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EYXAPIXTIEX

H petamtoyguokn oot epyocio  ekmoviOnke ota mwAoicl TG OAOKANP®ONG  TAOV
LETATTUYIOK®Y OV CTOVOMV GTO OLOTUNUOTIKO HETAmTUYKO Ttpdypappa: “Emotiun kot
Teyvoroyia Yoatwkov [Topwv™.

®a nBeha va gvyapiomnom OBepud tov A. Kovtsoyidvvn yio v gukaipio Tov pov £dmace vo
avorapo €va 1660 evoloneépov BEpa aAAd Kot Yoo T O0pKN TOV VIOCTHPIEN KO’ OAN ™
dapkew g ekmdvnong g epyaciog. To pabnuo tov oAAd Kol 1 LETATTUYIOKY EPYOGTOL LE
gKavay vo 0AAED TeELelS TOV TPOTO OV PAET® TNV EMGTAUN TG YOpoAoyiog.

[MapdAinia 6o MBera va gvyaprotiow v O. HuomobAov mov mapeiye dopkr vwootpiEn
Kol kafoonynon oe 6L Ta 6TAdI TG £pYaciag. Me Tig supuPovAég TG lxe TOAD KaBoploTIKN
GLUPOAN BTNV OAOKANPMOT TG EPYACTOG.

Emniéov Ba nBeha va evyapiomom tov I1. Anuntpidon yia tic S1aAEEELS TOV POV TTPOKAAEG OV
TO EVOLPEPOV Y10 TO OVTIKEIUEVO TV GTOYUCTIKMV Kol EMIONG Y10 TIG EMONUAVOELS TOV GE
Kaipto (NTRaTo TG LETATTUYIOKNG EPYOGTOC.

Téhog Ba NBera va evyopiotom 1o Niko kot tnv Avva mov cuvEBaiay LE TOV TPOTO TOLG
TNV OAOKANP®OT TG £PYACIaG OAAL KOl OAO TO SOOKTIKO TPOCMTIKO TOV UETATTUYIOKOD Y10,
TIG TOADTIUEG YVMDOELS TOV OV UETESMOAV.



ABSTRACT

We investigate the impact of time’s arrow on hydrological processes. The role of stochastic
simulation and uncertainty is first investigated. Uncertainty is a major factor in physical
sciences and engineering. The probabilistic behavior of an engineering system is essential
considering that uncertainty issues are important and must be managed. The true distribution
for the system response is subject to parameter uncertainty and is in most of the times difficult
or even impossible to calculate. This is due to the complexity of the hydrosystems. In such
cases, stochastic simulation else known as Monte Carlo simulation is a viable tool to provide
numerical estimations of the stochastic features of the system response. Long range
dependence is a feature connected to uncertainty and is very important in hydrology. It is
being discussed through relevant literature and models. Time’s arrow or temporal asymmetry
is also related to uncertainty and randomness and has an important role in science. It has been
implemented in stochastics for some time but it has recently attracted attention in relevant
publications in hydrology. Studies have shown that the temporal asymmetry of the streamflow
process is marked for scales up to several days and this highlights the need to reproduce it in
flood simulations. After a review of the relevant literature, an analytical method based on an
asymmetric moving average (AMA) scheme is being used to simulate time series with
temporal asymmetry. The temporal asymmetry of real world streamflow time series is being
investigated at hourly scale from the large USGS database. Finally a modification of the
method that can simulate time asymmetry at two time scales simultaneously is proposed. The
method is successfully tested in the physical world through a case study.



IHEPIAHYH

Atepguvovpe v emppon Tov PEAOVEC TOL YPOVOL GTIS VOPOAOYIKEG dlepyaciec. Xtnv oapyn
TapovotdleTal 0 pOAOG TNG GTOYOCTIKNG Tpocopoimong kot tng afefoardotnras. H afefordotnra
elvar évag onUavTikdg TapAyovTaS OTIC PUOIKES EMGTIIES KO GTNV ETICTNHUN TOL UNYOVIKOD.
H pehétn mg mbavotikng copmepipopds evdg cvotnuatog sivar amapaitn Aappdvovrag
VoYY 0Tt To Bépa ¢ afefoardtnToc eivor oNUAVTIKO Kot TPETEL TO TO SLUXEIPICTOVUE. X
TETOIEG TEPUTTMOELS, 1| OTOYOOTIKN TPOGOoUoimon 1 oAMd¢ mpocopoinon Monte Carlo sivar
éva. YpNOIUO  €PYOAEID Yoo TNV TOPOY ] OPOUNTIKAOV EKTIUCEMYV TOV OCTOYAUCTIKOV
YOPOKTNPICTIKAOV TNG amdKplong tov cvotnuotoc. H paxporpdBeoun ypovikn e&bptnon 1
eppovn etvatl otevd cuvoedepévn pe v afefotdtnta Kot givol GNUavVTIKN Yo TV vopoioyia.
Meletdror péow oyetikng Piproypaeiog ko poviédwv. To Bérog Tov ypdvov cuvvdéetan
EMIONG OTEVA LE TNV TUYXOLOTNTO Ko TV affefatdTnTa Kot £XEL GNUOVTIKO POAO GTNV EMIGTHUN).
‘Exer epopuootel otig otoyaotikég peBOOoLg Yoo KATO0 YPOVIKO Oldotnua, oAAG €xet
TPOGEAKVGEL TPOGPATO TNV TPOGOYN GE ONUOGIEVCELS GYETIKEG e TNV vOporoyia. ‘Epevveg
KATEANEAY GTO GUUTEPAGHA OTL 1] YPOVIKT OGUULETPIO TNG PLGIKNG SIEPYOGING TNG OTOPPONG
VILAPYEL V1oL TNV KAIHOKO LEPIKMV MUEPDV KO AVTO VIOYPUULILEL TNV OVAYKT) OVOTAPOYMYTG
NG GE MPOCOUOIMGELS TANUULP®OV. MeTd amd pio avaokdmnon g oxeTikng Pipaoypapiog
YPNOOTOLEITOL Lo avaALTIKY PEB0J0C Paciopnévn o€ £va GYNILOL AGVILUETPOV KIVIITOV LEGOV
(AMA) y1o TV Topoy®yn GUVOETIKOV YPOVOCEIPOV LE ¥POVIKT ACVUUETPiO. ALt 1| epyacia
poteivel pa tpomomoinon g nebdooL Yoo TV TPOGOUOI®MGT TS AGVUUETPIOG TOV YPOHVOL
o€ 000 KApokeg tavtdypova. ' vo SOKIHOGTEL 1| ATOTEAECUATIKOTNTA VTG TG HeBdOOV
OTOV QUOIKO KOGHO, yivetonl pio UEAETN pHE TPpayuaTikd dedopéva. AlEPELVATAL 1) YPOVIKN
OCLUUETPIOL TOV YPOVOCEIP®V OTOPPONG, amd Tn HeYaAn Pdom dedouévov tov USGS, ot
oploio KATpoKaL.



EKTENHX IIEPIAHYH

Ewayoyn

AVTIKEILEVO OTNG TNG UETATTVYLOKNG OWTAMUATIKNAG €PYAciag eivar 1 HeAETN TG emidpaong
1oV BEAOVG TOV YPOVOV GTO GTOYUGTIKG LOVTEAQ KPS XPOVIKNG KAILOKOC.

H epyaocia avt €xel emnpeaoctel amo v npoceatn perétn tov A. Kovtsoyibvvn (2019): «To
BE€LOG TOV XPOVOL GTO GTOYOGTIKO YOPOKTNPIGUO KOl TNV TPOGOUOIMOT) TOV ATHOCPUPIKOV
KOl VOPOAOYIKMOV OlEPYOCSIDVY. XTNV opyn TG OWMAOUOTIKNG Yivetor pwo mpoomddeio
TOPOVCIAoNG HEPOVS TOV EMCTNUOVIKOD TANIGIOL Tov amoterel ™ Pdaom g mpdoeATNg
HeEAETNG. Zuyypoveg ocvinteitol kot GAAN oyetikn] Piploypagic. Avtd yivetor yu va
emonuavOel n onuacio Kot 1 YPNOOTNTO TOV LETEMELTA OTOTEAEGUATMOV

[Mpaypatikég ypovooepéc amd peydin Paon 0£00UEVOV YPNCYLOTOIOVVTOL Y10 TN O1EPEVVION
G U1 OVTIOTPEYILOTNTOS O mploio KATHOKO. XPNOUOTO0VVTOL YPOVOGEPES ATOPPOTG
HEXPL KOl TNV EKATOGTH GUVAOPOIGHEVT KAILOKOL.

Xe avTn TN HEAETT YivETOL Lol TPOTTOTTOINGT TNG LILAPYOLVSAG LEBOJOL, 1 oTola dlaTnpel T Un
AVTIOTPEYIULOTNTO UOVO OTNV TTPMOTN KAIOKO Kot TV Kofotd wovny va dwtnpel v un
OVTIGTPEYIULOTNTO OTNV TPAOTN Kol 0T OeVTEPT KALOKA TOLTOYPOVA. XT0 TEAOG, N POCIKN
HEB0S0G Kot 1 TPOTOTOMNUEVT) ETAANBEVOVTOL OO PLGIKA dEGOUEVOL.

ABeparotnro, aSromortia kot pé@odor Monte Carlo 6ta véposvetipoTo

210 TAOUG10 NG TOPAY®YNS VOPOAOYIK®Y HOVTEA®V, 1 afefardtnta eivon évag TEPAGTION
napayovtas. ['opw amd avtdv tov dpo vdpyovv ToALEG mapavoncels. Emniong modhég popég
dev AapPavetor vIOYY Kot 1o amotéAecpa eival damoavnpo.

2NV TPAYUATIKOTNTO Ol VIETEPUIVIGTIKOL VOLLOL KOl 1] TUXOOTNTO. GLUVUTTAPYOLVV KO TPETEL VAL
avTeTOmovTol Kot vo LoVTELOTO100VTOL Le OMOTIKO Tpdmo. To av pia depyacia givat mo
OTOYOOTIKN 1] VIETEPLIVIOTIKN €lvar povo {Rmua xpovikov opilovta.

H myéc mg afefardomrog ota vdpoovomiuoto pmopet vo givor (Mokpomoviog Kot
Evotpatidong, 2018):

1. Amhoikég mopadoyec HOVIEAOL Yyl Kpioyleg Olepyacie Tov cLoTUaTog (CEdApaTO
dopk®dv povtélwv - dopkn afePardonra). Avtd cvpPaiver 6tav AapPdvovpe vroOyM
AMyOTEPOVG KAVOVES amd OTL TNV TPUYUATIKOTITO VITAPYOVV.

