
NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

SCHOOL OF CIVIL ENGINEERING 

DEPARTMENT OF WATER RESOURCES AND ENVIRONMENTAL ENGINEERING 

 

State-of-the-art approach for potential evapotranspiration 

assessment 

 

 

Ph.D  Thesis 

 

Aristoteles Tegos 

 

 

 

 

 

 

 

 

 

 

 

Athens, 2019 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

SCHOOL OF CIVIL ENGINEERING 

DEPARTMENT OF WATER RESOURCES AND ENVIRONMENTAL ENGINEERING 

 

State-of-the-art approach for potential evapotranspiration 

assessment 

 

 

Thesis submitted for the degree of Doctor of Engineering at the 

National Technical University of Athens 

 

Aristoteles Tegos 

 

 

 

 

 

 

 

 

 

 

 

Athens, 2019 



THESIS COMMITEE 

THESIS SUPERVISOR 

Demetris Koutsoyiannis, Professor, N.T.U.A 

ADVISORY COMMITTEE 

1. Demetris Koutsoyiannis, Professor, N.T.U.A (Supervisor) 

2. Nikos Mamassis- Associate Professor, N.T.U.A 

3. Dr. Konstantine Georgakakos, Sc.D  Hydrologic Research Center in San Diego, 

California- Adjunct Professor, Scripps Institution of Oceanography, University of 

California San Diego 

EVALUATION COMMITTEE 

1. Demetris Koutsoyiannis, Professor, N.T.U.A (Supervisor) 

2. Nikos Mamassis, Associate Professor, N.T.U.A 

3. Dr. Konstantine Georgakakos, Sc.D  Hydrologic Research Center in San Diego, 

California- Adjunct Professor, Scripps Institution of Oceanography, University of 

California San Diego 

4. Evanglelos Baltas, Professor, N.T.U.A 

5. Athanasios Loukas, Associate Professor, A.U.Th 

6. Stavros Alexandris, Associate Professor, Agricultural University of Athens 

7. Nikolaos Malamos, Assistant Professor, University of Patras 

 

 

 

 

 

 

 

 



 

 

Κάποτε υπό άλλη φυσική συνθήκη 

και κάτω από άλλη φυσική κατάσταση 

Θα συζητήσουμε τις ιδέες μας και θα γελάμε. 

Προς το παρόν για σένα Πατέρα 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

  



 

 

Abstract 

The aim of the Ph.D  thesis is the foundation of a new temperature-based model since simplified 

PET estimation proves very useful in absence of a complete data set. In this respect, the Parametric 

model is presented based on a simplified formulation of the well-established Penman-Monteith 

expression, which only requires mean daily or monthly temperature data. The model was applied at 

both global and local regions and the outcomes of this new approach are very encouraging, as 

indicated by the substantially high validation scores of the proposed approach across all examined 

data sets. In general, the parametric model outperforms well-established methods of the everyday 

practice. A second analysis which was examined as part of this thesis is related to which spatial 

techniques is the optimal in order to transform the point scale estimate in regional. A thorough 

analysis of different geostatistical model was carried out (Kriging, IDW, NN, BSS) and it can be 

concluded that the IDW even is the most simplify geostatistical model, it can be produce consistent 

spatial PET results. 

Another part of the thesis was the development of an R function for testing the trend significance of 

time series. The function calculates the trend significance using a modified Mann- Kendall test, 

which takes into account the well-known physical behavior of the Hurst-Kolmogorov dynamics. The 

function is tested in 10 stations in Greece, with approximately 50 years of PET data with the use of a 

recent parametric model. 

Finally, a number of hydrological, agronomist and climatologist applications are presented for 

lighting the robustness of the new Parametric approach in multidiscipline areas. 

Keywords: Potential evapotranspiration; Parametric model; Penman- Monteith method;  large 

scale hydrology, Calibration, Remote Sensing; Spatial analysis; trend; Hurst; R-script; CLIMWAT; 

CIMIS 

 

 

 

 

  



 

 

Περίληψη 

Ο σκοπός της Διδακτορικής Διατριβής είναι η θεμελίωση μιας νέας σχέσης θερμοκρασίας για την 

εκτίμηση της δυνητικής εξατμοδιαπνοής, καθώς τα απλοποιημένα μοντέλα εκτίμησης είναι 

εξαιρετικά χρήσιμα σε καθεστώς έλλειψης πρωτογενών δεδομένων. Σε αυτό το πλαίσιο, 

παρουσιάζεται το Παραμετρικό Mοντέλο που αποτελεί απλοποίηση του καταξιωμένου μοντέλου 

Penman-Monteith και το οποίο απαιτεί τη μέση ημερήσια θερμοκρασία ή τη μέση μηνιαία 

θερμοκρασία ως δεδομένο εισόδου. Το μοντέλο εφαρμόστηκε σε παγκόσμιο και σε τοπικό πεδίο 

και τα αποτελέσματα είναι πολύ ενθαρρυντικά, καθώς συνοδεύεται από μεγάλη αποδοτικότητα σε 

όλα τα πεδία εφαρμογής του. Γενικά, το παραμετρικό μοντέλο υπερισχύει όλων των εδραιωμένων 

μοντέλων ακτινοβολίας και διασφαλίζει τη βέλτιστη εκτίμηση της δυνητικής εξατμοδιαπνοής. Ένα 

δεύτερο επίπεδο μελέτης της παρούσας διατριβής σχετίζεται με το ποιο μοντέλο γεωστατιστικής 

είναι το βέλτιστο για τη μετατροπή της σημειακής πληροφορίας σε χωρική. Πραγματοποιήθηκε 

συστηματική μελέτη διαφορετικών τεχνικών γεωγραφικής ολοκλήρωσης και το αποτέλεσμα είναι 

ότι η μέθοδος Αντιστρόφου Σταθμισμένης Απόστασης είναι η βέλτιστη παρόλο που είναι η 

απλούστερη από όσες εφαρμόστηκαν. 

Άλλο κομμάτι της διατριβής ήταν η ανάπτυξη ενός εργαλείου σε περιβάλλον R για την εκτίμηση 

των τάσεων σε χρονοσειρές. Η μεθοδολογία εκτιμά τις τάσεις με ένα τροποποιημένο στατιστικό 

έλεγχο Mann-Kendall λαμβάνοντας υπόψη τη φυσική συμπεριφορά της δυναμικής Hurst-

Kolmogorov. 

Τέλος, μέσω υδρολογικών, γεωπονικών και κλιματολογικών εφαρμογών αξιολογείται η 

χρησιμότητα του Παραμετρικού μοντέλου σε διαφορετικά επιστημονικά πεδία. 

Keywords: Δυνητική Εξατμοδιαπνοή; Παραμετρικό Μοντέλο; Penman- Monteith μέθοδος;  

Υδρολογία Μεγάλης Κλίμακας, Βαθμονόμηση; Τηλεπισκόπηση; Χωρική Ανάλυση; Τάση; Hurst; R-

script; CLIMWAT; CIMIS 
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1 Introduction 

1.1 Overview 

Evapotranspiration in all natural shapes (actual, potential) is a key component of the water balance 

strongly linked with numerous geosciences such as hydrology, agronomy, climatology. The accurate 

estimation in different time scale is a critical for the above mentioned scientific areas and numerous 

models have been developed for achieving this challenge. 

 The main aim of the Ph.D Thesis is the development of a new Parametric PET model. The thesis 

sections are organized as follows: 

Chapter 2 presents an historical overview of the Potential Evapotranspiration definition, modeling 

principles and its applicability in the water/ geosciences practice. 

Chapter 3 presents the global parametric model development including a thorough analysis of the 

PET key drivers, calibration of the parameters across the globe on calculated Penman-Monteith 

sample, analysis of the insufficient results of the new model, comparison of the new approach with 

the well known uncalibrated Hargreaves model and validation of the results in local PET Penman- 

Monteith samples. 

Chapter 4 introduces the new parametric model in a denser agrometeorological network of CIMIS 

(California) and in meteorological stations of Spain and Germany. The parameters of the models are 

calibrated in a long sample of Penman- Monteith timeseries and the efficiency of the model for a 

calibration and validation period is tested. Moreover the comparison of the model with a number of 

radiation-based (Hargreaves 1975, Jensen-Haise, Mcguiness-Borne) and empirical models 

(Hargreaves- Samani 1985, Thornthwaite, Blaney- Criddle) was carried out for examining the 

efficiency of the new approach. Finally, a spatial analysis was made through different 

geostatististical methods for mapping the parameters, thus for transferring the PET information 

from local to spatial scale. 

Chapter 5 introduces a first attempt for providing PET remote sensing global maps by 

incorporating the global parametric maps along with remote sensing aerial  temperature data. The 

advantages of the new promising PET remote product is discussed together with some contrsuctive 

issues with regard to the reliability of the existing PET remote-sensing products.  

Chapter 6 presents a R- script tool for quantifying the trend in annual PET series under the well-

known scaling hypothesis which is more physically consistent than typical Mann- Kendall test. The 

usability of this tool is highlighted in hydrological timeseries analysis. It also presents the 

temperature and PET variability over Greece by using the parametric model for converting a large 

dataset of temperature in PET. 

Chapter 7 introduces two interesting agrometerological applications in Arta Valley, by applying in 

practice the parametric model in monthly and daily scale and also by investigating alternative 

geostatistical techniques for the reliable mapping of the PET information. 
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Chapter 8 summarises the conclusion of the Ph.D thesis works its innovation for different 

disciplines, unresolved scientific issues and future objectives for further research. 

In the Appendix the peer-review publications are listed along with detailed citations per article. 

1.2 Scientific innovations of the thesis 

The major innovative queries examined as part of this Ph.D  thesis outlined below: 

 Which are the key meteorological drivers for assessing the PET in large areas? 

An extended global statistical analysis was carried out for investigating the relationship between PET, 

mean temperature, radiation, humidity and wind velocity. PET is strongly correlated with mean 

temperature and radiation but in some cases the humidity and velocity could improve the reliability of 

the PET estimate. 

 Given the high data demanding dataset for estimating the reliability of PET, can we 

introduce parsimony and physical constraints for its quantification? 

The major peer review publications as part of the thesis outcomes are available which represent: a) 

The global parametric model in a sample of 4088 FAO stations and b) The development of the 

parametric model in the CIMIS network in California. 

 What is the main benefit of the new parametric model against the other radiation or 

temperature-based methods? 

It is resulted that the performance of the new model is satisfactorily outperforming all the other 

radiation- based methods or temperature methods that have been applied. Specifically, the new 

parametric model is preferable to the most well-known temperature-based method which is the 

Hargeaves-Samani. 

 Which is the optimal geostatistical model for transferring the local PET estimate in spatial 

scale? 

A typical problem in engineering hydrology is the conversion of the points estimate to spatial 

information. Therefore a number of the geostatistical tools (IDW, Kriging, NN, BSS) were compared in 

order to find out the most applicable model in representing the PET in spatial scale. IDW  the most 

simplistic,  seems to be the optimal model.    

 What are the changes of annual PET and how can we quantify the trend?  

An R-script had been developed in order to investigate the annual PET trends under the scaling 

hypotheses which, given the ubiquitous presence in meteorological timeseries, have physical 

constraints. 

 Which are the practical uses of a new PET model in the area of hydrological and agronomic 

engineering?  
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A number of innovative case studies have outlined the usability of the new parsimonious PET model. 

Specifically, the use of the model in the quick and reliable conversion of the mean temperature in PET 

estimates and the study of the long term changes and its usability in agronomic applications.  

  What are the major incidental contributions and moderate innovations of this thesis? 

During the development of the global parametric model in a limited number of areas, an influence of 

the humidity and/or the velocity had been detected and therefore more meteorological timeseries and 

more explanatory variables (humidity and/or velocity) are required for developing more robust PET 

expressions. 
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2 Overview of PET models 

2.1 The potential evapotranspiration process 

Potential evapotranspiration (PET) is key input in water resources, agricultural and environmental 

modelling. For many decades, numerous approaches have been proposed for the consistent 

estimation of PET at several time scales of interest. Accurate estimation of evapotranspiration has 

gained scientific interest due to high importance in hydrological modelling, irrigation planning and 

water resources management. According to Farquhar and Roderick (2007), changes in evaporative 

demand affect fresh water supplies and have impact on agriculture, the biggest consumer of fresh 

water.  

Evaporation can be viewed both as energy (heat) exchange and an aerodynamic process. According 

to the energy balance approach, the net radiation at the Earth’s surface Rn is mainly transformed to 

latent heat flux, Λ, and sensible heat flux to the air, H. 

The evaporation rate, expressed in terms of mass per unit area and time (e.g. kg/m2/d), is given by 

the ratio E΄ := Λ / λ, where λ is the latent heat of vaporization, with typical value 2460 kJ/kg. By 

ignoring fluxes of lower importance, such as soil heat flux, the heat balance equation is solved for 

evaporation, yielding: 

   
      

 
 

  

      
           (1) 

 

where b := H / Λ is the co-called Bowen ratio. The estimation of b requires the measurement of 

temperature at two levels (surface and atmosphere), as well as the measurement of humidity at the 

atmosphere. On the other hand, the estimation of the net radiation Rn is based on a radiance 

balance approach to determine the components Sn (Net short wave radiation) and Ln (Net long 

wave radiation). Typical input data required (in addition to latitude and time of the year), are solar 

radiation (direct and diffuse, or, in absence of them, sunshine duration data or cloud cover 

observations), temperature and relative humidity. The net radiation also depends of surface 

properties (i.e. albedo) and topographical characteristics, in terms of slope, aspect and shadowing. 

From the aerodynamic viewpoint, evaporation is a mass diffusion process. In this context, the rate 

of evaporation is related to the difference in the water vapor content of the air at two levels above 

the evaporating surface and a function of the wind speed F(u) in the diffusion equation. 

Theoretically, F(u) can be computed on the basis of elevation, wind velocity, aerodynamic 

resistance and temperature. Yet, for simplicity it is usually given by empirical formulas, derived 

through linear regression, for a standard measurement level of 2 meters. Penman (Penman, 1948) 

combined the energy balance with the mass transfer approaches, thus allowing the use of 

temperature, humidity and wind speed measurements at a single elevation. His classical formula for 

computing evaporation from an open water surface is written as: 
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                   (2)  

where Δ is the slope of saturated vapor pressure/temperature curve at equilibrium temperature 

(hPa/K), γ is a psychrometrcic coefficient, with typical value 0.67 hPa/K, and D is the vapor 

pressure deficit of the air (hPa), defined as the difference between the saturation vapor pressure es 

and the actual vapor pressure ea, which are functions of temperature and relative humidity. We 

remind that estimates the evaporation rate (mass per unit area per day), which is expressed in 

terms of equivalent evaporation of water by dividing by the water density ρ (1000 kg/m3).  

Penman’s method was extended to cropped surfaces, by accounting for various resistance factors, 

aerodynamic and surface. As mentioned in the introduction, Monteith introduced the concept of the 

so-called “bulk” surface resistance that describes the resistance of vapor flow through the 

transpiring crop and evaporating soil surface. 

It is therefore the Penman-Monteith formula (Monteith 1965, Monteith 1981) most recognized 

globally, which is yet difficult to apply in data-scarce areas, since it requires simultaneous 

observations of four meteorological variables (temperature, net duration,  relative humidity, wind 

velocity). For this reason, parsimonious models with minimum input data requirements are 

strongly preferred. Typically, these have been developed and tested for specific hydroclimatic 

conditions, but when they are applied in different regimes they provide much less reliable (and in 

some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain 

parsimonious, in terms of input data and parameterization and this is part of this Ph.D  thesis. 

2.2 Historical overview of PET modelling 

2.2.1 General 

The accurate estimation of evapotranspiration has a great importance in hydrological modeling, 

irrigation planning and water resources management.  

Figure 1 presents the historical milestones in developing evapotraspiration definition and physical 

modelling focusing in the two last centuries.  
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Figure 1. PET definitions milestones as presented in McMahon et al.  2016 

The starting point was the first “common-sense” definitions introducing by Aristotle (Koutsoyiannis 

et al. 2007). His views in this fundamental work “Meterologika” encompasses a clear understanding 

for the phase change of water and the energy exchange. He referred that “… the sun causes the 

moisture to rise; this is similar to what happens when water is heated by fire” (Meteorologica, II.2, 

355a 15). “… the vapour that is cooled, because of lack of heat in the area where it lies, condenses 

and turns from air into water; and after the water has formed in this way it falls down again to the 

earth” (ibid., I.9, 346b 30). Later Perrault (1611–1680) is credited with having made the first 

experimental measurement of evaporation, though in fact what he measured was sublimation by 

recording the loss of weight of a block of ice through time. The first direct measurement of the 

evaporation of liquid water was carried out by Edmund Halley in 1686 when he measured the loss 

of water from a heated pan. Surprisingly, Halley appears not to understand that the temperature is 

good predictor and key driver of evaporation loss as shown in Figure 2.  
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Figure 2. Evaporation vs temperature plot from Halley’s experiment (source McMahon et al.  2016) 

 

Dalton has become universally recognized as one of the foreseen scientist in the development of 

evaporation theory since he referred that “the evaporating force must be universally equal to that of 

the temperature of the water, diminished by that already existing in the atmosphere”. The water 

existing in the atmosphere he refers to as the ‘force of the vapour,’ effectively relative humidity. 

After Dalton’s contribution in explaining evaporation as a physical phenomenon, Penman and 

Monteith later introduced the most recognized physical approaches until nowadays and more 

informatios are presented later herein.  

More than 50 important evapotranspiration models can be found in literature (Lu et al., 2005, 

McMahon et al. 2013) which can be grouped into seven categories: (i) empirical, (ii) water budget 

(iii) energy budget, (iv) mass transfer, (v) combination, (vi) radiation and (vii) measurement (Xu 

and Singh, 2000). 

