents a R- script tool for quantifying the trend in annual PET series under the well-
known scaling hypothesis which is more physically consistent than typical Mann- Kendall test. The
usability of this tool is highlighted in hydrological timeseries analysis. It also presents the
temperature and PET variability over Greece by using the parametric model for converting a large
dataset of temperature in PET.

Chapter 7 introduces two interesting agrometerological applications in Arta Valley, by applying in
practice the parametric model in monthly and daily scale and also by investigating alternative
geostatistical techniques for the reliable mapping of the PET information.



Chapter 8 summarises the conclusion of the Ph.D thesis works its innovation for different
disciplines, unresolved scientific issues and future objectives for further research.

In the Appendix the peer-review publications are listed along with detailed citations per article.

1.2 Scientific innovations of the thesis

The major innovative queries examined as part of this Ph.D thesis outlined below:
o  Which are the key meteorological drivers for assessing the PET in large areas?

An extended global statistical analysis was carried out for investigating the relationship between PET,
mean temperature, radiation, humidity and wind velocity. PET is strongly correlated with mean
temperature and radiation but in some cases the humidity and velocity could improve the reliability of
the PET estimate.

e Given the high data demanding dataset for estimating the reliability of PET, can we
introduce parsimony and physical constraints for its quantification?

The major peer review publications as part of the thesis outcomes are available which represent: a)
The global parametric model in a sample of 4088 FAO stations and b) The development of the
parametric model in the CIMIS network in California.

e What is the main benefit of the new parametric model against the other radiation or
temperature-based methods?

It is resulted that the performance of the new model is satisfactorily outperforming all the other
radiation- based methods or temperature methods that have been applied. Specifically, the new
parametric model is preferable to the most well-known temperature-based method which is the
Hargeaves-Samani.

e Which is the optimal geostatistical model for transferring the local PET estimate in spatial
scale?

A typical problem in engineering hydrology is the conversion of the points estimate to spatial
information. Therefore a number of the geostatistical tools (IDW, Kriging, NN, BSS) were compared in
order to find out the most applicable model in representing the PET in spatial scale. IDW the most
simplistic, seems to be the optimal model.

e What are the changes of annual PET and how can we quantify the trend?

An R-script had been developed in order to investigate the annual PET trends under the scaling
hypotheses which, given the ubiquitous presence in meteorological timeseries, have physical
constraints.

o  Which are the practical uses of a new PET model in the area of hydrological and agronomic
engineering?



A number of innovative case studies have outlined the usability of the new parsimonious PET model.
Specifically, the use of the model in the quick and reliable conversion of the mean temperature in PET
estimates and the study of the long term changes and its usability in agronomic applications.

e  What are the major incidental contributions and moderate innovations of this thesis?

During the development of the global parametric model in a limited number of areas, an influence of
the humidity and/or the velocity had been detected and therefore more meteorological timeseries and

more explanatory variables (humidity and/or velocity) are required for developing more robust PET
expressions.



2 Overview of PET models

2.1 The potential evapotranspiration process

Potential evapotranspiration (PET) is key input in water resources, agricultural and environmental
modelling. For many decades, numerous approaches have been proposed for the consistent
estimation of PET at several time scales of interest. Accurate estimation of evapotranspiration has
gained scientific interest due to high importance in hydrological modelling, irrigation planning and
water resources management. According to Farquhar and Roderick (2007), changes in evaporative
demand affect fresh water supplies and have impact on agriculture, the biggest consumer of fresh
water.

Evaporation can be viewed both as energy (heat) exchange and an aerodynamic process. According
to the energy balance approach, the net radiation at the Earth’s surface Rn is mainly transformed to
latent heat flux, A, and sensible heat flux to the air, H.

The evaporation rate, expressed in terms of mass per unit area and time (e.g. kg/m2/d), is given by
the ratio E" := A / A, where A is the latent heat of vaporization, with typical value 2460 kJ/kg. By
ignoring fluxes of lower importance, such as soil heat flux, the heat balance equation is solved for
evaporation, yielding:

__ (Rn—H) _  Rn

!
E A A(1+b) 1)

where b := H / A is the co-called Bowen ratio. The estimation of b requires the measurement of
temperature at two levels (surface and atmosphere), as well as the measurement of humidity at the
atmosphere. On the other hand, the estimation of the net radiation Rn is based on a radiance
balance approach to determine the components Sn (Net short wave radiation) and Ln (Net long
wave radiation). Typical input data required (in addition to latitude and time of the year), are solar
radiation (direct and diffuse, or, in absence of them, sunshine duration data or cloud cover
observations), temperature and relative humidity. The net radiation also depends of surface
properties (i.e. albedo) and topographical characteristics, in terms of slope, aspect and shadowing.
From the aerodynamic viewpoint, evaporation is a mass diffusion process. In this context, the rate
of evaporation is related to the difference in the water vapor content of the air at two levels above
the evaporating surface and a function of the wind speed F(u) in the diffusion equation.
Theoretically, F(u) can be computed on the basis of elevation, wind velocity, aerodynamic
resistance and temperature. Yet, for simplicity it is usually given by empirical formulas, derived
through linear regression, for a standard measurement level of 2 meters. Penman (Penman, 1948)
combined the energy balance with the mass transfer approaches, thus allowing the use of
temperature, humidity and wind speed measurements at a single elevation. His classical formula for
computing evaporation from an open water surface is written as:



r—_4 Rmn v
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where A is the slope of saturated vapor pressure/temperature curve at equilibrium temperature
(hPa/K), vy is a psychrometrcic coefficient, with typical value 0.67 hPa/K, and D is the vapor
pressure deficit of the air (hPa), defined as the difference between the saturation vapor pressure es
and the actual vapor pressure ea, which are functions of temperature and relative humidity. We
remind that estimates the evaporation rate (mass per unit area per day), which is expressed in
terms of equivalent evaporation of water by dividing by the water density p (1000 kg/m3).

Penman’s method was extended to cropped surfaces, by accounting for various resistance factors,
aerodynamic and surface. As mentioned in the introduction, Monteith introduced the concept of the
so-called “bulk” surface resistance that describes the resistance of vapor flow through the
transpiring crop and evaporating soil surface.

It is therefore the Penman-Monteith formula (Monteith 1965, Monteith 1981) most recognized
globally, which is yet difficult to apply in data-scarce areas, since it requires simultaneous
observations of four meteorological variables (temperature, net duration, relative humidity, wind
velocity). For this reason, parsimonious models with minimum input data requirements are
strongly preferred. Typically, these have been developed and tested for specific hydroclimatic
conditions, but when they are applied in different regimes they provide much less reliable (and in
some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain
parsimonious, in terms of input data and parameterization and this is part of this Ph.D thesis.

2.2 Historical overview of PET modelling

2.2.1 General

The accurate estimation of evapotranspiration has a great importance in hydrological modeling,
irrigation planning and water resources management.

Figure 1 presents the historical milestones in developing evapotraspiration definition and physical
modelling focusing in the two last centuries.
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Figure 1. PET definitions milestones as presented in McMahon et al. 2016

The starting point was the first “common-sense” definitions introducing by Aristotle (Koutsoyiannis
et al. 2007). His views in this fundamental work “Meterologika” encompasses a clear understanding
for the phase change of water and the energy exchange. He referred that “... the sun causes the
moisture to rise; this is similar to what happens when water is heated by fire” (Meteorologica, 11.2,
355a 15). “... the vapour that is cooled, because of lack of heat in the area where it lies, condenses
and turns from air into water; and after the water has formed in this way it falls down again to the
earth” (ibid., 1.9, 346b 30). Later Perrault (1611-1680) is credited with having made the first
experimental measurement of evaporation, though in fact what he measured was sublimation by
recording the loss of weight of a block of ice through time. The first direct measurement of the
evaporation of liquid water was carried out by Edmund Halley in 1686 when he measured the loss
of water from a heated pan. Surprisingly, Halley appears not to understand that the temperature is
good predictor and key driver of evaporation loss as shown in Figure 2.
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Figure 2. Evaporation vs temperature plot from Halley’s experiment (source McMahon et al. 2016)

Dalton has become universally recognized as one of the foreseen scientist in the development of
evaporation theory since he referred that “the evaporating force must be universally equal to that of
the temperature of the water, diminished by that already existing in the atmosphere”. The water
existing in the atmosphere he refers to as the ‘force of the vapour,” effectively relative humidity.
After Dalton’s contribution in explaining evaporation as a physical phenomenon, Penman and
Monteith later introduced the most recognized physical approaches until nowadays and more
informatios are presented later herein.

More than 50 important evapotranspiration models can be found in literature (Lu et al., 2005,
McMahon et al. 2013) which can be grouped into seven categories: (i) empirical, (ii) water budget
(iii) energy budget, (iv) mass transfer, (v) combination, (vi) radiation and (vii) measurement (Xu
and Singh, 2000).

The recently review work by McMahon et al. 2016 has identified a total number of 166 models
categorizing into six classes (Table 1): potential evaporation, reference evaporation, actual
evaporation in terrestrial environments, open-water evaporation, deep lakes, and pan evaporation.
The models therein are further typed into the following 10 classes: models based on mass-transfer
(so-called Dalton equation), temperature models, radiation-temperature models, energy balance
methods, single-source (vegetation, soil, or water) combination methods, multisource combination
methods, multivariate models, models based on the Complementary Relationship, Budyko-like
models, and miscellaneous models.



Table 1. Distribution and types of applications of 166 PET models (source: McMahon et al. 2016)

Percentage of

Model type Application Total Models
Potential Reference crop Actual Open-water Lakes/Storage Pan

Mass-transfer 0 0 1 55 0 2 349
Temperature 5 2 0 1 0 0 48
Radiation-temperature 7 8 2 5 0 1 13.9
Energy balance 0 0 0 0 3 0 1.8
Combination-single source 7 9 7 4 6 2 211
Combination-multisource 0 0 8 0 0 0 4.8
Multivariate 0 1 1 0 0 3 3.0
Models based on CR 0 0 7 1 1 0 54
Budyko-like 0 0 7 0 0 0 4.2
Miscellaneous 3 0 1 4 1 1 6.0
Percentage of total models 13.3 12.0 205 42.2 6.6 5.4 100

The variety of models and frameworks is related to the complexity of the natural phenomenon and
depends on the wide range of input climate data and local climate conditions. The Penman-
Monteith formulation (Monteith, 1981) for computing potential ET proposed from FAO as
standardized method (Allen et al., 1998) That method had numerous successful applications in the
fields of hydrology and agrometeorology and in a variety of hydroclimatic regimes (Wang and
Georgakakos, 2007). Basic disadvantage of Penman-Monteith model is the simultaneous
requirement of several meteorological data as temperature, wind speed, relative humidity and
sunshine measures. Such measurements are not always easily available or accessible to researchers
due to the sparse hydrometeorological stations networks in several regions, e.g. Africa, as well as
the instability in the records of radiation and relative humidity (Samani, 2000).

The interdependence of these meteorological parameters and their variability in space and time,
lead in difficulties to formulate an equation that can be used to estimate ET from various crops
under different climate conditions (Temesgen et al., 2005). Notably, the difficulties due the sparse
hydrometeorological networks in several regions like Africa and the instability in the records of
radiation and relative humidity (Samani, 2000) reveals the demand of new simplifies models.
Therefore, the demand of new simplified models in several time scales (Alexandris and Kerkides
2003, Oudin et al. 2005, Valiantzas, 2013,) like radiation-based and temperature-based models
(Valiantzas 2006, Valiantzas, 2013), is justified.

2.2.2 Radiation-based models

As already clarified above, the complexity of the Penman-Monteith method stimulated many
researchers to seek for alternative, simplified expressions, based on limited and easily accessible
meteorological data. Given that the main sources of variability in evapotranspiration are
temperature and solar radiation, the two variables are introduced in a number of such models,
typically referred as radiation-based. It is noted that from numerous publications Tabari (2010)
and Samaras et al. (2014) demonstrated that radiation-based methods are more powerful models
for the ET estimation.



A well-known simplification is the Priestley-Taylor formula which is expressed in terms of
equivalent depth, i.e. mm/d:
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Where a. is a numerical coefficient, with values from 1.26 to 1.28. In the original model, the energy
term of the Penman-Monteith equation is increased by about 30%, in order to skip over the
aerodynamic term. This assumption allows for omitting the usage of wind velocity and surface
resistance in evapotranspiration calculations.

Another radiation-based models have been identified within the literature are the Hargreaves
(Hargeaves 1985), Turc (Turc 1961), Jensen-Haise (Jensen and Haise 1963), Stephens- Stewart-P
(Stephens and Stewart 1693) , Priestley-Taylor (Priestly and Taylor 1972), Makkink-Hansen
(Hanses 1984) and Makkink (Makking 1957)

2.2.3 The value of the calibrated radiation- based PET models

Many researchers suggest the need for further model calibration in the radation-based models
(especially in the energy term of radiation) to improve the overall efficiency (Irmak et al. 2003, Zhai
L. et al. 2010, Azhar and Perera 2010, Thepadia and Martinez 2012, Tabari and Talalee 2011,
Drooger and Allen 2002).

Specifically, Tabari and Talalee (2011) calibrated Hargreaves and Priestley-Taylor models on the
basis of the PMF-56 method in arid and cold climates of Iran using data from 12 stations during
1994-2005. After Hargreaves calibration model, the average value of the adjusted coefficient for
arid climate was 0.0031, which is about 34% higher than the original value (0.0023). Similarly, the
average value of the new Hargreaves coefficient for cold climate was 0.0028, which is about 22%
higher than the original value. The results showed that the original Priestley-Taylor coefficient of
1.26 was very low for the climatic regions, and the new Priestley-Taylor coefficients of 1.82 and
2.14 have the best fit as compared with the PMF-56 method in cold and arid climates, respectively.
Overall, calibration of the Hargreaves and Priestley-Taylor equations resulted in improvements of
the equations by reducing the errors of the ETo estimates.

Drooger and Allen (2002) modified the original Hargreaves method to a Modified-Hargreaves(MH)
method by including a rainfall term improved ETO0 estimates significantly for arid regions globally.

Monthly values of ET0 using PM were compared to values obtained using HG. They showed that the
annual average difference between PM and HG. HG tends to underestimate PM largely in the very
dry regions and to overestimate PM in the very wet regions

2.2.4 PET impacts in hydrological modelling

The majority of rainfall-runoff models at a daily or monthly time step require as input an estimate
of potential evapotranspiration in order to compute actual evapotranspiration (Mcmahon et al.
2013). The generic mathematical description in this regard is:



ETpce = f(SM, ETpgr) 4

Where ETac is the estimated actual daily evapotranspiration (mmday-!), SM is a proxy soil moisture
level for the given day (mm) and ETper is the daily potential evaporation (mmday-1). Due to local
climatic conditions especially in arid catchments actual evapotranspiration is limited by soil
moisture with the potential evapotranspiration becoming more important in wet catchments where
soil moisture is not limiting.

Seiller and Anctil (2016) were assessed the performance of the hydrological modeling under
observed and projected climate conditions on natural catchments in Canada and Germany by using
as input twenty-four potential evapotranspiration formulas (Penman, Penman-Monteith, FAO56 P-
M, Priestley- Taylor, Kimberly-Penman, Thom-Oliver, Thornthwaite, Blaney and Criddley, Hamon,
Romanenko, Linacre, MOHYSE, HSAMI, Kharrufa, Wendling - WASim, Turc, Jensen and Haise ,
McGuinness and Bordne, Hargreaves and Samani, Doorenbos and Pruit, Abtew, Makkink, Oudin,
Baier and Robertson).

The 24 PET formulas produced large dissimilarities in the estimated PET in terms of quantity and
shape. Conclusively, the combinational formulas proposed very similar shape and quantity,
temperature-based formulas produced the largest spectrum of quantity and the Radiation-based
formulas fell somewhere in between the other two classes namely combinational and temperature-
based. These differences affected in several ways the resulting simulated discharge time series.
Overall, the authors concluded that it was difficult to identify an ultimate PET formula for a
hydrological modelling point of view, but it could be recommended avoiding temperature-based
Blaney and Criddley and MOHYSE.