2. BvawsOnoia otig apykés ko oplokég ocvvOnkeg (yootikd cvotiuota). Onmg Kot 610
TPONYOVUEVO GYNLLOL.

3. Avenapkng yvOon TV KPIGIL®V TapaUETPOV TOV GUGTILOTOC.

4. Z10X00TIKN] QUG KO YOPOYPOVIKY LETARANTOTNTO TOV VOPOUETEMPOAOYIKADV SLOIIKAGIDV
(.. Bpoxn, e&dton, amoppon, dveloq).

5. Zodipato pétpnong kot ovokpipeles.



6. AA\aryr) GUCTAUOTOC e TNV TAPOSO TOL YPOHVOL (AOY® EEMTEPIKAOV TOPAYOVI®OV).
7. AAaryéG OTIC OMOPAGELS / TOMTIKES KOl OG €K TOVTOL GTO HETPA OTAOS00TG.

O Paocikdg 610Y0¢ TS avaivong afefardtrag gival va TPOGIIOPIGTOLY TO YOPOUKTNPICTIKE
afePardmrag g €660V TOV GLGTAUATOG MG GVVAPTNON TV afefatoTtOV oL GYeTilovTal
pe 1o 1010 TO MOVIEAO GULOTNUOTOG KOl T OTOYOOTIKEG TapouETpovg tov. H avdivon
afefordTrag moapéyel po exionun kot pebodikn doun v ™ uétpnon g afefotdtnrag Tov
ovotiuatog. EmimAiéov, mapéyst mAnpogopiec yio T cvpPorn kdbe otoyaoTiKng Pacikng
TOPAUETPOV GTN GLVOAIKT afefardtnta TV 600wV TOV GVGTAUATOG. Ot TANPOPOPIES AVTES
elval amapoitnTeg Kol pwopovv vo, 00N yNGOVV GTOV EVIOTICUO TMV TAPAUETP®V TTOV Tailovy
onuavtikdtepo poro oty afePardtra. H extipmon tovg Ba odnynoetr ot peimon g
ovvoAkNng afePaidtntog Tov cvotuatoc (Tung and Yen, 2005).

X1 ocvvéyeln yivetal pio lcaywyn otig mBavOTNTES Kot TN oTaTioTikr. Atvovtol ta facikd
aSl1OHOTA KOl OPIGHOAL.

O opopdg pog otoyaotikng aveMéng {X(t),t € T} elvar 61t givan " okoyévela Toyaiov
petapintov" (Kovtooyidvvng, 1997). Aniadn, vy kébe t € T,X(t) eivar o toyaio
petafint. Avapepopacte oto X(t) og v Katdotoon g avéMENS KoTd T0 ¥povo t €dv o
deikng t mapiotavel to ypovo. O1 oToYaoTIKEG avEMEEIS pTOpoHV Vo xpNGIHOTO B0V Yo va
TEPLYPAYOLV TN XPOVIKY| EEMEN N TIG YWPIKES GYEGELS TUXOLMV LETAPANTOV

Ot voporoyikég petafAntég umopovv va Bewpnbovv otoyaotikég averilels (Kovtooyiavvng,
1997). To yeyovdg 611 o puoikn depyacio Bewpeitor oToxaoTIKN OVEMEN OV onuaivel OTL
dev &yel kaboplotikd poro. Eivar yvwotd 01t moAAEg vdporoyikég diepyacieg mapovoidlovv
ETNOLOL VIETEPUIVIOTIKY HETAPANTOTNTO T.Y. OmMOpPOoNsG. Avti 1 HeTAfANTOTNTO HITopel vo
Bewpnbel wg toyaio petafAntotmro mov cvpPaivel oe dapopeg ypovikég kiipaxec. To
OTOYOOTIKO HEPOC TNG OldKaciog 0ev elvarl evieAdg Tuvyaio, £(€l GTOYAOTIKN OOUN M|
GTOYACTIKN LVIUN.

TN GLVEYELN OVOTTOGGETAL 1) £VVOl0 TV LOPOCLOTNUATOV KaOMS Kot Bpata dtoyeipnong
TOVG KOl TOGOTIKOTOINoNG TG a&lomoTtiog.

‘Eva voposvomua gival €éva cOGTNUO TOV OMOTEAEITOL OO QLOIKG VOATIVOL CAOUOTO KOl
TEYVIKA €pyo mov cvvepyalovtal Yoo TNV e&ummpémon evog 1 TEPICCOTEPOV CKOTADV, TO.
omoio ava@épovtal TOG0 GTNV EKUETAAAELON TOL VEPOD G PLGIKOV TOPOL OGO Kol GTNV
TPOCTAGio. amd TNV KATOCTPOPIKN TOL dpdon ¢ @uowd kivovvo (Kovtocoyudvvng ko
EavBomoviog, 2014).

H dwxwvdvvevon opiletar wg n mbavotta advvapiog enitevéng tov otdyov. H adomortia
opiletar padnuatikd ©g copumAnpopa g dwkwovvevons. H pobnuotikn avéivon g
drakvovvevong ko TG a&lomotiog opileTor g aviivon aSlomoTiog.

Edv 10 X avtimpocomevel ) péyom T TG QLGIKNG depyociag oe etnotla Paon (m.y.
péylotn oo TAnupdpa) kot n eivor n didpkela Long Tov Epyov, 1ot T0 YeYovog {L < C}
1000TOL [E TIS d0YIKES eppavicelg Tov ovuPavtog {X < C}. Tlpokeywévov va unv vrepPet
N TN ¢ kad '6An ) didpkew Tov £pyov, dev Ba mpémel va vdpyel vépPacn oe OAa Ta £TN
™mg OdpKewg avts. Oswpdvtag 0Tt o1 TANUUOPEG SAOOYIKAOV ETMOV EIVOL GTOYACTIKA
ave&aptnreg, 1 dokwvdvvevon divetar omd (Kovtsoyiavvng, 1997):

R=1-[PX < O] =1- [F(O)]" (ETL.1)



H otoyaoctikn copmeppopd vog UNyovikod GLGTLATOG Eival amopaitntn €0V amodEXTOVUE
ot ta Béparto afefoardtnrag sivor onuavtikd Kot Tpénel va o dtayeipiotovpe. H mpoaypotikn
KOTOVOU TNG aOKPIOTG TOV GUGTHUATOS TTOL LIOKELTAL 6TV AEPOTNTO TOV TAPAUETPOV
etvar moAAEC @opéc dOokoAn M kol advvatr vo vroAoyiotel. Avtd o@eihetar otnv
TOALTAOKOTNTO TV VOPOCLGTNUATOV. XE TETOEG TEPUMMTMGELS, 1) TPpocopoiwon Monte Carlo
elvar éva ypNoo epyoieio ywu v mapoyn OPOUNTIKOV EKTIUNCEDV TMOV GTOYAUCTIKMOV
YOPOKTNPIGTIKAOV TNG amdkpiong Tov cvotnuatog (Tung and Yen, 2005).

2TO 0 0TIKA EPYUALELD KOl paKporTpoOesun ypovikn e€aptnon

Edd ewodyovion xamown gpyoreion mov PonBovv otn depedvnom TG GTOYXOCTIKNG OOUNG
TPOAYLOTIKAOV 1] GUVOETIK®OV YPOVOCEIPDOV.

To hapakdypoappa opiletar g 1 dloomopd ToL cvvadpolouévov pEGov ¢ depyaciog x(t)
o KMpoko ovvadpoiong k kar cvpPoriletar ¥ (k). Opilovpe ™ depyoasio x*) oe kdde
KApoka k = 1 og:

ik
1
=l 3y €2
I=(i-1)k+1

To ¢daopo wyvog s(w) ¢ otoyaoTikng avéméng oe dwkprto ypoévo t = 0,1, ..., ue
CLVAPTNOT  OWTOCVVIGTOPES Vi = CoV[Xe, Xtpm],m = 0,11, ..., €lvor 0 ovTioTPOQOC
uetacynuatiopdg Fourier g ocvuvaptnong owtoocvvolacmopds e w oto ddotnua [0,1/2] . H
emduevn oyéon oyvel (Kovtooyiavvng, 2013):

s(w) =2y, + 4 Z Ymcos(2mmw) (EIL3)

m=1

To wAMpoxkopdaopo elvar éva  veostoaybév  otoyaotikd epyaieio. Opiletar oamo ToVvV
Kovtooyiavvn (2017):

k(y(k) —y(2k))
In2

"Evog dAAog onpavtikog mapdyovioag mov mpénel va Aapupdvetar vmoyT Katd v tpocnddsio
KATAvONoNG TOV VOPOAOYIKMY OlEPYUsI®V €lvarl 1 HokpoxpoOvie ypovikny €Egptnomn M m
gupovn. Xtnv voporoyia o dpog awtdg givar 16odvvapog pe Tov 0po "eoawvopevo Hurst". H
pokpompdBeoun ypovikn e&aptmon opiletor amd tovg Everitt ko Skrondal (2010) oc:
"Mukpég aAAd apyd @Bivovoeg cuoyeticels og o oToYaoTIKn aveMén. Tétoleg cuoyetioelg
GLYVA OEV AVIYVELOVTOL L€ TUTOTOUUEVA GTOTICTIKG TEGT, OAAL TO AMOTEAEGUA TOVG Uopel
va gival apketd onuavtikd. " Znv voporoyia avtd mapatnphnke apykd amd tov Hurst.
Eivar ovcwaotikd m tdom TtV LYPOV ETOV VA GLCCEOPELOVIOL Kol v oynuatifovv
LEYOAVTEPES VYPEG TEPLOdOVS Ko To. Enpd ypovie oynuatiloviag mapopoimg meptOdovg
Enpaciog.

To povtéro Filtered Hurst Kolmogorov (Kovtcoyidvyng, 2015) eivan éva povtédo mov pmopet
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V0. TPOGOUOUDGEL PLGIKA POLVOLEVO LE LAKPOYPOVIOL ELLLLOVT].
To KMpokdypappo e avEMENG diveTal 0o ToV TapaKdT® THTO:

H-1

y(4) =12 (1 + (é)”’)T (EIL5)

To a xar A eivar mapdpetpor kMpakog pe povadeg [t] and [x]?, avristoiywg, H sivon m
napauetpog Hurst, oto didotnua (0,1), kot M pd dedtepn mapduetpog oto didotnua (0,1).
To H xabopilet t1c kabolkég 1010tnTeg TIg avéMENG kabmg (t = ) kot 10 M kabopilet Tig
ToTIKEG 1010t TeC Kabmg (t — 0).

Bé£)og Tov (pOvoVv Kot 6TOY00TIKEG OVEMEELS

O 6pog "BéAog Tov ypovov" avamtuyOnke apykd amd tov Eddington (1928) ywo va meptrypdyet
mv katevbuvon ypdvov, N omoio umopel vo mPocdloploTel Pe TN UEAETN TNG OPYAvVOONG
atopmv, popiov ko copdtov. H dtusntiky] aviiAnyr pog yuo tov ypdévo ott KVAGEL HOVO
TPOG TOL EUTPOG YPOVO Pmopel va, amopprpBel g amAdS VITOKEEVIKN.