The recently review work by McMahon et al. 2016 has identified a total number of 166 models 

categorizing into six classes (Table 1): potential evaporation, reference evaporation, actual 

evaporation in terrestrial environments, open-water evaporation, deep lakes, and pan evaporation. 

The models therein are further typed into the following 10 classes: models based on mass-transfer 

(so-called Dalton equation), temperature models, radiation-temperature models, energy balance 

methods, single-source (vegetation, soil, or water) combination methods, multisource combination 

methods, multivariate models, models based on the Complementary Relationship, Budyko-like 

models, and miscellaneous models. 
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Table 1. Distribution and types of applications of 166 PET models (source: McMahon et al. 2016) 

 

 The variety of models and frameworks is related to the complexity of the natural phenomenon and 

depends on the wide range of input climate data and local climate conditions. The Penman-

Monteith formulation (Monteith, 1981) for computing potential ET proposed from FAO as 

standardized method (Allen et al., 1998) That method had numerous successful applications in the 

fields of hydrology and agrometeorology and in a variety of hydroclimatic regimes (Wang and 

Georgakakos, 2007). Basic disadvantage of Penman–Monteith model is the simultaneous 

requirement of several meteorological data as temperature, wind speed, relative humidity and 

sunshine measures. Such measurements are not always easily available or accessible to researchers 

due to the sparse hydrometeorological stations networks in several regions, e.g. Africa, as well as 

the instability in the records of radiation and relative humidity (Samani, 2000). 

The interdependence of these meteorological parameters and their variability in space and time, 

lead in difficulties to formulate an equation that can be used to estimate ET from various crops 

under different climate conditions (Temesgen et al., 2005). Notably, the difficulties due the sparse 

hydrometeorological networks in several regions like Africa and the instability in the records of 

radiation and relative humidity (Samani, 2000) reveals the demand of new simplifies models. 

Therefore, the demand of new simplified models in several time scales (Alexandris and Kerkides 

2003, Oudin et al. 2005, Valiantzas, 2013,) like radiation-based and temperature-based models 

(Valiantzas 2006, Valiantzas, 2013), is justified.  

2.2.2 Radiation-based models 

As already clarified above, the complexity of the Penman–Monteith method stimulated many 

researchers to seek for alternative, simplified expressions, based on limited and easily  accessible 

meteorological data. Given that the main sources of variability in evapotranspiration are 

temperature and solar radiation, the two variables are introduced in a number of such models, 

typically referred as radiation-based. It is noted that from numerous publications Tabari (2010) 

and Samaras et al. (2014) demonstrated that radiation-based methods are more powerful models 

for the ET estimation. 
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A well-known simplification is the Priestley–Taylor formula which is expressed in terms of 

equivalent depth, i.e. mm/d: 

    
 

   

  

  
                                (3) 

Where ae is a numerical coefficient, with values from 1.26 to 1.28. Ιn the  original model, the energy 

term of the Penman–Monteith equation is  increased by about 30%, in order to skip over the 

aerodynamic term. This assumption allows for omitting the usage of wind velocity and surface 

resistance in evapotranspiration calculations.   

Another radiation-based models have been identified within the literature are the Hargreaves 

(Hargeaves 1985), Turc (Turc 1961), Jensen–Haise (Jensen and Haise 1963), Stephens– Stewart-P 

(Stephens and Stewart 1693) , Priestley–Taylor (Priestly and Taylor 1972), Makkink–Hansen 

(Hanses 1984) and Makkink (Makking  1957) 

2.2.3 The value of the calibrated radiation- based PET models 

Many researchers suggest the need for further model calibration in the radation-based models  

(especially in the energy term of radiation) to improve the overall efficiency (Irmak et al. 2003, Zhai  

L. et al. 2010, Azhar and Perera 2010, Thepadia and Martinez 2012, Tabari and Talalee 2011, 

Drooger and Allen 2002). 

Specifically, Tabari and Talalee (2011) calibrated Hargreaves and Priestley-Taylor models on the 

basis of the PMF-56 method in arid and cold climates of Iran using data from 12 stations during 

1994–2005. After Hargreaves calibration model, the average value of the adjusted coefficient for 

arid climate was 0.0031, which is about 34% higher than the original value (0.0023). Similarly, the 

average value of the new Hargreaves coefficient for cold climate was 0.0028, which is about 22% 

higher than the original value. The results showed that the original Priestley-Taylor coefficient of 

1.26 was very low for the climatic regions, and the new Priestley-Taylor coefficients of 1.82 and 

2.14 have the best fit as compared with the PMF-56 method in cold and arid climates, respectively. 

Overall, calibration of the Hargreaves and Priestley-Taylor equations resulted in improvements of 

the equations by reducing the errors of the ETo estimates. 

Drooger and Allen (2002) modified the original Hargreaves method to a Modified-Hargreaves(MH) 

method by including a rainfall term improved ET0 estimates significantly for arid regions globally. 

Monthly values of ET0 using PM were compared to values obtained using HG.  They showed that the 

annual average difference between PM and HG. HG tends to underestimate PM largely in the very 

dry regions and to overestimate PM in the very wet regions 

2.2.4 PET impacts in hydrological modelling  

The majority of rainfall-runoff models at a daily or monthly time step require as input an estimate 

of potential evapotranspiration in order to compute actual evapotranspiration (Mcmahon et al. 

2013). The generic mathematical description in this regard is: 
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                )                      (4) 
 

Where ETAct is the estimated actual daily evapotranspiration (mmday-1), SM is a proxy soil moisture 

level for the given day (mm) and ETPET  is the daily potential evaporation (mmday-1). Due to local 

climatic conditions especially in arid catchments actual evapotranspiration is limited by soil 

moisture with the potential evapotranspiration becoming more important in wet catchments where 

soil moisture is not limiting. 

Seiller and Anctil (2016) were assessed the performance of the hydrological modeling under 

observed and projected climate conditions on natural catchments in Canada and Germany by using 

as input twenty-four potential evapotranspiration formulas (Penman, Penman-Monteith, FAO56 P-

M, Priestley- Taylor, Kimberly-Penman, Thom-Oliver, Thornthwaite, Blaney and Criddley, Hamon,   

Romanenko, Linacre, MOHYSE, HSAMI, Kharrufa, Wendling – WASim, Turc,  Jensen and Haise , 

McGuinness and Bordne, Hargreaves and Samani, Doorenbos and Pruit, Abtew, Makkink, Oudin,  

Baier and Robertson). 

 The 24 PET formulas produced large dissimilarities in the estimated PET in terms of  quantity and 

shape. Conclusively, the combinational formulas proposed very similar shape and  quantity, 

temperature-based formulas produced the largest spectrum of  quantity and the Radiation-based 

formulas fell somewhere in between the other two classes namely combinational and temperature-

based. These differences affected in several ways the resulting simulated discharge time series. 

Overall, the authors concluded that it was difficult to identify an ultimate PET formula for a 

hydrological modelling point of view, but it could be recommended avoiding temperature-based 

Blaney and Criddley and MOHYSE. 

Another one critical outcome was the results showed that spread of the hydrological response was 

smaller for the combinational formulas than for temperature-based and radiation-based equations,  

revealing a higher stability of these combinational formulas.  

Birhanu et al. (2018) were applied  five hydrological models of increasing complexity (GR4J, 

SIMHUD, CAT, TANK, SAC-SMA) by inputting 12 Potential Evapotranspiration (Abtew, Blaney-

Criddle, Chapman Australian, Granger Gray, Hamon, Hargeaves-Samani, Makkink, Matt 

Shuttleworth, Penman, Penman- Monteith, Priestley-Taylor, Turc) estimation methods of different 

input-data requirements in order to assess their effect on model performance, optimized 

parameters and robustness. The study area located over a set of 10 catchments in South Korea. 

The main outcomes of the study outlined below: 

 The hydrological models’ performance was satisfactory for each PET input in the calibration 

and validation periods for all of the tested catchments.  

 The hydrological models performances were found to be insensitive to the 12 PET. 

 Identical behavioural similarities and Dimensionless Bias were observed in all of the tested 

catchments.  

 For the hydrological models, lack of robustness and higher dimensionless Bias were found 

for high and low flow as well as for the Hamon PET input.  
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 The complexity of the hydrological models structure and the PET estimation methods did 

not necessarily enhance model performance and robustness.  

 The model performance and robustness were found to be mainly dependent on extreme 

hydrological conditions, including high and low flow, rather than complexity;  

 The simplest hydrological model and PET estimation method could perform better if 

reliable hydro-meteorological datasets are applied. 

2.2.5 Outstanding issues 

 

According to the fundamental work by Mcmahon et al. 2013 a number of issues regarding the 

evapotranspiration are still outstanding and outlined below: 

 Hard-wired potential evaporation estimates at AWSs; The authors stated that: ”Some 

commercially available AWSs, in addition to providing values of the standard climate 

variables, output an estimate of Penman evaporation or Penman–Monteith evaporation. For 

practitioners, this will probably be the data of choice rather than recomputing Penman or 

Penman–Monteith evaporation estimates from basic principles. However, users need to 

understand the methodology adopted and check the values of the parameters and functions 

(e.g. albedo, wind function, ra and rs) used in the AWS evaporation computation” 

 Estimating evaporation without wind data; Authors mentioned that “Many countries do not 

have access to historical wind data to compute potential evaporation” 

 Estimating evaporation without at-site data; The authors mentioned that  “Where at-site 

meteorological or pan evaporation data are unavailable, it is recommended that evaporation 

estimates be based on data from a nearby weather station that is considered to have similar 

climate and surrounding vegetation conditions to the site in question”. 

 Dealing with a climate change environment: increasing annual air temperature but 

decreasing pan evaporation rates;  

 Daily meteorological data average over 24h or day-light hours only; The authors stated that  

“An issue that arose during this project relates to whether or not daily meteorological data 

used in evaporation equations should be averaged over a 24h daily period or averaged during 

daylight hours when evaporation is mainly, but not only” 

 Uncertainty in evaporation estimates. The authors refers that “We describe several models 

for estimating actual and potential evaporation. These models vary in complexity and in data 

requirements. In selecting an appropriate model, analysts should consider the uncertainty in 

alternative methods.” 

In this PhD thesis the majority of the above mentioned critical points are considered in order to 

introduce new insights in the PET assessment.  



 

12 

3 Global Parametric model development 

The need of parsimonious model structure is essential in several fields of water resources sciences 

(Koutsoyiannis, 2009; Koutsoyiannis, 2014). This refers both to the model structure and to the 

input data, which should be easily available. Most of simplified formulas fail to describe the 

phenomenon of evapotranspiration due to its high complexity and the varying local climate 

conditions. Thus, the idea of replacing some variables and constants used in the standard Penman-

Monteith (PM) formula by a number of parameters which are regionally varying and estimated through 

calibration from a reference evapotranspiration sample, constitutes a new appealing strategy for 

evapotranspiration estimation.  

3.1 Introduction 

Evaporation, which is an overall term covering all processes in which liquid water is transferred as 

water vapour to the atmosphere—definition already provided by ancient Greek philosophers 

(Koutsoyiannis et al. 2007)—is crucial element of multiple disciplines and an essential input of 

hydrological modelling, water resources management, irrigation planning, and climatological 

studies. Numerous efforts are reported in the literature, presenting different expressions of 

evaporation (including actual, potential, reference crop, and pan evaporation), based on different 

types of data. McMahon et al. (2013, 2016) provide a major discussion of the background theory 

and definitions, as well as a critical assessment of the models developed so far. 

Here, the concept of potential evapotranspiration, PET is highlighted, which is a theoretical quantity 

considered as “the rate at which evapotranspiration would occur from a large area completely and 

uniformly covered with growing vegetation, which has access to an unlimited supply of soil water, 

and without advection or heating effects” (Dingman, 1994). Since PET depends on soil properties, a 

better defined term is the so-called reference crop evapotranspiration, introduced by Doorenbos 

and Pruitt (1977), and typically denoted as ET0, which refers to the evapotranspiration from a 

standardized vegetated surface (i.e., actively growing and completely shading grass of 0.12 m 

height, surface resistance 70 s m−1, and albedo = 0.23). The globally accepted method for consistent 

estimation of PET is the Penman-Monteith (herein referred to as PM) equation, as formalized by the 

Food and Agriculture Organization (FAO), which is physically-based, and is therefore used as 

standard for comparisons with other, more simple approaches (Allen et al. 1989). The major 

drawback for the generalized application of the PM method worldwide is the need of simultaneous 

measurements of four meteorological variables (air temperature, wind speed, relative humidity, 

and net radiation or, alternatively, sunshine duration), at the desirable spatial and temporal 

resolution. 

To overcome the data requirements of the PM formula, a number of alternative approaches have 

been developed,  which are typically classified into temperature-based and radiation-based; the 

former use only temperature observations, which are dense and easily accessible, while the latter 

also use values of extraterrestrial radiation (which is, in fact, periodic function of latitude and day of 
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the year). For many decades, such approaches have been widely applied for PET modelling 

worldwide using the standard “literature” values of the parameters involved in their governing 

equations. However, since these have been developed for specific studies, locations, and climatic 

conditions (Xu and Singh, 2001), their applicability outside of these distinct conditions usually 

result in unreliable predictions, introducing significant bias in PET estimations. For this reason, and 

particularly in the last years, significant attention is payed to local calibrations of empirical PET 

models, either by using direct PET observations at the field scale (e.g., lysimeter measurements) 

and/or against simulated PET data, provided by the PM formula. One of the first attempts is 

reported by Allen and Pruit (1986), who calibrated and validated the Blaney-Criddle model against 

PM data, using local wind function and taking advantage of daily lysimeter measurements of alfalfa 

evapotranspiration. Similar calibration approaches were employed for all of the widespread PET 

formulas, such as the Thornthwaite, Blaney-Criddle and Priestley-Taylor (e.g., Amatya et al., 1995; 

Mohawesh, 2010; Sentelhas et al., 2010), and other empirical expressions as well (e.g., Oudin et al., 

2005). Many recent publications also focus on the re-evaluation of the sole parameter of the 

Hargreaves equation against regional data, for a range of climatic regimes (Gavilán et al., 2006; 

Fooladmand and Haghighat, 2007; Tabari and Talaee, 2011; Hu et al., 2011; Haslinger and Bartsch, 

2016).  

Although the spatial resolution and accuracy of meteorological data over the extended areas of the 

globe is not sufficient, current advances in remote sensing technologies allowed quite reliable 

estimations of PET by combining satellite and ground information (Choudhury, 1997). Since 

gridded data of meteorological inputs and canopy characteristics is now easily accessible, several 

researchers employed PET estimations at large spatial scales, up to global (Allen et al., 2007; 2011; 

Mu et al., 2007; 2011), by employing scaling and interpolation techniques of varying physical 

complexity (Vinukollu et al. 2011). 

Tegos et al. (2013; 2015) calibrated a simplified radiation-based expression of the PM formula, 

using monthly meteorological data from a large number of stations over Greece and California, 

respectively. In both areas, the proposed formula, which contains either three or two free 

parameters, clearly outperformed other widely used methods, such as Hargreaves and Samani 

(1985), Oudin et al. (2005), and Jensen and Haise (1963), as modified by McGuinness and Bordne 

(1972). Malamos et al. (2015) also employed the parametric model at the daily scale, in the context 

of PET mapping over the irrigated plain of Arta, Western Greece. 

In the following chapters, the simplified (i.e. with two parameters) expression of the 

aforementioned model over the globe is presented, by inferring its parameters through calibration 

against given Penman-Monteith values (next referred to as reference PET or ET0). The 

meteorological inputs and ET0 data are retrieved by the FAO CLIMWAT database that provides 

monthly climatic information at 4300 locations worldwide. A preliminary analysis of these data 

allowed explaining the major drivers of PET over the globe and across seasons. An extended 

analysis of the model inputs and outputs was performed, including the production of global maps of 

optimized model parameters and associated performance metrics, as well as comparisons with a 

widely known formula by Hargreaves and Samani (1985). Finally, the interpolated values of the 
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optimized parameter values to validate the predictive capacity of the model against detailed 

meteorological data was used, in terms of monthly time series, at several stations worldwide. The 

results are very encouraging, since even with the use of abstract climatic information for its 

calibration, the model generally ensures very reliable PET estimations. However, we have detected 

few cases where the model systematically fails to reproduce the reference PET, particularly across 

tropical areas. Except for these specific areas, the parameter estimations through the derived maps 

can be directly employed within the proposed formula, at both point and regional scales. 

3.1.1 Theoretical Background  

The Penman-Monteith Equation 

The Penman-Monteith equation for estimating potential evapotranspiration from a vegetated 

surface, as formalized by Allen et al. (1998), is:  

      
 

 
 
               

        

      
  

    
 (5) 

  

where PET is the daily potential evapotranspiration (mm d−1); Rn is the net incoming daily radiation 

at the vegetated surface (MJ m−2 d−1); G is the soil heat flux (MJ m−2 d−1); ρa is the mean air density at 

constant pressure (kg m−3); ca is the specific heat of the air (MJ kg−1 °C−1); ra is an aerodynamic or 

atmospheric resistance to water vapour transport for neutral conditions of stability (s m−1); rs is a 

surface resistance term (s m−1); va* − va is the vapour pressure deficit of the air (kPa), defined as the 

difference between the saturation vapour pressure va* and the actual vapour pressure va; λ is the 

latent heat of vaporization (MJ kg−1); Δ is the slope of the saturation vapour pressure curve at 

specific air temperature (kPa °C−1); and, γ is the psychrometric constant (kPa °C−1). Given that the 

typical time scale of the PM equation is daily, all of the associated fluxes are expressed in daily or 

mean daily units. 

Τhe original Penman equation does not include the soil heat flux term, G, since Penman noted that, 

in his experiments, its impact in the energy balance was less than 2% (Ward and Robinson 1990). 

Nevertheless, evaporation estimations are sensitive to G only when there is a large difference 

between successive daily temperatures (McMahon et al., 2013). In this respect, in most of practical 

applications this flux is not accounted for, thus leaving the net incoming daily radiation, Rn, as the 

sole energy term to be assessed; the latter is defined as the difference between incoming and 

outgoing radiation of short and long wavelengths. 