Another one critical outcome was the results showed that spread of the hydrological response was
smaller for the combinational formulas than for temperature-based and radiation-based equations,
revealing a higher stability of these combinational formulas.

Birhanu et al. (2018) were applied five hydrological models of increasing complexity (GR4],
SIMHUD, CAT, TANK, SAC-SMA) by inputting 12 Potential Evapotranspiration (Abtew, Blaney-
Criddle, Chapman Australian, Granger Gray, Hamon, Hargeaves-Samani, Makkink, Matt
Shuttleworth, Penman, Penman- Monteith, Priestley-Taylor, Turc) estimation methods of different
input-data requirements in order to assess their effect on model performance, optimized
parameters and robustness. The study area located over a set of 10 catchments in South Korea.

The main outcomes of the study outlined below:

e The hydrological models’ performance was satisfactory for each PET input in the calibration
and validation periods for all of the tested catchments.

e The hydrological models performances were found to be insensitive to the 12 PET.

o Identical behavioural similarities and Dimensionless Bias were observed in all of the tested
catchments.

e For the hydrological models, lack of robustness and higher dimensionless Bias were found
for high and low flow as well as for the Hamon PET input.
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2.2,5

The complexity of the hydrological models structure and the PET estimation methods did
not necessarily enhance model performance and robustness.

The model performance and robustness were found to be mainly dependent on extreme
hydrological conditions, including high and low flow, rather than complexity;

The simplest hydrological model and PET estimation method could perform better if
reliable hydro-meteorological datasets are applied.

Outstanding issues

According to the fundamental work by Mcmahon et al. 2013 a number of issues regarding the

evapotranspiration are still outstanding and outlined below:

Hard-wired potential evaporation estimates at AWSs; The authors stated that: "Some

commercially available AWSs, in addition to providing values of the standard climate
variables, output an estimate of Penman evaporation or Penman-Monteith evaporation. For
practitioners, this will probably be the data of choice rather than recomputing Penman or
Penman-Monteith evaporation estimates from basic principles. However, users need to
understand the methodology adopted and check the values of the parameters and functions
(e.g. albedo, wind function, ra and rs) used in the AWS evaporation computation”

Estimating evaporation without wind data; Authors mentioned that “Many countries do not

have access to historical wind data to compute potential evaporation”
Estimating evaporation without at-site data; The authors mentioned that “Where at-site

meteorological or pan evaporation data are unavailable, it is recommended that evaporation
estimates be based on data from a nearby weather station that is considered to have similar
climate and surrounding vegetation conditions to the site in question”.

Dealing with a climate change environment: increasing annual air temperature but

decreasing pan evaporation rates;

Daily meteorological data average over 24h or day-light hours only; The authors stated that

“An issue that arose during this project relates to whether or not daily meteorological data
used in evaporation equations should be averaged over a 24h daily period or averaged during
daylight hours when evaporation is mainly, but not only”

Uncertainty in evaporation estimates. The authors refers that “We describe several models

for estimating actual and potential evaporation. These models vary in complexity and in data
requirements. In selecting an appropriate model, analysts should consider the uncertainty in
alternative methods.”

In this PhD thesis the majority of the above mentioned critical points are considered in order to

introduce new insights in the PET assessment.
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3 Global Parametric model development

The need of parsimonious model structure is essential in several fields of water resources sciences
(Koutsoyiannis, 2009; Koutsoyiannis, 2014). This refers both to the model structure and to the
input data, which should be easily available. Most of simplified formulas fail to describe the
phenomenon of evapotranspiration due to its high complexity and the varying local climate
conditions. Thus, the idea of replacing some variables and constants used in the standard Penman-
Monteith (PM) formula by a number of parameters which are regionally varying and estimated through
calibration from a reference evapotranspiration sample, constitutes a new appealing strategy for
evapotranspiration estimation.

3.1 Introduction

Evaporation, which is an overall term covering all processes in which liquid water is transferred as
water vapour to the atmosphere—definition already provided by ancient Greek philosophers
(Koutsoyiannis et al. 2007)—is crucial element of multiple disciplines and an essential input of
hydrological modelling, water resources management, irrigation planning, and climatological
studies. Numerous efforts are reported in the literature, presenting different expressions of
evaporation (including actual, potential, reference crop, and pan evaporation), based on different
types of data. McMahon et al. (2013, 2016) provide a major discussion of the background theory
and definitions, as well as a critical assessment of the models developed so far.

Here, the concept of potential evapotranspiration, PET is highlighted, which is a theoretical quantity
considered as “the rate at which evapotranspiration would occur from a large area completely and
uniformly covered with growing vegetation, which has access to an unlimited supply of soil water,
and without advection or heating effects” (Dingman, 1994). Since PET depends on soil properties, a
better defined term is the so-called reference crop evapotranspiration, introduced by Doorenbos
and Pruitt (1977), and typically denoted as ETo, which refers to the evapotranspiration from a
standardized vegetated surface (i.e., actively growing and completely shading grass of 0.12 m
height, surface resistance 70 s m-1, and albedo = 0.23). The globally accepted method for consistent
estimation of PET is the Penman-Monteith (herein referred to as PM) equation, as formalized by the
Food and Agriculture Organization (FAO), which is physically-based, and is therefore used as
standard for comparisons with other, more simple approaches (Allen et al 1989). The major
drawback for the generalized application of the PM method worldwide is the need of simultaneous
measurements of four meteorological variables (air temperature, wind speed, relative humidity,
and net radiation or, alternatively, sunshine duration), at the desirable spatial and temporal
resolution.

To overcome the data requirements of the PM formula, a number of alternative approaches have
been developed, which are typically classified into temperature-based and radiation-based; the
former use only temperature observations, which are dense and easily accessible, while the latter
also use values of extraterrestrial radiation (which is, in fact, periodic function of latitude and day of
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the year). For many decades, such approaches have been widely applied for PET modelling
worldwide using the standard “literature” values of the parameters involved in their governing
equations. However, since these have been developed for specific studies, locations, and climatic
conditions (Xu and Singh, 2001), their applicability outside of these distinct conditions usually
result in unreliable predictions, introducing significant bias in PET estimations. For this reason, and
particularly in the last years, significant attention is payed to local calibrations of empirical PET
models, either by using direct PET observations at the field scale (e.g., lysimeter measurements)
and/or against simulated PET data, provided by the PM formula. One of the first attempts is
reported by Allen and Pruit (1986), who calibrated and validated the Blaney-Criddle model against
PM data, using local wind function and taking advantage of daily lysimeter measurements of alfalfa
evapotranspiration. Similar calibration approaches were employed for all of the widespread PET
formulas, such as the Thornthwaite, Blaney-Criddle and Priestley-Taylor (e.g., Amatya et al., 1995;
Mohawesh, 2010; Sentelhas et al., 2010), and other empirical expressions as well (e.g., Oudin et al.,
2005). Many recent publications also focus on the re-evaluation of the sole parameter of the
Hargreaves equation against regional data, for a range of climatic regimes (Gavilan et al., 2006;
Fooladmand and Haghighat, 2007; Tabari and Talaee, 2011; Hu et al, 2011; Haslinger and Bartsch,
2016).

Although the spatial resolution and accuracy of meteorological data over the extended areas of the
globe is not sufficient, current advances in remote sensing technologies allowed quite reliable
estimations of PET by combining satellite and ground information (Choudhury, 1997). Since
gridded data of meteorological inputs and canopy characteristics is now easily accessible, several
researchers employed PET estimations at large spatial scales, up to global (Allen et al, 2007; 2011;
Mu et al, 2007; 2011), by employing scaling and interpolation techniques of varying physical
complexity (Vinukollu et al. 2011).

Tegos et al. (2013; 2015) calibrated a simplified radiation-based expression of the PM formula,
using monthly meteorological data from a large number of stations over Greece and California,
respectively. In both areas, the proposed formula, which contains either three or two free
parameters, clearly outperformed other widely used methods, such as Hargreaves and Samani
(1985), Oudin et al. (2005), and Jensen and Haise (1963), as modified by McGuinness and Bordne
(1972). Malamos et al. (2015) also employed the parametric model at the daily scale, in the context
of PET mapping over the irrigated plain of Arta, Western Greece.

In the following chapters, the simplified (i.e. with two parameters) expression of the
aforementioned model over the globe is presented, by inferring its parameters through calibration
against given Penman-Monteith values (next referred to as reference PET or ETy). The
meteorological inputs and ET, data are retrieved by the FAO CLIMWAT database that provides
monthly climatic information at 4300 locations worldwide. A preliminary analysis of these data
allowed explaining the major drivers of PET over the globe and across seasons. An extended
analysis of the model inputs and outputs was performed, including the production of global maps of
optimized model parameters and associated performance metrics, as well as comparisons with a
widely known formula by Hargreaves and Samani (1985). Finally, the interpolated values of the
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optimized parameter values to validate the predictive capacity of the model against detailed
meteorological data was used, in terms of monthly time series, at several stations worldwide. The
results are very encouraging, since even with the use of abstract climatic information for its
calibration, the model generally ensures very reliable PET estimations. However, we have detected
few cases where the model systematically fails to reproduce the reference PET, particularly across
tropical areas. Except for these specific areas, the parameter estimations through the derived maps
can be directly employed within the proposed formula, at both point and regional scales.

3.1.1 Theoretical Background

The Penman-Monteith Equation

The Penman-Monteith equation for estimating potential evapotranspiration from a vegetated
surface, as formalized by Allen et al. (1998), is:

A(Rn - G) + PaCa(V; - va)/ra

1
PET = —
A sy ©

where PET is the daily potential evapotranspiration (mm d-1); R, is the net incoming daily radiation
at the vegetated surface (MJ m-2 d-1); G is the soil heat flux (M] m-2 d-1); pa. is the mean air density at
constant pressure (kg m-3); ¢, is the specific heat of the air (M] kg-t °C-1); rq is an aerodynamic or
atmospheric resistance to water vapour transport for neutral conditions of stability (s m-1); rsis a
surface resistance term (s m-1); v,* — v, is the vapour pressure deficit of the air (kPa), defined as the
difference between the saturation vapour pressure v,* and the actual vapour pressure vg; A is the
latent heat of vaporization (M] kg-1); 4 is the slope of the saturation vapour pressure curve at
specific air temperature (kPa °C-1); and, y is the psychrometric constant (kPa °C-1). Given that the
typical time scale of the PM equation is daily, all of the associated fluxes are expressed in daily or
mean daily units.

The original Penman equation does not include the soil heat flux term, G, since Penman noted that,
in his experiments, its impact in the energy balance was less than 2% (Ward and Robinson 1990).
Nevertheless, evaporation estimations are sensitive to G only when there is a large difference
between successive daily temperatures (McMahon et al., 2013). In this respect, in most of practical
applications this flux is not accounted for, thus leaving the net incoming daily radiation, Ry, as the
sole energy term to be assessed; the latter is defined as the difference between incoming and
outgoing radiation of short and long wavelengths.

Apart from the site location, expressed in terms of latitude, ¢, the PM equation requires air
temperature, relative humidity, solar radiation, and wind speed data for calculating the model’s
variables. FAO provides detailed guidelines for the cases of proxy or missing meteorological
information. A typical example is the determination of solar radiation from measured duration of
sunshine or cloud cover. Moreover, FAO suggests using average daily maximum and minimum air
temperatures, instead of mean daily temperature, to represent more accurately the non-linearity of
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the saturation vapour pressure — temperature relationship. If fact, the use of mean air temperature
yields a lower saturation vapour pressure v,* and hence a lower vapour pressure difference v,* -
va, and lower reference evapotranspiration estimates (Allen et al., 1998).

3.1.2 The Parametric Formula

The parametric model, initially proposed by Koutsoyiannis and Xanthopoulos (1999), and then
formalized and implemented by Tegos et al. [2009; 2013; 2015a; 2015b], provides PET estimates
through calibration based on given PET data. The model performance was satisfying as the
proposed framework provides consistent monthly PET estimates at point and especially at the
regional scale. The most recent application was the daily and monthly implementation of the model
for the PET mapping in an irrigated plain of Greece (Malamos et al., 2015) and the investigation of
trend analysis in Greece through the development of an R-script tool (Tegos et al,, 2015).

The mathematical expression of the parametric model, which is applicable to different time scale
from daily to monthly, is the following:

aR,+ b

PET =
1—cT

(6)

where PET is the potential evapotranspiration in mm, R, (MJm-2d-1) is the extraterrestrial radiation,
T (°C) is the mean air temperature, and a (kg kJ-1), b (kg m-2), and ¢ (°C-1) are model parameters
that should be inferred through calibration, against “reference” PET data, either modelled or
measured. From a macroscopic point-of-view, the above parameterization has some physical
correspondence to the PM equation, since the product a R, represents the overall energy term (i.e.,
incoming minus outgoing solar radiation), parameter b represents the missing aerodynamic term,
while quantity (1 - ¢ T) is an approximation of the denominator term of the PM formula (Tegos et
al, 2013).

The above equation uses two explanatory variables, namely extraterrestrial radiation, R, and
temperature, T, and thus it belongs to the so-called radiation-based approaches. The
extraterrestrial radiation, defined as the solar radiation received at the top of the Earth’s
atmosphere on a horizontal surface, is an astronomic variable, given by:

R, = @ G d,[ws sin(@) sin(8) + cos() cos(d) sin(wy)] )

where G is the solar constant, with typical value 82 k] m-2 min-1, d; is the inverse relative distance
of the Earth from the Sun, ws (rad) is the sunset hour angle, ¢ is the latitude (rad), and § is the solar
declination (rad). Variables d: and 6 are periodic functions of time, while ws is function of latitude
and time. For details on computing the above astronomic variables, the reader may refer to the
literature (e.g., McMahon et al.,, 2016).

While for a given location the extraterrestrial radiation is a highly regular and fully predictable
variable, thus only explaining the periodicity of PET, temperature exhibits quite irregular
variability, thus explaining the fluctuations of PET, which is key component of the changing
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hydrological cycle, at all temporal scales, from daily to annual and even larger ones, i.e. overannual
(Koutsoyiannis, 2013). Following FAO recommendations, the advantage from minimum and
maximum daily temperature data was taken, thus estimating the temperature term by the average:

T = (Tmin + Tmax)/2 (8)

This expression may be particularly useful in cases when records of mean daily temperature are
missing, while average minimum (Tmin) and maximum temperature (Tmax) values are available.

3.1.3 Modified Parametric Model

It is well-known that the variability of daily and, even more, monthly PET is relatively small, if
compared to other hydrometeorological variables, such as precipitation and runoff. For this reason,
when attempting to estimate the model parameters g, b, and c through calibration, it is quite easy to
achieve very high values of goodness-of-fitting criteria (e.g. efficiency), through combinations of
parameter values that do not have physical sense. Additional uncertainty arises when the actual
PET data is little informative to support the inference of the three parameters, e.g. due to limited
length of associated meteorological data. In this respect, to avoid uncertainties due to “blind”
calibration approaches or overfitting (Efstratiadis and Koutsoyiannis, 2010), we propose using the
more parsimonious expression (also considering the minimum and maximum temperature, instead
of the mean daily one):
a'R,

PET = : 9
1-¢ (Tmin + Tmax)/2 ( )

which contains two instead of three parameters (parameter a’ in the numerator and parameter ¢’ in
the denominator). Apparently, in the context of a calibration exercise using alternative expressions
(6) and (7), the optimized values of c and ¢’ should be different.

The modified parameterization of the above equation resembles the well-known approach by
Priestley and Taylor (1972), who developed a PET formula based on the original PM equation, but
without the aerodynamic component; the latter was indirectly accounted by increasing the energy
term by a factor of 1.26. For simplicity, this factor is generally considered as constant; however,
several researchers have demonstrated that this exhibits quite significant seasonal and spatial
variability (McMahon et al. 2013).