H xotevBovvon tov ypdvov umopel vo opilotel amd ol katnyopio OldKACIOV OV
KATOOTPEPOLY TANPOPOPIES Kot ONUIOVPYOVV YboG. Ot un avaoTpéyes JlEPYNCieg oL
KATOGTPEPOLV TNV HOKPOOKOTIKY TANPOPOPia €lvol EKONADGEIS TOL OEVTEPOL VOUOL TNG
Oepuodvvapikng. Amd v GAAN TAELPd, VTAPYOVV TOAAEG dlepyacieg mov eivar un
avaoTPEYIUEG Kot elval avtidtapetpikd avtiBeteg. Oleg avtég o1 depyacieg Exovv KATL KOO
wapayovv 1aén M mAnpoeopia. Extpémovv éva cvotmuo amd pio oamAn KoTdoToon GE TO
ovvoet.

O Weiss (1975) opiler pio otoyaotikn avéMén x(t), oe ouvveyn ypovo t, HE MIOGTNG
T4ENG CLVAPTNOT KATAVOUT|G.

F(1, %1, e, Xps te, by oy t) = P{x(t1) < %1, x(t5) < Xp, o x(ty) < X} (ETL.6)

G CLUUETPIKN GTO YPOVO OV 1 KOV KOTAVOUT 0V 0AAACEL LETE OO AVTIGTPOPT| TOV XPOVOL
YOp® amo TV apyN TV a&ovav, Oniadn av yuo Kabe n, t1; ty; ...; thoq; ta,

F(xl, xl, ey xn; tl' tz, ey tn) = F(xl, xl, . ,xn; _tl, _tz, ey _tn) (EH.?)

H npoécopat perétn and tov Kovtsoyidvvn (2019) mapéyet pio pebodoroyia avamoapoymyng
™G OVTIOTPEYIUOTNTOS GE GLVOETIKEG Ypovooelpés. O deiktng avtioTpeyodtag opiletat g
0 AOYOG NG acVLUUETPiag NG OPOPIKNG OlEPYOCIOG TPOG TNV AGLUUETPIOL TNG OPYIKNG
depyaciog.

H perém g un avactpeyidmtog ano tov Kovtooyidvvn (2019) oniovet 6L | acvppeTpio.
amontel T HEAETN NG TPITNG POTMNG KOL TOL GUVTEAESTN AGULUUETPiOG TG dlepyasiog, TG
apYKNG oAAL Kot NG opopomompévns. H mpotn pomng (H€cog 0poc) e Sopoptkng
depyaciag stvor mwhvto undevikn evd 1 dgbtepn (draxvpavon) eivor mwhvto Oetikn Kot €161
KOTOANYEL OTO CLUTEPOCHE OTL OV TOPEYOLV EVOEIEEIC GYETIKA e TNV AGLUUETPiO. TOV
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xpOvov. Q¢ €K TOLTOV, M POT EAGYIOTNG TAENG TOv pmopel va ypnoyomonbel yo v
aviyvevon e avTioTpeYLOTNTAG Eivor 1 Tpitn.

H acvppetpia otig otoY0oTikég aveAEels elval GUVAOVLUN HE OTOTOHOVS OVOOTKOVS KAASOVG
Kot OpOAGTEPOVS KaB0dIKOVG KAAS0LG OTIG detypotocuvaptioelc. To 1010 cvpPaivel kol o€
&va VOPOYPAPN U OTaV EETALOVIE TTOPOYES UIKPNG YPOVIKNG KAILAKOS. AVTI 1) GCLUTEPIPOPA
yivetal mpoondfetla va avamapoydel pe tnv Evvola g YPOVIKNG AGVUUETPIOC.

To povtéro (MA) (Kovtooyiavvng, 2000),

[oe)

X = Z a;Vr—; (EIL8)
i=—oo
EXEL TNV TOPOKAT® ADON
1/2
ap = j e2mi0(@)=nw) AR () dw (ETL.9)
-1/2

Onov i givor 1 pavtootikh povada, 8(w) eival omol0dHmoTE TEPITTH TPOYUATIKY GLVAPTNON
(onuaiver g 0 (—w) = —0(w)) kot

AR (w) = /254 (w) (EIT.10)

Tpomomoinen aryopiOpov yro Teparttép® S1aTIPOTN YPOVIKIG CVUUETPLOG

2mv mopovoa peAET yivetar mpoomdbela Tpomomoinong Tov aAyopifuov mov TPOTEWE O
Kovtooyuavvng (2019). O otdyog givar va TpocopotwBovv ot ¥povoselpés mov datnpohv
YPOVIKT acVUUETPpio G€ peyoldTEPES KAILaKES GLVAOpOIoNG TG dlepyaciag.

[N prxog mpocopoinong i, to AMA povtédo Ba pmopotoe va ypagtel emiong og:

2q+1

X = Z Azg+2-jVitj-1 = Aaq+1Vi + -+ A1Visag41 (EIL11)
j=1

H dgvtepn pomn| g apyikng akoAovBiog o devTepn KAlpako vroloyiletot og:

2q+1 2 2
orig. - 4’ 4
]=

H dgvtepn pomn g dapopikng axorovdiog oe devTEPN KAILaKo vVToAoYileTon ®G:
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2q+1

2
@ =B z [+ (@2g-1-j + Aag—j=A2q41- — G2q+2-1)
differ. - 4
j=1 (EIT.13)
2 2 5
(an + azq-1— a2q+1) n (an + a2q+1) n Azq+1
4 4 4
H 1pim pomn g apyikng akorovbiog og devTepT KAaKo vroloyileTon wg:
2q+1 3 3
®) (k=2) _ Z (a2q+1—j + a2q+2—j) n Azg+1 (ET1.14)
orig. 8 8
j=1
H tpitn ponn g drapopikng axorovdiag oe devtepn KAk vroAoyiletot og:
2q+1 3
O Z _(2g-1-j + @2q-j=2g41-j — Qzqs2-1)
dif fer. - 8
j=1 (EIT.15)

_ (an + azq-1— a2q+1)3 _ (an + a2q+1)3 _ a2q+13
8 8 8

Metd 10V VTOAOYIGUO TOV POTOV OELYLOTOC, TO VITOAOYIOTIKA epyaieia TpEmel va eE1I0DGOVV
TG pomeg Tov deiypatog (epmelpikéc) kot T1¢ akoAovdiog (Bewpntikéc) 1ol dote va Ppedodv
o1 TopAUETPOl Tov povtéAov. Ta epyareia BeATioTOTOINONG YPTCILOTOOVVTAL YO TV EVPEST
TOV aropaitntov topouétpov. H mapapetpomoinon akoiovbel v 101 peBodoroyio OTmg
otov Kovtooyiavvn (2019): évag opopdg tov 6 (w) ©G T0 OpoAd €Ad)IOTO T®V VO
VIEPPOMKDOV GUVOPTNGEWV TNG SLYVOTNTOS, ONANON -

1 Ciw
6(w) = Eln (ewl(“’) + 6592(1/2_“’)), 0;(w) = == o 1 Coi (EIL16)

Amoteréopota Yo T peAéTn TG TEPITTOONG TOL ToTOPOY Monacacy

Xe auTtOd TO KEQUAUO €QUPUOLETAL £VaG TPOTOTOMUEVOS aAYopiBlog mov meptypdpeTal 61O
TPONYOVLEVO KEPOAAOIO HE TPAYLATIKO Oedopéva. AvaADETOL M TEPIMTMOON TOL TOTOUOV
Monocacy amo 1t Bdomn dedopéveov USGS. Zmv npdtn mepintmon yivoviol TpoGoHOUDGELS
pe dwaTnpnom NG XPOVIKNG acvppetpiog oty mpotn kAipoko (Zynpo 8). Xtn devtepn
TEPITTOOT YIVOVTOL TPOGOUOUDGELS LLE OTIPNOT OTIS OVO TPDOTEG KAMPaKeS (Zymua 9).

To apycd dedopéva mpoépyovtay and 15ienteg HETPNOES aALd cuvabpoicTnKav 6e wpiaio
KApaxo. Metd and ovtd, Bempndnke onuoviikd vo mpaypotonombel 1 6TacLoToincy g
YOVOGEPAC Kol €yve TO TECT avTioTpeypnom oS (Zymuae 1). Ta v mpocappoyn tov
povtélov Filtered Hurst Kolmogorov tovtdypova ypnoiyomomnkay kot 10 KAMPAKOQPAGHLOL
(Zymua 3) pe épeaon pikpég KAIpakeG Kot 6to kKApakdypoppe (Zynuo 2) otig peyaAdtepeg
KApaxeg. o to oxond avtov €yve TpdTa poviponoinot. Ot TopdueTpotl vIoloyioTnKav: a =
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19.399, H =0.628, M = 0.724. ZmVv cvvéyelo HEG® VITOAOYIGUADV OV TEPLEYOVV TO PAGLA
10006 (Zynua 4) vrohoyilovtol ot cvviedeotés a, o AMA Yo Vv TpdT™ Ko devTEPN
nepintowon (Zynua 5 xor 7). T ) dedtepn mepintwon vmoloyilovrar emiong Kot ot
ovvtereotés 0 (w) (Zynua 6).
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ATOTELEGNOTA OTO T1) OLEPEVVVLON TG UVTIOTPEYINOTNTOS 6T Pdon d€dopuéEvmv
Tov USGS

Xe auT TNV EVOTNTO ETYEPEITOL 1| TOGOTIKOTOINGT TNG W OVASTPEYILOTNTOG OTIC TPMTEG
100 kAipokeg amd i peyddn Paon oedopévov amoppons. O otdyog eival va peietnBovv
moAlol otabpol kol va Ppedel n péon tyun tov deiktn acvppetpiog yoo KaOe kAipaxa. H
PO mepintmon etvor n moAteio Tov Maryland mov amoteieiton and 222 otabpovg (Zynuo
10). H devtepn mepintwon ivor Eva akOpn HEYOADTEPO GUVOAO SEGOUEVOV TOV ATOTEAEITOL
a6 762 otafuovg otig HITA (Zynua 11). o t cvAroyn kou enelepyocio TV TPOTOYEVAOV
dedopévav  ypnolpomomOnkay kmdwkég python kot ocvykekpyéva to makéto climata
(www.pypi.org/project/climata/) kot eveo ftav oe 15 emtn KAMpOKO HETATPATNKAY G ®PLoio
dedopéva. Oheg ot ypovooelpés £xovv otaciponombel pe tov 010 tpomo dmwg ot peAét
nepintwonc. £to 1€Aog voioyiomnke 1 dwuomopd og kbe KAipaka Yo T dgvTEPN TTEPINTOON
(Expa 12).

Xiii



Skewness ratio

100 10! 102
Scale(lhr)

IxAMa 10 AvTioTpewindTNTa yia oho To MépihavTt, H.M.A., 222 otaBuoi

10

Skewness ratio

10° 10! 102
Scale(1lhr)

ZxApa 11 AvrioTpeyiuotnTa yia 762 otabuoug otig H.I.A

Xiv



50

N w I
o o o
L 1 I

—
o
L

Variance of the Skewness ratio

10° 10! 10?
Scale(1lhr)

ZxAMa 12 AlooTropd TOU KPITNPIOU avTICTPEWIUOTNTAG YIa T SEUTEPN TTEPITITWOT).