Apart from the site location, expressed in terms of latitude, φ, the PM equation requires air 

temperature, relative humidity, solar radiation, and wind speed data for calculating the model’s 

variables. FAO provides detailed guidelines for the cases of proxy or missing meteorological 

information. A typical example is the determination of solar radiation from measured duration of 

sunshine or cloud cover. Moreover, FAO suggests using average daily maximum and minimum air 

temperatures, instead of mean daily temperature, to represent more accurately the non-linearity of 



 

15 

the saturation vapour pressure – temperature relationship. If fact, the use of mean air temperature 

yields a lower saturation vapour pressure va*, and hence a lower vapour pressure difference va* – 

va, and lower reference evapotranspiration estimates (Allen et al., 1998). 

3.1.2 The Parametric Formula 

The parametric model, initially proposed by Koutsoyiannis and Xanthopoulos (1999), and then 

formalized and implemented by Tegos et al. [2009; 2013; 2015a; 2015b], provides PET estimates 

through calibration based on given PET data. The model performance was satisfying as the 

proposed framework provides consistent monthly PET estimates at point and especially at the 

regional scale. The most recent application was the daily and monthly implementation of the model 

for the PET mapping in an irrigated plain of Greece (Malamos et al., 2015) and the investigation of 

trend analysis in Greece through the development of an R-script tool (Tegos et al., 2015).  

The mathematical expression of the parametric model, which is applicable to different time scale 

from daily to monthly, is the following: 

    
      

    
  (6) 

where PET is the potential evapotranspiration in mm, Ra (MJm-2d-1) is the extraterrestrial radiation, 

T (°C) is the mean air temperature, and a (kg kJ−1), b (kg m−2), and c (°C−1) are model parameters 

that should be inferred through calibration, against “reference” PET data, either modelled or 

measured. From a macroscopic point-of-view, the above parameterization has some physical 

correspondence to the PM equation, since the product a Ra represents the overall energy term (i.e., 

incoming minus outgoing solar radiation), parameter b represents the missing aerodynamic term, 

while quantity (1 – c T) is an approximation of the denominator term of the PM formula (Tegos et 

al., 2013). 

The above equation uses two explanatory variables, namely extraterrestrial radiation, Ra, and 

temperature, T, and thus it belongs to the so-called radiation-based approaches. The 

extraterrestrial radiation, defined as the solar radiation received at the top of the Earth’s 

atmosphere on a horizontal surface, is an astronomic variable, given by: 

   
      

 
                                           (7) 

where Gsc is the solar constant, with typical value 82 kJ m−2 min−1, dr is the inverse relative distance 

of the Earth from the Sun, ωs (rad) is the sunset hour angle, φ is the latitude (rad), and δ is the solar 

declination (rad). Variables dr and δ are periodic functions of time, while ωs is function of latitude 

and time. For details on computing the above astronomic variables, the reader may refer to the 

literature (e.g., McMahon et al., 2016). 

While for a given location the extraterrestrial radiation is a highly regular and fully predictable 

variable, thus only explaining the periodicity of PET, temperature exhibits quite irregular 

variability, thus explaining the fluctuations of PET, which is key component of the changing 
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hydrological cycle, at all temporal scales, from daily to annual and even larger ones, i.e. overannual 

(Koutsoyiannis, 2013). Following FAO recommendations, the advantage from minimum and 

maximum daily temperature data was taken, thus estimating the temperature term by the average: 

                      (8) 

This expression may be particularly useful in cases when records of mean daily temperature are 

missing, while average minimum (Tmin) and maximum temperature (Tmax) values are available. 

3.1.3 Modified Parametric Model 

It is well-known that the variability of daily and, even more, monthly PET is relatively small, if 

compared to other hydrometeorological variables, such as precipitation and runoff. For this reason, 

when attempting to estimate the model parameters a, b, and c through calibration, it is quite easy to 

achieve very high values of goodness-of-fitting criteria (e.g. efficiency), through combinations of 

parameter values that do not have physical sense. Additional uncertainty arises when the actual 

PET data is little informative to support the inference of the three parameters, e.g. due to limited 

length of associated meteorological data. In this respect, to avoid uncertainties due to “blind” 

calibration approaches or overfitting (Efstratiadis and Koutsoyiannis, 2010), we propose using the 

more parsimonious expression (also considering the minimum and maximum temperature, instead 

of the mean daily one): 

     
     

                  
  (9) 

which contains two instead of three parameters (parameter a΄ in the numerator and parameter c΄ in 

the denominator). Apparently, in the context of a calibration exercise using alternative expressions 

(6) and (7), the optimized values of c and c΄ should be different. 

The modified parameterization of the above equation resembles the well-known approach by 

Priestley and Taylor (1972), who developed a PET formula based on the original PM equation, but 

without the aerodynamic component; the latter was indirectly accounted by increasing the energy 

term by a factor of 1.26. For simplicity, this factor is generally considered as constant; however, 

several researchers have demonstrated that this exhibits quite significant seasonal and spatial 

variability (McMahon et al. 2013). 

3.1.4 The CLIMWAT Database: Preliminary Analysis 

Database Overview 

The CLIMWAT 2.0 database is a joint initiative by the Water Development and Management Unit 

and the Climate Change and Bioenergy Unit of FAO (1993), which provides average monthly 

climatic data at 4300 stations (Figure 3, blue points), well-distributed worldwide. These data 

include monthly mean values of mean daily maximum and minimum temperature (°C), daily 

relative humidity (%), wind speed (km day-1), daily sunshine duration (h), daily solar radiation 
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(MJ/m2), monthly rainfall, gross and effective (mm), as well as mean monthly ET0 estimations 

through the Penman-Monteith formula. 

The exceptionally large sample of climatic data allows for extracting useful conclusions about the 

major drivers of PET over the globe. In this context, a comprehensive statistical analysis of 

reference PET data against the available meteorological variables, at both the annual and monthly 

scales was made. 

 
Figure 3. Food and Agriculture Organization (FAO CLIMWAT) hydrometeorological network (dark areas 

indicate high altitudes). 

Which Meteorological Drivers Explain Mean Annual PET over the Globe? 

In order to answer this question, the reference PET (i.e. ET0) data against the four meteorological 

variables that are embedded in the Penman-Monteith equation was plotted, i.e. solar radiation, 

mean temperature estimated from Equation (7), relative humidity and wind speed, at the annual 

scale, and fitted the most suitable regression model.  

Figure 4 illustrates that mean annual ET0 over the globe is highly correlated with mean annual solar 

radiation and temperature, particularly when considering power-type or exponential regression 

functions. As expected, mean annual ET0 is negatively correlated with mean relative humidity, while 

it seems uncorrelated to wind speed. It is worth mentioning that as the solar radiation and 

temperature increase, the variance of ET0 increases significantly. Therefore, in order to reduce 
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heteroscedasticity effects, it is essential considering at least two explanatory variables in the 

context of empirical PET modelling. 

Figure 4 also demonstrates the variability of mean annual ET0 against mean annual sunshine 

duration and annual extraterrestrial radiation, which are typically used instead of solar radiation, in 

PET estimations (given that solar radiation observations are generally sparse, due to the cost of 

associated equipment, i.e. pyranometers, radiometers or solarimeters). Surprisingly, the mean 

annual sunshine duration is slightly less correlated with mean annual ET0 than extraterrestrial 

radiation, although the former is expected to be better estimator of the actual solar energy received 

in the Earth’s surface. This is a very important conclusion that confirms the suitability of radiation-

based approaches, using both temperature and extraterrestrial radiation as explanatory variables 

of PET. However, it is essential remarking that the overall driver of PET and temperature as well is 

net solar radiation, which is a portion of the extraterrestrial one. Furthermore, the correlation 

between PET and temperature is so much significant only at coarse time scales, such as the annual 

one, while its correlation with the solar radiation remains significant, at all temporal scales 

(Lofgren et al., 2011). 
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Figure 4. Scatter plot of mean annuals of (a) solar radiation, (b) temperature, (c) relative humidity, (d) wind 
speed, (e) sunshine duration, (f) extraterrestrial radiation vs. mean annual ET0. 

 

How Well do Extraterrestrial Radiation and Temperature Explain the Seasonal Patterns of PET? 

The key assumption of radiation-based models is that PET follows the seasonal patterns of 

extraterrestrial radiation, Ra, and temperature, T. In general, a loop-type shape exists between the 

mean monthly PET and the two aforementioned variables, due to the influence of thermal inertia, 

causing a delay in temperature changes against solar radiation changes across seasons. Apparently, 

due to the loop-shape relationship, the two pairs of variables are expected to be linearly correlated; 

actually, the more elongate the loop, the higher should be the correlation. In Figure 5, the 

relationships between monthly extraterrestrial radiation vs. mean monthly ET0 and mean monthly 

temperature vs. ET0 was estimated, at five characteristic stations in Australia, exhibiting different 
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hydroclimatic conditions, which confirm the above hypothesis. However, there are also cases where 

the shapes of T – ET0 and Ra – ET0 loops are irregular (nonconvex), thus resulting in very low, even 

negative, correlations. Such examples are shown in Figure 6, involving another set of stations in 

Australia. 

 
Figure 5. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ET0 (a) and mean monthly 

temperature, T, vs. ET0 (b) at five stations in Australia, exhibiting loop-type patterns. 
 
 

 
Figure 6. Scatter plots of monthly extraterrestrial radiation, Ra, vs. mean monthly ET0 (a) and mean monthly 

temperature, T, vs. ET0 (b) at five stations in Australia, exhibiting irregular patterns. 

In order to investigate whether extraterrestrial radiation and temperature actually explain the 

seasonal patterns of ET0 over the globe, we formulated the linear regression models of mean 

monthly ET0 against the two variables and calculated the coefficient of determination, r2 (i.e., 

square of Pearson correlation coefficient), at the full sample of 4300 CLIMWAT stations. Table 3 

summarizes the results, by means of number of stations corresponding to ranges of r2, from 0–10% 

up to 90–100%. It is shown that ET0 exhibits very high linear correlation, by means of r2 values 

greater than 0.90 against both extraterrestrial radiation and temperature at only 642 out of 4300 

stations (14.9%). This percentage rises up to 49.7% (2135 stations) is we consider a wider 

acceptable range for r2, i.e. upper than 0.80. 
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On the other hand, at 443 stations over the globe (10.3%), the coefficient of determination is less 

than 0.50 against both explanatory variables. Apparently, the particular hydroclimatic regime at 

these areas does not allow representing PET through simplified radiation-based approaches, thus 

requiring either more complex parameterizations or additional variables to explain the seasonal 

patterns of PET due to energy or water limitations, i.e. relative humidity and/or wind speed 

(McVicar et al., 2012; Guo et al., 2016). PET has been proven sensitive to potential changes in 

climate in regions with a lower temperature, less solar radiation, and greater relative humidity, 

while the influence of the wind velocity and relative humidity in its estimation is supported by 

several studies (McVicar et al., 2012; Guo et al., 2016; Rayner et al., 2017; Roderick et al., 2007; 

Roderick et al., 2009; Wang et al., 2012; Li et al., 2013). 

An interesting remark is that in 42 stations (1% of the sample), a linear regression function of 

temperature against ET0 ensures r2 greater than 0.90, while at the same stations, the correlation 

between ET0 and Ra is negligible (r2 < 0.10). The opposite case, i.e. very high correlation of PET with 

Ra, while very low with T appears only once, thus it is statistically negligible. In this vein, we can 

consider a linear regression model between mean monthly T and ET0 as benchmark to evaluate the 

performance of any other empirical model, which parameters are identified through calibration. 

Nevertheless, although a number of studies present alternatives to the PM formula (e.g., Pereira et 

al., 2015; McMahon et al., 2013), based on the sensitivity of potential evapotranspiration to 

temperature and/or solar radiation, the major advantage of our approach is the ability of point 

calibration of the involved parameters (Tegos et al., 2015). 

  



 

22 

Table 2. Ranges of coefficient of determination, r2, between monthly ET0 and the two explanatory variables, 
Ra and T, across the full sample of 4300 CLIMWAT stations. 

T vs. ET0 

Ra vs. ET0 

0–

10% 

10–

20% 

20–

30% 

30–

40% 

40–

50% 

50–

60% 

60–

70% 

70–

80% 

80–

90% 

90–

100% 
Total 

0–10% 55 17 9 12 8 9 8 7 4 1 130 

10–20% 38 11 7 4 11 8 3 3 5 3 93 

20–30% 33 16 13 13 5 7 8 10 9 4 118 

30–40% 36 14 24 10 7 5 12 12 8 15 143 

40–50% 29 14 17 18 22 17 19 13 13 18 180 

50–60% 34 10 17 16 17 28 26 21 26 31 226 

60–70% 30 10 23 15 21 30 37 30 31 52 279 

70–80% 45 11 15 19 28 20 44 48 77 135 442 

80–90% 69 14 14 10 17 34 38 78 362 643 1279 

90–100% 42 6 6 5 9 30 35 147 488 642 1410 

Total 411 123 145 122 145 188 230 369 1023 1544 4300 

Model Calibration and Evaluation Criteria 

The large-scale PET information provided by FAO CLIMWAT database was used as reference data, 

for calibrating the parametric expression, thus providing local estimations of parameters a΄ and c΄ 

at all station sites. For the evaluation of the model performance against reference PET (i.e. ET0) the 

following statistical criteria were used: 

The coefficient of determination, most commonly referred to as efficiency or Nash-Sutcliffe 

efficiency: 

      
        

        
    

   

        
          

    
  

   

  (10) 

1. The mean absolute error: 
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2. The relative bias: 

     
        

        
  

    

        
  

    
  (12) 

where       
  is the ET0 value, estimated by the PM formula at time step t,       

  is the modeled 

value at time step t,         
    is the monthly average value of the reference PET, and T is total number 

of time steps (in the particular case, T equals the number of months, i.e. Oudin et al., 2005). 

In calibrations, as performance measure the NSE was used, while the two other statistical metrics 

have been used for further evaluation. It is well-known that NSE ranges between −∞ and 1, with 

NSE = 1 indicating perfect fitting of the modelled against the given reference values. Due to the 

generally high linear correlations of Ra and T against ET0, we only consider values greater than 0.70 

as satisfying, whereas positive values less than 0.50 are only marginally accepted. On the other 

hand, negative NSE values are definitely unacceptable, since they indicate that the mean observed 

value is a better predictor than the simulated value. The mean absolute error and the bias are quite 
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similar metrics, quantifying in absolute (i.e. mm/month) and relative (%) terms the deviation of the 

mean modelled ET0 from the corresponding mean reference value,       . 

Optimization Procedure 

At each station the associated global optimization problem was formulated, based on the given 12 

monthly average values of ET0, and using NSE as the objective function to maximize against 

parameters a΄ and c΄. Within calibration, a quite extended feasible space was considered, by 

allowing a΄ and c΄ to vary within ranges [–0.02, 0.02] and [–5.0, 5.0], respectively. The global search 

was carried out with the evolutionary annealing-simplex algorithm, which is a heuristic technique 

that has been proved very effective on locating global optima in highly nonlinear spaces 

(Efstratiadis and Koutsoyiannis, 2002; Tsoukalas et al., 2016). 

Due to the exceptionally large number of calibration problems to be solved at the full sample of 

4300 stations, the computational procedure was automatized in a MATLAB environment. 

Assessment against Linear Regression Estimations 

In order to assess the predictive capacity of the parametric model, the performance against two 

benchmarks by means of linear regression models of reference PET against T and Ra was compared. 

In Figure 7  the ranges of coefficients of determination is presented , r2, achieved by the two linear 

regression models and the nonlinear parametric model, for the entire sample of 4300 stations. The 

parametric model ensures very satisfying efficiency (NSE > 0.90) in 58.8% of stations, while only 

32.8% and 35.9% of stations exhibit such good performance, considering the linear regression 

models against T and Ra, respectively. In 2562 stations (59.6%), the parametric approach 

outperforms both regression models, while in 1327 stations (30.9%) it outperforms at least one 

model. Only in 411 stations (9.6%) the two benchmarks achieve a higher r2 than the parametric 

approach. It should be remark that in linear regression theory, r2 is mathematically equivalent to 

efficiency, which is the most widely used goodness-of-fitting measure for evaluating nonlinear 

models. However, while the coefficient of determination of a nonlinear model can take any value 

from −∞ to unity, in linear regression this metric is by definition non-negative (r2). Moreover, linear 

regression models are by definition unbiased, given that the least-square line is forced to pass 

through the observed mean. 

However, there are relatively few cases where the parametric model, even after calibration, does 

not ensure good predictive capacity. In particular, at 10.3% of stations, the model exhibits 

marginally accepted performance (0 < NSE < 0.50), while in 4.7% of stations the model predictions 

are definitely unacceptable (NSE < 0). In these cases, it is impossible to achieve acceptable 

predictions of mean monthly ET0 through the parameterization implemented because of the 

irregular relationship of ET0 vs. the two explanatory variables, or due to the influence of additional 

meteorological drivers (relative humidity and wind speed) as rationalized in previous Section. 
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Figure 7. Ranges of coefficient of determination for the linear regression functions of monthly reference PET 

against Ra and T, and the nonlinear parametric model. 

Assessment against Hargreaves-Samani Estimations 

The substantial advantage of a parametric approach, allowing calibration, over an empirical 

formula with given numerical constants, is further highlighted by contrasting our predictions with 

the ones provided by the well-known Hargraves-Samani equation, given by: 

                                             
   (13) 

where T is the mean monthly temperature. 

As shown in Table 3, providing abstract information on model efficiency in terms of quartiles, in the 

majority of stations the predictive capacity of Equation above is absolutely disappointing, mainly 

due to the existence of substantial bias in ET0 estimations (Equation 13) across stations. This bias is 

actually embedded in the coefficients that are embedded in above Equation, which have been 

estimated on the basis of specific climatic regime, which cannot be representative of any conditions 

worldwide. On the other hand, Equation (9) with calibrated parameters ensures very satisfactory 

performance in an extended part of the station sample, since the model is adapted to local climatic 

conditions.  