3.1.4 The CLIMWAT Database: Preliminary Analysis

Database Overview

The CLIMWAT 2.0 database is a joint initiative by the Water Development and Management Unit
and the Climate Change and Bioenergy Unit of FAO (1993), which provides average monthly
climatic data at 4300 stations (Figure 3, blue points), well-distributed worldwide. These data
include monthly mean values of mean daily maximum and minimum temperature (°C), daily
relative humidity (%), wind speed (km day-!), daily sunshine duration (h), daily solar radiation
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(M]/m2), monthly rainfall, gross and effective (mm), as well as mean monthly ET, estimations
through the Penman-Monteith formula.

The exceptionally large sample of climatic data allows for extracting useful conclusions about the
major drivers of PET over the globe. In this context, a comprehensive statistical analysis of
reference PET data against the available meteorological variables, at both the annual and monthly
scales was made.
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Figure 3. Food and Agriculture Organization (FAO CLIMWAT) hydrometeorological network (dark areas
indicate high altitudes).

Which Meteorological Drivers Explain Mean Annual PET over the Globe?

In order to answer this question, the reference PET (i.e. ETo) data against the four meteorological
variables that are embedded in the Penman-Monteith equation was plotted, i.e. solar radiation,
mean temperature estimated from Equation (7), relative humidity and wind speed, at the annual
scale, and fitted the most suitable regression model.

Figure 4 illustrates that mean annual ET over the globe is highly correlated with mean annual solar
radiation and temperature, particularly when considering power-type or exponential regression
functions. As expected, mean annual ET) is negatively correlated with mean relative humidity, while
it seems uncorrelated to wind speed. It is worth mentioning that as the solar radiation and
temperature increase, the variance of ET, increases significantly. Therefore, in order to reduce
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heteroscedasticity effects, it is essential considering at least two explanatory variables in the
context of empirical PET modelling.

Figure 4 also demonstrates the variability of mean annual ET, against mean annual sunshine
duration and annual extraterrestrial radiation, which are typically used instead of solar radiation, in
PET estimations (given that solar radiation observations are generally sparse, due to the cost of
associated equipment, i.e. pyranometers, radiometers or solarimeters). Surprisingly, the mean
annual sunshine duration is slightly less correlated with mean annual ET, than extraterrestrial
radiation, although the former is expected to be better estimator of the actual solar energy received
in the Earth’s surface. This is a very important conclusion that confirms the suitability of radiation-
based approaches, using both temperature and extraterrestrial radiation as explanatory variables
of PET. However, it is essential remarking that the overall driver of PET and temperature as well is
net solar radiation, which is a portion of the extraterrestrial one. Furthermore, the correlation
between PET and temperature is so much significant only at coarse time scales, such as the annual
one, while its correlation with the solar radiation remains significant, at all temporal scales
(Lofgrenetal, 2011).
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Figure 4. Scatter plot of mean annuals of (a) solar radiation, (b) temperature, (c) relative humidity, (d) wind
speed, (e) sunshine duration, (f) extraterrestrial radiation vs. mean annual ETO.

How Well do Extraterrestrial Radiation and Temperature Explain the Seasonal Patterns of PET?

The key assumption of radiation-based models is that PET follows the seasonal patterns of
extraterrestrial radiation, R,, and temperature, T. In general, a loop-type shape exists between the
mean monthly PET and the two aforementioned variables, due to the influence of thermal inertia,
causing a delay in temperature changes against solar radiation changes across seasons. Apparently,
due to the loop-shape relationship, the two pairs of variables are expected to be linearly correlated;
actually, the more elongate the loop, the higher should be the correlation. In Figure 5, the
relationships between monthly extraterrestrial radiation vs. mean monthly ET, and mean monthly
temperature vs. ETo was estimated, at five characteristic stations in Australia, exhibiting different
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hydroclimatic conditions, which confirm the above hypothesis. However, there are also cases where
the shapes of T - ETp and R, - ETo loops are irregular (nonconvex), thus resulting in very low, even
negative, correlations. Such examples are shown in Figure 6, involving another set of stations in

Australia.
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Figure 5. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ETO (a) and mean monthly
temperature, T, vs. ETO (b) at five stations in Australia, exhibiting loop-type patterns.
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Figure 6. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ETO (a) and mean monthly

temperature, T, vs. ETO (b) at five stations in Australia, exhibiting irregular patterns.
In order to investigate whether extraterrestrial radiation and temperature actually explain the
seasonal patterns of ETy over the globe, we formulated the linear regression models of mean
monthly ET, against the two variables and calculated the coefficient of determination, r2 (i.e.,
square of Pearson correlation coefficient), at the full sample of 4300 CLIMWAT stations. Table 3
summarizes the results, by means of number of stations corresponding to ranges of r2, from 0-10%
up to 90-100%. It is shown that ET¢ exhibits very high linear correlation, by means of rZ values
greater than 0.90 against both extraterrestrial radiation and temperature at only 642 out of 4300
stations (14.9%). This percentage rises up to 49.7% (2135 stations) is we consider a wider
acceptable range for 2, i.e. upper than 0.80.
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On the other hand, at 443 stations over the globe (10.3%), the coefficient of determination is less
than 0.50 against both explanatory variables. Apparently, the particular hydroclimatic regime at
these areas does not allow representing PET through simplified radiation-based approaches, thus
requiring either more complex parameterizations or additional variables to explain the seasonal
patterns of PET due to energy or water limitations, i.e. relative humidity and/or wind speed
(McVicar et al, 2012; Guo et al, 2016). PET has been proven sensitive to potential changes in
climate in regions with a lower temperature, less solar radiation, and greater relative humidity,
while the influence of the wind velocity and relative humidity in its estimation is supported by
several studies (McVicar et al., 2012; Guo et al.,, 2016; Rayner et al., 2017; Roderick et al., 2007;
Roderick et al., 2009; Wang et al., 2012; Li et al., 2013).

An interesting remark is that in 42 stations (1% of the sample), a linear regression function of
temperature against ETy ensures r2 greater than 0.90, while at the same stations, the correlation
between ET, and R, is negligible (r2 < 0.10). The opposite case, i.e. very high correlation of PET with
R, while very low with T appears only once, thus it is statistically negligible. In this vein, we can
consider a linear regression model between mean monthly T and ETy as benchmark to evaluate the
performance of any other empirical model, which parameters are identified through calibration.

Nevertheless, although a number of studies present alternatives to the PM formula (e.g., Pereira et
al, 2015; McMahon et al, 2013), based on the sensitivity of potential evapotranspiration to
temperature and/or solar radiation, the major advantage of our approach is the ability of point
calibration of the involved parameters (Tegos et al.,, 2015).
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Table 2. Ranges of coefficient of determination, r2, between monthly ETO and the two explanatory variables,
R, and T, across the full sample of 4300 CLIMWAT stations.

Ravs. ETo
T vs. ETo 0- 10~ 20~ 30- 40- 50— 60— 70— 80— 90—~ Total
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0-10% 55 17 9 12 8 9 8 7 4 1 130
10-20% 38 11 7 4 11 8 3 3 5 3 93
20-30% 33 16 13 13 5 7 8 10 9 4 118
30-40% 36 14 24 10 7 5 12 12 8 15 143
40-50% 29 14 17 18 22 17 19 13 13 18 180
50-60% 34 10 17 16 17 28 26 21 26 31 226
60-70% 30 10 23 15 21 30 37 30 31 52 279
70-80% 45 11 15 19 28 20 44 48 77 135 442
80-90% 69 14 14 10 17 34 38 78 362 643 1279
90-100% 42 6 6 5 9 30 35 147 488 642 1410

Total 411 123 145 122 145 188 230 369 1023 1544 4300

Model Calibration and Evaluation Criteria

The large-scale PET information provided by FAO CLIMWAT database was used as reference data,
for calibrating the parametric expression, thus providing local estimations of parameters a’ and ¢’
at all station sites. For the evaluation of the model performance against reference PET (i.e. ETo) the
following statistical criteria were used:

The coefficient of determination, most commonly referred to as efficiency or Nash-Sutcliffe
efficiency:
Z:l(PETrtnod - PETng)Z

NSE=1-— — (10)
?=1(PETng - l:'ETobs)Z

1. The mean absolute error:

T t _ t
MAE = t=1 |PETob’; pETmod | (11)

2. The relative bias:

BIAS = {=1(PETr§10d B PETng)
- T t (12)
t=1(PETobs)

where PET{,; is the ET, value, estimated by the PM formula at time step t, PET},,4 is the modeled
value at time step t, PET,},s is the monthly average value of the reference PET, and T is total number
of time steps (in the particular case, T equals the number of months, i.e. Oudin et al.,, 2005).

In calibrations, as performance measure the NSE was used, while the two other statistical metrics
have been used for further evaluation. It is well-known that NSE ranges between -co and 1, with
NSE = 1 indicating perfect fitting of the modelled against the given reference values. Due to the
generally high linear correlations of R, and T against ETy, we only consider values greater than 0.70
as satisfying, whereas positive values less than 0.50 are only marginally accepted. On the other
hand, negative NSE values are definitely unacceptable, since they indicate that the mean observed
value is a better predictor than the simulated value. The mean absolute error and the bias are quite
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similar metrics, quantifying in absolute (i.e. mm/month) and relative (%) terms the deviation of the
mean modelled ET, from the corresponding mean reference value, Qgps.

Optimization Procedure

At each station the associated global optimization problem was formulated, based on the given 12
monthly average values of ETy, and using NSE as the objective function to maximize against
parameters a’ and c’. Within calibration, a quite extended feasible space was considered, by
allowing a’ and ¢’ to vary within ranges [-0.02, 0.02] and [-5.0, 5.0], respectively. The global search
was carried out with the evolutionary annealing-simplex algorithm, which is a heuristic technique
that has been proved very effective on locating global optima in highly nonlinear spaces
(Efstratiadis and Koutsoyiannis, 2002; Tsoukalas et al., 2016).

Due to the exceptionally large number of calibration problems to be solved at the full sample of
4300 stations, the computational procedure was automatized in a MATLAB environment.

Assessment against Linear Regression Estimations

In order to assess the predictive capacity of the parametric model, the performance against two
benchmarks by means of linear regression models of reference PET against T and R, was compared.
In Figure 7 the ranges of coefficients of determination is presented , r2, achieved by the two linear
regression models and the nonlinear parametric model, for the entire sample of 4300 stations. The
parametric model ensures very satisfying efficiency (NSE > 0.90) in 58.8% of stations, while only
32.8% and 35.9% of stations exhibit such good performance, considering the linear regression
models against T and R, respectively. In 2562 stations (59.6%), the parametric approach
outperforms both regression models, while in 1327 stations (30.9%) it outperforms at least one
model. Only in 411 stations (9.6%) the two benchmarks achieve a higher r2 than the parametric
approach. It should be remark that in linear regression theory, r2 is mathematically equivalent to
efficiency, which is the most widely used goodness-of-fitting measure for evaluating nonlinear
models. However, while the coefficient of determination of a nonlinear model can take any value
from —oco to unity, in linear regression this metric is by definition non-negative (r2). Moreover, linear
regression models are by definition unbiased, given that the least-square line is forced to pass
through the observed mean.

However, there are relatively few cases where the parametric model, even after calibration, does
not ensure good predictive capacity. In particular, at 10.3% of stations, the model exhibits
marginally accepted performance (0 < NSE < 0.50), while in 4.7% of stations the model predictions
are definitely unacceptable (NSE < 0). In these cases, it is impossible to achieve acceptable
predictions of mean monthly ET, through the parameterization implemented because of the
irregular relationship of ET vs. the two explanatory variables, or due to the influence of additional
meteorological drivers (relative humidity and wind speed) as rationalized in previous Section.
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Figure 7. Ranges of coefficient of determination for the linear regression functions of monthly reference PET
against Ra and T, and the nonlinear parametric model.

Assessment against Hargreaves-Samani Estimations

The substantial advantage of a parametric approach, allowing calibration, over an empirical
formula with given numerical constants, is further highlighted by contrasting our predictions with
the ones provided by the well-known Hargraves-Samani equation, given by:

ET, = 0.408 X [0.0023 X Ry(T + 17.8)] (Twin — Tomax)> (13)

where T is the mean monthly temperature.

As shown in Table 3, providing abstract information on model efficiency in terms of quartiles, in the
majority of stations the predictive capacity of Equation above is absolutely disappointing, mainly
due to the existence of substantial bias in ET estimations (Equation 13) across stations. This bias is
actually embedded in the coefficients that are embedded in above Equation, which have been
estimated on the basis of specific climatic regime, which cannot be representative of any conditions
worldwide. On the other hand, Equation (9) with calibrated parameters ensures very satisfactory
performance in an extended part of the station sample, since the model is adapted to local climatic
conditions.

Table 3. NSE quartiles for the Hargraves-Samani against the parametric model.

Quartiles Hargreaves-Samani  Parametric
Minimum value -327.204 -5.997
1 -5.834 0.721
2 -0.971 0.947
3 0.245 0.984
4 0.980 0.999

Final Data Sample

Based on point calibration results, from further analysis the 4.7% of stations exhibiting negative
efficiency were excludes, thus the final sample was restricted to 4088 stations. For convenience, we
grouped them in five geographical zones, namely 908 stations in Africa, 352 in the wider region of
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Oceania, 1854 in Eurasia, 369 in North America, and 605 in South America. As shown in Table 4, the
majority of the stations (69.9%) are located in altitudes between 0 and 500 m, 21.6% of them are
located between 500 and 1500 m, while only 8.5% of them are placed in altitudes greater than
1500 m. It can been seen that the stations located in Eurasia and in America follow a quite similar
distribution, while in the case of Africa there is a larger percentage located in higher altitudes. On
the other hand, in Oceania, the majority of stations are placed in altitudes up to 500 m.

Table 4. Altitude distribution (%) of the calibration set of CLIMWAT stations (4088 stations, in total).

Region Altitude
<500m 500-1000m 1000-1500m > 1500m

Africa 53.6 14.5 16.2 15.7
Oceania 90.9 6.7 0.9 1.5
Eurasia 75.8 12.9 6.9 4.4
N. America 68.1 14 7.7 10.2
S. America 65.4 15.9 5.3 13.4
Total 69.9 13.3 8.3 8.5

Residuals Analysis for Stations with Negative NSE

In order to explain the poor performance of the model at the problematic 212 stations shown in
Figure 8 (highlighted with blue points), the model residuals was investigated, i.e. the differences
between model predictions and PM estimations. As shown in Figure 9, the residuals are
approximately normally distributed, while as shown in Figure 10, they are uncorrelated. Therefore,
the statistical behavior of the residuals is close to the desirable one (i.e. white noise), indicating
absence of systematic errors (Kitanidis, 1997; Malamos and Koutsoyiannis, 2015). The negative
NSE values are attributed to local overestimation during the warm months or underestimation
during the cold months of the year, respectively, driven from the absence of relative humidity and
wind speed from the parametric model formulation.
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Figure 10. Residuals vs parametric PET for stations with negative NSE.

In order to further evaluate the effect of missing information of relative humidity and wind speed
on the produced residuals, we plotted both of them along with the corresponding linear models, as
presented in Figure 11. This illustrates that there is a significant linear correlation between the
relative humidity and the estimation errors - residuals while the opposite seems to be the case for
the wind speed. The absence of these two variables as explanatory input variables within the
parametric model seem to be crucial in regions with seasonal variations of ETo due to energy or
water limitations mainly in the tropical zone, as shown in Figure 8.
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Evaluation of Model Performance across Geographical Zones

According to the acquired values of NSE (Table 5, Figure 12), the parametric model performs well
in Eurasia, North America, and the wider region of Oceania, where 80%, 80%, and 77% of stations,
respectively, present efficiency values more than 0.80. In South America, 66% of stations achieve a
score greater than 0.80, while in Africa, this percentage falls to 50%. In particular, 22% of stations
in Africa achieved NSE values below 0.50, which indicates a poor predictive capacity.