Yopmepaopata

H afePardtta eivon évag onuovtikoc Tapdyoviog OTig QLOIKEG EMIGTNLES KOl GTNV ETICTHUN
oL pnyovikov. H mbovotikn cupmeptpopd evog unyovikob cuGTHUOTOG ivol amapaitnTo va
peretatar, Oedopévov Ot ta. {ntiuoto  afePotdotnrog €ivol ONUOVTIKA Kol TPEMEL V.
avtipetoniotovv. H otoyaotiki mpocopoimwon etvar éva yxpnoo epyoreio yio v mopoyn
apOUNTIKOV EKTIUGEMY TOV GTOYOCTIKMY YOUPUKTNPIOTIKOV TS ATOKPIGNS TOL GUGTILLOTOG.

To Péhog TOL YPOVOL €XEL CNUOVTIKO POAO OTNV EMICTNUN Kol OYeTIlETOL OTEVA HE TNV
ToyooTnTe Ko v afefatdtnra. H ypovikn acvppetpio tg omoppong CNUELDOVETOL Y10
KMUOKEG OPKETOV MUEPO®V KOl aLTO VTOYPOUpIlel TNV OVAYKN  OVOTOPOY®YNS OF
TPOGOUOIDGEIS TANUUOPAG.

H acvppetpia otig otoyaotikég averilels ival cuvavoun e andTopovs avodkons KAGOoVS
Kot OpoAGTEPOVS KaB0d1KOVG KAAOOLG OTIG dstypatocuvaptioels. To 1010 cvpPaivel kot og
éva vopoypaonpa 6tav eEetdlovpe ToPoYES KPNG XPOVIKNG KMUOKOG. AVTH 1 GUUTEPLPOPE.
yiveton tpoomabeia va avomapayBel pe v Evvola TG YPOVIKNG OGLUUETPIOC.

[paypotikég ypovooepéc amd peydin Péon dedoUévmv XpNGLOTOI0VVTOL Yo TN dlepedivion
™G UN ovTIoTPEYINOTNTOG o0 oplado KAipako. XPnolHomolovvTal YPOVOCELPEG ATOPPONS
LéEYPL KoL TNV €K0TOGTH cuvabpolopévn kiipaxa. H ypovikny acvppetpio e amoppong otig
HITA tovAdyiotov, €xel avapevopevn T yud T0 KPP0 OVIIGTPEYILOTNTAG TNV TPAOTN
KApaxo yopm 610 2,5 kot 6t 0gvTEpN KAlpaka yop® oto 1,9. Qotdc0, avtd T0 AmoTEAEC LA
gxel e moAd peydAn dlokvUOvVeT otV TPOTN KALaKo, 1 omoio Teivel va petdvetoar 660
avEAVOVTOL 01 KAILOKES.

H pedétn avt mpoteivel pa tpomomoinon g vdpyovsos pebdoov and tov Kovtcoyidvvn
(2019) mov dwtnpel ™V PN AVTIGTPEYILOTNTO LOVO GTNV TTPAOTN KAIpOKA Kot TNV KoOoTd
KoV vo dtnpel TV Un ovVTICTPEYWOTNTO  TOVTOYPOVO OTNV TPOTN KOl oTn Oe0TEPN
KMpoaxa. Ta va gdéyoope ™ péBodo, ypnoyomoodpe mpoypatikd oedopéva. Ta
amoteAécpaTo eroAndevovy ) pnéBodo pe emtruyio
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1. Introduction

1.1 Study scope

The aim of this master thesis is to study the influence of time’s arrow on small scale stochastic
models. This work is inspired and heavily influenced by the recent study by Koutsoyiannis
(2019): “Time’s arrow in stochastic characterization and simulation of atmospheric and
hydrological processes” that is part of a broader stochastics framework. At the beginning of
the thesis there is an attempt to cover part of the framework that is the basis for the recent
study. At the same time other relevant literature is discussed. The reason behind that is to
highlight the importance and the usefulness of the results.

Later, real world data are being used to investigate the irreversibility of hourly scale
stremaflow time series at scales up to one hundred. The aim is to find out the importance of
the irreversibility in small scale streamflow data and at which degree it should affect its
modeling.

The last aim of this study is to modify the existing method by Koutsoyiannis (2019) that
conserves irreversibility at the first scale only and make it capable of preserving the
irreversibility simultaneously at the first and second scale. For example if there is hourly
streamflow data, the irreversibility quantification method that is used should give the desired
result after aggregation at the 2-hour scale. In the end the basic method and the modified are
to be verified by real world data.

1.2 Work structure

In the first chapter an introduction to the thesis is made. The aims of the thesis are being
presented. In the second chapter, the sometimes controversial concept of uncertainty is being
discussed because it is the reason behind stochastic simulation. Also relevant terms such as
uncertainty analysis are being defined and presented. In the third chapter there is an
introduction to probability and statistics as it is the basis behind stochastics. Some basic
principles and axioms are given in order set the foundation behind the concept of a stochastic
process. Later, at chapter four the subject of reliability in Hydrosystems is being discussed
and relevant literature is provided. Proper definitions are being given for all terms and the
important subject of Monte Carlo simulation is being theoretically backed up. At chapter five
some stochastic tools are being presented with their advantages/disadvantages and the
methods of using them. They are all relevant to the later study and most of them are used. The
chapter six presents information on the subject of long range dependence in hydrology. It
essentially provides a basis for the modeling framework and in the end describes the model
used in the study: the Filtered Hurst Kolmogorov process. In chapter six the concept of time’s
arrow is being discussed and the final method by Koutsoyiannis (2019) is presented. In the
same chapter the model is modified. In the eighth chapter the case study is being shown as an
application of the method modification. In the ninth chapter the streamflow reversibility at
small time scales is being investigated through a large database. In the end at chapter ten the
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conclusions are presented.



2. Dealing with Uncertainty in Hydrosystems

2.1 Introduction

In the frame of hydrological modeling, uncertainty is a huge factor. Around this term there is a
lot of misconceptions. A lot of times it is not taken into account and the result is costly.

Uncertainty can be defined as the manifestation of events that are beyond one’s control (Mays
and Tung 1992). Natural phenomena are commonly separated into two divisions regarding
uncertainty and randomness, random (or stochastic) and deterministic. Koutsoyiannis (2010)
argues that this view should be reconsidered.

Deterministic laws and randomness coexist and should be modeled and represented in a
holistic way. Whether a process is more random or deterministic is only a matter of time
horizon. Uncertainty does not only exist in nature (Figure 2.1) but also in deterministic
models. One can easily observe this by using a deterministic non-linear model that is complex
enough and realize that a small change in the initial values can cause high uncertainty at the
end of the simulation. This can be seen at Figure 2.2.

Papoulis (1991) writing about causality and randomness states: “We conclude with a brief
comment on the apparent controversy between causality and randomness. There is no conflict
between causality and randomness or between determinism and probability if we agree, as we
must, that scientific theories are not discoveries of the laws of nature but rather inventions of
the human mind. Their consequences are presented in deterministic form if we examine the
results of a single trial; they are presented as probabilistic statements if we are interested in
averages of many trials. In both cases, all statements are qualified. In the first case,
uncertainties are of the form “with certain errors and in certain ranges of the relevant
parameters”: in the second “with a high degree of uncertainty if the number of trials is large
enough”.”

The causes of uncertainty can be due to either the fundamental stochastic nature of the process
or to limited knowledge or resources to model it perfectly.
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Figure 2.1 Annual maximum rainfall series of different durations (1947-1990) at Hong Kong Observatory, Hong
Kong (Tung and Yen, 2005)
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Figure 2.2 A simulation with 1% uncertainty in initial conditions Koutsoyiannis (2010)

2.2 Sources of uncertainty

The source of uncertainty in hydrosystems can be (Makropoulos and Efstratiadis, 2018):

1.

Simplistic model assumptions for critical system processes (structural model errors -
structural uncertainty). It happens when we take into consideration fewer rules than
there actually are.

Sensitivity to initial and boundary conditions (chaotic systems). As in the previous
figure.

Inadequate knowledge of critical system parameters.

Stochastic nature and spatio-temporal variability of hydrometeorology processes (e.g.
rain, evaporation, runoff, wind).

Measurement errors and inaccuracies.
System change over time (due to external factors).

Changes in decisions / policies and hence in performance measures.

2.3 Purpose of uncertainty analysis

The main purpose of uncertainty analysis is to quantify the uncertainty by estimating
statistical properties of the system outputs that are affected by the stochastic nature of the
natural process or sensitivity in the initial conditions. Design quantities and system outputs
are dependent on several system parameters that cannot always be accurately evaluated.

The task of uncertainty analysis is to determine the uncertainty features of the system output
as a function of uncertainties associated with the system model itself and its stochastic
parameters. Uncertainty analysis provides a formal and methodical structure to measure the
uncertainty of the system. In addition, it offers information into the contribution of each
stochastic basic parameter to the overall uncertainty of system outputs. This information is
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essential and can lead to the identification of the parameters that play a more important role in
the uncertainty. Their assessment will result to the reduction of the overall uncertainty of the
system output (Tung and Yen, 2005).

2.4 Measures of uncertainty

There are some expressions used to show the measure of uncertainty. In general, the
uncertainty linked with a parameter, a function, a model, or a system, results from the
combined effects of the uncertainties of these contributing parameters.

The statistical moments, associated with a quantity subject to uncertainty, are a simple way to
assess uncertainty. The second-order moment called variance is a measure of the dispersion of
a random variable and can be used. At the instance of comparing or combining uncertainties
of different variables, the coefficient of variation can be used. It is the ratio of standard
deviation to the mean, offers a normalized measure of uncertainty.

The most complete and ideal description of the uncertainty features of a quantity can be given
by the probability density function (PDF). However it is more difficult to find (Tung and Yen,
2005).

Informational entropy can be a measure of uncertainty as discussed in the chapter 6.



3. Basic Theory: Probability and Statistics

3.1 Fundamentals of probability

In 1933 Kolmogorov published the axiomatic basis of modern probability theory. The modern
approach to probability theory is based on set theory. It is built on three fundamental concepts
and three axioms. The fundamental concepts are the following (Koutsoyiannis, 1997):

e The sample space is defined as the set Q, the elements of which correspond to the
possible outcomes of an experiment.

For example for the throw of a dice the sample space is: 2 = {1,2,3,4,5,6}

e The subsets of F subsets are called events: We say that event A happens when the
outcome w of the experiment is an element of A.

e The probability measure is a function P on F. In each event A we assign a number
P(A) that says the probability of event A.

The three elements (2, F, P) define what is called a probability space. The function P must
satisfy the following axioms of probability theory:

1. P(A) =0 (3.1)
2. P =1 (3.2)
3. P(AUB)=P(A)+P(B),ifalsoANB =@ (3.3)
4. P(UR,A) =22, P(A),ifalso AN A; = @,i #j (3.4)

3.2 Random variable and probability distributions

Each event o is associated with a number X (w) according to some predefined rule through a
function X. This function is defined on a sample space 2 and is called “random variable”. The
outcome » may be a number and the predefined rule a mathematical function (Koutsoyiannis,
1997). Usually we omit the element «» and simply write X. For the random variable itself we
use capital letters while for the value of the random variable we use small letters. For instance
we write {X < x} meaning to show the event that is composed of all events o such that the
values X (w) are less than or equal to the number x. The probability of this event is expressed
as P({X(w) < x}) or for simplicity P(X < x) (Koutsoyiannis, 1997).