Table 3. NSE quartiles for the Hargraves-Samani against the parametric model. 

Quartiles Hargreaves-Samani Parametric 

Minimum value −327.204 −5.997 

1 −5.834 0.721 

2 −0.971 0.947 

3 0.245 0.984 

4 0.980 0.999 

Final Data Sample 

Based on point calibration results, from further analysis the 4.7% of stations exhibiting negative 

efficiency were excludes, thus the final sample was restricted to 4088 stations. For convenience, we 

grouped them in five geographical zones, namely 908 stations in Africa, 352 in the wider region of 
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Oceania, 1854 in Eurasia, 369 in North America, and 605 in South America. As shown in Table 4, the 

majority of the stations (69.9%) are located in altitudes between 0 and 500 m, 21.6% of them are 

located between 500 and 1500 m, while only 8.5% of them are placed in altitudes greater than 

1500 m. It can been seen that the stations located in Eurasia and in America follow a quite similar 

distribution, while in the case of Africa there is a larger percentage located in higher altitudes. On 

the other hand, in Oceania, the majority of stations are placed in altitudes up to 500 m. 

Table 4. Altitude distribution (%) of the calibration set of CLIMWAT stations (4088 stations, in total). 

Region 
Altitude 

< 500 m 500–1000 m 1000–1500 m > 1500 m 
Africa 53.6 14.5 16.2 15.7 

Oceania 90.9 6.7 0.9 1.5 
Eurasia 75.8 12.9 6.9 4.4 

N. America 68.1 14 7.7 10.2 
S. America 65.4 15.9 5.3 13.4 

Total 69.9 13.3 8.3 8.5 

Residuals Analysis for Stations with Negative NSE 

In order to explain the poor performance of the model at the problematic 212 stations shown in 

Figure 8 (highlighted with blue points), the model residuals was investigated, i.e. the differences 

between model predictions and PM estimations. As shown in Figure 9, the residuals are 

approximately normally distributed, while as shown in Figure 10, they are uncorrelated. Therefore, 

the statistical behavior of the residuals is close to the desirable one (i.e. white noise), indicating 

absence of systematic errors (Kitanidis, 1997; Malamos and Koutsoyiannis, 2015). The negative 

NSE values are attributed to local overestimation during the warm months or underestimation 

during the cold months of the year, respectively, driven from the absence of relative humidity and 

wind speed from the parametric model formulation. 
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Figure 8. CLIMWAT stations with negative NSE. 
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Figure 9. Normal probability plot of the empirical distribution function of the mode residuals using Weibull 

plotting positions against normal distribution function N (0, 0.7), for stations with negative NSE. 
 

 
Figure 10. Residuals vs parametric PET for stations with negative NSE. 

 

In order to further evaluate the effect of missing information of relative humidity and wind speed 

on the produced residuals, we plotted both of them along with the corresponding linear models, as 

presented in Figure 11. This illustrates that there is a significant linear correlation between the 

relative humidity and the estimation errors - residuals while the opposite seems to be the case for 

the wind speed. The absence of these two variables as explanatory input variables within the 

parametric model seem to be crucial in regions with seasonal variations of ET0 due to energy or 

water limitations mainly in the tropical zone, as shown in Figure 8. 
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Figure 11. Residuals vs. humidity (a) and wind speed (b) for stations with negative NSE. 

Evaluation of Model Performance across Geographical Zones 

According to the acquired values of NSE (Table 5, Figure 12), the parametric model performs well 

in Eurasia, North America, and the wider region of Oceania, where 80%, 80%, and 77% of stations, 

respectively, present efficiency values more than 0.80. In South America, 66% of stations achieve a 

score greater than 0.80, while in Africa, this percentage falls to 50%. In particular, 22% of stations 

in Africa achieved NSE values below 0.50, which indicates a poor predictive capacity. 

The mean absolute error of the parametric model in every geographical unit is small (Table 6). In 

South America, the MAE of the 95% of the stations is below 4 mm/month. This percentage is 88% 

for the wider region of Oceania, 79% for North America, 76% for Eurasia, and 72% for Africa. 

Table 7 summarizes the values of the relative bias of the parametric model against the reference 

PET values, for all of the geographical units (Figure 12). It is obvious that the values are generally 

small, ranging from –0.122 to +0.062 proving that the results of the parametric model are almost 

unbiased for the majority of the stations. The differences between the biases across the 

geographical zones are not important, since the variation between the extreme values is similar. 

The overall evaluation of the model across the different geographical areas is very satisfactory. All 

of the metrics prove that the predictive capacity of the model is very satisfying across Eurasia, 

North America, and the wider region of Oceania. On the other hand, in the equatorial regions of 

South America, Africa as well as the Indian and Indonesian Peninsula (Figure 8), the model 

performs poorly according to the NSE criterion, probably because it does not account for relative 

humidity and wind speed, which are key drivers of the evapotranspiration processes across these 

areas, influencing the net incoming solar radiation and the evaporation demand. 
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Table 5. Number of stations and associated NSE intervals across geographical zones. 

Region 1.0–0.9 0.9–0.8 0.8–0.7 0.7–0.6 0.6–0.5 <0.5 

Africa 34 16 12 9 7 22 

Oceania 67 10 7 4 1 11 

Eurasia 68 12 7 4 3 6 

N. America 65 15 5 3 2 10 

S. America 54 12 10 7 6 11 

 
Table 6. Number of stations and associated intervals of monthly MAE across geographical zones. 

Region 0–2 mm 2–4 mm 4–6 mm 6–8 mm 8–10 mm >10 mm 

Africa 36 36 15 6 3 4 

Oceania 52 36 9 3 0 0 

Eurasia 39 37 17 5 1 1 

N. America 40 39 17 3 1 0 

S. America 69 26 4 1 0 0 

 
Table 7. Number of stations and associated intervals of BIAS across geographical zones. 

Region –0.122–0.000 0.000–0.001 0.001–0.062 

Africa 65 14 21 

Oceania 38 12 50 

Eurasia 72 5 23 

N. America 68 13 19 

S. America 55 15 30 
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Figure 12. Distribution of NSE across CLIMWAT stations. 
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Figure 13. Distribution of BIAS across CLIMWAT stations. 
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Spatial Analysis and Model Validation 

Spatial Interpolation of Optimized Parameters 

Even though point PET estimates can be used for small-scale studies, it is the regionalisation of PET 

that is of great significance in hydrological science (Merz and Blöschl, 2004). A preliminary attempt 

in PET mapping was presented by Foyster (1973), and followed by several publications where 

different spatial interpolation methods have been applied (Dalezios et al., 2002; Mardikis et al., 

2005; Vicente-Serrano et al., 2007), with satisfying performance. In a recent study, Tegos et al. 

(2015) illustrated that the inverse distance method (IDW) was the most efficient than other 

interpolation techniques, i.e. Kriging, Bilinear Surface Smoothing and Natural Neighbours. 

Furthermore, IDW is a straightforward and computationally non-intensive method, which is 

capable to address the huge spatial extent of the study area, i.e. the entire globe. 

Formally, the IDW method is used to estimate the unknown value        in location S0 given the 

observed y values at sampled locations Si in the following manner:  

                

 

   

  (14) 

  

Essentially, the estimated value in S0 is a linear combination of the weights (λi) and observed y 

values in Si, where λi is defined as: 

   
   

  

    
   

   

  (15) 

with:  

   

 

   

    (16) 

In the above Equation, the numerator is the inverse of distance d0i between S0 and Si with a power α, 

and the denominator is the sum of all inverse-distance weights for all locations i (in the particular 

case, all stations exhibiting positive efficiency). 

Spatial Distribution of Parameters 

The approach allows for mapping the spatial distribution of the optimized model parameters a΄ and 

c΄, instead of its response, i.e. PET. This is a major advantage, since it allows implementing Equation 

(5) wherever in the globe, using interpolated values of the point (i.e., locally calibrated) parameters. 

It is interesting to note that the two parameters are negatively correlated (Figure 14), thus 

reflecting the significant correlation of the associated meteorological variables of the parametric 

formula (extraterrestrial radiation, in the numerator, and temperature, in the denominator). 
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Figure 14. Scatter plot of optimized parameters through the final data sample of 4088 stations exhibiting 

positive NSE values. 

In this context, based on the optimized parameters from the final data set of 4088 stations (as 

already explained, the rest of stations are not acceptable, and hence the corresponding parameter 

values will be unreliable), maps of spatially-interpolated parameters over the globe were created. 

The IDW method was employed in a GIS environment, considering for practical reasons (i.e., in 

order to avoid extreme computational burden), a relatively large grid size of 0.1 decimal degrees in 

WGS84 coordinate system and a variable search radius including the 12 nearest stations, in order 

to tackle the measurement of large distances across the globe.  

Figure 15 illustrates the spatial distribution of parameter a΄. The highest values are generally 

observed around the equatorial zone, while they are getting lower as we move away from it. This is 

a reasonable outcome since this parameter is associated with solar radiation. This means that 

around the equatorial zone, where the incoming solar radiation is higher, the values of parameter a΄ 

are to be higher while around the poles, where solar radiation is lower, the values of parameter a΄ 

were expected to be lower. Another observation is that in the case of two stations, one located at 

Brazil and one at the Democratic Republic of Congo, the calculated values for parameter a΄ were 

low, creating “sinkholes” in the corresponding maps. This is explained from the fact that at those 

areas, the hydro-meteorological network is not dense enough, thus the influence of the specific 

stations extends, as a direct effect of the IDW implementation and also the tropical forest providing 

high humidity regime can be influenced. Apart from this, the spatial analysis of parameter a΄ is 

normal and physically explained. 
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Figure 15. Spatial distribution of parameter a΄ over the globe. 

In contrast to parameter a΄, the spatial distribution of parameter c΄, depicted in Figure 16, the 

lowest values around the equatorial zone, while these are getting higher as we move away from the 

equator. Since c΄ is inversely proportional to temperature, it was expected that its values get higher 

as temperature is getting lower and vice versa. In the case of the above stations, i.e. one at Brazil 

and one at the Democratic Republic of Congo, the values of parameter c΄ were extremely high, 

contrariwise to parameter a΄. The explanation for this phenomenon is the same as above, yet in this 

case the interpolation method resulted in a ridge-type distribution over the specific areas. 

Conclusively, the model results can be considered reliable, since the spatial distribution of both 

parameters around the globe is physically explained, while minor irregularities are also attributed 

to physical reasons, i.e. inadequate representation of humidity and wind processes.  
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Figure 16. Spatial distribution of parameter c΄ over the globe. 

Model Validation  

The validation of the model was performed by comparing monthly ET0 predictions provided by the 

parametric formula using interpolated parameters against PM estimates in a number of 

independent stations. In particular, two validations sets was considered, a “local” and a “global” 

one. The former comprises 37 stations across California, for which monthly meteorological time 

series are available from the California Irrigation Management Information System (Hart et al., 

2009). The “global” set comprises 17 stations from countries with different hydroclimatic regimes 

(Spain, Germany, Ireland, Greece, Iran, and Australia), for which we obtained full time series of the 

required meteorological data, at the monthly scale, form various data sources. 

For the local validation set (Table 8), the model predicts monthly ET0 with significant accuracy, thus 

exhibiting an average efficiency up to 0.855, and an average bias of only −0.07. Except for three 

stations (Bishop, Castroville, De Laveaga), the NSE exceeds 0.70, while in 17 out of 37 stations it 

exceeds 0.90. This indicates an almost perfect performance, particularly when taking into account 

that the model has been calibrated using abstract (i.e. mean monthly) meteorological information 

over the entire globe, while the validation set comprises detailed data, both in terms of spatial 

extent and temporal resolution. Similarly satisfying are the outcomes from the global validation set, 

which are summarized in Table 9 (average efficiency 0.852, average bias 0.02), thus confirming the 

model predictive capacity across different climates. 
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Table 8. Statistical indices for the local validation dataset (CIMIS stations, California, USA). 

a/a Station Validation period NSE MAE (mm) BIAS 

1 Five Points 6/1982–6/2013 0.880 20.4 −0.09 

2 Davis 10/1982–6/2013 0.857 13.8 −0.01 

3 Firebaugh/Telles 10/1982–6/2013 0.897 16.8 −0.09 

4 Gerber 10/1982–6/2013 0.896 17.9 −0.10 

5 Durham 10/1982–6/2013 0.870 19.7 −0.14 

6 Carmino 11/1982–6/2013 0.952 11.3 −0.01 

7 Stratford 11/1982–6/2013 0.913 17.2 −0.06 

8 Castroville 12/1982–6/2013 0.442 23.7 −0.23 

9 Kettleman 12/1982–6/2013 0.903 18.8 −0.10 

10 Bishop 3/1983–6/2013 0.475 16.5 0.03 

11 Parlier 6/1983–6/2013 0.858 22.1 −0.16 

12 McArthur 12/1983–6/2013 0.940 11.5 0.01 

13 U.C. Riverside 6/1985–6/2013 0.858 13.2 0.08 

14 Brentwood 5/1986–10/2006 0.930 13.2 −0.06 

15 San Luis Obispo 5/1986–6/2013 0.856 12.0 −0.08 

16 Blackwells corner 5/1987–6/2013 0.939 13.7 −0.05 

17 Los Banos 6/1988–6/2013 0.926 14.0 −0.06 

18 Buntingville 5/1986–6/2013 0.953 11.1 0.03 

19 Temecula 12/1986–6/2013 0.769 12.9 0.02 

20 Santa Ynez 12/1986–6/2013 0.842 13.6 −0.10 

21 Seeley 6/1987–6/2013 0.845 18.4 0.03 

22 Manteca 12/1987–6/2013 0.796 25.2 −0.10 

23 Modesto 10/1987–6/2013 0.922 14.7 −0.06 

24 Irvine 11/1987–6/2013 0.803 13.2 −0.10 

25 Oakville 10/1989–6/2013 0.930 13.3 −0.10 

26 Pomona 4/1989–6/2013 0.701 19.0 −0.15 

27 Fresno State 11/1988–6/2013 0.906 18.4 −0.12 

28 Santa Rosa 1/1990–6/2013 0.894 11.5 −0.09 

29 Browns Valley 5/1989–6/2013 0.856 22.3 −0.16 

30 Lindcove 6/1989–6/2013 0.782 31.0 −0.22 

31 Alturas 5/1989–6/2013 0.916 10.4 −0.02 

32 Cuyama 10/1989–6/2013 0.950 11.5 0.05 

33 Tulelake FS 5/1989–6/2013 0.922 11.9 0.05 

34 Windsor 1/1991–6/2013 0.905 11.4 −0.09 

35 De Laveaga 10/1990–6/2013 0.676 21.8 −0.19 

36 Westlands 5/1992–6/2013 0.932 15.0 −0.03 

37 Sanel Valley 2/1991–6/2013 0.939 11.0 −0.02 

Average 0.855 16.0 −0.07 
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Table 9. Statistical indexes for the global validation dataset. 

a/a Station Country Validation period NSE MAE (mm) BIAS 

1 Aachen Germany 01/1951–5/2011 0.955 6.8 0.06 

2 Bremen Germany 01/1951–5/2011 0.954 5.5 0.03 

3 Alicante Spain 01/1980–09/2010 0.916 11.1 0.00 

4 Badajoz Spain 01/1961–05/2005 0.921 13.0 −0.09 

5 Valencia Spain 09/1954–08/1964 0.893 10.0 −0.06 

6 Zaragoza Spain 02/1974–01/1996 0.953 10.8 −0.01 

7 Herakleion Greece 01/1968–12/1989 0.947 10.2 −0.00 

8 Kerkyra Greece 01/1968–12/1989 0.936 9.8 −0.09 

9 Kavala Greece 01/1968–12/1989 0.835 13.5 0.04 

10 Limnos Greece 01/1968–12/1989 0.762 24.3 0.12 

11 Athens Greece 01/1968–12/1989 0.924 13.6 0.03 

12 Melbourne Australia 01/2009–1/2016 0.752 18.5 0.17 

13 Dublin Ireland 01/2013–6/2016 0.870 5.1 −0.09 

14 Bandar-Anzali Iran 1/1990–12/2005 0.875 13.9 −0.16 

15 Ramsar Iran 1/1990–12/2005 0.788 16.2 0.15 

16 Khorram-Abad Iran 1/1990–12/2005 0.400 38.3 0.37 

17 Kashan Iran 1/1990–12/2005 0.804 19.6 −0.13 

Average 0.852 14.1 0.02 

 

3.1.5 Conclusions 

 The concept of parametric PET modelling was thoroughly analyzed, by performing a global survey 

of its applicability. The model has a very simple structure and uses easily retrieved information, by 

means of air temperature and extraterrestrial radiation. Therefore, the model is simultaneously 

simple and parsimonious, in terms of both parameterization and data requirements. 

Preliminary analysis of the extended climatic data at 4300 stations worldwide, provided by the FAO 

CLIMWAT database, allowed for justifying the use of temperature and extraterrestrial radiation as 

key explanatory variables of reference PET over the globe. However, it also indicated that in few 

cases the two variables exhibit irregular seasonal patterns, which cannot be adequately 

represented through simple modelling structures. The statistical analysis of the residuals, in these 

cases, showed that the model is consistent in terms of parameters estimation and model validation. 

At all CLIMWAT stations, optimal estimations of model parameters c΄ and a΄ were provided, by 

calibrating them against given Penman-Monteith values at the mean monthly scale. Using typical 

goodness-of-fitting criteria (efficiency, mean absolute error, relative bias),  the model performance 

was evaluated, which was generally very satisfying in a large portion of stations. However, in less 

than 10% of the data set the calibrated model exhibited negative efficiency. Further analysis across 

broader geographical regions showed that the model deviates from the Penman-Monteith PET 
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estimates in some locations, which is rather expected due to the significant influence of relative 

humidity and wind speed, which are not accounted for in the parametric model. 