The mean absolute error of the parametric model in every geographical unit is small (Table 6). In
South America, the MAE of the 95% of the stations is below 4 mm/month. This percentage is 88%
for the wider region of Oceania, 79% for North America, 76% for Eurasia, and 72% for Africa.

Table 7 summarizes the values of the relative bias of the parametric model against the reference
PET values, for all of the geographical units (Figure 12). It is obvious that the values are generally
small, ranging from -0.122 to +0.062 proving that the results of the parametric model are almost
unbiased for the majority of the stations. The differences between the biases across the
geographical zones are not important, since the variation between the extreme values is similar.

The overall evaluation of the model across the different geographical areas is very satisfactory. All
of the metrics prove that the predictive capacity of the model is very satisfying across Eurasia,
North America, and the wider region of Oceania. On the other hand, in the equatorial regions of
South America, Africa as well as the Indian and Indonesian Peninsula (Figure 8), the model
performs poorly according to the NSE criterion, probably because it does not account for relative
humidity and wind speed, which are key drivers of the evapotranspiration processes across these
areas, influencing the net incoming solar radiation and the evaporation demand.
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Table 5. Number of stations and associated NSE intervals across geographical zones.
Region 1.0-09 0.9-0.8 0.8-0.7 0.7-0.6 0.6-0.5 <0.5

Africa 34 16 12 9 7 22
Oceania 67 10 7 4 1 11
Eurasia 68 12 7 4 3 6

N. America 65 15 5 3 2 10
S. America 54 12 10 7 6 11

Table 6. Number of stations and associated intervals of monthly MAE across geographical zones.
Region 0-2mm 2-4mm 4-6mm 6-8mm 8-10mm >10mm

Africa 36 36 15 6 3 4
Oceania 52 36 9 3 0 0
Eurasia 39 37 17 5 1 1

N. America 40 39 17 3 1 0
S. America 69 26 4 1 0 0

Table 7. Number of stations and associated intervals of BIAS across geographical zones.

Region -0.122-0.000 0.000-0.001 0.001-0.062

Africa 65 14 21
Oceania 38 12 50
Eurasia 72 5 23

N. America 68 13 19
S. America 55 15 30
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Spatial Analysis and Model Validation

Spatial Interpolation of Optimized Parameters

Even though point PET estimates can be used for small-scale studies, it is the regionalisation of PET
that is of great significance in hydrological science (Merz and Bldschl, 2004). A preliminary attempt
in PET mapping was presented by Foyster (1973), and followed by several publications where
different spatial interpolation methods have been applied (Dalezios et al., 2002; Mardikis et al.,
2005; Vicente-Serrano et al., 2007), with satisfying performance. In a recent study, Tegos et al.
(2015) illustrated that the inverse distance method (IDW) was the most efficient than other
interpolation techniques, i.e. Kriging, Bilinear Surface Smoothing and Natural Neighbours.
Furthermore, IDW is a straightforward and computationally non-intensive method, which is
capable to address the huge spatial extent of the study area, i.e. the entire globe.

Formally, the IDW method is used to estimate the unknown value J(S,) in location S, given the
observed y values at sampled locations S; in the following manner:

9(S0) = Y Ay(S) (14)

Essentially, the estimated value in So is a linear combination of the weights (A;) and observed y
values in S, where A is defined as:

1 = dof 15
i=1"-0i

with:

anxi =1 (16)

i=1

In the above Equation, the numerator is the inverse of distance doi between So and S; with a power «,
and the denominator is the sum of all inverse-distance weights for all locations i (in the particular
case, all stations exhibiting positive efficiency).

Spatial Distribution of Parameters

The approach allows for mapping the spatial distribution of the optimized model parameters a” and
c’, instead of its response, i.e. PET. This is a major advantage, since it allows implementing Equation
(5) wherever in the globe, using interpolated values of the point (i.e., locally calibrated) parameters.
It is interesting to note that the two parameters are negatively correlated (Figure 14), thus
reflecting the significant correlation of the associated meteorological variables of the parametric
formula (extraterrestrial radiation, in the numerator, and temperature, in the denominator).
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Figure 14. Scatter plot of optimized parameters through the final data sample of 4088 stations exhibiting
positive NSE values.

In this context, based on the optimized parameters from the final data set of 4088 stations (as
already explained, the rest of stations are not acceptable, and hence the corresponding parameter
values will be unreliable), maps of spatially-interpolated parameters over the globe were created.
The IDW method was employed in a GIS environment, considering for practical reasons (i.e., in
order to avoid extreme computational burden), a relatively large grid size of 0.1 decimal degrees in
WGS84 coordinate system and a variable search radius including the 12 nearest stations, in order
to tackle the measurement of large distances across the globe.

Figure 15 illustrates the spatial distribution of parameter a’. The highest values are generally
observed around the equatorial zone, while they are getting lower as we move away from it. This is
a reasonable outcome since this parameter is associated with solar radiation. This means that
around the equatorial zone, where the incoming solar radiation is higher, the values of parameter a’
are to be higher while around the poles, where solar radiation is lower, the values of parameter a’
were expected to be lower. Another observation is that in the case of two stations, one located at
Brazil and one at the Democratic Republic of Congo, the calculated values for parameter a” were
low, creating “sinkholes” in the corresponding maps. This is explained from the fact that at those
areas, the hydro-meteorological network is not dense enough, thus the influence of the specific
stations extends, as a direct effect of the IDW implementation and also the tropical forest providing
high humidity regime can be influenced. Apart from this, the spatial analysis of parameter a’ is
normal and physically explained.
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Figure 15. Spatial distribution of parameter a’ over the globe.

In contrast to parameter a’, the spatial distribution of parameter c’, depicted in Figure 16, the
lowest values around the equatorial zone, while these are getting higher as we move away from the
equator. Since ¢’ is inversely proportional to temperature, it was expected that its values get higher
as temperature is getting lower and vice versa. In the case of the above stations, i.e. one at Brazil
and one at the Democratic Republic of Congo, the values of parameter ¢’ were extremely high,
contrariwise to parameter a’. The explanation for this phenomenon is the same as above, yet in this
case the interpolation method resulted in a ridge-type distribution over the specific areas.

Conclusively, the model results can be considered reliable, since the spatial distribution of both
parameters around the globe is physically explained, while minor irregularities are also attributed
to physical reasons, i.e. inadequate representation of humidity and wind processes.
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Figure 16. Spatial distribution of parameter ¢’ over the globe.

Model Validation

The validation of the model was performed by comparing monthly ET, predictions provided by the
parametric formula using interpolated parameters against PM estimates in a number of
independent stations. In particular, two validations sets was considered, a “local” and a “global”
one. The former comprises 37 stations across California, for which monthly meteorological time
series are available from the California Irrigation Management Information System (Hart et al,
2009). The “global” set comprises 17 stations from countries with different hydroclimatic regimes
(Spain, Germany, Ireland, Greece, Iran, and Australia), for which we obtained full time series of the
required meteorological data, at the monthly scale, form various data sources.

For the local validation set (Table 8), the model predicts monthly ET, with significant accuracy, thus
exhibiting an average efficiency up to 0.855, and an average bias of only -0.07. Except for three
stations (Bishop, Castroville, De Laveaga), the NSE exceeds 0.70, while in 17 out of 37 stations it
exceeds 0.90. This indicates an almost perfect performance, particularly when taking into account
that the model has been calibrated using abstract (i.e. mean monthly) meteorological information
over the entire globe, while the validation set comprises detailed data, both in terms of spatial
extent and temporal resolution. Similarly satisfying are the outcomes from the global validation set,
which are summarized in Table 9 (average efficiency 0.852, average bias 0.02), thus confirming the
model predictive capacity across different climates.
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Table 8. Statistical indices for the local validation dataset (CIMIS stations, California, USA).

a/a Station Validation period @ NSE MAE (mm) BIAS
1 Five Points 6/1982-6/2013 0.880 20.4 -0.09
2 Davis 10/1982-6/2013 0.857 13.8 -0.01
3  Firebaugh/Telles 10/1982-6/2013 0.897 16.8 -0.09
4 Gerber 10/1982-6/2013 0.896 17.9 -0.10
5 Durham 10/1982-6/2013 0.870 19.7 -0.14
6 Carmino 11/1982-6/2013 0.952 11.3 -0.01
7 Stratford 11/1982-6/2013 0.913 17.2 -0.06
8 Castroville 12/1982-6/2013 0.442 23.7 -0.23
9 Kettleman 12/1982-6/2013 0.903 18.8 -0.10
10 Bishop 3/1983-6/2013 0.475 16.5 0.03
11 Parlier 6/1983-6/2013 0.858 22.1 -0.16
12 McArthur 12/1983-6/2013 0.940 11.5 0.01
13 U.C. Riverside 6/1985-6/2013 0.858 13.2 0.08
14 Brentwood 5/1986-10/2006 0.930 13.2 -0.06
15  San Luis Obispo  5/1986-6/2013 0.856 12.0 -0.08
16 Blackwells corner 5/1987-6/2013 0.939 13.7 -0.05
17 Los Banos 6/1988-6/2013 0.926 14.0 -0.06
18 Buntingville 5/1986-6/2013 0.953 11.1 0.03
19 Temecula 12/1986-6/2013 0.769 12.9 0.02

20 Santa Ynez 12/1986-6/2013 0.842 13.6 -0.10

21 Seeley 6/1987-6/2013  0.845 18.4 0.03

22 Manteca 12/1987-6/2013 0.796 25.2 -0.10

23 Modesto 10/1987-6/2013 0.922 14.7 -0.06

24 Irvine 11/1987-6/2013 0.803 13.2 -0.10

25 Oakville 10/1989-6/2013 0.930 13.3 -0.10

26 Pomona 4/1989-6/2013 0.701 19.0 -0.15

27 Fresno State 11/1988-6/2013 0.906 18.4 -0.12

28 Santa Rosa 1/1990-6/2013 0.894 11.5 -0.09

29 Browns Valley 5/1989-6/2013 0.856 22.3 -0.16

30 Lindcove 6/1989-6/2013 0.782 31.0 -0.22

31 Alturas 5/1989-6/2013 0.916 10.4 -0.02

32 Cuyama 10/1989-6/2013 0.950 11.5 0.05

33 Tulelake FS 5/1989-6/2013 0.922 11.9 0.05

34 Windsor 1/1991-6/2013 0.905 11.4 -0.09

35 De Laveaga 10/1990-6/2013 0.676 21.8 -0.19

36 Westlands 5/1992-6/2013 0.932 15.0 -0.03

37 Sanel Valley 2/1991-6/2013 0.939 11.0 -0.02

Average 0.855 16.0 -0.07




Table 9. Statistical indexes for the global validation dataset.

a/a Station Country  Validation period NSE MAE (mm) BIAS
1 Aachen Germany 01/1951-5/2011 0.955 6.8 0.06

2 Bremen Germany 01/1951-5/2011 0.954 5.5 0.03

3 Alicante Spain  01/1980-09/2010 0.916 11.1 0.00

4 Badajoz Spain  01/1961-05/2005 0.921 13.0 -0.09

5 Valencia Spain  09/1954-08/1964 0.893 10.0 -0.06

6 Zaragoza Spain 02/1974-01/1996 0.953 10.8 -0.01

7 Herakleion Greece 01/1968-12/1989 0.947 10.2 -0.00

8 Kerkyra Greece 01/1968-12/1989 0.936 9.8 -0.09

9 Kavala Greece 01/1968-12/1989 0.835 13.5 0.04

10 Limnos Greece 01/1968-12/1989 0.762 24.3 0.12
11 Athens Greece 01/1968-12/1989 0.924 13.6 0.03
12 Melbourne Australia 01/2009-1/2016 0.752 18.5 0.17
13 Dublin Ireland 01/2013-6/2016 0.870 51 -0.09
14 Bandar-Anzali Iran 1/1990-12/2005 0.875 13.9 -0.16
15 Ramsar Iran 1/1990-12/2005 0.788 16.2 0.15
16 Khorram-Abad Iran 1/1990-12/2005 0.400 38.3 0.37
17 Kashan Iran 1/1990-12/2005 0.804 19.6 -0.13
Average 0.852 14.1 0.02

3.1.5 Conclusions

The concept of parametric PET modelling was thoroughly analyzed, by performing a global survey
of its applicability. The model has a very simple structure and uses easily retrieved information, by
means of air temperature and extraterrestrial radiation. Therefore, the model is simultaneously
simple and parsimonious, in terms of both parameterization and data requirements.

Preliminary analysis of the extended climatic data at 4300 stations worldwide, provided by the FAO
CLIMWAT database, allowed for justifying the use of temperature and extraterrestrial radiation as
key explanatory variables of reference PET over the globe. However, it also indicated that in few
cases the two variables exhibit irregular seasonal patterns, which cannot be adequately
represented through simple modelling structures. The statistical analysis of the residuals, in these
cases, showed that the model is consistent in terms of parameters estimation and model validation.

At all CLIMWAT stations, optimal estimations of model parameters ¢’ and a” were provided, by
calibrating them against given Penman-Monteith values at the mean monthly scale. Using typical
goodness-of-fitting criteria (efficiency, mean absolute error, relative bias), the model performance
was evaluated, which was generally very satisfying in a large portion of stations. However, in less
than 10% of the data set the calibrated model exhibited negative efficiency. Further analysis across
broader geographical regions showed that the model deviates from the Penman-Monteith PET
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estimates in some locations, which is rather expected due to the significant influence of relative
humidity and wind speed, which are not accounted for in the parametric model.

An important outcome of this research was the generation of spatially distributed maps of model
parameters, by employing the IDW interpolation technique against their optimized values at 4088
out of 4300 stations, exhibiting non-negative efficiency. The spatial pattern of both parameters
over the globe is fully reasonable, which is a strong indicator of their physical consistency. These
maps can be straightforwardly used to provide suitable parameter values at both the local and
regional scale, thus allowing for the direct use of the parametric model wherever in the world.

The validation procedure against PM estimates from detailed meteorological information (i.e.
monthly time series) from 37 stations across California, as well as 17 independent stations across
Europe, Asia, and Australia, proved that the application of the parametric model using spatially
interpolated parameters provides reliable estimates, thus being a promising alternative of the
widely recognized yet data demanding Penman-Monteith approach, when there is lack of the full
data set that the latter requires.
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4 Parametric model in CIMIS network

4.1 Introduction

The following chapters present the development of the Parametric model in the CIMIS network
(California) along with some locals stations in Spain and Germany. The performance of the new
model was compared with well-established radiation-based (Hargreaves, Jensen-Haise, Mcguiness-
Bordne), temperature-based (Thorhwaite, Blaney Criddle) models. Finally, alternative spatial
techniques were applied for identifying the optimal interpretation of the spatial PET information.

4.2 Parametric formula

Parsimonious modeling is essential in several water discipline fields (Koutsoyiannis 2009,
Koutsoyiannis 2014). In this vein, the hydro model structure and the input should be easily
available. Due to highly complexity of the P-M equation, most of simplified formulas fail to describe
the phenomenon of evapotranspiration. Thus, the idea of replacing some variables and constants
used in the standard Penman-Monteith (PM) formula by a number of parameters which are
regionally varying and estimated through calibration from a reference evapotranspiration sample,
constitutes a new appealing strategy for evapotranspiration estimation.

Koutsoyiannis and Xanthopoulos (1999), Tegos et al. (2009) and Tegos et al. (2013) examined the
structure and the sensitivity of input data in PM model. They concluded that there is a direct
relationship between potential evapotranspiration, extraterrestrial radiation and temperature.
Furthermore, Mamassis et al. (2014) reached to the conclusion that the influence of every
meteorological parameter in evaporation is almost linear, with temperature having the greater
influence.