3.3 Distribution function

The distribution function F(x) is a function of x defined by the following equation
(Koutsoyiannis, 1997):



Fx(x) = P(X < x),x € R, Fx € [0,1] (3.5)

It must be stated that Fy is not a function of the random variable X but just connected to it. It
is obviously a function of x. Also the domain of F is not identical to the range of X () but is
always (—oo, +00). F follows the inequality:

0 = Fy(—©) < Fy(x) < Fy(+») =1 (3.6)

Fy is also called cumulative distribution function or non-exceedance probability. If Fy (X) is
continuous for all x, then the random variable X () is also continuous. In this case the sample
space Q is an infinite and uncountable set. On the other hand if Fy (X) is a step function, then
the random variable X() is called discrete. In this case the sample space Q is a finite set or
an infinite and countable set. It is important to note however that even for discrete random
variables, the cumulative distribution function is always defined for all x € R. For continuous
random variables, the derivative of the cumulative distribution function is called probability
density function:

fo(x) = dl;ix ) (3.7)

The distribution function can be calculated through the inverse of the above equation:

Fy(x) = f £.(©)de (3.8)

3.4 Non-disjoint events

For two non-disjoint events A and B it is shown that:

P(AUB) = P(A) + P(B)- P(ANB) (3.9)

3.5 Conditional probabilities

The conditional probability of an event is the probability of its occurrence given that another
event has occurred. The conditional probability is denoted and defined as

P(ANB)

P(A|B) = P(B)

(3.10)

3.6 Independent events

According to Ross (2004) two events are said to be independent if the knowledge that one
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event has occurred has no effect on the probability of occurrence of the other. In mathematical
terms:

P(AB) = P(A) P(B) (3.12)
This also implies:
P(A|B) = P(A) (3.12)

Two events A and B that are not independent are said to be dependent.

3.7 Expected value

The expected value of a random variable X, generally denoted as E(X). If the variable is
discrete with probability distribution, P(X = x), then E(X) = Y., xP(X = x). If the variable
is continuous the summation is replaced by an integral. The expected value of a function of a
random variable, f(x), is defined :

E(f(0) =f fw)gw)du (3.13)

where g(x) is the probability distribution of x
3.8 Stochastic processes

The definition of a stochastic process {X(t),t € T} is that it is “a family of random
variables” (Koutsoyiannis, 1997). That is, for each t € T, X(t) is a random variable. We refer
to X(t) as the state of the process at time t if the index t is represents time. Stochastic
processes can be used to describe the temporal evolution or the spatial relations of random
variables. The set T is called the index set of the process. The stochastic process is said to be a
discrete-time process. If T is an interval of the real line, the stochastic process is a continuous-
time process. For example, {Xn,n = 0,1,...} is a discrete-time stochastic process indexed
by the nonnegative integers; while {X(t),t = 0} is a continuous-time stochastic process
indexed by the nonnegative real numbers. The state space of a stochastic process is defined as
the set of all possible values that the random variables X (t) can assume. Thus, a stochastic
process is a family of random variables that describes the evolution through time of some
(physical) process.

A stochastic process {X(t),t 0} is said to be a stationary process if for all n,s, t,,...,t, the
random vectors X(t,),...,X(t,) and X(t; + s),...,X(t, + s) have the same joint
distribution. In other words, a process is stationary if, in choosing any fixed point s as the
origin, the ensuing process has the same probability law (Ross, 2004).



Hydrologic variables can be considered stochastic processes (Koutsoyiannis, 1997). The fact
that a physical process is considered a stochastic process does not mean that it has no
deterministic part. It is well known that a lot of hydrologic processes show annual
deterministic variability e.g. streamflow. This variability is seen sometimes as a trend or a
jump by some authors. Koutsoyiannis (1997) prefers to envisage it as random variability that
happens at various time scales. More specifically: The stochastic part of the process is not
completely random, it has a stochastic structure or stochastic memory. That means that there
is stochastic dependence at contiguous time moments and a larger factor of autocovariance of
the process.

3.9 Fundamentals of statistics

Statistics is the applied branch of probability theory that deals with samples and populations.
The most important objective of statistics is to estimate and to forecast. When the sample, that
is represented by a random variable is known, the calculation of parameters is needed e.g. of a
distribution, an estimation is made. Contrariwise when the parameters are known, and the
random variable is needed, a forecast is made.

The definition of a statistical function and an estimator are provided by (Koutsoyiannis,
1997):

“By statistical function we mean any function of random variables of the sample in the
formeo = g (X,,...,X;). From the sample observations we can directly calculate the value
6 = g (x4, ..., x,) Of the statistical function”

“Statistical functions are used for estimating parameters of population. For every parameter n

the population one or more statistical functions can be found, of the form 6 = g (X, ..., X,,),
suitable for estimating this parameter. In in this case we say that 6 = g (Xy, ..., X,) is the
estimator of parameter n and that the arithmetic value of 8 = g (x4, ..., x;;) IS an assessment
ofn.”

Probably the most usual statistical function is the sample mean, which is an average value
estimator and is defined by the relationship.

%= lz X, (3.13)

n .
i=1

The unbiased (and consistent) estimator of dispersion is the following, known as sample
dispersion:

(X —X)

— (3.14)

*2
Sy =

The estimator of the sample’s standard deviation is the square root of the above equation
which is biased.

The unbiased estimator of the third central moment is given by the following equation:



M@ = nyt,(X; — X)

X " n-1Dn-2) (3.19)

For estimating the skewness coefficient C,, of the sample the following biased estimator is
used:

MX(3)

Sx

Cox = (3.16)

There are some equations that limit the bias but not an unbiased one.

The unbiased (and consistent) estimator of covariance is the following known as the sample

covariance:

X =X -Y)
(n—1)

The estimator of the coefficient of correlation pyy is known as sample correlation coefficient
is considered approximately unbiased and is given by the following formula:

(3.17)

* —
SXY -

Z?=1(Xi - )?)(Yl - ?)

\/z%l:l(xi — X3, (Y- T)

Ry = (3.18)
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4. Hydrosystems’ Management and Reliability

4.1 Definitions

As a system is defined a set of independent elements, which are characterized by (Mays &
Tung, 1992):

1. A boundary that determines whether the element belongs to the system or the
environment

2. Interactions with environment (entry and exit)

3. Relationships between elements of and inputs and outputs

The first mention of a hydrosystem was given by Chow (1988). He considered hydrologic
phenomena extremely complex and believed that they may never be completely understood
thereat the “systems” concept was introduced. A hydrosystem is a system consisting of natural
water bodies and technical projects that work together to serve one or more purposes, both of
which refer to the exploitation of water as a natural resource, and the protection against its
destructive action as a natural hazard (Koutsoyiannis and Xanthopoulos, 2014).

4.2 Reliability, Risk and Failure

The following definitions are provided by Mays and Tung (1992). Risk is defined as the
probability of failure to reach the goal. Reliability is defined mathematically as the
complement of the risk. The mathematical analysis of risk and reliability is defined as
reliability analysis.

If X represents the maximum value of the physical process on a yearly basis (e.g. maximum
annual flood) and n is n lifetime of the project, then the event {L < C} equals n successively
occurrences of the event {X < C}. In order not to exceed the value c throughout the lifetime
of the project there should not be an exceeding in all n years of this duration. Considering that
the floods of successive years are stochastically independent, risk is given by (Koutsoyiannis,
1997):

R=1-[PX <O)]"=1-[F(O]" (4.1)

Failure of a hydrosystem can be defined as a situation in which the load L (demands) on the
system exceeds the resistance C (capacity, or supply) of the system. L depends on the
variability of the physical process as well as the time the project will be exposed to physical
danger. This is called project life time. The reliability ps of an hydrosystem is defined as the
probability of nonfailure in which the resistance of the system exceeds the load; that is,

Ps = P(L < C) (4-2)
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In the above equation P () denotes probability. Conversely, the risk is the probability of
failure when the load is larger than the resistance. Thus the failure probability (risk) pr can be
expressed mathematically as:

There are two types of failure: structural failure and functional failure. Structural failure
involves damage or change of the structure or facility, resulting in inability to function as
desired. Contrarily, performance failure does not always involve structural damage.
Nevertheless, manifestation of undesirable results in performance and elsewhere, occur.
Generally, the two types of failure are related. Some structures, such as dams, levees, and, are
designed on the concept of structural failure, whereas others, such as sewers, water supply
systems are designed on the basis of performance failure (Mays and Tung, 1992).

In Figure 4.1 is shown the effect of hydraulic uncertainty on the overall failure probability.
The assumption is that both random load and resistance are independent log-normal random
variables. COV stands for coefficient of variation, a measure of uncertainty. Considering that
there is an uncertainty not only in load but also in resistance, it is shown that the annual
failure probability is significantly underestimated. It must be stated that the inherent natural
randomness of hydrologic processes is not enough to estimate the total uncertainty. This
figure clearly demonstrates a reason why the conventional frequency-analysis approach in
reliability assessment of hydrosystems is deficient.
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Figure 4.1 Effect of resistance uncertainty on failure probability under COV(L) = 0.1 (COV stands for coefficient of
variation that can be used as a measure of uncertainty as stated before). (Mays and Tung, 1992).

The return period, T, of a given value of x variable X (which actually represents one
stochastic process) is defined as the average number of time intervals (in these case,
hydrological years) between two successive years of occurrence of the random variable of a
value greater than or equal to that the given value x. Each occurrence must be stochastically
independent of the previous and the random variable must be continuous. The Return Period
can be given by the following equations, where R represents the risk, (Koutsoyiannis, 1997):

1

I=rax=x

(4.4)
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. 1
T 1-(A-R)n

(4.5)

Another reason conventional frequency-analysis approach in reliability assessment of
hydrosystems is deficient is that there is a sometimes a long-range dependence, raising
uncertainty. In other words the stochastic nature of the system is partially ignored.

4.3 Monte Carlo Methods

Monte Carlo methods are used nowadays used in hydrosystems for the many advantages and
are a great way to deal with uncertainty. Monte Carlo methods are defined as: “Methods for
finding solutions to mathematical and statistical problems by simulation. Used when the
analytic solution of the problem is either intractable or time consuming.” (Everitt and
Skrondal, 2010).

The probabilistic behavior of an engineering system is essential if we accept that uncertainty
issues are important and must be managed. The true distribution for the system response
subject to parameter uncertainty is a lot of times difficult or even impossible sometimes to
calculate. This is due to the complexity of the hydrosystems. In such cases, Monte Carlo
simulation is a viable tool to provide numerical estimations of the stochastic features of the
system response (Tung and Yen, 2005).

Practicing the method, random sampling is used from certain probability distributions to
provide the random numbers used for generating the objects. The idea of the Monte Carlo
techniques is to repeat the experiment many times to obtain many quantities of interest using
the Law of Large Numbers and other methods of statistical inference (Kroese et al., 2014).
Instead of repeating many times it is also possible to generate one long simulation. The choice
depends on whether the initials values stop influencing sooner or later the generated values.