An important outcome of this research was the generation of spatially distributed maps of model 

parameters, by employing the IDW interpolation technique against their optimized values at 4088 

out of 4300 stations, exhibiting non-negative efficiency.  The spatial pattern of both parameters 

over the globe is fully reasonable, which is a strong indicator of their physical consistency. These 

maps can be straightforwardly used to provide suitable parameter values at both the local and 

regional scale, thus allowing for the direct use of the parametric model wherever in the world.  

The validation procedure against PM estimates from detailed meteorological information (i.e. 

monthly time series) from 37 stations across California, as well as 17 independent stations across 

Europe, Asia, and Australia, proved that the application of the parametric model using spatially 

interpolated parameters provides reliable estimates, thus being a promising alternative of the 

widely recognized yet data demanding Penman-Monteith approach, when there is lack of the full 

data set that the latter requires. 
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4 Parametric model in CIMIS network  

4.1 Introduction  

The following chapters present the development of the Parametric model in the CIMIS network 

(California) along with some locals stations in Spain and Germany. The performance of the new 

model was compared with well-established radiation-based (Hargreaves, Jensen-Haise, Mcguiness-

Bordne), temperature-based (Thorhwaite, Blaney Criddle) models. Finally, alternative spatial 

techniques were applied for identifying the optimal interpretation of the spatial PET information.  

4.2 Parametric formula 

Parsimonious modeling is essential in several water discipline fields (Koutsoyiannis 2009, 

Koutsoyiannis 2014).  In this vein, the hydro model structure and the input should be easily 

available. Due to highly complexity of the P-M equation, most of simplified formulas fail to describe 

the phenomenon of evapotranspiration. Thus, the idea of replacing some variables and constants 

used in the standard Penman-Monteith (PM) formula by a number of parameters which are 

regionally varying and estimated through calibration from a reference evapotranspiration sample, 

constitutes a new appealing strategy for evapotranspiration estimation. 

Koutsoyiannis and Xanthopoulos (1999), Tegos et al. (2009) and Tegos et al. (2013) examined the 

structure and the sensitivity of input data in PM model. They concluded that there is a direct 

relationship between potential evapotranspiration, extraterrestrial radiation and temperature. 

Furthermore, Mamassis et al. (2014) reached to the conclusion that the influence of every 

meteorological parameter in evaporation is almost linear, with temperature having the greater 

influence. 

By dividing both the numerator and the denominator by Δ, the PM equation can be written in the 

form: 

                                               PET = 
1
 ρ 

Rn  + γ  F(u) D
1 + γ'   Δ                                                                 (17) 

In the above expression, the numerator is the sum of a term related to solar radiation and a term 

related to the rest of meteorological variables, while the denominator is function of temperature. 

Based on the previous analysis, a simplification of the Penman-Monteith formula, where the 

numerator is approximated by a linear function of extraterrestrial solar radiation, while a linear 

descending function of temperature approximates the denominator, can be described by the 

following formula: 

                                                            PET = 
a Ra   b
1   c Ta

   (18) 
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where PET (mm) is the potential evapotranspiration, Ra (kJ m–2) is the extraterrestrial shortwave 

radiation calculated without measurements and Ta (°C) is the air temperature. 

Equation (18) contains three parameters, i.e. a (kg kJ–1), b (kg m–2) and c (°C–1), to which a physical 

interpretation can be assigned. Since extraterrestrial solar radiation is the upper bound of net 

shortwave radiation, the dimensionless term a* = a / λρ represents the average percentage of the 

energy provided by the sun (in terms of Ra) and, after reaching the Earth’s terrain, is transformed 

to latent heat, thus driving the evapotranspiration process. Parameter b lumps the missing 

information associated with aerodynamic processes, driven by the wind and the vapour deficit in 

the atmosphere. Finally, the expression 1 – cTa approximates the term: 1 + γ/Δ. We recall that γ΄ is 

a function of the surface and aerodynamic resistance (equation 5) and Δ is the slope vapour 

pressure curve, which is a function of Ta. 

4.3 Radiation-Based and temperature-based models 

Another widely used approach is the temperature-based Hargreaves model (Hargeaves and Samani 

1982) that estimates the reference evapotranspiration at monthly and daily scale. The method has 

received considerable attention because it can produce very acceptable results under diverse 

climates using only temperature and radiation measurements (Shahidian et al. 2013). According to 

several researchers (Samani 2000, Xu and Singh 2002) the method performs poorly in extreme 

humidity and wind conditions. 

A recent study (Oudin et al. 2005), evaluated a number of evapotranspiration methods, on the basis 

of precipitation and streamflow data from a large sample of catchments in the USA, France and 

Australia. After extended analysis with the use of four hydrological models, the researchers 

modified the Jensen and McGuiness model and proposed a generalized radiation- based equation. 

Table 10 summarizes the expressions that estimate PET according to the above-mentioned 

methodologies: 

Table 10. Radiation-based and temperature- based methods for potential evapotranspiration estimation. 

Method Jensen and Haise Mcguiness and Bordne Hargreaves Oudin  

PET  

expression 

Ra Ta

40 λ ρ
 

Ra (Ta + 5)

68 λ ρ
 0.0023

Ra

λ
 (Tα + 17.8) (Tmax – Tmin)0.5 

Ra (Ta + 5)

100 λ ρ
 

where PET (mm d
–1, equivalent to kg m–2 d–1 of the dimensionally consistent Penman- Monteith 

equations) is the potential evapotranspiration, Ra (kJ m–2d–1) is the extraterrestrial shortwave 

radiation, Ta (°C) is the air temperature, λ is the latent heat of vaporization (kJ kg–1) and ρ is the 

water density (kg L–1). 

The Thornthwaite model (Thornthwaite, 1948) is the most simplified method and requires only 

temperature measurements. The model’s form is: 

PET = 1.6 Ld 



10 Ta 

I

a
 (19) 
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where PET is the potential evapotranspiration (mm/month), Ld is the daytime length, Ta is the mean 

monthly air temperature (oC), I is the annual heat index and a is an empirically determined 

parameter which is function of I. 

The temperature-based Blaney-Criddle method (Blaney and Criddle, 1962) has received worldwide 

application for the estimation of irrigation demands. The model expression is:  

                           (20) 

where PET is the potential evapotranspiration (mm/month), Ta the mean temperature (oC), K is the 

monthly consumptive use coefficient and p is the mean daily percentage of annual daytime hours. 

4.4 Hydrometeorological data and computational tools 

For exploration purposes, monthly meteorological data from 39 CIMIS stations were used, available 

at www.cimis.water.ca.gov, 10 stations from Germany and finally 4 stations from Spain (Table 11). 

The European data are freely available in the European Climate Assessment dataset 

(http://eca.knmi.nl/). Stations latitudes range from N 32.76o to N 53.38o and their altitude varies 

from 2.74 m to 1342.6 m.  

The available data comprise mean temperature, relative humidity, sunshine duration and wind 

velocity. At all CIMIS stations the data covers the period from October 1992 to September 2012 

while the European stations cover the period from January 1948 to December 2013. The choice of 

the time-periods was based on the simultaneous availability of the four required 

hydrometeorological variables (temperature, sunshine duration, humidity, wind speed). 

Additionally, the selection of each station and especially those from the CIMIS network was based 

on the existence of adequate length time series for the processes involved, i.e. 20 years. 

Table 11. Meteorological stations used for the evaluation of the potential evapotranspiration methods 
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The time series processing along for the implementation of the different approaches for potential 

evapotranspiration estimation, i.e. Penman-Monteith, parametric and Hargreaves, was carried out 

using the free software application Hydrognomon (Kozanis et al. 2010, http://hydrognomon.org/), 

while the remaining expressions (Jensen, McGuiness and Oudin) were evaluated through 

spreadsheets. 

4.5 Statistical criteria 

The main statistical criterion used for the evaluation of the methodologies performance against the 

values computed by the Penman Monteith method (PM) was the coefficient of efficiency (CE), 

introduced by Nash & Sutcliffe (1970): 

                                                                       CE = 1   


i=1

n
( )PEi   PMi

2

 
i=1

n

(PM
   

   PMi)2

  (21) 

Νο. Station name, Location Νο. Station name, Location Νο. Station name, Location 

1 Five Points, U.S.A. 19 Buntigville, U.S.A. 37 De Laveaga, U.S.A. 

2 Davis, U.S.A. 20 Temecula, U.S.A. 38 Westlands, U.S.A. 

3 Firebaugh Teles, U.S.A. 21 Santa Ynez, U.S.A. 39 Sanel Valley, U.S.A. 

4 Gerber, U.S.A. 22 Seeley, U.S.A. 40 Aachen, Germany 

5 Durham, U.S.A. 23 Manteca, U.S.A. 41 Angermunde, Germany 

6 Carmino, U.S.A. 24 Modesto, U.S.A. 42 Bremen-Seefahrtshule,  

Germany 

7 Stratford, U.S.A. 25 Irvine, U.S.A. 43 Dresden-Klotzsche,  

Germany 

8 Castorville, U.S.A. 26 Oakville, U.S.A. 44 Dusseldorf, Germany 

9 Kettleman, U.S.A. 27 Pomona, U.S.A. 45 Frankfurt, Germany 

10 Bishop, U.S.A. 28 Frenso State, U.S.A. 46 Hamburg Fuhlsbuettel,  

Germany 

11 Parlier, U.S.A. 29 Santa Rosa, U.S.A. 47 Karlsrhue, Germany 

12 Calipatria, U.S.A. 30 Browns Valley, U.S.A. 48 Muenchen-Flughafen,  

Germany 

13 Mc Arthur, U.S.A. 31 Lindcove, U.S.A. 49 Stuggart-Schnarreberg,  

Germany 

14 UC Riverside, U.S.A. 32 Meloland, U.S.A. 50 Alicante, Spain 

15 Brentwood, U.S.A. 33 Alturas, U.S.A. 51 Badajoz Televera, Spain 

16 San Luis Obispo, U.S.A. 34 Cuyama, U.S.A. 52 Valencia, Spain 

17 Blackwells Corner, U.S.A. 35 Tulelake, U.S.A. 53 Zaragoza Aeropuerto,  

Spain 

18 Los Banos, U.S.A. 36 Windsor, U.S.A.   
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where PMi and PEi are the potential evapotranspiration values of month i, computed by the 

Penman-Monteith method and the other model respectively, PM––– is the monthly average over the 

common data period estimated by the Penman-Monteith formula while n is the sample size.  

Additionally, we applied several statistical measures, such as the mean bias error: 

                                                                     MBE = 
1
n 

i=1

n
( )PEi   PMi  (22) 

the mean average error: MAE = 
1
n 

i=1

n
 |PEi   PMi| (23) 

and the root mean square error: RMSE = 











1
n 

i=1

n

(PEi   PMi)2  

1/2

 (24) 

CE ranges between −∞ and 1 (1 inclusive), with CE = 1 being the optimal value. Values between 0 

and 1 are generally regarded as acceptable levels of performance, whereas values less than 0 

indicate that the mean observed value is a better predictor than the simulated value, which 

indicates unacceptable performance. MBE, MAE and RMSE values of  0 indicate a perfect fit (Moriasi 

et al. 2007).  

4.6 Results  

The implementation of the parametric model was accomplished by calculating the three 

parameters involved at each station, as mentioned above. This procedure is automated via a least 

square optimization technique, embedded in the Hydrognomon software (Kozanis et al. 2010, 

http://hydrognomon.org/), providing means for acquiring optimized values of a, b and c 

parameters for the parametric method application. 

The calculated monthly Penman-Monteith potential evapotranspiration time series acted as the 

reference data sets against which the comparisons between the different methodologies took place. 

Table 12 summarizes the values of the parameters for each of the 53 stations, acquired by the 

procedure described above.  
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Table 12:  Meteorological stations numbers and corresponding parameter values for the parametric method 

 

4.7 Comparison with radiation-based methods 

Figure 17 presents the mean annual potential evapotranspiration calculated by the Penman-

Monteith method for each one of the 39 CIMIS stations against the parametric and the other four 

methods. It is clear that the parametric, Hargreaves and McGuiness models respect the variation of 

Station a b c Station a b c 

Νο. (kg kJ
–1

) (kg m
–2

) (°C
–1

) Νο. (kg kJ
–1

) (kg m
–2

) (°C
–1

) 

1 1.47 10
–4

 1.49 1.58 10
–2

 28 1.29 10
–4

 1.3 1.73 10
–2

 

2 1.04 10
–4

 6.51 10
–1

 2.15 10
–2

 29 8.88 10
–5

 6.09 10
–1

 2.63 10
–2

 

3 1.46 10
–4

 1.48 1.47 10
–2

 30 8.95 10
–5

 4.07 10
–1

 2.11 10
–2

 

4 1.02 10
–4

 4.97 10
–1

 1.93 10
–2

 31 1.12 10
–4

 1.04 1.74 10
–2

 

5 1.97 10
–4

 2.07 –2.70 10
–4

 32 2.12 10
–4

 2 4.94 10
–3

 

6 8.82 10
–5

 2.49 10
–1

 2.34 10
–2

 33 7.92 10
–5

 –2.20 10
–1

 2.44 10
–2

 

7 1.12 10
–4

 –2.50 10
–1

 1.44 10
–2

 34 1.08 10
–4

 4.03 10
–1

 1.97 10
–2

 

8 1.68 10
–4

 1.06 –3.60 10
–2

 35 9.28 10
–5

 5.20 10
–2

 2.12 10
–2

 

9 1.34 10
–4

 1.23 1.62 10
–2

 36 8.65 10
–5

 5.66 10
–1

 2.60 10
–2

 

10 1.43 10
–4

 7.39 10
–1

 1.05 10
–2

 37 1.02 10
–4

 5.82 10
–1

 1.24 10
–2

 

11 1.29 10
–4

 1.32 1.61 10
–2

 38 1.40 10
–4

 1.33 1.67 10
–2

 

12 1.69 10
–4

 1.32 8.86 10
–3

 39 9.88 10
–5

 6.54 10
–1

 2.37 10
–2

 

13 9.75 10
–5

 4.26 10
–1

 2.36 10
–2

 40 3.96 10
–5

 –2.46 10
–1

 2.62 10
–2

 

14 8.68 10
–5

 5.10 10
–2

 1.78 10
–2

 41 3.96 10
–5

 –2.58 10
–1

 2.73 10
–2

 

15 1.11 10
–4

 9.00 10
–1

 2.09 10
–2

 42 4.28 10
–5

 –1.64 10
–1

 2.68 10
–2

 

16 8.10 10
–5

 1.60 10
–1

 2.28 10
–2

 43 3.67 10
–5

 –3.45 10
–1

 2.81 10
–2

 

17 1.21 10
–4

 1.02 1.89 10
–2

 44 4.12 10
–5

 –3.02 10
–1

 2.64 10
–2

 

18 1.31 10
–4

 1.31 1.81 10
–2

 45 4.75 10
–5

 –8.8 10
–2

 2.62 10
–2

 

19 9.29 10
–5

 –1.10 10
–1

 2.11 10
–2

 46 4.18 10
–5

 –1.66 10
–1

 2.66 10
–2

 

20 6.66 10
–5

 –2.80 10
–1

 2.10 10
–2

 47 4.64 10
–5

 –6.6 10
–2

 2.58 10
–2

 

21 9.44 10
–5

 4.91 10
–1

 2.06 10
–2

 48 4.69 10
–5

 –8.8 10
–2

 2.51 10
–2

 

22 2.50 10
–4

 2.58 7.52 10
–4

 49 4.53 10
–5

 –1.64 10
–1

 2.52 10
–2

 

23 1.13 10
–4

 1.02 2.03 10
–2

 50 5.89 10
–5

 –4.67 10
–1

 1.84 10
–2

 

24 1.17 10
–4

 1.08 2.00 10
–2

 51 6.24 10
–5

 1.72 10
–1

 2.35 10
–2

 

25 6.64 10
–5

 –4.40 10
–2

 2.28 10
–2

 52 5.34 10
–5

 –1.93 10
–1

 1.96 10
–2

 

26 8.42 10
–5

 4.29 10
–1

 2.54 10
–2

 53 7.00 10
–5

 –2.2 10
–2

 2.39 10
–2

 

27 1.13 10
–4

 1.25 2.00 10
–2
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the over-annual potential evapotranspiration, while the other two models, i.e. Oudin and Jensen-

Haise underestimate and overestimate respectively, the potential evapotranspiration values. 

 

Figure 17. Mean annual Penman-Monteith potential evapotranspiration (symbols) for the 39 CIMIS stations 
against the parametric model and the other four methods 

 

The performance indices presented in Table 13 confirm the good performance of the parametric 

method, which has the highest CE and excellent results in the other statistical indices. The 

Hargreaves model follows with CE 78.9%, similar MBE and worst MAE and RMSE than the 

parametric model. The McGuiness method gave moderate results, while the Jensen-Haise and Oudin 

models totally fail to represent the physical flux.  

Table 13 Values of performance indices used to evaluate the parametric method, in the estimation of mean 
annual potential evapotranspiration for the 39 CIMIS stations, against the other four models 

 

For further comparison of the parametric method against the four radiation-based methods, in 

terms of the achieved CE distribution from estimating monthly PE, each time series was split into 

two parts. The first 13 years were used as the calibration data set for the parametric model, while 

the remaining 7 years were used for validation. Table 14 presents the CE distribution, for the 
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CE  
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(mm) 
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Parametric 99.1 4 6 17 

Hargreaves 78.9 2 60 82 

Jensen-Haise < 0 417 452 493 

McGuiness 30.1 19 111 149 

Oudin < 0 -393 393 411 
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calibration (Cal) and the validation (Val) data set for 39 CIMIS stations, while that of the European 

stations is presented in Table 15.  