By dividing both the numerator and the denominator by A, the PM equation can be written in the

form:
1R +ylRw)D
PET = =01 (17)

In the above expression, the numerator is the sum of a term related to solar radiation and a term
related to the rest of meteorological variables, while the denominator is function of temperature.

Based on the previous analysis, a simplification of the Penman-Monteith formula, where the
numerator is approximated by a linear function of extraterrestrial solar radiation, while a linear
descending function of temperature approximates the denominator, can be described by the
following formula:

(18)
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where PET (mm) is the potential evapotranspiration, Ra (k] m-2) is the extraterrestrial shortwave
radiation calculated without measurements and Ta (°C) is the air temperature.

Equation (18) contains three parameters, i.e. a (kg kJ-1), b (kg m-2) and c (°C-1), to which a physical
interpretation can be assigned. Since extraterrestrial solar radiation is the upper bound of net
shortwave radiation, the dimensionless term a* =a / Ap represents the average percentage of the
energy provided by the sun (in terms of Ra) and, after reaching the Earth’ s terrain, is transformed
to latent heat, thus driving the evapotranspiration process. Parameter b lumps the missing
information associated with aerodynamic processes, driven by the wind and the vapour deficit in
the atmosphere. Finally, the expression 1 - cTa approximates the term: 1 +y/A. We recall thaty’ is
a function of the surface and aerodynamic resistance (equation 5) and A is the slope vapour
pressure curve, which is a function of Ta.

4.3 Radiation-Based and temperature-based models

Another widely used approach is the temperature-based Hargreaves model (Hargeaves and Samani
1982) that estimates the reference evapotranspiration at monthly and daily scale. The method has
received considerable attention because it can produce very acceptable results under diverse
climates using only temperature and radiation measurements (Shahidian et al. 2013). According to
several researchers (Samani 2000, Xu and Singh 2002) the method performs poorly in extreme
humidity and wind conditions.

A recent study (Oudin et al. 2005), evaluated a number of evapotranspiration methods, on the basis
of precipitation and streamflow data from a large sample of catchments in the USA, France and
Australia. After extended analysis with the use of four hydrological models, the researchers
modified the Jensen and McGuiness model and proposed a generalized radiation- based equation.
Table 10 summarizes the expressions that estimate PET according to the above-mentioned
methodologies:

Table 10. Radiation-based and temperature- based methods for potential evapotranspiration estimation.

Method  Jensen and Haise Mcguiness and Bordne Hargreaves Oudin
PET RaTa Ra(Ta +5) ) Ra Tat17.8) (T, . Ra(Ta +5)
expression 407Ap 68 Ap 0.00237" (Ta+ 17.8) (Tmax = Tmin)®® - 75077 P

where PET (mm d™, equivalent to kg m™? d* of the dimensionally consistent Penman- Monteith
equations) is the potential evapotranspiration, R, (k] m-2d-1) is the extraterrestrial shortwave
radiation, T, (°C) is the air temperature, A is the latent heat of vaporization (k] kg-1) and p is the
water density (kg L-1).

The Thornthwaite model (Thornthwaite, 1948) is the most simplified method and requires only
temperature measurements. The model’s form is:

10 .\
PET = 1.6 Ld( 7 ) (19)
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where PET is the potential evapotranspiration (mm/month), Ls is the daytime length, T is the mean
monthly air temperature (°C), I is the annual heat index and a is an empirically determined
parameter which is function of I.

The temperature-based Blaney-Criddle method (Blaney and Criddle, 1962) has received worldwide
application for the estimation of irrigation demands. The model expression is:

PET = K p (046 Ta + 8.13) (20)

where PET is the potential evapotranspiration (mm/month), T. the mean temperature (°C), K is the
monthly consumptive use coefficient and p is the mean daily percentage of annual daytime hours.

4.4 Hydrometeorological data and computational tools

For exploration purposes, monthly meteorological data from 39 CIMIS stations were used, available
at www.cimis.water.ca.gov, 10 stations from Germany and finally 4 stations from Spain (Table 11).
The European data are freely available in the European Climate Assessment dataset
(http://eca.knmi.nl/). Stations latitudes range from N 32.76° to N 53.38¢ and their altitude varies
from 2.74 m to 1342.6 m.

The available data comprise mean temperature, relative humidity, sunshine duration and wind
velocity. At all CIMIS stations the data covers the period from October 1992 to September 2012
while the European stations cover the period from January 1948 to December 2013. The choice of
the time-periods was based on the simultaneous availability of the four required
hydrometeorological variables (temperature, sunshine duration, humidity, wind speed).
Additionally, the selection of each station and especially those from the CIMIS network was based
on the existence of adequate length time series for the processes involved, i.e. 20 years.

Table 11. Meteorological stations used for the evaluation of the potential evapotranspiration methods
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No. Station name, Location ~ No. Station name, Location No. Station name, Location
1 Five Points, U.S.A. 19 Buntigville, U.S.A. 37 De Laveaga, U.S.A.
2 Davis, U.S.A. 20 Temecula, U.S.A. 38 Westlands, U.S.A.

3 Firebaugh Teles, U.S.A. 21 Santa Ynez, U.S.A. 39 Sanel Valley, U.S.A.

4 Gerber, U.S.A. 22 Seeley, U.S.A. 40 Aachen, Germany

5 Durham, U.S.A. 23 Manteca, U.S.A. 41 Angermunde, Germany

6 Carmino, U.S.A. 24 Modesto, U.S.A. 42 Bremen-Seefahrtshule,
Germany

7 Stratford, U.S.A. 25 Irvine, U.S.A. 43 Dresden-Klotzsche,
Germany

Castorville, U.S.A. 26 Oakville, U.S.A. 44 Dusseldorf, Germany
Kettleman, U.S.A. 27 Pomona, U.S.A. 45 Frankfurt, Germany

10 Bishop, U.S.A. 28 Frenso State, U.S.A. 46 Hamburg Fuhlsbuettel,
Germany

11 Parlier, U.S.A. 29 Santa Rosa, U.S.A. 47 Karlsrhue, Germany

12 Calipatria, U.S.A. 30 Browns Valley, U.S.A. 48 Muenchen-Flughafen,
Germany

13 Mc Arthur, U.S.A. 31 Lindcove, U.S.A. 49 Stuggart-Schnarreberg,
Germany

14 UC Riverside, U.S.A. 32 Meloland, U.S.A. 50 Alicante, Spain

15 Brentwood, U.S.A. 33 Alturas, U.S.A. 51 Badajoz Televera, Spain

16 San Luis Obispo, US.A. 34 Cuyama, U.S.A. 52 Valencia, Spain

17  Blackwells Corner, U.S.A. 35 Tulelake, U.S.A. 53 Zaragoza Aeropuerto,

Spain
18 Los Banos, U.S.A. 36 Windsor, U.S.A.

The time series processing along for the implementation of the different approaches for potential
evapotranspiration estimation, i.e. Penman-Monteith, parametric and Hargreaves, was carried out
using the free software application Hydrognomon (Kozanis et al. 2010, http://hydrognomon.org/),
while the remaining expressions (Jensen, McGuiness and Oudin) were evaluated through

spreadsheets.

4.5 Statistical criteria

The main statistical criterion used for the evaluation of the methodologies performance against the
values computed by the Penman Monteith method (PM) was the coefficient of efficiency (CE),

introduced by Nash & Sutcliffe (1970):
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where PMi and PEi are the potential evapotranspiration values of month i, computed by the

Penman-Monteith method and the other model respectively, PM is the monthly average over the
common data period estimated by the Penman-Monteith formula while n is the sample size.

Additionally, we applied several statistical measures, such as the mean bias error:

1 &
MBE = >(PE;-PM)) (22)

=1

1 n
the mean average error: MAE = 5 > |PE;- PM}| (23)
=1
1 n 1/2

and the root mean square error: RMSE = | — Z(PEI'— PM,)? (24)

1

CE ranges between - and 1 (1 inclusive), with CE = 1 being the optimal value. Values between 0
and 1 are generally regarded as acceptable levels of performance, whereas values less than 0
indicate that the mean observed value is a better predictor than the simulated value, which
indicates unacceptable performance. MBE, MAE and RMSE values of 0 indicate a perfect fit (Moriasi
etal. 2007).

4.6 Results

The implementation of the parametric model was accomplished by calculating the three
parameters involved at each station, as mentioned above. This procedure is automated via a least
square optimization technique, embedded in the Hydrognomon software (Kozanis et al. 2010,
http://hydrognomon.org/), providing means for acquiring optimized values of a, b and c
parameters for the parametric method application.

The calculated monthly Penman-Monteith potential evapotranspiration time series acted as the
reference data sets against which the comparisons between the different methodologies took place.
Table 12 summarizes the values of the parameters for each of the 53 stations, acquired by the
procedure described above.
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Table 12: Meteorological stations numbers and corresponding parameter values for the parametric method

Station a b c Station a b c
No. (kgki?l) (kgm? cch No. (kgkih) (kgm?  (°ChH

1 1.47 107 1.49 158 1072 28 1.29 10 1.3 173107
2 1.0410% 651101 215107 29 8.8810° 6.0910! 263107
3 1.46 107 1.48 1.47 1072 30 89510° 4.0710% 211107
4 1.0210* 49710 1.9310°2 31 1.1210* 1.04 1.74 107
5 1.97 10 2.07 -27010* 32 2.1210* 2 494107
6 8.8210° 24910! 234107 33 7.9210° -2.20107% 244107
7 1.1210% 25010t 1.4410°7 34 1.0810% 403101 1.9710°
8 1.68 10 1.06 -3.60102 35 92810° 52010% 212107
9 1.34 10 1.23 1.62 107 36 8.6510° 5.6610% 2.60107
10 1.4310% 73910 1.05107 37 1.0210% 58210 1.241072
11 1.2910* 1.32 1.61107 38 1.4010* 1.33 1.67 1072
12 1.6910* 1.32 8.86 10°° 39 9.8810° 654101 2371072
13 9.7510° 4.2610% 2.36107 40 3.9610° -2.46101 262107
14  86810° 510102 1.7810°2 41 3.9610° -2581071 273107
15 1.1110% 9.0010% 2.0910°7 42  42810° -1.6410" 268107
16 8.1010° 16010t 2.28107 43 3.6710° -3.4510' 281107
17 1.2110* 1.02 1.89 107 44  41210° -3.0210% 264107
18 1.3110* 1.31 1.81107 45  47510° -8.8107% 262107
19 9.2910° -1.1010% 2.1110° 46  4.1810° -16610" 2.66107
20 6.6610° -2.8010" 2.10107 47  46410° 66102 258107
21 9.4410° 49110' 2.06107 48  4.6910° -8.8102% 251107
22 25010 2.58 7.5210* 49  45310° -1.6410' 252107
23 1.1310* 1.02 203107 50 5.8910° -4.6710" 1.84107
24 1.1710* 1.08 2.00 1072 51 6.2410° 1.7210% 235107
25 6.6410° -4.40102 2.28107 52 5.3410° -1.9310% 1.96107
26 8.4210° 4.2910! 254107 53 70010° —22102% 239107
27 1.1310* 1.25 2.0010°

4.7 Comparison with radiation-based methods

Figure 17 presents the mean annual potential evapotranspiration calculated by the Penman-
Monteith method for each one of the 39 CIMIS stations against the parametric and the other four
methods. It is clear that the parametric, Hargreaves and McGuiness models respect the variation of
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the over-annual potential evapotranspiration, while the other two models, i.e. Oudin and Jensen-
Haise underestimate and overestimate respectively, the potential evapotranspiration values.

o Penman-Monteith —-—--Jensen-Haise
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Figure 17. Mean annual Penman-Monteith potential evapotranspiration (symbols) for the 39 CIMIS stations
against the parametric model and the other four methods

The performance indices presented in Table 13 confirm the good performance of the parametric
method, which has the highest CE and excellent results in the other statistical indices. The
Hargreaves model follows with CE 78.9%, similar MBE and worst MAE and RMSE than the
parametric model. The McGuiness method gave moderate results, while the Jensen-Haise and Oudin
models totally fail to represent the physical flux.

Table 13 Values of performance indices used to evaluate the parametric method, in the estimation of mean
annual potential evapotranspiration for the 39 CIMIS stations, against the other four models

CE MBE MAE RMSE

Method (o) (mm) (mm) ~ (mm)
Parametric ~ 99.1 4 6 17
Hargreaves  78.9 2 60 82
Jensen-Haise <0 417 452 493
McGuiness  30.1 19 111 149
Oudin <0 -393 393 411

For further comparison of the parametric method against the four radiation-based methods, in
terms of the achieved CE distribution from estimating monthly PE, each time series was split into
two parts. The first 13 years were used as the calibration data set for the parametric model, while
the remaining 7 years were used for validation. Table 14 presents the CE distribution, for the
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calibration (Cal) and the validation (Val) data set for 39 CIMIS stations, while that of the European
stations is presented in Table 15.

Table 14 Distribution of CE values of radiation-based approaches in CIMIS network

Parametric Hargreaves Jensen-Haise McGuiness  Oudin

CE (%)
Cal Vval Cal Val cCal Val Cal Val Cal Val

95-100 26 26 26 23 0 7 16 15 0 0
90-95 11 5 10 7 0 2 6 7 0 0
80-90 2 8 3 9 1 2 10 10 1 0
70-80 0 0 0 0 6 3 3 3 3 5
60-70 0 0 0 0 1 6 2 3 7 4
50-60 0 0 0 0 3 4 1 1 12 6

0-50 0 0 0 0 16 9 1 0 16 24
<0 0 0 0 0 12 6 0 0 0 0

The results for both periods and in different climatic regimes are satisfactory for the parametric
model, with the average CE values for the calibration period being 94.80% for CIMIS stations and
96.52% for European stations, while for the validation period the corresponding values are 94.34%
for CIMIS stations and 90.06% for the European stations. Altogether, the application of the
parametric model in 26 stations from the 39 stations achieved CE values between 90 and 95%.

Table 15 Distribution of CE values of radiation-based approaches in European stations

Parametric Hargreaves Jensen-Haise Mcguiness Oudin
CE

Cal Val Cal \Val Cal Val Cal Val Cal Val

95-100 10 9 6 0
90-95
80-90
70-80
60-70
50-60
0-50

<0

©O O O o o o b
O B O O O o b
©O O O O Fr W b
O 0O 0O O Fr N O
© U1 O O O O O O
r O O O © o o
B N W W N O O o
N © B P P, O O
O O Fr LB P ON
O R, O Fr RPN © R

The Hargreaves model achieved satisfactory results especially in the case of CIMIS network, where
the model has been developed; while in European stations the acquired CE values are lower.
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The McGuiness model acquired lower CE values in the CIMIS network than Parametric and
Hargreaves with 87.14% in calibration period and 87.76% in the validation period. The Oudin
model presented moderate results in the CIMIS network (52.18% in the calibration and 46.82% in
the validation period) but considerably better results in European stations (89.37 % calibration and
82.82% validation period). By taking into account the similar results presented by Tegos et al
(2013), the Oudin model seems to perform better in humid than in arid climatic conditions.

Finally, the Jensen-Haise model totally failed to produce physically meaningful results, since the
achieved CE values were very low (Table 13Table 14Table 15).

4.8 Comparison with temperature-based methods

The performance of the parametric model with two well-known empirical formulas of
Thornthwaite and Blaney-Criddle (Table 16Table 17) was compared. Both approaches have wide
application in data-scarce regions. In the CIMIS network the average CE for the Thornthwaite model
was 20.53% for the calibration period and less than zero in the validation period, while in European
stations the CE is 84.58% (calibration) and 78.27% (validation). The Blaney-Criddle method
achieved average CE 69.99% (calibration), 69.82% (validation) in the CIMIS network and 15.69%
(calibration) and <0 (validation) in European stations. Finally, the Thornthwaite model seems to be
suitable for use in cold and humid climates (94.84% CE in German stations for the calibration
period) and improper in arid regimes, while for the Blaney-Criddle model the opposite occurs.