The law of large numbers formalizes the intuitive notion of probability which assumes that if
in n identical trials an event A occurs nA times, and if n is very large, then nA/n should be
near the probability of A. The formalization involves translating ‘identical trials’ as Bernoulli
trials with probability p of a success. The law then states that as n increases, the probability
that the average number of successes deviates from p by more then any preassigned value &
where € > 0 is arbitrarily small but fixed, tends to zero (Everitt and Skrondal, 2010).

In Monte Carlo simulation the system performance measure is repeatedly measured under
various system parameter sets that are generated from assumed probabilistic laws. It offers a
practical approach to the uncertainty analysis because the stochastic behavior of the system
response can be probabilistically duplicated (Tung and Yen, 2005).

Some uses of the Monte Carlo method are provided by Kroese et al. (2014).The first is
sampling. In this case information is gathered about a random object by generating many
realizations of it. That could be a hydrological model that represents a real physical system
with rainfall, runoff, evapotranspiration etc. Another example can be a stochastic model with
long range dependence or a hydrosystem.

The second is estimation. Here certain numerical quantities are determined related to a
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simulation model. An example is the evaluation of multi-dimensional integrals via Monte
Carlo techniques.

Optimization is a key factor in hydrosystems’ management and engineering. The Monte Carlo
method is used very effectively for the optimization of complicated objective functions, this is
called stochastic optimization. In many applications these functions are deterministic but in
order for the optimization to be more successful, randomness is integrated.

4.4  The parameterization-simulation-optimization method approach

One approach to the hydrosystems control problem is the parameterization-simulation-
optimization method (Koutsoyiannis and Economou, 2003).

In contrast to most common methods that require a lot of control variables, the less
widespread parameterization-simulation-optimization (PSO) method is a low-dimensional
method. Few control variables are used, which are parameters of a simple rule that is exists
through the entire control period. Through this rule the releases from different reservoirs are
calculated. Specifically, the set of control variables consists of a “target variable” depending
on the objective of the problem examined and a few parameters that determine a simple
expression for distributing the degrees of freedom of the reservoir system operation. The
parameterization of the rule is associated with the simulation of the reservoir system, which
enables the calculation of a performance measure of the system for given parameter values,
and nonlinear optimization, which enables determination of the optimal parameter values.

PSO does not only reach solutions that are not inferior to those of the benchmark methods but
also has several advantages in some domains. In the theoretical level, the PSO method
exhibits the following advantages over a high-dimensional method.

First of all, contrary to typical methods that use hundreds or thousands control variables PSO
needs just a few for the same simulation period. As a result it is very effective and efficient in
locating its optimal solution.

Second is the fact that the required computing time in PSO increases only linearly with the
number of simulation steps n whereas in other methods computation time increase faster with
n. Because of this, the performance measure in PSO can be based on a large simulation
period, thus making it possible for a long year basis that leads to taking into account future
impacts on the system.

Third is the fact that PSO avoids simplification of the system by describing its dynamics with
a simulation model of the system, incorporating stochastic and deterministic components.

Fourth, the parametric method is compatible with the stochastic nature of the reservoir
problems and very easily incorporates concepts like probability, reliability, expected value,
etc., also assigning values to such quantities.

Fifth, the optimal values of the control variables do not depend on any any quantity that has a
stochastic behavior and that means they do not have to be changed unless the system
characteristics, the inflow statistics, or the operational objectives and constraints changed.
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Figure 4.2 PSO method (Koutsoyiannis and Economou, 2003)
Figure 4.2 PSO method (Koutsoyiannis and Economou, 2003)

Sixth, the system can be very easily operated applying the parametric reservoir rule without
model runs at all, once it is optimized with the PSO method. Similar to this, the model
parameters and do not depend on forecasted values of inflows, high in uncertainty. In this way
the operation policy is also not affected by this uncertainty.

In figure 4.2 we can see a representation of the method.
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5. Stochastic Tools

Here some tools are imported for examining statistical properties in times series. Also,
information about computational methods and their advantages/disadvantages and are being
provided. Source of the latter is the study by Dimitriadis and Koutsoyiannis (2015) where the
uncertainty and bias for three of the stochastic (autocovariance, power spectrum,
climacogram) tools were calculated and this way the three were compared.

5.1 Autocorrelation/Autocovariance

The internal correlation of the observations in a time series, usually expressed as a function of
the time lag between observations. The autocorrelation at lag k, y(k), is defined
mathematically as:

EX: — 1) Xy — 1)
E(X, — w)?

Where X;,t = 0,+1, +2, ..., represent the values of the series and p is the mean of the series.
E denotes expected value. The sample statistic is given by the equation below:

y(k) = (5.1)

Z?Qk(xt = X)(Xpqp — X)
uis (o — x)?

y(k) = (5.2)

Where x is the mean of the series of observed values, x;; x,; ...; x,, . A plot of the sample
values of the autocorrelation against the lag is known as the autocorrelation function or
correlogram. The numerator of y(k) is called autocovariance. Autocorrelation is
autocovariance standardized and is related to the discrete-time power spectrum by:

1/2

Cy = f sq(w) cos(2mwn) dw (5.3)

0

Autocovariance is intuitive in its definition and it is one of the tools most commonly used in
time series analyzing and at the process of model selecting. It is well-defined and its bias can
be easily estimated. However it has estimation errors larger than those of the climacogram (a
tool discussed later). Besides its large bias, it is also prone to discretization errors as its value
can never be equal with the true value in continuous time, even for an infinite sample size.
Additional disadvantages are its negative values in the high lag tail (Dimitriadis and
Koutsoyiannis, 2015).
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5.2 Power spectrum

Power spectrum is a function (w) , defined on — < w < m for a stationary time series,
which has the following properties (Everitt and Skrondal, 2010):

1. The function defines the contribution to the total variance of the time series made by
the frequencies in the band [w, wdw]

2. Harmonic components with finite power produce spikes s(w)
3. For real series the spectrum is symmetric, s(w) = s(—w)
The function is related to the autocovariance function of the series by:

s(w) = % Z y(k) coskw (5.4)

k=—o0

The power spectrum of a stochastic process is discrete time t = 0,1, ..., with autocovariance
function y,, = Cov[x,, x;+ml, m = 0,£1, ..., the inverse discrete Fourier transformation of the
autocovariance function is called power spectrum s(w) with @ in the band [0,1/2] .The
following formula exists (Koutsoyiannis 2013):

s(w) =2y, + 4 Z Ymcos(2mmw) (5.5)

m=1

For quick computation calculation the use of Fast Fourier Transform (FFT) is appropriate. For
the calculation of the Fourier transform of a time series xg, x4, ... x,—1, d(w),) given by:

. 21
d(w,) = Z x.etrt, r=012.n-1; wy = Tp (5.6)

The number of computations required to calculate {d(w, )} is n? which can be very large. The
FFT reduces the number of computations to 0(nlog, n) and operates in the following way:

Let n = rs where r and s are integers. Let = rt; +t, t =0,1,2,..r — 1. Further let
p.=012,..,r—1,p, =0,1,...,s — 1. The FFT can now be written:

d(wp) = Zoxteiw” Z

21rip
T‘t1+t0 (rt1+t0) (5'7)

||[\4I

r—1

2m'pt
= z e n °a(po,to)

t0=0

where
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s—1 .
2mit1po

a(po, to) = z Xt +t,€ S (5.8)

t1=0

Estimating the amount of a(p,,t,) needs only s* operations, and d(w,) only rs* The
evaluation of d(w,) reduces to the evaluation of a(p,, t,) which is itself a Fourier transform.

Repeating the above task, the computation of a(p,, t,) can be reduced in a similar way. The
scheme can be repeated until a single term is reached (Everitt and Skrondal, 2010).

At the study by Dimitriadis and Koutsoyiannis (2015) the following conclusions were made
about the power spectrum. It has the largest values of estimation error (between
autocovariance, climacogram and power spectrum). It has a discretization error as its value
even for an infinite sample size, can never be equal to the true value in continuous time.
Additionally, in theory it is always positive, practical applications can result in negative
values. Finally, it often has the highest value of skewness for its regular values and the
smallest one for its NLD (negative logarithmic derivative) ones. The latter advantage of the
power spectrum means that its mode should be close to the expected one.

5.3 Climacogram

Climacogram is defined as the variance of the averaged process x(t) (assuming stationary)
versus averaging time scale m and is symbolized by y(m). The climacogram is useful for
detecting the long term change (or else dependence, persistence, clustering) of a process or
multi-scale stochastic representation. Based on the process x; at scale 1, we define a process
x® at any scale k > 1 as:

1 ik
I=(i-1)k+1

It is related to the autocorrelogram by the following transition:

o

c® =_—_ [q 5.10
A (5.10)
Where
k-1 .
4 =a+2 2(1 _ Jz)pj (5.11)
j=1
And the term p; is given by:
j+1 ) j—1
Pj = 4 Gt 54 (5.12)

Also the following classic statistical law exists:
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~ (5.13)

The bias in the climacogram can be calculated as follows. As shown in Koutsoyiannis (2011),
assuming that we have n = T/Aobservations of the averaged process x;®, where the
observation period T is an integer multiple of 4, the expected value of the empirical (sample)
climacogram y(4):

A) —
eli] - KR 614

The climacogram is also related with the power spectrum and the climacospectrum (presented
below).

At the same study by Dimitriadis and Koutsoyiannis (2015) the following
advantages/disadvantages were discovered. The climacogram had the smallest estimation
error, between the three tools, in estimating the true values but also the true logarithmic
derivatives. Its bias can be computed simply and analytically. Additionally the fact that its
values are always positive is an advantage in stochastic modeling. Moreover it is well-defined
with an intuitive definition and mostly monotonic. Finally, it has (for all the examined
processes) values of sample skewness close to O, for the small scale tail, while in the large
scale tail; its skewness is increasing up to 3.

5.4 Climacospectrum

The climacospectrum is a newly introduced stochastic tool. It is defined by Koutsoyiannis
(2017):

k(y(k) —y(2k)) (5.15)

<o) = In2

It is written alternatively in terms of frequency w = %

n_ 2
{(w) = ((3 - (0()1212)2(0)) (510

Its name: “climacospectrum” comes from the fact that it has characteristics similar to these of

the power spectrum. The entire area under the curve {(w) is precisely equal to the variance
y(0) of the instantaneous process, an attribute that is also evident in power spectrum
s(w). This is not the only connection with the power spectrum. The climacospectrum has also
the same asymptotic behaviour with it:

¢*(0) = —¢¥(0) =5%(0),  {*(0) = —¢*(0) = 5*(o0) (5.17)

Specifically, the asymptotic behaviour of the second-order characteristics of a process for
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k — 0and k — oo is characterized by two parameters, M and H, which are given by:

_Vvh0) _¢*(0) -1 7o) *(e) +1
Mi=——="—0— H=lt——= > (5.18)

The climacospectrum has the following advantages (Koutsoyiannis, 2017): In comparison
with the power spectrum it is superior in respect to the connection with conditional entropy
production. Specifically it is more precise and without exceptions at all. Additionally, the
variance, on which the definition of the climacospectrum is based, is more closely related to
uncertainty, and as a result to the entropy of the process, than the power spectrum and the
autocovariance. It is also very easy to calculate in contrast to the power spectrum that needs
Fourier transformation. Furthermore, like the climacogram, it is not affected by discretization
(while autocovariance and power spectrum are) and has a very small bias because of its
definition as a difference of two variances, in which the biases tend to cancel out. In the end
the empirical climacogram and climacospectrum are easily determined from data using
nothing more than the standard statistical estimator of variance and they have a smooth shape,
much smoother than those of the empirical autocovariance and power spectrum, thus enabling
better model identification and fitting.