 

Table 14 Distribution of CE values of radiation-based approaches in CIMIS network  

 

The results for both periods and in different climatic regimes are satisfactory for the parametric 

model, with the average CE values for the calibration period being 94.80% for CIMIS stations and 

96.52% for European stations, while for the validation period the corresponding values are 94.34% 

for CIMIS stations and 90.06% for the European stations. Altogether, the application of the 

parametric model in 26 stations from the 39 stations achieved CE values between 90 and 95%.  

Table 15 Distribution of CE values of radiation-based approaches in European stations 

 

The Hargreaves model achieved satisfactory results especially in the case of CIMIS network, where 

the model has been developed; while in European stations the acquired CE values are lower.  

CE (%) 

Parametric Hargreaves Jensen-Haise McGuiness Oudin 

Cal Val Cal Val Cal Val Cal Val Cal Val 

95-100 26 26 26 23 0 7 16 15 0 0 

90-95 11 5 10 7 0 2 6 7 0 0 

80-90 2 8 3 9 1 2 10 10 1 0 

70-80 0 0 0 0 6 3 3 3 3 5 

60-70 0 0 0 0 1 6 2 3 7 4 

50-60 0 0 0 0 3 4 1 1 12 6 

0-50 0 0 0 0 16 9 1 0 16 24 

<0 0 0 0 0 12 6 0 0 0 0 

 

CE 

Parametric Hargreaves Jensen-Haise Mcguiness Oudin 

Cal Val Cal Val Cal Val Cal Val Cal Val 

95-100 10 9 6 0 0 0 0 0 9 1 

90-95 4 4 4 6 0 0 0 0 2 8 

80-90 0 0 3 7 0 0 0 0 0 2 

70-80 0 0 1 1 0 0 7 1 1 1 

60-70 0 0 0 0 0 0 3 1 1 1 

50-60 0 0 0 0 0 0 3 1 1 0 

0-50 0 1 0 0 5 1 2 9 0 1 

<0 0 0 0 0 9 13 1 2 0 0 
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The McGuiness model acquired lower CE values in the CIMIS network than Parametric and 

Hargreaves with 87.14% in calibration period and 87.76% in the validation period. The Oudin 

model presented moderate results in the CIMIS network (52.18% in the calibration and 46.82% in 

the validation period) but considerably better results in European stations (89.37 % calibration and 

82.82% validation period). By taking into account the similar results presented by Tegos et al. 

(2013), the Oudin model seems to perform better in humid than in arid climatic conditions.  

Finally, the Jensen-Haise model totally failed to produce physically meaningful results, since the 

achieved CE values were very low (Table 13Table 14Table 15). 

4.8 Comparison with temperature-based methods 

The performance of the parametric model with two well-known empirical formulas of 

Thornthwaite and Blaney-Criddle (Table 16Table 17) was compared. Both approaches have wide 

application in data-scarce regions. In the CIMIS network the average CE for the Thornthwaite model 

was 20.53% for the calibration period and less than zero in the validation period, while in European 

stations the CE is 84.58% (calibration) and 78.27% (validation). The Blaney-Criddle method 

achieved average CE 69.99% (calibration), 69.82% (validation) in the CIMIS network and 15.69% 

(calibration) and <0 (validation) in European stations. Finally, the Thornthwaite model seems to be 

suitable for use in cold and humid climates (94.84% CE in German stations for the calibration 

period) and improper in arid regimes, while for the Blaney-Criddle model the opposite occurs. 

Table 16 Distribution of CE values of temperature-based approaches in CIMIS network 

 

Table 17 Distribution of CE values of temperature-based approaches in European stations 

CE 
Thornthwaite Blaney-Criddle 

Cal Val Cal Val 

95-100 0 0 0 0 

90-95 0 0 0 0 

80-90 0 0 10 16 

70-80 0 0 18 12 

60-70 1 0 5 5 

50-60 4 3 2 1 

0-50 24 21 3 4 

<0 10 15 1 1 
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4.9 Spatial analysis of the parameters 

The knowledge of the spatial variability of the PET is crucial in geosciences and the use of the 

appropriate interpolation technique significant (Mancosu et al. 2014) The key idea of the 

parametric model is the replacement of some of the variables and constants that are used in 

standardized Penman-Monteith formula by three parameters, which are regionally varying and 

estimated through calibration using a reference evapotranspiration data set. 

In this context, two applications are implemented. The first is the analysis of the parameters’ 

correlation to latitude and elevation, while the second is their estimation, through spatial 

interpolation techniques, along an extensive study area such as California, which provides sufficient 

data to perform the necessary calibration procedures. 

4.10 Correlation to latitude and elevation 

Through regression analysis, the correlation of every parameter (a, b, c) with latitude φ and 

elevation was investigated. Six scatter plots of Figure 18 show that parameters a, b are negatively 

correlated to latitude and elevation, in contrast to parameter c. This is similar to the findings of the 

previous study over the Greek territory (Tegos et al. 2013) for parameter a. It also appears a 

noticeable correlation of parameter b with elevation (R = –0.50) and insignificant correlation of 

parameter c with elevation and latitude. Furthermore, Figure 18 shows that the relation of the 

three parameters to latitude and elevation is far from linear. 

CE 
Thornthwaite Blaney-Criddle 

Cal Val Cal Val 

95-100 5 0 0 0 

90-95 5 1 0 0 

80-90 0 9 0 0 

70-80 2 1 1 1 

60-70 0 1 0 0 

50-60 1 1 0 1 

0-50 1 1 12 1 

<0 0 0 1 11 
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Figure 18. Scatter plots of parameters against latitude and elevation 

4.11 Spatial interpolation over California 

Currently, a lot of methods exist which can accomplish spatial interpolation using available 

computer codes. In the present study, the three parameters’ spatial variability was investigated by 
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four different methodologies: (1) Inverse Distance Weighting (IDW); (2) Natural Neighbours (NaN); 

(3) Ordinary Kriging (OK); and (4) Bilinear Surface Smoothing (BSS) 

The first three are well established and commonly used in spatial interpolation of environmental 

variables (Li and Heap, 2008). The Bilinear Surface Smoothing methodology is a new approach that 

approximates a surface that may be drawn for the data points with consecutive bilinear surfaces 

which can be numerically estimated by means of a least squares fitting procedure into a surface 

regression model with known break points and adjustable weights defined by means of angles 

formed by those bilinear surfaces. The BSS theory and basic features are presented in Malamos and 

Koutsoyiannis (2015) while applications and field validation are presented in Malamos and 

Koutsoyiannis (2015) . BSS is implemented by means of a dynamic link library in Object Pascal 

(Delphi) programming language linked to MS-Excel. The parameter estimation is based on the 

generalized cross-validation methodology as described in Malamos and Koutsoyiannis (2015-a). 

The obtained optimal values of the four adjustable parameters: the number of intervals according 

to x and y directions, i.e. mx, my and the corresponding smoothing parameters τλx and τλy, are 

presented in Table 18: 

Table 18 BSS parameters optimal values for the CIMIS network (California area) 

 

IDW and NaN were implemented in ESRI’s ArcGIS environment using the default settings, while for 

OK all semivariogram models available in that software were investigated, i.e. circular, exponential, 

spherical, linear and Gaussian,. In every case, the embedded fitting procedure ensured the 

minimization of the weighted sum of squares between experimental and model semivariogram 

values.  

Table 19 presents the values of the statistical criteria for each one of the implemented 

semivariogram models, sorted according to the CE criterion for each of the three parameters. It is 

obvious that the circular semivariogram achieved the best overall performance.  

Table 19 Values of the statistical criteria used to assess the performance of the different kriging 
semivariogram models 

 

 

Parameter mx my τλx τλy 

a 

(kg kJ
–1

) 
3 8 0.082 0.001 

b 

(kg m
–2

) 
3 28 0.001 0.01 

c 

(°C
–1

) 
3 8 0.001 0.001 
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All three parameters of the parametric model were estimated over California by applying the four 

spatial interpolation methods. The input data set consists of the calculated parameters values at the 

39 CIMIS stations (Figure 19, Table 3). 

 

Parameter 
kriging  

semivariogram 
CE (%) MBE MAE RMSE 

a 

(kg kJ
–1

) 

circular 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

exponential 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

linear 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

spherical 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

gaussian 44.6  1.24 10
–6

 1.86 10
–5

 2.88 10
–5

 

b 

(kg m
–2

) 

exponential 72.8  3.12 10
–3

 2.50 10
–1

 3.43 10
–1

 

circular 68.6  4.24 10
–3

 2.71 10
–1

 3.68 10
–1

 

spherical 67.4  5.46 10
–3

 2.77 10
–1

 3.76 10
–1

 

linear 66.6  6.00 10
–3

 2.81 10
–1

 3.80 10
–1

 

gaussian 29.7  4.09 10
–2

 4.07 10
–1

 5.51 10
–1

 

c 

(°C
–1

) 

circular 39.3  3.56 10
–4

 4.62 10
–3

 8.19 10
–3

 

spherical 11.7  4.64 10
–4

 5.60 10
–3

 9.88 10
–3

 

exponential 11.0  4.67 10
–4

 5.62 10
–3

 9.92 10
–3

 

linear 11.0  4.67 10
–4

 5.62 10
–3

 9.92 10
–3

 

gaussian 11.0  4.67 10
–4

 5.62 10
–3

 9.92 10
–3

 

 



 

52 

Figure 19  Study area and the CIMIS Stations used for spatial analysis 

Table 20 presents the values of the statistical criteria used to assess the performance of the spatial 

interpolation methods with respect to the input data set. It is apparent that both non-geostatistical 

methods, according to the statistical criteria used, outperform ordinary kriging and bilinear surface 

smoothing, which performed similarly. This is not a surprise because both IDW and NaN, from 

construction, use as best local predictor the available data points (Li and Heap, 2008).  

Table 20 Values of the statistical criteria used to assess the performance of the spatial interpolation methods 

with respect to the input data set 

However, the above statistical indices may not be representative with respect to the validity of the 

interpolation results in other locations, except for those incorporated in the interpolation 

procedure. In this context, a validation procedure was implemented by means of comparing the 

reference potential evapotranspiration estimates acquired from the implementation of the 

parametric method, using the parameter estimates of the four interpolation methods, against those 

of the eleven additional CIMIS stations with adequate time series length, shown in Table 21 along 

with the estimated parameter values, in the case of IDW. 

Parameter 
Interpolation  

Method 
CE (%) MBE MAE RMSE 

a 

(kg kJ
–1

) 

IDW 100 3.59 10
–8

 1.08 10
–7

 1.97 10
–7

 

NaN 100 –1.03 10
–7

 4.77 10
–7

 8.95 10
–7

 

OK 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

 BSS 73.2 4.36 10
–8

 1.35 10
–5

 2.01 10
–5

 

b 

(kg m
–2

) 

IDW 100 2.95 10
–4

 1.72 10
–3

 3.06 10
–3

 

NaN 99.9 –9.48 10
–4

 1.16 10
–2

 2.12 10
–2

 

OK 68.6  4.24 10
–3

 2.71 10
–1

 3.68 10
–1

 

 BSS 65.2 1.97 10
–4

 2.68 10
–1

 3.88 10
–1

 

c 

(°C
–1

) 

IDW 100 2.56 10
–7

 8.82 10
–6

 1.52 10
–5

 

NaN 99.9 1.54 10
–6

 1.50 10
–4

 3.10 10
–4

 

OK 39.3  3.56 10
–4

 4.62 10
–3

 8.19 10
–3

 

 BSS 68.9 –2.57 10
–7

 3.25 10
–3

 5.87 10
–3
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Table 21 CIMIS Stations used for validation purposes and estimated parameters values in the case of IDW 

 

The performance of each method is presented in Table 22, which summarizes the CE values 

acquired from the validation procedure. It is apparent that IDW outperforms the other three 

methods in the majority of the cases. This is an interesting fact, since the IDW method is the 

effortless of the four methodologies. On the other hand, the BSS performance is analogous or better 

to that of the input data setdata set. NaN and OK performed similarly, with the first achieving 

slightly superior outcome, since OK in the case of Borrego Springs resulted in negative CE value.  

Table 22 CE values for every interpolation method in validation procedure stations 

 

The variation of the three parameters over California produced by the IDW technique is illustrated 

in Figure 20. It is apparent that both a and c present an increasing North to South gradient, while 

Station 
a 

(kg kJ
–1

) 

b 

(kg m
–2

) 

c 

(°C
–1

) 

Arroyo Seco 1.38 10
–4

 1.06 1.20 10
–3

 

Carneros 9.10 10
–5

 5.48 10
–1

 2.42 10
–2

 

Green Valey Road 1.16 10
–4

 7.75 10
–1

 7.26 10
–3

 

King City Oasis 1.34 10
–4

 1.09 9.53 10
–3

 

Santa Barbara 1.03 10
–4

 5.56 10
–1

 1.98 10
–2

 

Alpaugh 1.23 10
–4

 8.27 10
–1

 1.67 10
–2

 

Auburn 1.04 10
–4

 6.20 10
–1

 1.99 10
–2

 

Borrego Springs 1.73 10
–4

 1.44 9.33 10
–3

 

Lodi West 1.10 10
–4

 8.54 10
–1

 2.05 10
–2

 

Merced 1.30 10
–4

 1.20  1.73 10
–2

 

Palmdale 1.01 10
–4

 7.86 10
–1

 2.00 10
–2

 

 

Station IDW NaN OK BSS 

Arroyo Seco 77.7 78.9* 76.8 66.8 

Carneros 96.1 96.2* 83.6 95.9 

Green Valey Road 71.6* 69.5 70.2 65.7 

King City Oasis  85.1 60.3 93.6* 64.3 

Santa Barbara 47.9 72.4 78.2* 23.4 

Alpaugh 95.7 95.5 96.0* 95.9 

Auburn 94.4* 93.6 94.3 85.8 

Borrego Springs 85.3* 81.3 <0 70.1 

Lodi West 94.0* 93.7 92.9 92.3 

Merced 96.9 97.1* 96.9 89.5 

Palmdale 69.6 70.3 91.1* 56.0 
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the opposite occurs for parameter b. This remark coincides with the previous findings concerning 

the relation of the three parameters to latitude. 

 

 

Figure 20 Parameters maps produced by the IDW method, for the California region 

4.12 Discussions and Conclusions 

The parametric model is a parsimonious radiation-based and physically consistent approach 

derived from a simplification of the Penman-Monteith equation, which requires three parameters 

to be calibrated prior to its application. By systematic application of the method the parameters can 

be eventually provided by maps. 

The comparison, on the basis of monthly and annual evapotranspiration data, with commonly used 

radiation-based models (Hargreaves, McGuiness, Jensen-Haise and Oudin models) and 
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temperature-based models (Thorthwaite and Blaney-Criddle), verified the parametric model’s high 

efficiency in different climatic regimes.  

A parameters analysis, through regression techniques, was conducted in order to investigate their 

correlation to latitude and elevation variation. Moreover, the parameters’ spatial estimation was 

accomplished by implementing interpolation techniques such as: Inverse Distance Weighting 

(IDW), Natural Neighbours (NaN), Ordinary Kriging (OK) and Bilinear Surface Smoothing (BSS), 

along an extensive study area such as California. The validation procedure was implemented by 

comparing the reference potential evapotranspiration estimates acquired from the implementation 

of the parametric method, using the parameter estimates of the four interpolation methods, against 

those of the eleven additional CIMIS stations. This combined evaluation of the four different 

interpolation approaches, indicated that the simple and effortless IDW method performs better 

than the other three methodologies. Regarding the application of the new methodology, BSS’s 

efficiency to perform interpolation between data points that are interrelated in a complicated 

manner was confirmed, acquiring high CE values analogous to those of the other three methods. 

Overall, the key idea of the parametric model methodology, which is the simplification of the 

Penman-Monteith formula by introducing three parameters, which are regionally varying and 

estimated through calibration using a reference evapotranspiration data set, was very successful.  
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5 Global PET maps based on monthly remote temperatures  

5.1 Introduction 

Evapotranspiration (ET) is a crucial element of the hydrological cycle affecting a wide range of 

geosciences, since it is referred as the combined water losses from soil surface and vegetation 

influence by several meteorological variables such as the air temperature, the solar radiation, the 

wind speed and the relative humidity. The literature proposes several approaches to quantify the 

process in terms of actual evapotranspiration, potential evapotranspiration (PET) or reference 

evapotranspiration. By definition the PET refers to “the rate at which evapotranspiration would 

occur from a large area completely and uniformly covered with growing vegetation, which has 

access to an unlimited supply of soil water, and without advection or heating effects” (Dingman, 

1994), and differs to Actual Evatranspiration based on the soil water supply mainly driven by the 

precipitation regime.In the last decades advanced methods were introduced for the ET and PET 

estimation with the most recent being the remote sensing techniques incorporating aerial and 

satellite imagery. Generally, the classification of the remote sensing for ET assessment includes four 

groups referred to as empirical, direct, residual, inference and deterministic models (Nouri et al., 

2013). The most well-known approach for the actual evapotranspiration estimation for daily and 

monthly time step is the modified surface energy balance algorithm for land (SEBAL) model 

[Bhattarai, et al, 2012]. A limited number of studies have focused on the global PET assessment 

utilizing remote sensing tools. Specifically, the global distribution of potential evaporation has been 

calculated from the Penman-Monteith equation using satellite and assimilated data for a 24-month 

period, i.e. January 1987 to December 1988 (Choudhury., 1997). 

The Parametric model is a radiation-based model that requires only temperature data and utilizes a 

parsimonious expression for the potential evapotranspiration (PET) estimation. It replaces some of 

the variables and constants that are used in the standard Penman-Monteith model by regionally 

varying parameters, which are estimated through calibration (Tegos et al., 2015).  The large scale 

Parametric model application was satisfactory and the models outperform the efficiency of a 

number of simplifies models such as Hargeaves, Thorthwaite, Oudin, Jensen-Haise. 