Table 16 Distribution of CE values of temperature-based approaches in CIMIS network

Thornthwaite Blaney-Criddle

CE Cal Val Cal Val
95-100 0 0 0 0
90-95 0 0 0 0
80-90 0 0 10 16
70-80 0 0 18 12
60-70 1 0 5 5
50-60 4 3 2 1
0-50 24 21 3 4
<0 10 15 1 1

Table 17 Distribution of CE values of temperature-based approaches in European stations
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Thornthwaite Blaney-Criddle

CE Cal Val Cal Val

95-100 5
90-95 5
80-90 0
70-80 2

60-70 0

1
1
0

OO BFrr O OO

50-60
0-50
<0

OFR PR, PEP ORFPO
R, ORr OoOOoOo

4.9 Spatial analysis of the parameters

The knowledge of the spatial variability of the PET is crucial in geosciences and the use of the
appropriate interpolation technique significant (Mancosu et al. 2014) The key idea of the
parametric model is the replacement of some of the variables and constants that are used in
standardized Penman-Monteith formula by three parameters, which are regionally varying and
estimated through calibration using a reference evapotranspiration data set.

In this context, two applications are implemented. The first is the analysis of the parameters’
correlation to latitude and elevation, while the second is their estimation, through spatial
interpolation techniques, along an extensive study area such as California, which provides sufficient
data to perform the necessary calibration procedures.

4.10 Correlation to latitude and elevation

Through regression analysis, the correlation of every parameter (a, b, c) with latitude ¢ and
elevation was investigated. Six scatter plots of Figure 18 show that parameters a, b are negatively
correlated to latitude and elevation, in contrast to parameter c. This is similar to the findings of the
previous study over the Greek territory (Tegos et al. 2013) for parameter a. It also appears a
noticeable correlation of parameter b with elevation (R =-0.50) and insignificant correlation of
parameter ¢ with elevation and latitude. Furthermore, Figure 18 shows that the relation of the
three parameters to latitude and elevation is far from linear.
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Figure 18. Scatter plots of parameters against latitude and elevation

4.11 Spatial interpolation over California

Currently, a lot of methods exist which can accomplish spatial interpolation using available
computer codes. In the present study, the three parameters’ spatial variability was investigated by
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four different methodologies: (1) Inverse Distance Weighting (IDW); (2) Natural Neighbours (NaN);
(3) Ordinary Kriging (OK); and (4) Bilinear Surface Smoothing (BSS)

The first three are well established and commonly used in spatial interpolation of environmental
variables (Li and Heap, 2008). The Bilinear Surface Smoothing methodology is a new approach that
approximates a surface that may be drawn for the data points with consecutive bilinear surfaces
which can be numerically estimated by means of a least squares fitting procedure into a surface
regression model with known break points and adjustable weights defined by means of angles
formed by those bilinear surfaces. The BSS theory and basic features are presented in Malamos and
Koutsoyiannis (2015) while applications and field validation are presented in Malamos and
Koutsoyiannis (2015) . BSS is implemented by means of a dynamic link library in Object Pascal
(Delphi) programming language linked to MS-Excel. The parameter estimation is based on the
generalized cross-validation methodology as described in Malamos and Koutsoyiannis (2015-a).
The obtained optimal values of the four adjustable parameters: the number of intervals according
to x and y directions, i.e. mx, my and the corresponding smoothing parameters tAx and TAy, are
presented in Table 18:

Table 18 BSS parameters optimal values for the CIMIS network (California area)

Parameter mx my T Ty
(kgakJ‘l) 3 8 008 0001
(kgtr’n 2 3 28 0001 001
(Oé,l) 3 8 0001 0.001

IDW and NaN were implemented in ESRI's ArcGIS environment using the default settings, while for
OK all semivariogram models available in that software were investigated, i.e. circular, exponential,
spherical, linear and Gaussian, In every case, the embedded fitting procedure ensured the
minimization of the weighted sum of squares between experimental and model semivariogram
values.

Table 19 presents the values of the statistical criteria for each one of the implemented
semivariogram models, sorted according to the CE criterion for each of the three parameters. It is
obvious that the circular semivariogram achieved the best overall performance.

Table 19 Values of the statistical criteria used to assess the performance of the different kriging
semivariogram models
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kriging

Parameter semivariogram CE (%) MBE MAE RMSE
circular 99.9 1.0310° 51810 8.9310°
exponential 99.9 1.0310° 51810 89310
(kg ?(J,l) linear 99.9 1.0310° 51810 8.9310°
spherical 99.9 1.0310° 51810 89310
gaussian 446 12410° 18610° 2.8810°
exponential 72.8  3.1210° 25010" 3.4310°
circular 68.6 4.2410° 27110 3.6810*
(kg '?n,z) spherical 674 54610° 27710"' 3.7610°
linear 66.6 6.0010° 28110"' 3.8010°
gaussian 29.7 409102 40710 55110*
circular 39.3 35610 4.6210° 81910°
spherical 117 4.6410* 56010° 9.8810°3
(Oé,l) exponential 110 46710* 56210° 9.9210°
linear 11.0 4.6710* 5.6210° 9.9210°3
gaussian 11.0 46710* 56210° 9.9210°

All three parameters of the parametric model were estimated over California by applying the four
spatial interpolation methods. The input data set consists of the calculated parameters values at the
39 CIMIS stations (Figure 19, Table 3).

CIMIS Network
A Stations Validation
@® Stations

DEM

Value

L High : 242

Low : 79

1:6,000,000
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Figure 19 Study area and the CIMIS Stations used for spatial analysis

Table 20 presents the values of the statistical criteria used to assess the performance of the spatial
interpolation methods with respect to the input data set. It is apparent that both non-geostatistical
methods, according to the statistical criteria used, outperform ordinary kriging and bilinear surface
smoothing, which performed similarly. This is not a surprise because both IDW and NaN, from
construction, use as best local predictor the available data points (Li and Heap, 2008).

Table 20 Values of the statistical criteria used to assess the performance of the spatial interpolation methods
with respect to the input data set

Interpolation

Parameter Method CE (%) MBE MAE RMSE
. IDW 100 3.5910° 1.0810" 1.9710°'
(kg ki) NaN 100 -1.03107 4.77107 89510
g OK 99.9 1.0310® 518107 8.9310°
BSS 732  43610°% 1.3510° 2.0110°
b IDW 100 29510* 1.7210° 3.0610°°
(kg m?) NaN 999 -9.4810* 1.1610° 2.1210°
g oK 68.6 42410° 27110 3.6810°
BSS 652 1.9710* 26810 3.8810°
c IDW 100 256107 8.8210° 15210°
©Ch NaN 999 15410° 15010* 3.1010°
OK 393 35610°% 46210° 8.1910°
BSS 689 -25710" 3.2510° 5.8710°

However, the above statistical indices may not be representative with respect to the validity of the
interpolation results in other locations, except for those incorporated in the interpolation
procedure. In this context, a validation procedure was implemented by means of comparing the
reference potential evapotranspiration estimates acquired from the implementation of the
parametric method, using the parameter estimates of the four interpolation methods, against those
of the eleven additional CIMIS stations with adequate time series length, shown in Table 21 along
with the estimated parameter values, in the case of IDW.
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Table 21 CIMIS Stations used for validation purposes and estimated parameters values in the case of IDW

Station a 1 b ) C,l

(kg kJ™) (kg m™) (°C)
Arroyo Seco 1.3810* 1.06 1.2010°
Carneros 9.1010° 54810 2.42 1072
Green Valey Road 1.1610*  7.7510° 7.2610°
King City Oasis ~ 1.3410™ 1.09 9.5310°
Santa Barbara 1.0310* 55610* 1.9810°
Alpaugh 1.2310*  8.2710° 1.67 1072
Auburn 1.0410*  6.2010° 1.9910°2
Borrego Springs ~ 1.7310°* 1.44 9.3310°
Lodi West 1.1010*  85410° 2.0510°
Merced 1.3010* 1.20 1.7310°
Palmdale 1.0110* 7.8610" 2.00107°

The performance of each method is presented in Table 22, which summarizes the CE values
acquired from the validation procedure. It is apparent that IDW outperforms the other three
methods in the majority of the cases. This is an interesting fact, since the IDW method is the
effortless of the four methodologies. On the other hand, the BSS performance is analogous or better
to that of the input data setdata set. NaN and OK performed similarly, with the first achieving
slightly superior outcome, since OK in the case of Borrego Springs resulted in negative CE value.

Table 22 CE values for every interpolation method in validation procedure stations

Station IDW NaN OK BSS
Arroyo Seco 7.7 78.9* 76.8 66.8
Carneros 96.1 96.2* 83.6 95.9
Green Valey Road 71.6* 69.5 70.2 65.7
King City Oasis 85.1 60.3 93.6* 64.3
Santa Barbara 47.9 72.4 78.2* 234
Alpaugh 95.7 95.5 96.0* 95.9
Auburn 94.4* 93.6 94.3 85.8
Borrego Springs 85.3* 81.3 <0 70.1
Lodi West 94.0* 93.7 92.9 92.3
Merced 96.9 97.1* 96.9 89.5
Palmdale 69.6 70.3 91.1* 56.0

The variation of the three parameters over California produced by the IDW technique is illustrated
in Figure 20. It is apparent that both a and c present an increasing North to South gradient, while
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the opposite occurs for parameter b. This remark coincides with the previous findings concerning
the relation of the three parameters to latitude.
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Figure 20 Parameters maps produced by the IDW method, for the California region

4.12 Discussions and Conclusions

The parametric model is a parsimonious radiation-based and physically consistent approach
derived from a simplification of the Penman-Monteith equation, which requires three parameters
to be calibrated prior to its application. By systematic application of the method the parameters can
be eventually provided by maps.

The comparison, on the basis of monthly and annual evapotranspiration data, with commonly used
radiation-based models (Hargreaves, McGuiness, Jensen-Haise and Oudin models) and
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temperature-based models (Thorthwaite and Blaney-Criddle), verified the parametric model’s high
efficiency in different climatic regimes.

A parameters analysis, through regression techniques, was conducted in order to investigate their
correlation to latitude and elevation variation. Moreover, the parameters’ spatial estimation was
accomplished by implementing interpolation techniques such as: Inverse Distance Weighting
(IDW), Natural Neighbours (NaN), Ordinary Kriging (OK) and Bilinear Surface Smoothing (BSS),
along an extensive study area such as California. The validation procedure was implemented by
comparing the reference potential evapotranspiration estimates acquired from the implementation
of the parametric method, using the parameter estimates of the four interpolation methods, against
those of the eleven additional CIMIS stations. This combined evaluation of the four different
interpolation approaches, indicated that the simple and effortless IDW method performs better
than the other three methodologies. Regarding the application of the new methodology, BSS’s
efficiency to perform interpolation between data points that are interrelated in a complicated
manner was confirmed, acquiring high CE values analogous to those of the other three methods.

Overall, the key idea of the parametric model methodology, which is the simplification of the
Penman-Monteith formula by introducing three parameters, which are regionally varying and
estimated through calibration using a reference evapotranspiration data set, was very successful.
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5 Global PET maps based on monthly remote temperatures

5.1 Introduction

Evapotranspiration (ET) is a crucial element of the hydrological cycle affecting a wide range of
geosciences, since it is referred as the combined water losses from soil surface and vegetation
influence by several meteorological variables such as the air temperature, the solar radiation, the
wind speed and the relative humidity. The literature proposes several approaches to quantify the
process in terms of actual evapotranspiration, potential evapotranspiration (PET) or reference
evapotranspiration. By definition the PET refers to “the rate at which evapotranspiration would
occur from a large area completely and uniformly covered with growing vegetation, which has
access to an unlimited supply of soil water, and without advection or heating effects” (Dingman,
1994), and differs to Actual Evatranspiration based on the soil water supply mainly driven by the
precipitation regime.In the last decades advanced methods were introduced for the ET and PET
estimation with the most recent being the remote sensing techniques incorporating aerial and
satellite imagery. Generally, the classification of the remote sensing for ET assessment includes four
groups referred to as empirical, direct, residual, inference and deterministic models (Nouri et al,,
2013). The most well-known approach for the actual evapotranspiration estimation for daily and
monthly time step is the modified surface energy balance algorithm for land (SEBAL) model
[Bhattarai, et al, 2012]. A limited number of studies have focused on the global PET assessment
utilizing remote sensing tools. Specifically, the global distribution of potential evaporation has been
calculated from the Penman-Monteith equation using satellite and assimilated data for a 24-month
period, i.e. January 1987 to December 1988 (Choudhury., 1997).

The Parametric model is a radiation-based model that requires only temperature data and utilizes a
parsimonious expression for the potential evapotranspiration (PET) estimation. It replaces some of
the variables and constants that are used in the standard Penman-Monteith model by regionally
varying parameters, which are estimated through calibration (Tegos et al.,, 2015). The large scale
Parametric model application was satisfactory and the models outperform the efficiency of a
number of simplifies models such as Hargeaves, Thorthwaite, Oudin, Jensen-Haise.

In this study a new global PET monthly dataset is introduced, by applying the Parametric model
using the remote sensing data (LANDSAT) of mean air temperature provided by the Goddard Space
Flight Center NASA, Global Land Data Assimilation System, NOAA. As the majority of global
applications refer to the actual evapotranspiration assessment ( Mu et al, 2011, Ghilain and Gellens-
Meulenberghs 2014, Vinukollu et al. 2011, Yuan et al. 2010) this dataset will contribute to
hydrological balance modelling and agrometeorological applications.

5.2 Materials and Methods

The Parametric model employs physically consistent parameters distributed over the globe,
overcoming the main weakness of the Penman-Monteith model which is the necessity of

56



simultaneous observations of four meteorological variables (Tegos et al. 2007, Tegos et al. 2013,
Tegos et al. 2015, Tegos et al 2015, Tegos et al. 2017).

The modified Parametric model implements two instead of three parameters (parameter a’ in the
numerator and parameter ¢’ in the denominator) by the formula (9).

The model was applied globally using calibrated values of parameters a’ and ¢’ at the locations of
the 4088 stations of the FAO-CLIMWAT database (Figure 21), which provides monthly data of the
required variables for PET estimation. These values were interpolated over the globe using the
inverse distance weighting (IDW) technique into a geographical information system (GIS). The
extraterrestrial radiation (Ra) monthly raster datasets were derived by using an analytical
mathematical expression (Tegos et al. 2017), while the mean air temperature values, covering a
period from 1973 to 2016, were acquired as raster datasets from the Goddard Space Flight Center
NASA, Global Land Data Assimilation System. All three layers of information were embedded in GIS
and constituted a framework that permitted quality control screening by application of logical
thresholds in order to minimize the extreme (outliers) PET values.

e FAO Meteo_Stations
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- High - 7833

Low :-10376
Figure 21 CLIMWAT meteorological stations network.
The maps obtained using the parametric method (PET/PAR) were produced in a GIS environment

by applying equation (1) with the required raster datasets, i.e. parameters a’ and c’, extra-terrestrial
radiation Ra, and monthly mean air temperature T.

5.3 Results

PET Global mapping
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Following the above presented procedures, a monthly PET global dataset was produced covering a
significant time period. Figure 22Figure 23Figure 24 visualize the PET distribution for
representative months across the continents.