In Figure 5.1 a climacospectrum of of simulated time series is shown.

1 e——m= 1000
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: 2
E (S}
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© 01 =
e [Climacogram, empirical ) G
= Climacogram, theoretical adapted for bias
4 [Climacospectrum, empirical 0.01
=== Climacospectrum, theoretical adapted for bias
0.01 0.001
1 10 100 1000 10000

Time scale (h)

Figure 5.1 Comparison of the climacogram and climacospectrum of generated series with the FHK-C model
(Koutsoyiannis, 2019).

5.5 Cross Climacogram

The climacogram can be further expanded to describe the dependence of different processes,
replacing the concept of cross-correlogram of two stationary processes x(t) and y(t) and by

the standardized crossclimacogram (SCC) for scale k and lag h:

X Y(k+h) - Y(k)

2JL 2L,

Pxy(k, h) = var (5.19)
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[XG/k | lk+h) - Z(k))/kl (5.20)

2,/ vx (k) 2\yy (k)

The cross-covariance can be replaced by the cross-climacogram (CC) and the cumulative
crossclimacogram (CCC):

Vay (1) 5= pay (ks ) [ ) () (5.21)
Gy (k1) = pay (ks 1) [ 1G0T (1) (5.22)

This tool is used to detect time irreversibility in bivariate processes.
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6. Long- Range Dependence in Hydrological Processes

6.1 Definition and Introduction

One important factor that should be taken into account when trying to understand hydrologic
processes is long-range dependence or persistence. In hydrology this term is equivalent to the
term “Hurst phenomenon”. Long range-dependence is defined by Everitt and Skrondal (2010)
as: “Small but slowly decaying correlations in a stochastic process. Such correlations are
often not detected by standard tests, but their effect can be quite strong.”

In hydrology this was first observed by Hurst while investigating the discharge of the Nile
River. It is essentially the tendency of wet years to cluster and form bigger wet periods and
the dry years similarly forming periods of draught.

6.2 Stochastic representation by a Markov process

A Markov process is a memoryless stochastic process that implies that to make predictions
about the future behaviour of the system it suffices to consider only its present state and not
its past history.

The Markov process is the most easy to use (simple expression of second order
characteristics), the most parsimonious and it is commonly used due to its advantages. The
disadvantages are: “its neutrality in terms of smoothness and persistence, and more
specifically the low entropy production for large time scales” (Koutsoyiannis, 2017). In the
end, these reasons do not make it always a good candidate to model natural behaviors.
Nevertheless the Markov process can be approximated as a case of the Filtered Hurst
Kolmogorov process discussed later on.

6.3 Stochastic representation by a Hurst-Kolmogorov process

The representation of the above physical phenomenon can be accomplished through
stochastics, assuming a stochastic process. A sufficient model is the Hurst-Kolmogorov
process. It is also called Fractional Gaussian Noise (FGN) in continuous time, introduced by
Mandelbrot (1965). Alternative names for this are stationary increments of self-similar
process and simple scaling process.

The advantage of the FGN model is apart from its very good fit to hydrologic time series is
that it is parsimonious having only one parameter. A definition of parsimony is given by
Everitt and Skrondal (2010): “The general principle that among competing models, all of
which provide an adequate fit for a set of data, the one with the fewest parameters is to be
preferred.”

Let k be a positive integer that represents a larger than the basic timescale of the process X; .
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The aggregated stochastic process on that timescale is denoted as:
ik
k
70 = z X, 6.1)
I=(i-Dk+1

The statistical properties of Z; for any time scale k are the following. The mean is given the
equation below:

E|2(] = ku (62)

The variance for a stochastic process that follows the Hurst phenomenon y(fk) is related to

variance at the first scale y,. The bottom index is represents the lag for the autocovariance of
the stochastic process.

vs = Var[z{”]k?y, (6:3)
H is called “Hurst coefficient” a measure of persistence or antipersistence of a process and its
values can be in the interval [0, 1]. Values in the interval [0, 0.5] show no interest in

hydrology. The value 0.5 corresponds to random noise. The standard deviation is given below:

o® = (yIN/2KH g (6.4)
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Figure 6.1 Aggregated standard deviation plot of the Nile timeseries (Koutsoyiannis, 2004)

The Figure 6.1 is produced using the formula 6.4. For H=0.85 the suggested stochastic
representation seems to be in reality accurate. If there was not any long range dependence the

white noise and empirical graph should be identical. However it is clearly evident that they
are not.

It can be shown that the autocovariance at any scale and any lag is given by:

1
pl = py =S+ 11PH + 1 = 12 — 2 (65)
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As j — oo the above approximates to:
py” ~ H(2H = D> (6.6)

It can also be shown that the power spectrum of the process is approximated by the following
formula:

9 (w) =2 z y® cos(2mje) 6.7)

j=—c0

If we assume the process demonstrates scale invariant properties the following generalization
is possible.

(28 - kn)- (%)H @® — 1) (6.8)

This equation is valid for any integer i and j (with the process being stationary as a
prerequisite) and any time scale k and [ (Koutsoyiannis, 2002)

6.4 Stochastic Representation by a Filtered Hurst-Kolmogorov process

The Filtered Hurst Kolmogorov process is another model that can represent physical
phenomena with long-range dependence. It is also called Hybrid Hurst-Kolmogorov process
in its introduction by Koutsoyiannis (2015).

This process has some advantages over the HK process, while maintaining the persistence or
antipersistence properties. These are: the variance of the instantaneous process is always finite
(yo = y(0) = A), while even for 0 < H < 0.5 the initial part of the autocovariance
function for small lags is positive for all variants of the process. A further important feature of
this process is that it allows explicit control of the asymptotic behaviour of all properties at
both ends, which are different at each end, opposite to the HK process, which implies simple
scaling laws. The asymptotic properties are also easy to calculate.

The climacogram of the process is given below:

H-1

y() =2 (1 + (g)M>T (69)

Here a and A are scale parameters with dimensions [t] and [x]?, respectively, H is the Hurst
coefficient as in the HK process, a scaling parameter in the interval (0,1), and M is a second
scaling parameter and in the interval (0,1), which will be called the fractal parameter. Both
parameters are dimensionless. Parameter H determines the global properties of the process (as
t — oo)and M determines the local properties (ast — 0).

The process incorporates both the Markov and the HK processes. In the occasion when
H = M = 0.5, Filtred Hurst-Kolmogorov is practically indistinguishable from a Markov
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process. Furthermore, as @« — 0, the process tends to a pure HK process with the same Hurst
coefficient H. Additionally, under any parametric scenario, FHK exhibits Markov behavior for
small time scales (if M = 0.5, or similar to Markov if M # 0.5) and Hurst behavior for
large time scales.

6.5 Reproduction algorithm: Symmetric Moving Average scheme (SMA)

In 2000 a generalized framework for single-variate and multivariate simulation in stochastic
hydrology was proposed by Koutsoyiannis. It is appropriate for short-term or long-term
dependency processes and preserves the Hurst coefficient. Simultaneously, it explicitly
preserves the coefficients of skewness of the processes.

The proposed framework incorporates short memory (autoregressive moving average) and
long-memory (fractional Gaussian noise) models, considering them as special instances of a
parametrically defined generalized autocovariance function. The generalized autocovariance
function is then implemented in a generalized moving average generating scheme that yields a
new time-symmetric (backward-forward) representation. It is called symmetric moving
average (SMA).It can be used to generate any kind of stochastic process with any
autocorrelation structure or power spectrum. The SMA scheme is given below:
q
X = z ajj\Vivj = agVieg + -+ aiViog + agVi + a1Vigg + -+ agVisg (6.10)
j=—q

Where q theoretically is infinity but in for practical applications can be restricted to a finite
number with a small error, as the sequence of weights a; tends to zero for increasing j. The
discrete Fourier transform s, (w)of the a; sequence is related to the power spectrum of the

process s, (w) by:
Sqe(w) = /ZSy(w) (6.11)

In addition with the formula 4.7 the discrete Fourier transform can be calculated:

sa(w) = 2/(2 = 2H)y, (2w)*5~H (6.12)
The scheme is accompanied by the following formulas:
_ V@ —2H)y, (6.13)

=" 15_H

a
a; ~ 70 [(] + 1)H+0.5 + (] _ 1)H+0.5 _ 2jH+0'5 (6.14)
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This method can also preserve the process skewness &y by appropriately choosing the
skewness of the white noise &,. p corresponds to the mean. The effectiveness is shown in
Figure 6.2. The formulas are the following:

Autocorrelation, g

S
ao + ZZa]- E[Vi] = u
=

q
<a8+2 E | 1a,-3>fv=€xyo3/2
]:

\H =09,

I
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Figure 6.2 Approximate autocorrelation functions based on HK vs the exact autocorrelation functions of FGN for

various values of the Hurst exponent H and the number of weights g (Koutsoyiannis, 2002)
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7. Time’s Arrow

7.1 Definition

The term “time’s arrow” was developed at first by Eddington (1928) to describe time
directionality, which can be determined by studying the organization of atoms, molecules and
bodies. He states “Let us draw an arrow arbitrarily. If as we follow the arrow we find more
and more of the random element in the state of the world, then the arrow is pointing towards
the future; if the random element decreases the arrow points towards the past. That is the only
distinction known to physics. This follows at once if our fundamental contention is admitted
that the introduction of randomness is the only thing which cannot be undone. I shall use the
phrase ‘time’s arrow’ to express this one-way property of time which has no analogue in
space. It is a singularly interesting property from a philosophical standpoint. We must note
that:

e Itis vividly recognized by consciousness.

e It is equally insisted on by our reasoning faculty, which tells us that a reversal of the
arrow would render the external world nonsensical.

e It makes no appearance in physical science except in the study of organization of a
number of individuals. Here the arrow indicates the direction of progressive increase
of the random element.”

7.2 General information and intuitive examples

Time’s arrow can be a difficult term to grasp. This is due to the fact that the usual physical
processes that are comprehended in the everyday life are usually irreversible in time.
However that is not always the case. Microscopic physics, for example, gives no special status
to any moment, and it distinguishes only weakly between the direction of the past and that of
the future. Our intuitive perception of the world as unfolding in time therefore cannot be
dismissed as being merely subjective. Here are given some information and examples for the
better understanding of the scientific term.