In this study a new global PET monthly dataset is introduced, by applying the Parametric model 

using the remote sensing data (LANDSAT) of mean air temperature provided by the Goddard Space 

Flight Center NASA, Global Land Data Assimilation System, NOAA. As the majority of global 

applications refer to the actual evapotranspiration assessment ( Mu et al, 2011, Ghilain and Gellens-

Meulenberghs 2014, Vinukollu et al. 2011, Yuan et al. 2010)  this dataset will contribute to 

hydrological balance modelling and agrometeorological applications. 

5.2 Materials and Methods 

The Parametric model employs physically consistent parameters distributed over the globe, 

overcoming the main weakness of the Penman-Monteith model which is the necessity of 



 

57 

simultaneous observations of four meteorological variables (Tegos et al. 2007, Tegos et al. 2013, 

Tegos et al. 2015, Tegos et al 2015, Tegos et al. 2017). 

The modified Parametric model implements two instead of three parameters (parameter a’ in the 

numerator and parameter c’ in the denominator) by the formula (9). 

The model was applied globally using calibrated values of parameters a’ and c’ at the locations of 

the 4088 stations of the FAO-CLIMWAT database (Figure 21), which provides monthly data of the 

required variables for PET estimation. These values were interpolated over the globe using the 

inverse distance weighting (IDW) technique into a geographical information system (GIS). The 

extraterrestrial radiation (Ra) monthly raster datasets were derived by using an analytical 

mathematical expression (Tegos et al. 2017), while the mean air temperature values, covering a 

period from 1973 to 2016, were acquired as raster datasets from the Goddard Space Flight Center 

NASA, Global Land Data Assimilation System. All three layers of information were embedded in GIS 

and constituted a framework that permitted quality control screening by application of logical 

thresholds in order to minimize the extreme (outliers) PET values. 

 

Figure 21 CLIMWAT meteorological stations network. 

The maps obtained using the parametric method (PET/PAR) were produced in a GIS environment 

by applying equation (1) with the required raster datasets, i.e. parameters a’ and c’, extra-terrestrial 

radiation Ra, and monthly mean air temperature T. 

5.3 Results 

PET Global mapping 
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Following the above presented procedures, a monthly PET global dataset was produced covering a 

significant time period. Figure 22Figure 23Figure 24 visualize the PET distribution for 

representative months across the continents. 

Specifically, Figure 22 presents the PET map of Eurasia for August, where PET values range from 0 

to 15 mm day–1, increasing from north to south. The latter is well explained from the similar 

variation of temperature and extraterrestrial radiation. The highest values were observed at the 

Middle East where extremely arid climatic conditions occur. 

 

Figure 22 Eurasia PET map for August (PET: mm/day) 

Figure 23 portays the PET pattern in North America for May. A pattern similar to Eurasia is obvious 

with highest values at regions near the equator (e.g. Mexico) ,and lowest in Canada and Alaska and 

Greenland. PET variability in South America in January with values decreasing from north to south. 

Some inconsistencies in the area of Amazon and some peculiarly low values in the area of equator 

can be explained from the limitations of the Parametric model to represent the combined effect on 

PET estimation of relative humidity and wind speed, which are key drivers of the 

evapotranspiration processes across these areas, influencing the net incoming solar radiation and 

the evaporation demand, as detailed in Tegos et al. (2017). 

 

Figure 23 North America PET map for May- South America PET map for January (PET: mm/day) 

PET variability over Africa in January is shown in Figure 24. High monthly PET values were 

acquired in  the equatorial zone, mainly in the lower Congo, where the hydro-meteorological 
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observations were limited during the parametric model calibration. The decreasing trend from 

south to north in Oceania follows the pattern of radiation and air temperature variation. 

 

Figure 24 Africa/Oceania PET map for January-Oceania PET for December (PET: mm/day) 

5.4 Validation 

For identifying the efficiency of the PET remote sensing dataset we compared  PET/PAR monthly 

sample the against a Penman Monteith timeseries, estimated  at the Davis station of the well-known 

PET data of CIMIS network.  The validation was carried out for 3-years periods from 1/2010 to 

12/2012 and the coefficient of efficient (CE) was satisfactory equal to 87.6%. 

5.5 Further PET improvements 

Having reviewed new remote monthly temperature dataset which are recently freely available, we 

reassessed the monthly PET with a recently published monthly dataset which provides high global 

temperature accuracy (Hooker et al. 2018).  

Following the above mentioned framework the monthly PET maps were produced and a first 

validation with site meteorological estimate for the Davis station is shown in Figure 25. The 

preliminary results are very satisfactory since the coefficient of efficiency is 93.2%.  The new 

monthly PET dataset based on remote monthly temperature is named RASPOTION and is object for 

further validation across the globe.  
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Figure 25 Monthly PM point vs RASPOTION estimate (Davis Station) 

5.6 Discussion 

In some areas with high values of relative humidity and wind speed, the existing PET parametric 

approach fails to reproduce efficiently the PET regime and further improvements of the parametric 

approach are recommended locally. 

In some areas the FAO-CLIMWAT data were scarce and poor (i.e Brazil and Rebublic of Congo). In 

these areas the calibrated parameter a’ and c’ are indicative and further calibration should take 

place.  

In every case, hydrologists, agronomists and other scientists of potential interest for this dataset 

could make efficient use of it, in about 80% of the earth’s territory based on our previous studies 

(Tegos et al. 2015, Tegos et al. 2017). The new datasets could provide positive benefits in the 

scientific disciplines by taking in to account the global PET datasets are non available, thus is of 

interest: 

In the applications of physical –based hydrological model which use as PET as an input descriptor 

of the sub-catchment, since we are moving forward in global scale hydrological models. 

In the crop demand assessment since the integration of the monthly PET and the cropping pattern 

quantify the monthly water needs at each type of plant. 

5.7 Conclusions 

As part of the PET Parametric model, a new global PET monthly dataset based on remote sensing 

temperature data was introduced covering the period 1973-2016. This global dataset was extracted 
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using the Parametric formula which uses as input variables the extraterrestrial radiation and the 

mean air temperature. The latter have been taken from a freely available dataset provided by NASA. 

Further analysis was made with new temperature dataset resulting a new promising PET dataset 

namely RASPOTION. Previous analyses with this approach showed satisfying performance, through 

validation under several climatic regimes and different validation procedures. In regions where the 

available hydro-meteorological information was scarce or insufficient, the modelling results were 

weak in terms of PET’s physical interpretation. In these areas the PET/PAR should be used with 

caution. Overall, for the majority of the Earth’s globe surface a reliable monthly PET dataset is 

compiled and is freely available to scientists across different research disciplines in order to assist 

decisions for both short- and long-term hydro-climatic policy actions.  
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6 Investigation of long-term persistence in PET 

6.1 A summary on the long-term persistence behaviour 

The high complexity and uncertainty of climate dynamics has been long identified through plain 

observations as well as extended analyses of hydrometeorological processes such as temperature, 

humidity, surface wind, precipitation, atmospheric pressure, river discharges etc. Particularly, all 

these processes from global and local scale analyses seem to exhibit the so-called clustering 

behaviour (Dimitriadis, 2017). Interestingly, this HK behaviour has been first identified in Nature 

by Hurst (1951) while analyzing water levels from the Nile for optimum dam design. However, the 

mathematical description and analysis of this behaviour through a power-law autocorrelation 

function (vs. lag) is attributed to Kolmogorov (1940) who developed it earlier while studying 

turbulence. To give credits to both scientists Koutsoyiannis (2010) named this behaviour as Hurst-

Kolmogorov (HK) behaviour (Dimitriadis, 2017). 

6.2 Introduction 

Trend estimation in hydro-climatic time series has focused the attention of the scientific 

community (Sen, 2013). Many studies have examined the trend of precipitation, streamflow, 

groundwater regime, temperature, potential evapotranspiration both in annual and seasonal basis 

(Markonis et al. 2016, Stevens et al. 2016, Panda et al. 2012, Arora et al. 2005, Kumar et al. 2010). 

Specifically, trend estimation in the potential or actual evapotranspiration pay the attention of the 

researchers (Gocic and Trajkovic, 2014, Mo et al. 2015, Tabari et al., 2011). Generally, the trend 

results are mixed across different climatic regions, as  Tabari et al (2011) found a positive trend for 

70% of  20 Iranian meteorological stations during the period 1996-2005, Gocic and Trajkovic 

(2014) calculated a significant increasing downward trend in 70% of 12 Serbian meteorological 

stations (study period 1980-2010). Finally, Mo et al. 2015, by investigating the areal 

evapotranspiration in China for the period 1981-2010 with remote sense data, observed an 

increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend.  For the 

examination of the physical variability, the Mann-Kendall under the independence assumption has 

been proposed as a standard statistical measure for the evaluation and the quantification of the 

trends (Ahn and Palmer, 2015).  

Furthermore, different statistical methodologies have developed and proposed, namely the Mann–

Kendall under the Markovian behavior assumption after trend-free pre-whitening, the Mann–

Kendall with complete autocorrelation structure and the Mann–Kendall under the long-term 

persistence assumption (Kumar et al. 2009). The latter test, proposed by Hamed (2008) offers a 

consistent framework to consider the Hurst phenomenon, which is observed in many climatological 

and hydrological processes, resulting in the increase of physical variability (Koutsoyiannis 2003; 

Koutsoyiannis and Montanari 2007). Hurst coefficient was first introduced by engineer Harold 

Hurst during the design of the Aswan reservoir (Sutcliffe et al. 2016) and plays a significant role in 
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the hydrological variability (O’Connell et al, 2016). Its presence in large measured 

hydrometeorological samples is ubiquitous (Iliopoulou et al. 2016) Comparative analysis of 

different trend model shows significant differences in the totally results (Hamed 2008, Kumar et al. 

2009) and thus a physical consistent framework is needed.  

The following chapters present an R function embedded in an automatic and user-friendly 

environment following modern views of water resources modeling tools (Guo et al. 2016, Turner 

and Ganelli 2016). The package implements the modified Hamed’s (2008) framework and the 

procedure is tested in annual parametric PET time series from 10 sites in Greece, which cover the 

period 1950-2000. 

6.3 Materials and methods 

6.3.1 Mann-Kendall test under the scaling hypothesis 

The Mann-Kendall test under the scaling hypothesis consists of three consecutive hypothesis tests, 

namely O (Original MK test), H (Hurst Parameter test) and M. The mathematic background and 

framework are presented from Hamed (2008). Let H0i denote the null hypothesis of each test and 

let H1i denote the alternative hypothesis, where i = O, H, M denotes the step of the Mann-Kendall 

test under the scaling hypothesis. We define: 

H0O: No trend under the independence assumption 

H1O: Significant trend under the independence assumption.  

H0H: No significant LTP.  

H1H: Significant LTP.  

H0M: No trend under LTP assumption. 

H1M: Significant trend exists under LTP assumption. 

Then the three steps of the test are summarized by the following sequences 

{H0O}: No trend. 

{H1O}: Possible significant trend. Proceed to step H. 

{H1O, H0H}: Significant trend exists. 

{H1O, H1H}: Possible LTP effect. Proceed to step M.  

{H1O, H1H, H0M}: No trend. 

{H1O, H1H, H1M}: Significant trend exists. 

Hurst coefficient can be defined by a simple power-law relationship of its standard deviation: 

          
(25) 
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where σ ≡ σ(1) and H is the entropy production in logarithmic time (Koutsoyiannis 2011), and the 

parameter ranges between 0 and 1. For values H > 0.5, the process exhibits long-term persistence, 

while for H < 0.5 the process is anti-persistent. 

For the test implementation, the R function MannKendallLTP from the HKprocess R package 

(Tyralis, 2015) was used. The R function computes the p-value in each step of the test. If the p-value 

is higher than a predefined significance level α (e.g. α = 0.05), then we cannot reject H0. A p-value 

less than or equal to α gives evidence that H1 is true. 

6.3.2 Study area and procedures 

Ten meteorological stations (National Meteorological Services of Greece) well- distributed over 

Greece were used. Table 23 presents the list of the meteorological stations used in our study. 

Table 23. Meteorological stations with their latitude (φο) and elevation (z). 
Stations φ(o) z (m) 

Heraklion 35.20 39 
Ioannina 39.42 484 

Kavala 40.54 63 
Kerkyra 39.37 2 
Kozani 40.18 626 
Larissa 39.39 74 
Lemnos 39.54 17 
Methoni 36.50 34 
Skyros 38.54 5 
Tripoli 37.32 663 

Based on our previous study (Tegos et al. 2013) the parametric model was calibrated and tested in 

monthly time step for the period 1968-1989. For the purposes of this study, monthly air 

temperature data for the period 1950-2000 were collected and the parametric model was applied 

to the total length. Finally, every monthly time series was aggregated in annual step with the use of 

HYDROGNOMON software (Kozanis et al. 2010). 

6.3.3 Results 

Table 24 presents the results of our analysis. In seven out of the ten stations tested, no trends were 

found under the independence assumption. The estimate of the Hurst parameter for annual PET 

time series varies in the range 0.43 to 0.76. Out of the three stations that had significant trends 

under the independence assumption, only two stations (Ioannina, Lemnos) showed a significant 

downward trend.  



 

65 

Table 24. Summary results of the application of the Mann-Kendall modified test to the PET data. The Hurst 
parameter was estimated using the maximum likelihood estimator (Tyralis and Koutsoyiannis 2011). The 

trend identification is performed for a predefined level α = 0.05 in each step. 
Stations Hurst 

parameter 

estimate 

Mann-Kendall 2-

sided p-value 

(Step O) 

Significance of H, 

2-sided p-value 

(Step H) 

Mann-Kendall LTP 

2-sided p-value 

(Step M) 

Trend identification 

Heraklion 0.67 0.31   {H0O}, no trend 

Ioannina 0.58 0.05 0.27  {H1O,H0H}, trend 

exists 

Kavala 0.76 0.63   {H0O}, no trend 

Kerkyra 0.71 0.90   {H0O}, no trend 

Kozani 0.63 0.31   {H0O}, no trend 

Larissa 0.76 0.04 0.00 0.42 {H1O,H1H,HOM} no 

trend 

Lemnos 0.74 0.00 0.26  {H1O,H0H}, trend 

exists 

Methoni 0.69 0.06   {H0O}, no trend 

Skyros 0.46 0.40   {H0O}, no trend 

Tripoli 0.43 0.46   {H0O}, no trend 

 

In Figure 26 PET in Ioannina is presented . In Table 23 we observe a significant trend under the 

independence assumption is observed. This assumption is valid. At Kerkyra (see Figure 27) there is 

no any significant trend. At Larissa (Figure 28), a significant trend under the independence 

assumption is detected; however, this trend is not significant under the long-term dependence 

assumption. Finally, we observe a significant trend under a valid independence assumption at 

Lemnos is observed (Figure 29). 
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Figure 26. Annual PET at Ioannina 

 

Figure 27. Annual PET at Kerkyra 

 

Figure 28. Annual PET at Larissa 
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Figure 29. Annual PET at Lemnos 

6.3.4 Discussion and conclusions  

An R function that implements the Mann- Kendall test under the long-term persistence hypothesis 

was presented. The test applied and tested in annual time series of PET estimated from a recent 

parametric approach. The parametric model estimation allows the consistent estimation of the PET 

with minimal data requirements and it's useful for climatic studies when crucial 

hydrometerological data are missing (wind velocity, relative humidity, extraterrestrial radiation). 

The results of our preliminary case study analysis show that in seven cases, no significant trend was 

detected under the independence assumption. In one case, no significant trend was detected under 

the long-term persistence assumption, while the trend was significant under the independence 

assumption. In the remaining two cases, we found a significant downward trend under both the 

independence and the long-term persistence assumptions.  In total, an R function is ready and user- 

friendly for extensive use in other field of water resources and technological- related studies. 

6.4 Temperature variability over Greece : Links between space and time 

The long-term alteration of the meteorological paid the attention of the scientific community the 

last decades by linking it with the well-known “climate-change” interest. It is therefore necessary to 

examine long term instrumental observations or reliable estimate to quantify the fluxes trends. In 

this respect, meteorological data from 35 stations of HNMS were collected and used (monthly 

timeseries 1950-2000), with a rather uniform spatial distribution as it can be seen Figure 30. 

For studying the climatic behaviors the stations was classified in three categories: continental, 

coastal and inland stations. 
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Figure 30. Study Area- meteorological stations locations  

Attention was paid to the temperature monthly dataset and as visualizes the Figure 31  the inter-

annual variation (i.e. the mean standard deviation of the monthly temperatures of each year) shows 

that the variability of temperature parameters is higher to continental stations than to coastal or 

island regions.  
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Figure 31. Inter-annual temperature variability 

Overall, temperature in Greece has been relatively stable for the last 50 years as shown in the 

Figure 32. 

 

 
Figure 32. Study Area- locations of meteorological stations 

 
 

Monthly potential evapotranspiration for each station was estimated by the parametric model 

(Tegos et al. 2013, Tegos et al. 2015): dependent only to temperature Tα and incoming solar 
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radiation Rα and two coefficients, a (kg/kJ) and c (C -1). The proposed parameters was extracted by 

the study Tegos et al. 2013 and Tegos (2017). 

The results portray in Figure 33, which include both annual PET (background coloring) and 

monthly change over the examined period (bars).  

It can be concluded that PET has been declining during the last 50 years, which is expected as it 

follows the temperature decrease. It must be noted though that some station in Eastern Greece 

show increase during the summer. 

Conclusively, the potential evapotranspiration has decreased in winter all over Greece, and has 

increased only in a few Aegean islands during summer (N. Bountas et al. 2013).  

 

Figure 33. Annual PET variation  
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7 Applications in agricultural design 

7.1 Spatial interpolation methods in PET estimate 

7.1.1 Introduction 

Potential evapotranspiration (PET) is a crucial parameter of several applications in hydrological 

modelling, irrigation and environmental studies. Especially, precision irrigation requires daily or 

even hourly PET estimates in order to increase the efficiency of water use through optimization 

procedures that include the use of sensors along with extensive soil, water and crop data. A 

significant concept for precision irrigation design is the spatial variability of the PET since the well-

established FAO Penman-Monteith model (Allen et al. 1998), but also alternative frameworks 

(Tegos et al. 2015) provide point estimates. 