Specifically, Figure 22 presents the PET map of Eurasia for August, where PET values range from 0
to 15 mm day-!, increasing from north to south. The latter is well explained from the similar
variation of temperature and extraterrestrial radiation. The highest values were observed at the
Middle East where extremely arid climatic conditions occur.
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Figure 22 Eurasia PET map for August (PET: mm/day)

Figure 23 portays the PET pattern in North America for May. A pattern similar to Eurasia is obvious
with highest values at regions near the equator (e.g. Mexico) ,and lowest in Canada and Alaska and
Greenland. PET variability in South America in January with values decreasing from north to south.
Some inconsistencies in the area of Amazon and some peculiarly low values in the area of equator
can be explained from the limitations of the Parametric model to represent the combined effect on
PET estimation of relative humidity and wind speed, which are key drivers of the
evapotranspiration processes across these areas, influencing the net incoming solar radiation and
the evaporation demand, as detailed in Tegos et al. (2017).
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Figure 23 North America PET map for May- South America PET map for January (PET: mm/day)

PET variability over Africa in January is shown in Figure 24. High monthly PET values were
acquired in the equatorial zone, mainly in the lower Congo, where the hydro-meteorological
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observations were limited during the parametric model calibration. The decreasing trend from
south to north in Oceania follows the pattern of radiation and air temperature variation.
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Figure 24 Africa/Oceania PET map for January-Oceania PET for December (PET: mm/day)

5.4 Validation

For identifying the efficiency of the PET remote sensing dataset we compared PET/PAR monthly
sample the against a Penman Monteith timeseries, estimated at the Davis station of the well-known
PET data of CIMIS network. The validation was carried out for 3-years periods from 1/2010 to
12/2012 and the coefficient of efficient (CE) was satisfactory equal to 87.6%.

5.5 Further PET improvements

Having reviewed new remote monthly temperature dataset which are recently freely available, we
reassessed the monthly PET with a recently published monthly dataset which provides high global
temperature accuracy (Hooker et al. 2018).

Following the above mentioned framework the monthly PET maps were produced and a first
validation with site meteorological estimate for the Davis station is shown in Figure 25. The
preliminary results are very satisfactory since the coefficient of efficiency is 93.2%. The new
monthly PET dataset based on remote monthly temperature is named RASPOTION and is object for
further validation across the globe.
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Figure 25 Monthly PM point vs RASPOTION estimate (Davis Station)

5.6 Discussion

In some areas with high values of relative humidity and wind speed, the existing PET parametric
approach fails to reproduce efficiently the PET regime and further improvements of the parametric
approach are recommended locally.

In some areas the FAO-CLIMWAT data were scarce and poor (i.e Brazil and Rebublic of Congo). In
these areas the calibrated parameter a’ and ¢’ are indicative and further calibration should take
place.

In every case, hydrologists, agronomists and other scientists of potential interest for this dataset
could make efficient use of it, in about 80% of the earth’s territory based on our previous studies
(Tegos et al. 2015, Tegos et al. 2017). The new datasets could provide positive benefits in the
scientific disciplines by taking in to account the global PET datasets are non available, thus is of
interest:

In the applications of physical -based hydrological model which use as PET as an input descriptor
of the sub-catchment, since we are moving forward in global scale hydrological models.

In the crop demand assessment since the integration of the monthly PET and the cropping pattern
quantify the monthly water needs at each type of plant.

5.7 Conclusions

As part of the PET Parametric model, a new global PET monthly dataset based on remote sensing
temperature data was introduced covering the period 1973-2016. This global dataset was extracted
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using the Parametric formula which uses as input variables the extraterrestrial radiation and the
mean air temperature. The latter have been taken from a freely available dataset provided by NASA.
Further analysis was made with new temperature dataset resulting a new promising PET dataset
namely RASPOTION. Previous analyses with this approach showed satisfying performance, through
validation under several climatic regimes and different validation procedures. In regions where the
available hydro-meteorological information was scarce or insufficient, the modelling results were
weak in terms of PET’s physical interpretation. In these areas the PET/PAR should be used with
caution. Overall, for the majority of the Earth’s globe surface a reliable monthly PET dataset is
compiled and is freely available to scientists across different research disciplines in order to assist
decisions for both short- and long-term hydro-climatic policy actions.
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6 Investigation of long-term persistence in PET

6.1 A summary on the long-term persistence behaviour

The high complexity and uncertainty of climate dynamics has been long identified through plain
observations as well as extended analyses of hydrometeorological processes such as temperature,
humidity, surface wind, precipitation, atmospheric pressure, river discharges etc. Particularly, all
these processes from global and local scale analyses seem to exhibit the so-called clustering
behaviour (Dimitriadis, 2017). Interestingly, this HK behaviour has been first identified in Nature
by Hurst (1951) while analyzing water levels from the Nile for optimum dam design. However, the
mathematical description and analysis of this behaviour through a power-law autocorrelation
function (vs. lag) is attributed to Kolmogorov (1940) who developed it earlier while studying
turbulence. To give credits to both scientists Koutsoyiannis (2010) named this behaviour as Hurst-
Kolmogorov (HK) behaviour (Dimitriadis, 2017).

6.2 Introduction

Trend estimation in hydro-climatic time series has focused the attention of the scientific
community (Sen, 2013). Many studies have examined the trend of precipitation, streamflow,
groundwater regime, temperature, potential evapotranspiration both in annual and seasonal basis
(Markonis et al. 2016, Stevens et al. 2016, Panda et al. 2012, Arora et al. 2005, Kumar et al. 2010).
Specifically, trend estimation in the potential or actual evapotranspiration pay the attention of the
researchers (Gocic and Trajkovic, 2014, Mo et al. 2015, Tabari et al, 2011). Generally, the trend
results are mixed across different climatic regions, as Tabari et al (2011) found a positive trend for
70% of 20 Iranian meteorological stations during the period 1996-2005, Gocic and Trajkovic
(2014) calculated a significant increasing downward trend in 70% of 12 Serbian meteorological
stations (study period 1980-2010). Finally, Mo et al 2015, by investigating the areal
evapotranspiration in China for the period 1981-2010 with remote sense data, observed an
increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend. For the
examination of the physical variability, the Mann-Kendall under the independence assumption has
been proposed as a standard statistical measure for the evaluation and the quantification of the
trends (Ahn and Palmer, 2015).

Furthermore, different statistical methodologies have developed and proposed, namely the Mann-
Kendall under the Markovian behavior assumption after trend-free pre-whitening, the Mann-
Kendall with complete autocorrelation structure and the Mann-Kendall under the long-term
persistence assumption (Kumar et al. 2009). The latter test, proposed by Hamed (2008) offers a
consistent framework to consider the Hurst phenomenon, which is observed in many climatological
and hydrological processes, resulting in the increase of physical variability (Koutsoyiannis 2003;
Koutsoyiannis and Montanari 2007). Hurst coefficient was first introduced by engineer Harold
Hurst during the design of the Aswan reservoir (Sutcliffe et al. 2016) and plays a significant role in
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the hydrological variability (O’Connell et al, 2016). Its presence in large measured
hydrometeorological samples is ubiquitous (Iliopoulou et al. 2016) Comparative analysis of
different trend model shows significant differences in the totally results (Hamed 2008, Kumar et al.
2009) and thus a physical consistent framework is needed.

The following chapters present an R function embedded in an automatic and user-friendly
environment following modern views of water resources modeling tools (Guo et al. 2016, Turner
and Ganelli 2016). The package implements the modified Hamed’s (2008) framework and the
procedure is tested in annual parametric PET time series from 10 sites in Greece, which cover the
period 1950-2000.

6.3 Materials and methods

6.3.1 Mann-Kendall test under the scaling hypothesis

The Mann-Kendall test under the scaling hypothesis consists of three consecutive hypothesis tests,
namely O (Original MK test), H (Hurst Parameter test) and M. The mathematic background and
framework are presented from Hamed (2008). Let HOi denote the null hypothesis of each test and
let H1i denote the alternative hypothesis, where i = O, H, M denotes the step of the Mann-Kendall
test under the scaling hypothesis. We define:

HOO: No trend under the independence assumption

H10: Significant trend under the independence assumption.

HOH: No significant LTP.

H1H: Significant LTP.

HOM: No trend under LTP assumption.

H1M: Significant trend exists under LTP assumption.

Then the three steps of the test are summarized by the following sequences

{HO0O}: No trend.

{H10}: Possible significant trend. Proceed to step H.

{H10, HOH}: Significant trend exists.

{H10, H1H}: Possible LTP effect. Proceed to step M.

{H10, H1H, HOM}: No trend.

{H10, H1H, H1M}: Significant trend exists.

Hurst coefficient can be defined by a simple power-law relationship of its standard deviation:
H-1

o*=x"""'o

(25)
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where 6 = (1) and H is the entropy production in logarithmic time (Koutsoyiannis 2011), and the
parameter ranges between 0 and 1. For values H > 0.5, the process exhibits long-term persistence,
while for H < 0.5 the process is anti-persistent.

For the test implementation, the R function MannKendallLTP from the HKprocess R package
(Tyralis, 2015) was used. The R function computes the p-value in each step of the test. If the p-value
is higher than a predefined significance level a (e.g. « = 0.05), then we cannot reject HO. A p-value
less than or equal to a gives evidence that H1 is true.

6.3.2 Study area and procedures

Ten meteorological stations (National Meteorological Services of Greece) well- distributed over
Greece were used. Table 23 presents the list of the meteorological stations used in our study.

Table 23. Meteorological stations with their latitude (¢°) and elevation (z).

Stations @(°) z (m)
Heraklion 35.20 39
Ioannina 39.42 484
Kavala 40.54 63
Kerkyra 39.37 2
Kozani 40.18 626
Larissa 39.39 74
Lemnos 39.54 17
Methoni 36.50 34
Skyros 38.54 5
Tripoli 37.32 663

Based on our previous study (Tegos et al. 2013) the parametric model was calibrated and tested in
monthly time step for the period 1968-1989. For the purposes of this study, monthly air
temperature data for the period 1950-2000 were collected and the parametric model was applied
to the total length. Finally, every monthly time series was aggregated in annual step with the use of
HYDROGNOMON software (Kozanis et al. 2010).

6.3.3 Results

Table 24 presents the results of our analysis. In seven out of the ten stations tested, no trends were
found under the independence assumption. The estimate of the Hurst parameter for annual PET
time series varies in the range 0.43 to 0.76. Out of the three stations that had significant trends
under the independence assumption, only two stations (loannina, Lemnos) showed a significant
downward trend.
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Table 24. Summary results of the application of the Mann-Kendall modified test to the PET data. The Hurst
parameter was estimated using the maximum likelihood estimator (Tyralis and Koutsoyiannis 2011). The
trend identification is performed for a predefined level o = 0.05 in each step.

Stations Hurst Mann-Kendall 2-  Significance of H, Mann-Kendall LTP  Trend identification
parameter sided p-value 2-sided p-value 2-sided p-value
estimate (Step O) (Step H) (Step M)
Heraklion 0.67 0.31 {H0O}, no trend
Ioannina 0.58 0.05 0.27 {H10,HOH}, trend
exists
Kavala 0.76 0.63 {H00O}, no trend
Kerkyra 0.71 0.90 {HO0O}, no trend
Kozani 0.63 0.31 {H0O}, no trend
Larissa 0.76 0.04 0.00 0.42 {H10,H1H,HOM} no
trend
Lemnos 0.74 0.00 0.26 {H10,HOH}, trend
exists
Methoni 0.69 0.06 {H0O}, no trend
Skyros 0.46 0.40 {HOO}, no trend
Tripoli 0.43 0.46 {H00}, no trend

In Figure 26 PET in loannina is presented . In Table 23 we observe a significant trend under the
independence assumption is observed. This assumption is valid. At Kerkyra (see Figure 27) there is

no any significant trend. At Larissa (Figure 28), a significant trend under the independence

assumption is detected; however, this trend is not significant under the long-term dependence

assumption. Finally, we observe a significant trend under a valid independence assumption at

Lemnos is observed (Figure 29).
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Figure 28. Annual PET at Larissa
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Figure 29. Annual PET at Lemnos

6.3.4 Discussion and conclusions

An R function that implements the Mann- Kendall test under the long-term persistence hypothesis
was presented. The test applied and tested in annual time series of PET estimated from a recent
parametric approach. The parametric model estimation allows the consistent estimation of the PET
with minimal data requirements and it's wuseful for climatic studies when crucial
hydrometerological data are missing (wind velocity, relative humidity, extraterrestrial radiation).
The results of our preliminary case study analysis show that in seven cases, no significant trend was
detected under the independence assumption. In one case, no significant trend was detected under
the long-term persistence assumption, while the trend was significant under the independence
assumption. In the remaining two cases, we found a significant downward trend under both the
independence and the long-term persistence assumptions. In total, an R function is ready and user-
friendly for extensive use in other field of water resources and technological- related studies.

6.4 Temperature variability over Greece : Links between space and time

The long-term alteration of the meteorological paid the attention of the scientific community the
last decades by linking it with the well-known “climate-change” interest. It is therefore necessary to
examine long term instrumental observations or reliable estimate to quantify the fluxes trends. In
this respect, meteorological data from 35 stations of HNMS were collected and used (monthly
timeseries 1950-2000), with a rather uniform spatial distribution as it can be seen Figure 30.

For studying the climatic behaviors the stations was classified in three categories: continental,
coastal and inland stations.
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Figure 30. Study Area- meteorological stations locations

Attention was paid to the temperature monthly dataset and as visualizes the Figure 31 the inter-
annual variation (i.e. the mean standard deviation of the monthly temperatures of each year) shows
that the variability of temperature parameters is higher to continental stations than to coastal or
island regions.
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Figure 31. Inter-annual temperature variability

Overall, temperature in Greece has been relatively stable for the last 50 years as shown in the
Figure 32.
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Figure 32. Study Area- locations of meteorological stations

Monthly potential evapotranspiration for each station was estimated by the parametric model
(Tegos et al. 2013, Tegos et al. 2015): dependent only to temperature Ta and incoming solar
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radiation Ra and two coefficients, a (kg/k]) and c (C -1). The proposed parameters was extracted by
the study Tegos et al. 2013 and Tegos (2017).

The results portray in Figure 33, which include both annual PET (background coloring) and
monthly change over the examined period (bars).

It can be concluded that PET has been declining during the last 50 years, which is expected as it
follows the temperature decrease. It must be noted though that some station in Eastern Greece
show increase during the summer.

Conclusively, the potential evapotranspiration has decreased in winter all over Greece, and has
increased only in a few Aegean islands during summer (N. Bountas et al. 2013).

Figure 33. Annual PET variation
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7 Applications in agricultural design

7.1 Spatial interpolation methods in PET estimate

7.1.1 Introduction

Potential evapotranspiration (PET) is a crucial parameter of several applications in hydrological
modelling, irrigation and environmental studies. Especially, precision irrigation requires daily or
even hourly PET estimates in order to increase the efficiency of water use through optimization
procedures that include the use of sensors along with extensive soil, water and crop data. A
significant concept for precision irrigation design is the spatial variability of the PET since the well-
established FAO Penman-Monteith model (Allen et al. 1998), but also alternative frameworks
(Tegos et al. 2015) provide point estimates.

Precision irrigation constitutes a breakthrough for agricultural water management since it provides
means to optimal water use. In recent years several applications of precision irrigation are
implemented based on spatial data from different origins, i.e. meteorological stations networks,
remote sensing data and in situ measurements. One of the factors affecting optimal irrigation
system design and management is the daily potential evapotranspiration (PET). A commonly used
approach is to estimate the daily PET for the representative day of each month during the irrigation
period. The implementation of the recently introduced non-parametric bilinear surface smoothing
(BSS) methodology for spatial interpolation of daily PET is presented. The study area was the plain
of Arta which is located at the Region of Epirus at the North West Greece. Daily PET was estimated
according to the FAO Penman-Monteith methodology with data collected from a network of six
agrometeorological stations, installed in early 2015 in selected locations throughout the study area.
For exploration purposes, PET maps for the Julian dates: 105, 135, 162, 199, 229 and 259 were
produced, thus covering the entire irrigation period of 2015. Also, comparison and cross validation
against the calculated FAO Penman-Monteith PET for each station, were performed between BSS
and a commonly used interpolation method, i.e. inverse distance weighted (IDW). During the leave-
one-out cross validation procedure, BSS yielded very good results, outperforming IDW. Given the
simplicity of the BSS, its overall performance is satisfactory, providing maps that represent the
spatial and temporal variation of daily PET.

7.1.2 Study area and meteorological stations network

The study area was located at the plain of Arta (453.29 km?, the biggest of the region), at the Region
of Epirus at the north west coast of Greece (Figure 34). It is part of the Arachthos and Louros
hydrological basins and borders with Amvrakikos Wetlands National Park. The local climate is of
Mediterranean type, characterized by dry and hot summers and rainy and moderately cool winters.
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Figure 34. The Arta plain along with the study area and the agrometeorological stations network

Irrigation in the area is performed by means of surface irrigation, sprinkler irrigation and drip
systems in proportions of about 40%, 40% and 20% respectively (Tsirogiannis and Triantos, 2009),
with a continuous diminution of surface irrigation. The vast majority of farmers irrigate based on
experience and inherited practical advices. As water is plentiful and cheap, most farmers over
irrigate using water by the old open canal scheme that covers part of the plain and from numerous
boreholes.

An agrometeorological stations network of six fully equipped weather stations was installed in
early 2015 for the implementation of IRMA_SYS project (Malamos et al 2016 -
http://arta.irrigation-management.eu/) in order to monitor evapotranspiration related
parameters. The data from the six meteorological stations are available at http://openmeteo.org/
under Database Contents License v.1.0 for individual measurements and Open Database License
v.1.0 for the data series as they are published at Open Data Commons
(http://opendatacommons.org/).

The analysis extend (mask) boundaries were defined by the coordinates of the outermost stations
according to each one of the four cardinal directions. This was mandatory in order to ensure that
the PET estimates adjacent to the boundaries of the study area are obtained from interpolation
rather than extrapolation. The maps were produced using a 500 x 500 m grid for practical and
computational reasons, covering an area of approximately 294.8 km2 inside the plain of Arta.
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7.1.3 Spatial interpolation methods

The mathematical framework of Bilinear Surface Smoothing (Malamos and Koutsoyiannis 2016a),
suggests that fit is meant in terms of minimizing the total square error among the set of original
points zi(x; y;) for i = 1,..., n and the fitted bilinear surface, that in matrix form, can be written as:

p=llz-2|? (26)

where z = [z3,..,, z,]T is the vector of known applicates of the given data points with size n (the
superscript T denotes the transpose of a matrix or vector) and Z = [2;,.., 2,]T is the vector of
estimates with size n.

The details of the method including the algorithms and derivations of the equations are available at
(Malamos and Koutsoyiannis 2016a).

The parameters required to implement the methodology, are the segments of the bilinear surface,
i.e. mx, my and the smoothing parameter A. These parameters can be estimated by transforming the
smoothing parameter A in terms of tension: 7, whose values are restricted in the interval [0, 1), for
both directions i.e. T»x and 13, (Malamos and Koutsoyiannis 2016a). This transformation provides a
convenient search in terms of computational time and is based on the generalized cross-validation
(GCV - Craven and Wahba 1978) methodology. Thus, for a given combination of segments mx, my,
the minimization of GCV results in the optimal values of 7, 7x. This can be repeated for several trial
combinations of mx, my values, until the global minimum of GCV is reached.

On the other hand, the Inverse Distance Weighting (IDW) method was implemented as a quick
interpolator capable to address the characteristics of the study area regarding the limited number
of meteorological stations. IDW is a straightforward and non-computationally intensive method
(Burrough and McDonnell 1998). The IDW implementation for producing the PET maps of the
study area was performed by means of ESRI’s ArcGIS environment.

7.1.4 Results and discussion

In order to evaluate the performance of the BSS methodology for spatial interpolation of daily PET,
we interpolated the Penman-Monteith PET values acquired at the stations locations (Table 25)
using both BSS and IDW for the characteristic day of each month for the 2015 irrigation period as
presented in Figure 35 Figure 36.
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Table 25. Penman-Monteith PET values at the locations of each of the six stations

Julian PM PET (mm)

dates  Agios Spiridonas Vigla Ammotopos TEI of Epirus Kommeno Kompoti
105 3.4 3.2 3.4 3.2 3.2 31
135 41 4.4 4.5 4.4 4.5 41
162 4.8 4.4 5.2 4.9 5.5 5.4
199 6.2 5.2 6.7 6.4 6.1 6.3
229 4.6 4.7 5.0 4.7 4.9 4.8
259 3.8 3.4 3.8 3.7 3.6 3.6
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Figure 35. BSS PET maps for Julian dates 105, 135, 162, 199, 229, 259 of year 2015
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Figure 36. IDW PET maps for Julian dates 105, 135, 162, 199, 229, 259 of year 2015

From the comparison of the produced maps it is obvious that the BSS modelled PET values, have
wider range than those of IDW, thus producing very plausible interpolation surfaces that respect
the variation due to terrain, avoiding the characteristic IDW’s bull's eye shaped artefacts.
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Considering BSS’s implementation, the global minimum of GCV for each day was reached by
implementing it for different numbers of segments mx and my (1 < mx < 15 and 1 £ my < 15, while
m + 1 = 6) and minimizing GCV for each one, by altering the adjustable parameters.

The results of the above procedure are presented in Table 26, along with the corresponding mean
square error values. It is obvious that the BSS implementation resulted in very small mean square
error values, respecting the estimated PM PET values at the stations locations. It can be assumed
that there is no need to present the corresponding mean square error values for the IDW at the
given data points i.e. the stations locations, since it is an exact method of interpolation so its results
respect the data points exactly.

Table 26. BSS optimal parameter values and performance indices

Julian mx my Ty Mean square Global minimum
dates error GCV
105 2 3 0902 0.154 1.75x10-5 2.93x 103
135 4 5 0.003 0765 1.42x10-5 3.76 x 10-3
162 5 4 099 0.001 1.13x10-5 4.95x 10-3
199 6 12 076 0.019 742x10- 3.15 x 10-2
229 14 6 0.201 0.001 3.77x10-6 6.35 x 104
259 2 6 0784 0.067 2.47x10-5 5.11x10-3

Also, the above criteria of performance may not be representative with respect to the validity of the
interpolation results in other locations, except for those incorporated in the interpolation
procedure. So, an alternative technique was implemented for the evaluation of the bilinear surface
smoothing method efficiency, in terms of performing a leave-one-out cross validation procedure of
the two methods. The procedure was implemented in MS-Excel® and included a loop in which the
PET values at the location of each station were estimated using the remaining five as the input
dataset to each one of the two interpolation methods. In this way, we acquired a total of six, one for
every day, PET estimates at the stations locations which were compared against the already
acquired daily PM PET values. We should note that BSS was implemented using the previously
obtained parameter values as presented in Table 26.

The performance of each method was evaluated by using statistical criteria such as: mean bias
error (MBE), mean absolute error (MAE), root mean square error (RMSE), mean square error
(MSE) and modelling efficiency (EF) which is calculated on the basis of the relationship between the
observed and predicted mean deviations (Malamos and Koutsoyiannis 2016b). As Table 27 states,
BSS clearly outperformed IDW in all circumstances, apart from the EF and RMSE criteria at the
Kompoti station. In this case, both methods failed to provide satisfactory estimates of PET values.
An explanation to this behaviour is the fact that the Kompoti station is placed on the east side of the
study area close to the mountains so when it is missing, the available information is inadequate to
describe the orography effects, thus resulting in insufficient estimates.
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Table 27. Performance of BSS and IDW against PM PET values in the leave-one-out cross validation procedure

TEI of

Agios Spiridonas Vigla Ammotopos Epirus Kommeno Kompoti
BSS IDW BSS IDW BSS IDW BSS IDW BSS IDW BSS IDW
MBE (mm) 0.0 0.8 0.0 0.4 0.0 0.4 0.0 0.1 -0.5 1.6 -1.7 1.7
MAE (mm) 0.1 0.8 0.1 0.4 0.0 0.4 0.1 0.1 0.5 1.6 1.7 1.7
RMSE (mm) 0.1 0.8 0.2 0.5 0.1 0.4 0.1 0.1 0.8 1.6 1.9 1.7
EF 0.99 0.18 0.95 0.47 1.00 085 099 098 0.44 1.55 -2.02 1.44

7.1.5 Conclusions

Two different approaches for spatial interpolation of daily potential evapotranspiration were
implemented using data from six meteorological stations located in the plain of Arta, at the Region
of Epirus. Both approaches were implemented for the characteristic day of each month for the 2015
irrigation period, i.e. Julian dates: 105, 135, 162, 199, 229 and 259. The objective was to evaluate
the performance of bilinear surface smoothing (BSS) method against the inverse distance weighting
(IDW) method. The comparison against the estimated values of the FAO Penman-Monteith (PM)
PET for each station showed that BSS yielded very good results with very small mean square error
values, respecting the given PM PET values.

Also, a leave-one-out cross-validation procedure per station was used for validating the
performance of both spatial interpolators. Thus we acquired a total of six, one for every day, PET
estimates at the stations locations which were compared against the already acquired daily PM PET
values. During this cross validation procedure BSS clearly outperformed IDW in almost every case,
respecting the variation of the terrain and also avoiding the characteristic IDW’s bull's eye shaped
artefacts. Given the simplicity of the BSS methodology, its overall performance is satisfactory,
providing maps that represent the spatial and temporal variation of daily PET, thus granting the
necessary tools for implementing precision irrigation on daily or finer time scale.

7.2 Regional daily/monthly parametric model in Arta valey

7.2.1 Introduction

The parametric model was applied in the Arta a strong irrigated value in western East of Greece
(Figure 37).
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Figure 37. Study Area

Meteorological data was collected from 3 meteorological stations and the following computational
procedures was made:

7.2.2

Calibration of the using historical data from 3 stations and regionalization of the parameters
throughout Arta plain. Fit of the parametric formula at daily and monthly in the samples of
the three stations and extraction of the parameters a,b,c. High CE was observed for the
parametric model using PM as base sample.

Regionalization of daily and monthly temperatures from 6 stations located in Arta plain
using [.D.W method as providing by a newer meteorological network.

Production of 10 raster maps (5 for mean monthly temperature and 5 for mean daily day of
the 15t day of each month)

Appropriate coding of extraterrestrial radiation and production of the corresponding raster
files

Daily PET Spatial variability

Figure 38 illustrates the spatial variation of PET at each month. The main outcomes are as follows:
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PET high values are observed in North for every month and low values in the South adjacent
to the shore.

Mean daily ranges from 2 mm (April) to 4.9 mm (July).
Significant PET spatial variation in daily scale and for all months.

Non standard spatial direction for every month in the study period.
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Figure 38. PET daily spatial variability
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7.2.3 Monthly PET Spatial variability

Figure 39 visualizes PET monthly variability for each month. In respect the results it can be
concluded the following:

e Gradient of the monthly PET from North to South direction (limited in April)
e Mean monthly PET ranges between 80.6 mm (April) to 174 mm (July)

o Insignificant spatial variation for spring months (April, May) and significant in summer
months (June, July, August)

81



82

April Monthly ETO (mm)
Value

— R

- e

0 3 6
L P

June monthly ETO (mm)
Value

— s
- s

May monthly ETO (mm)

Value
— e e
- e

July monthly ETO (mm)
Value

— 0
-

August monthly ETO (mm)
Value

_— e

-

Figure 39. PET monthly variability

1120000



8 Conclusions and Discussion

The major innovations of the thesis is the development of a new parametric radiation-based PET
model which can be considered as simplification of the Penman-Monteith formula, in an attempt to
combine parsimony, in terms of model structure and data requirements, and physical consistency.
The parametric model is a parsimonious radiation-based and physically consistent approach
derived from a simplification of the Penman-Monteith equation. It requires in its first exhibition
three parameters to be calibrated prior to its application and two parameters in its second global
format. Specifically, two model versions were presented in this respect, the first one was applied in
the well-known CIMIS network and the second a slightly modifications of the first expression in the
Global Dataset of CLIMWAT.

The model ensures excellent predictive capacity (in terms of reproducing monthly PET estimations
through the Penman-Monteith) in the majority of the examined in both applications. In the first
application (CIMIS), the model outperforms all the radiation-based and empirical formulas and in
the global application provided better performance in comparison with the Hargreaves model. It's
worth mentioning that a main hint point of this thesis is that the local calibration of the simplified
models is reqired, in assessing consistent PET since the comparisons across different climates
reveal the great advantage of parametric approaches against radiation-based ones, since calibration
allows the coefficients that are involved in the mathematical formulas to be fitted to local climatic
conditions. The parameters of the new model have some physical background, since they
substitute, to some extent, the three missing meteorological variables namely the humidity, the
wind velocity and the radiation. Taking into account the limited availability of data capable to
acquire the set of parameters of the Parametric method into timescales finer than monthly e.g. daily
or even hourly, an interesting study could be the investigation of downscaling them against time.

This investigation might be performed by applying a regression analysis that involves establishing a
mathematical relationship between the large scale acquired parameters against those of finer scale.

Another point of interest of this thesis was the investigation of the optimal spatial technique in
converting the point scale estimate into regional, by implementing interpolation techniques such
as: Inverse Distance Weighting (IDW), Natural Neighbours (NaN), Ordinary Kriging (OK) and
Bilinear Surface Smoothing (BSS), along an extensive study area such as California. The validation
procedure was implemented by comparing the reference potential evapotranspiration estimates
acquired from the implementation of the parametric method, using the parameter estimates of the
four interpolation methods, against those of the eleven additional CIMIS stations. This combined
evaluation of the four different interpolation approaches, indicated that the simple and effortless
IDW method performs better than the other three methodologies. Regarding the application of the
new methodology, BSS’s efficiency to perform interpolation between data points that are
interrelated in a complicated manner was confirmed, acquiring high CE values analogous to those
of the other three methods. In this light, global parameters map was provided using IDW for direct
application of the parametric expression across the globe.
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Numerous applications were presented including the development of a R software script for
estimating the annual trend under Hurst-Kolmogorov behavior and a global remote sensing PET
monthly dataset.

Incidental contributions, moderate innovations and future research required are summarized
below:

Future research attempt requires a detailed investigation of the factors affecting the model poor
performance in specific areas over the globe, in order to recognize whether these can be handled
through a slightly different model structure or they do require the use of additional explanatory
variables or parameters. Apparently, this will require the use of full meteorological time series
instead of climatic data, which is a very challenging task at global scale. Another challenging task is
a survey of the calibration results against different climatic zones that will further highlight the
model advantages, as well as potential shortcomings.

Since the need of the large-scale hydrological modeling is under high development at least last
decade, the Global PET maps at multiple time scale extracted by in-situ measurements or by
combining remote sensing measurements can be support the hydrological community by providing
reliable PET estimates which are required input-data in numerous well known model such as
SWAT. To achieve that, future research shall focus in the production of reliable PET estimate
integrating site temperature and remote sensing samples. A first which was presented in this
Thesis is very promising since the new PET monthly dataset (RASPOTION) provided very
satisfactory results.

Reliable global PET estimate could be useful and in another hydrological science field referring to
the low-flow assessment in ungauged catchments. Typically, the most recent scientific attempts in
this regard use the PET as explanatory variable of regression models and therefore PET accuracy is
noteworthy for estimating the flow duration curves in ungauged catchments.

Another interesting for further research survey is the use of the parametric framework within the
field of agronomical studies and especially in the forecasting of the crop water requirements for
scheduling the irrigation program in timely manner. The key idea of the Parametric model owing to
minimal input data requirements can be decrease the overall uncertainty of the PET projection at
short-term forecast (up to 3-days) and therefore the short term weather prediction can be
incorporated to an efficiency Decision Support System for the crop assessment in local and large
scale precision agriculture.

Conclusively, the Parametric Model is a robust model with numerous potential applications in
different disciplines related to hydrology and geosciences as well, since PET is a critical input
variable of hydrological modeling, in assessing the crop water demands of several agronomist
studies, in physical based estimation of the low flow in ungauged catchments, in assessing the long-
term trends of hydrometerological variables.
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