Precision irrigation constitutes a breakthrough for agricultural water management since it provides 

means to optimal water use. In recent years several applications of precision irrigation are 

implemented based on spatial data from different origins, i.e. meteorological stations networks, 

remote sensing data and in situ measurements. One of the factors affecting optimal irrigation 

system design and management is the daily potential evapotranspiration (PET). A commonly used 

approach is to estimate the daily PET for the representative day of each month during the irrigation 

period. The implementation of the recently introduced non-parametric bilinear surface smoothing 

(BSS) methodology for spatial interpolation of daily PET is presented. The study area was the plain 

of Arta which is located at the Region of Epirus at the North West Greece. Daily PET was estimated 

according to the FAO Penman-Monteith methodology with data collected from a network of six 

agrometeorological stations, installed in early 2015 in selected locations throughout the study area. 

For exploration purposes, PET maps for the Julian dates: 105, 135, 162, 199, 229 and 259 were 

produced, thus covering the entire irrigation period of 2015. Also, comparison and cross validation 

against the calculated FAO Penman-Monteith PET for each station, were performed between BSS 

and a commonly used interpolation method, i.e. inverse distance weighted (IDW). During the leave-

one-out cross validation procedure, BSS yielded very good results, outperforming IDW. Given the 

simplicity of the BSS, its overall performance is satisfactory, providing maps that represent the 

spatial and temporal variation of daily PET. 

7.1.2 Study area and meteorological stations network 

The study area was located at the plain of Arta (453.29 km2, the biggest of the region), at the Region 

of Epirus at the north west coast of Greece (Figure 34). It is part of the Arachthos and Louros 

hydrological basins and borders with Amvrakikos Wetlands National Park. The local climate is of 

Mediterranean type, characterized by dry and hot summers and rainy and moderately cool winters. 
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Figure 34. The Arta plain along with the study area and the agrometeorological stations network 

Irrigation in the area is performed by means of surface irrigation, sprinkler irrigation and drip 

systems in proportions of about 40%, 40% and 20% respectively (Tsirogiannis and Triantos, 2009), 

with a continuous diminution of surface irrigation. The vast majority of farmers irrigate based on 

experience and inherited practical advices. As water is plentiful and cheap, most farmers over 

irrigate using water by the old open canal scheme that covers part of the plain and from numerous 

boreholes.  

An agrometeorological stations network of six fully equipped weather stations was installed in 

early 2015 for the implementation of IRMA_SYS project (Malamos et al. 2016 - 

http://arta.irrigation-management.eu/) in order to monitor evapotranspiration related 

parameters. The data from the six meteorological stations are available at http://openmeteo.org/ 

under Database Contents License v.1.0 for individual measurements and Open Database License 

v.1.0 for the data series as they are published at Open Data Commons 

(http://opendatacommons.org/). 

The analysis extend (mask) boundaries were defined by the coordinates of the outermost stations 

according to each one of the four cardinal directions. This was mandatory in order to ensure that 

the PET estimates adjacent to the boundaries of the study area are obtained from interpolation 

rather than extrapolation. The maps were produced using a 500 × 500 m grid for practical and 

computational reasons, covering an area of approximately 294.8 km2 inside the plain of Arta. 

http://openmeteo.org/
http://opendatacommons.org/
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7.1.3 Spatial interpolation methods 

The mathematical framework of  Bilinear Surface Smoothing (Malamos and Koutsoyiannis 2016a), 

suggests that fit is meant in terms of minimizing the total square error among the set of original 

points zi(xi, yi) for i = 1,…, n and the fitted bilinear surface, that in matrix form, can be written as:  

          (26) 

where z = [z1,…, zn]T is the vector of known applicates of the given data points with size n (the 

superscript T denotes the transpose of a matrix or vector) and        ,…,       is the vector of 

estimates with size n.  

The details of the method including the algorithms and derivations of the equations are available at 

(Malamos and Koutsoyiannis 2016a).  

The parameters required to implement the methodology, are the segments of the bilinear surface, 

i.e. mx, my and the smoothing parameter λ. These parameters can be estimated by transforming the 

smoothing parameter λ in terms of tension: τλ whose values are restricted in the interval [0, 1), for 

both directions i.e. τλx and τλy (Malamos and Koutsoyiannis 2016a). This transformation provides a 

convenient search in terms of computational time and is based on the generalized cross-validation 

(GCV - Craven and Wahba 1978) methodology. Thus, for a given combination of segments mx, my, 

the minimization of GCV results in the optimal values of τλx, τλy. This can be repeated for several trial 

combinations of mx, my values, until the global minimum of GCV is reached. 

On the other hand, the Inverse Distance Weighting (IDW) method was implemented as a quick 

interpolator capable to address the characteristics of the study area regarding the limited number 

of meteorological stations. IDW is a straightforward and non-computationally intensive method 

(Burrough and McDonnell 1998). The IDW implementation for producing the PET maps of the 

study area was performed by means of ESRI’s ArcGIS environment. 

7.1.4 Results and discussion 

In order to evaluate the performance of the BSS methodology for spatial interpolation of daily PET, 

we interpolated the Penman-Monteith PET values acquired at the stations locations (Table 25) 

using both BSS and IDW for the characteristic day of each month for the 2015 irrigation period as 

presented in Figure 35 Figure 36. 
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Table 25. Penman-Monteith PET values at the locations of each of the six stations 

Julian  

dates 
  

PM PET (mm) 
  

Agios Spiridonas Vigla Αmmotopos TEI of Epirus Kommeno Kompoti 

105 3.4 3.2 3.4 3.2 3.2 3.1 

135 4.1 4.4 4.5 4.4 4.5 4.1 

162 4.8 4.4 5.2 4.9 5.5 5.4 

199 6.2 5.2 6.7 6.4 6.1 6.3 

229 4.6 4.7 5.0 4.7 4.9 4.8 

259 3.8 3.4 3.8 3.7 3.6 3.6 
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Figure 35. BSS PET maps for Julian dates 105, 135, 162, 199, 229, 259 of year 2015 



 

76 

  

  

  

Figure 36. IDW PET maps for Julian dates 105, 135, 162, 199, 229, 259 of year 2015 

 

From the comparison of the produced maps it is obvious that the BSS modelled PET values, have 

wider range than those of IDW, thus producing very plausible interpolation surfaces that respect 

the variation due to terrain, avoiding the characteristic IDW’s bull's eye shaped artefacts. 
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Considering BSS’s implementation, the global minimum of GCV for each day was reached by 

implementing it for different numbers of segments mx and my (1 ≤ mx ≤ 15 and 1 ≤  my ≤ 15, while 

m + 1 ≥ 6) and minimizing GCV for each one, by altering the adjustable parameters.  

The results of the above procedure are presented in Table 26, along with the corresponding mean 

square error values. It is obvious that the BSS implementation resulted in very small mean square 

error values, respecting the estimated PM PET values at the stations locations. It can be assumed 

that there is no need to present the corresponding mean square error values for the IDW at the 

given data points i.e. the stations locations, since it is an exact method of interpolation so its results 

respect the data points exactly. 

Table 26. BSS optimal parameter values and performance indices 
Julian  
dates 

mx my τλx τλy 
Mean square  

error 
Global minimum  

GCV 

105 2 3 0.902 0.154 1.75  10–5 2.93  10–3 

135 4 5 0.003 0.765 1.42  10–5 3.76  10–3 

162 5 4 0.99 0.001 1.13  10–5 4.95  10–3 

199 6 12 0.76 0.019 7.42  10–5 3.15  10–2 

229 14 6 0.201 0.001 3.77  10–6 6.35  10–4 

259 2 6 0.784 0.067 2.47  10–5 5.11  10–3 

 

Also, the above criteria of performance may not be representative with respect to the validity of the 

interpolation results in other locations, except for those incorporated in the interpolation 

procedure. So, an alternative technique was implemented for the evaluation of the bilinear surface 

smoothing method efficiency, in terms of performing a leave-one-out cross validation procedure of 

the two methods. The procedure was implemented in MS-Excel and included a loop in which the 

PET values at the location of each station were estimated using the remaining five as the input 

dataset to each one of the two interpolation methods. In this way, we acquired a total of six, one for 

every day, PET estimates at the stations locations which were compared against the already 

acquired daily PM PET values. We should note that BSS was implemented using the previously 

obtained parameter values as presented in Table 26. 

The performance of each method was evaluated by using statistical criteria such as: mean bias 

error (MBE), mean absolute error (MAE), root mean square error (RMSE), mean square error 

(MSE) and modelling efficiency (EF) which is calculated on the basis of the relationship between the 

observed and predicted mean deviations (Malamos and Koutsoyiannis 2016b). As Table 27 states, 

BSS clearly outperformed IDW in all circumstances, apart from the EF and RMSE criteria at the 

Kompoti station. In this case, both methods failed to provide satisfactory estimates of PET values. 

An explanation to this behaviour is the fact that the Kompoti station is placed on the east side of the 

study area close to the mountains  so when it is missing, the available information is inadequate to 

describe the orography effects, thus resulting in insufficient estimates.  
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Table 27. Performance of BSS and IDW against PM PET values in the leave-one-out cross validation procedure  

 
Agios Spiridonas Vigla Ammotopos 

TEI of 
Epirus 

Kommeno Kompoti 

 BSS IDW BSS IDW BSS IDW BSS IDW BSS IDW BSS IDW 

MBE (mm) 0.0 0.8 0.0 0.4 0.0 0.4 0.0 0.1 -0.5 1.6 -1.7 1.7 

MAE (mm) 0.1 0.8 0.1 0.4 0.0 0.4 0.1 0.1 0.5 1.6 1.7 1.7 

RMSE (mm) 0.1 0.8 0.2 0.5 0.1 0.4 0.1 0.1 0.8 1.6 1.9 1.7 

EF 0.99 0.18 0.95 0.47 1.00 0.85 0.99 0.98 0.44 
-

1.55 
-2.02 

-
1.44 

 

7.1.5 Conclusions 

Two different approaches for spatial interpolation of daily potential evapotranspiration were 

implemented using data from six meteorological stations located in the plain of Arta, at the Region 

of Epirus. Both approaches were implemented for the characteristic day of each month for the 2015 

irrigation period, i.e. Julian dates: 105, 135, 162, 199, 229 and 259. The objective was to evaluate 

the performance of bilinear surface smoothing (BSS) method against the inverse distance weighting 

(IDW) method. The comparison against the estimated values of the FAO Penman-Monteith (PM) 

PET for each station showed that BSS yielded very good results with very small mean square error 

values, respecting the given PM PET values.  

Also, a leave-one-out cross-validation procedure per station was used for validating the 

performance of both spatial interpolators. Thus we acquired a total of six, one for every day, PET 

estimates at the stations locations which were compared against the already acquired daily PM PET 

values. During this cross validation procedure BSS clearly outperformed IDW in almost every case, 

respecting the variation of the terrain and also avoiding the characteristic IDW’s bull's eye shaped 

artefacts. Given the simplicity of the BSS methodology, its overall performance is satisfactory, 

providing maps that represent the spatial and temporal variation of daily PET, thus granting the 

necessary tools for implementing precision irrigation on daily or finer time scale. 

7.2 Regional daily/monthly parametric model in Arta valey 

7.2.1 Introduction 

The parametric model was applied in the Arta a strong irrigated value in western East of Greece 

(Figure 37). 
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Figure 37. Study Area 

 

Meteorological data was collected from 3 meteorological stations and the following computational 

procedures was made:  

 Calibration of the using historical data from 3 stations and regionalization of the parameters 

throughout Arta plain. Fit of the parametric formula at daily and monthly in the samples of 

the three stations and extraction of the parameters a,b,c. High CE was observed for the 

parametric model using PM as base sample.  

 Regionalization of daily and monthly temperatures from 6 stations located in Arta plain 

using I.D.W method as providing by a newer meteorological network. 

 Production of 10 raster maps (5 for mean monthly temperature and 5 for mean daily day of 

the 15th day of each month) 

 Appropriate coding of extraterrestrial radiation and production of the corresponding raster 

files 

7.2.2 Daily PET Spatial variability  

Figure 38 illustrates the spatial variation of PET at each month. The main outcomes are as follows:  

 PET high values are observed in North for every month and low values in the South adjacent 

to the shore. 

 Mean daily ranges from 2 mm (April) to 4.9 mm (July). 

 Significant PET spatial variation in daily scale and for all months. 

 Non standard spatial direction for every month in the study period. 
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Figure 38. PET daily spatial variability 
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7.2.3 Monthly PET Spatial variability  

Figure 39 visualizes PET monthly variability for each month. In respect the results it can be 

concluded the following: 

 Gradient of the monthly PET from North to South direction (limited in April) 

 Mean monthly PET ranges between 80.6 mm (April) to 174 mm (July) 

 Insignificant spatial variation for spring months (April, May) and significant in summer 

months (June, July, August) 
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  Figure 39. PET monthly variability 
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8 Conclusions and Discussion 

The major innovations of the thesis is the development of a new parametric radiation-based PET 

model which can be considered as simplification of the Penman-Monteith formula, in an attempt to 

combine parsimony, in terms of model structure and data requirements, and physical consistency. 

The parametric model is a parsimonious radiation-based and physically consistent approach 

derived from a simplification of the Penman-Monteith equation. It requires in its first exhibition 

three parameters to be calibrated prior to its application and two parameters in its second global 

format. Specifically, two model versions were presented in this respect, the first one was applied in 

the well-known CIMIS network and the second a slightly modifications of the first expression in the 

Global Dataset of CLIMWAT.  

The model ensures excellent predictive capacity (in terms of reproducing monthly PET estimations 

through the Penman-Monteith) in the majority of the examined in both applications. In the first 

application (CIMIS), the model outperforms all the radiation-based and empirical formulas and in 

the global application provided better performance in comparison with the Hargreaves model. It’s 

worth mentioning that a main hint point of this thesis is that the local calibration of the simplified 

models is reqired, in assessing consistent PET since the comparisons across different climates 

reveal the great advantage of parametric approaches against radiation-based ones, since calibration 

allows the coefficients that are involved in the mathematical formulas to be fitted to local climatic 

conditions. The parameters of the new model have some physical background, since they 

substitute, to some extent, the three missing meteorological variables namely the humidity, the 

wind velocity and the radiation. Taking into account the limited availability of data capable to 

acquire the set of parameters of the Parametric method into timescales finer than monthly e.g. daily 

or even hourly, an interesting study could be the investigation of downscaling them against time. 

This investigation might be performed by applying a regression analysis that involves establishing a 

mathematical relationship between the large scale acquired parameters against those of finer scale. 

Another point of interest of this thesis was the investigation of the optimal spatial technique in 

converting the point scale estimate into regional, by implementing interpolation techniques such 

as: Inverse Distance Weighting (IDW), Natural Neighbours (NaN), Ordinary Kriging (OK) and 

Bilinear Surface Smoothing (BSS), along an extensive study area such as California. The validation 

procedure was implemented by comparing the reference potential evapotranspiration estimates 

acquired from the implementation of the parametric method, using the parameter estimates of the 

four interpolation methods, against those of the eleven additional CIMIS stations. This combined 

evaluation of the four different interpolation approaches, indicated that the simple and effortless 

IDW method performs better than the other three methodologies. Regarding the application of the 

new methodology, BSS’s efficiency to perform interpolation between data points that are 

interrelated in a complicated manner was confirmed, acquiring high CE values analogous to those 

of the other three methods. In this light, global parameters map was provided using IDW for direct 

application of the parametric expression across the globe. 
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Numerous applications were presented including the development of a R software script for 

estimating the annual trend under Hurst-Kolmogorov behavior and a global remote sensing PET 

monthly dataset.  

Incidental contributions, moderate innovations and future research required are summarized 

below: 

Future research attempt requires a detailed investigation of the factors affecting the model poor 

performance in specific areas over the globe, in order to recognize whether these can be handled 

through a slightly different model structure or they do require the use of additional explanatory 

variables or parameters. Apparently, this will require the use of full meteorological time series 

instead of climatic data, which is a very challenging task at global scale. Another challenging task is 

a survey of the calibration results against different climatic zones that will further highlight the 

model advantages, as well as potential shortcomings. 

Since the need of the large-scale hydrological modeling is under high development at least last 

decade, the Global PET maps at multiple time scale extracted by in-situ measurements or by 

combining remote sensing measurements can be support the hydrological community by providing 

reliable PET estimates which are required input-data in numerous well known model such as 

SWAT. To achieve that, future research shall focus in the production of reliable PET estimate 

integrating site temperature and remote sensing samples. A first which was presented in this 

Thesis is very promising since the new PET monthly dataset (RASPOTION) provided very 

satisfactory results. 

Reliable global PET estimate could be useful and in another hydrological science field referring to 

the low-flow assessment in ungauged catchments. Typically, the most recent scientific attempts in 

this regard use the PET as explanatory variable of regression models and therefore PET accuracy is 

noteworthy for estimating the flow duration curves in ungauged catchments.  

Another interesting for further research survey is the use of the parametric framework within the 

field of agronomical studies and especially in the forecasting of the crop water requirements for 

scheduling the irrigation program in timely manner. The key idea of the Parametric model owing to 

minimal input data requirements can be decrease the overall uncertainty of the PET projection at 

short-term forecast (up to 3-days)  and therefore the short term weather prediction can be 

incorporated to an efficiency Decision Support System for the crop assessment in local and large 

scale precision agriculture. 

Conclusively, the Parametric Model is a robust model with numerous potential applications in 

different disciplines related to hydrology and geosciences as well, since PET is a critical input 

variable of hydrological modeling, in assessing the crop water demands of several agronomist 

studies, in physical based estimation of the low flow in ungauged catchments, in assessing the long-

term trends of hydrometerological variables.  
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