This subjective intuitive perspective that we have, that times only moves forward, can help us
understand an aspect of the problem. Let’s imagine that we videotape an experiment of a
dynamic system and reversing the video. For example the physical experiment of a ball falling
from the sky. The reversed video does not seem very weird for our perception, as it shows a
ball going up into the air (perhaps it is thrown). In contrast, the ball bouncing on the ground
until it stays still, after it falls from the sky, is a process that if reversed seems peculiar. The
reason is that the second process is irreversible in time. A second example is putting some
milk in a cup of coffee. The reversed video of this process, milk parting the coffee after they
have been mixed, seems peculiar since it never happens. In reality if we have one molecule of
coffee and another one molecule of milk it is 100% probable that the milk will part from the
coffee. It is easily understood that adding more molecules to the experiment just makes the
probability of this smaller.
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The direction of time can be also defined by a class of processes that destroy information and
generate disorder. The irreversible processes that destroy macroscopic information (in the
coffee-milk example molecular diffusion) are manifestations of the second law of
thermodynamics. This law states that all natural processes generate entropy, a measure of
disorder. The irreversible destruction of macroscopic order defines what can be called the
"thermodynamic" arrow of time.

On the other hand there are a lot of processes that are irreversible and are diametrically
opposite. All these processes have a quality in common: they generate order, or information;
they transform a simpler state into a more complex one. In the phrase of Sir Arthur Eddington,
they indicate which way "time's arrow" is pointing; they define what can be called the
"historical” arrow of time (Layzer, 1975).

7.3 Informational entropy and uncertainty

The processes that define the historical and the thermodynamic arrows of time generate
information and entropy mutually. Shannon showed in 1946, that information is part of the
statistical description of a physical system. It is measured in bits, one bit is the quantity of
information needed to decide between two equally probable cases. Additionally information
can also be viewed as a measure of how highly organized the physical systems are. Shannon
shows that the information content of a system is the minimum number of bits needed to
encode a completely describe a system statistically.

The concept of entropy is directly linked to the concept of information. Entropy was first
defined (by Clausius) in the context of thermodynamics and connected with time
irreversibility. It measures the displacement of a system from thermodynamic equilibrium; at
equilibrium the entropy is maximized.

Using a formula first produced by Ludwig Boltzmann and J. Willard Gibbs, Shannon defined
the entropy of information theory. This entropy which measures the uncertainty associated the
system in statistical terms. The thermodynamic entropy and the statistical entropy of have the
same mathematical properties and they seem to represent different views of the same subject.

Entropy and information are related by a simple conservation law, which states that the sum
of the information and the entropy is constant and equal to the system’'s maximum attainable
information or entropy under given conditions. As a result a gain of information is always
compensated for by an equal loss of entropy.

The following example and explanation is given by Layzer (1975). Let’s assume some
physical system has eight possible states; in binary numbering they could be represented by:
000,001,010,011,100,101,110 and 111. To specify a particular state, for example the one
labeled 001, requires three binary digits, which is the amount of information needed to have
the information of the exact state. The uncertainty or entropy associated with this description
is clearly zero. Let’s now assume we had no information about the state of the system, we
would assign equal probabilities to each of the eight possible states. In this case the
information is evidently zero. Since the sum of the entropy and the information in the system
is constant, the entropy must now be three bits. In general, if a system has 2" possible states,
where r an integer, the maximum quantity information or entropy is equal to the logarithm to
the base 2 of 2", or r.
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7.4 Irreversibility in stochastic processes

Many processes occurring in the natural sciences, engineering, finance, and economics
exhibit some form of nonlinear behavior. This means that some of the characteristics cannot
be modeled using Gaussian linear processes because time reversibility is not evident. Weiss
(1975) showed that if the process x(t) is Gaussian then it is time reversible. As a result a
directional process cannot be Gaussian. He also showed that a discrete-time autoregressive
moving-average (ARMA) process is reversible if and only if it is Gaussian. This conclusion is
very important because is shows that stationary series which show evidence of directionality
cannot be modeled by Gaussian ARMA models. So other models should be used to model
accurately this behavior (Koutsoyiannis, 2019).

As it is previously defined, a stochastic process x(t) is a collection of (usually infinitely
many) random variables x indexed by t, typically representing time. In turn, a random
variable, x, is an abstract mathematical entity, associated with a probability distribution
function F(x) := P{x < x} where x is any numerical value numerical value (a regular
variable).. The stochastic process x(t) represents the evolution of the system over time, while
a trajectory x(t) is a realization of x(t); if it is known at certain points t;, it is a time series.

Weiss (1975) defines a stochastic process x(t), at (continuous) time ¢, with nth
order distribution function:

F(x1, X1, oo, X ty, by, ey ) = P{ g(tl) < x1,x(t) < xp, .. x(t) < x5} (7.2)

as time reversible or time symmetric if its joint distribution does not change after reflection of
time about the origin, i.e., if forany n, t;; t,; ...; th_1; tn,

F(xl, xl, eny xn; tl’ tz, ey tn) = F(xl, xl, ey xn; _tl’ _tz, ey _tTl) (7.2)

The next important step studying irreversibility is the method for its detection and
quantification. A method proposed by Psaradakis (2008) is to measure the probability of the
differenced process. As the probability is positive, there is a deviation of the median of the
differenced process from zero. In a more recent and study, Miiller et al. (2017) they propose a
class of new — easy to calculate — tests for time reversibility and suggest different ways to
implement it. They used as an indicator of asymmetry the third moment of differences, but of
the empirical copulas rather than of the time series. Further, they performed simulations of
combined sewer systems with original and time-reversed time series and found “significant
deviations of more than 10%”. In a study by Serinaldi and Kilsby (2016) directed horizontal
visibilitygraphs (DHVGs) were used to perform an analysis of the dynamics of streamflow
fluctuations with focus on time irreversibility and long range dependence. The study of
irreversibility in Koutsoyiannis (2019) states that time asymmetry requires the study of third
moment w5 and the coefficient of skewness C, of the process, original and differenced. The
first moment (mean) of the differenced process is always zero while the second one (variance)
is always positive and thus he concludes that they don’t provide indications on time
asymmetry. Hence, the least-order moment that can be used to detect reversibility is the third.
The cumulative process enables representation of the process in discrete time t:
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. = 1 x () = X(zD) — X((t = 1)D)
(t-1)D D

(7.3)
D is the time unit. The symbol for continuous time is t and for discrete time is z.This can be
expanded to define a discrete time process averaged at scale k = «k D.

. X(@xD) — X((t — 1)kD)
Lro o= kD

_ X(r—Dx+1 X(t-1)Kk+2 T+t Xgge (7 4)
K

To study the time asymmetry of processes we define the differenced process in discrete and
continuous time, respectively, as:

o i=Xp — Xeq, Z‘L’,T) =X T X
%(t,D) = x(t) —x(t—D) (7.5)
The cumulative process for discrete time is:

=it T+ o+ X

=X — Xt X — X+ XX (7.6)
And for continuous time:
k k
£(k,0) = [ 26, 0)de = | (x(0) — x(c— D)) de .7
0 0
k k—-D
= [x@ae- [ x@ae=xG0 - Xk~ D) + X(-D) (7.8)
0 -D
For k = kD:
X(k,D) = D(xc — x) = DX, (7.9)

For the averaged differenced process at discrete time scale x we have:

% (K) ._ X(TKD) - X((T - 1)KD) _ )_?TK - X(r—l)x
At : ) p

_ Xoe — X(r-1)k (7 10)
—K .

For the original process, averaged at the integer time scale k, the marginal third moment
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characteristics are:

us00 = E [(@ = 0)°], €0 = % (7.11)

the second and third moments of the averaged-differenced process:

700 = var[x®],  var[X] =x*7(x) (7.12)
i - oy? fis (0
00 =E|@O)], 0= (7.13)

7.5 Irreversibility in streamflow at small scales

Koutsoyiannis (2019) stated that the irreversibility of streamflow is marked for
scales of several days and this highlights the need to reproduce it in flood
simulations. This is offcourse neglected by the models used today.

e Original 1 ——— Differenced 1
6 ===Originat 2= Differenced 2

Value

0 20 40 60 80 100
Time

Figure 7.1 Plot of two synthetic time series generated by maximizing time irreversibility properties of a process
restricted to be marginally Gaussian (N(3, 1)) with lag one autocorrelation 0.5, so that the variance of the
differenced process is also 1 (equal to that of the original process). Solution 1 maximizes the skewness of the
differenced process. (Koutsoyiannis, 2019)

In Figure 7.1 we can see how maximized irreversibility affects time series. It can be
understood that the hydrograph partly mimics the above behavior. More specifically the
ascending part of the hydrograph is steeper than the descending one. This property is in fact a
result of time’s arrow and can be modeled as a statistical parameter. Koutsoyiannis (2019)
proposes a model called AMA for this purpose. Mathai and Mujumdar (2019) in recent study
have also built a model to simulate time irreversible streamflow at multiple sites. Multisite
correlated streamflow states were generated and then flow sequences that are constructed
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considering the ascension and recession limbs of the hydrograph at individual sites
independently.

In the following figures (7.2, 7.3) real world data is shown to highlight the resemblance with
the previous figure (7.1). In the figure 7.3 we can see that this behavior is evident at different
scales. In the next two figures (7.4, 7.5) synthetic time series are plotted to show the
difference in a time symmetric model and an asymmetric one.
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Figure 7.2 Real world data hydrograph
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Figure 7.3 Real world data showing irreversibility at multiple scales
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Figure 7.4 Synthetic time series with reversibility parameter equal to13.Produced using the the original
methodology with the AMA scheme by Koutsoyiannis (2019)
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Figure 7.5 Synthetic time series with zero reversibility. Produced using the time symmetric SMA scheme by
Koutsoyiannis (2000).

In the figure 7.6 we can see the irreversibility in a river from the USGS database at various
scales.
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Figure 7.6 Reversibility test for a station from USGS database. The term "Skewness ratio” refers to the ratio of

the skewness of the differenced process and the original process. The code used for its production is given in
Apendix: C.

7.6 Reproduction algorithm for irreversible processes of one variable

Koutsoyiannis (2019) has proposed a mathematical framework to simulate irreversible
processes. At first the moving average scheme (MA) is used (Koutsoyiannis, 2000),

o)

o= ) e (7.14)

i:—OO

where a; are coefficients to be calculated from the autocovariance function and v; is white
noise averaged in discrete-time. Writing the above equation for x,.,, multiplying it with the
MA equation and taking expected values we find the convolution expression:

Cp = Z a;ap 4 (7.15)
l=—0o0
The key task is to find the sequence of a,,n = ---,—1,0,1, ..., so that above equation holds

true. A known solution (Koutsoyiannis 2000) is the symmetric moving average (SMA)
scheme inwhicha_, = a,.

He also provides a generic solution of an asymmetric moving average scheme in which the
coefficients a,, are given by:
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1/2

a, = f e 2mi(8(w)=1w) AR (1)) d e (7.16)

—-1/2

Where i is the imaginary unit, 8(w) is any (arbitrary) odd real function (meaning 0(—w) =
—0(w)) and

AR(w) = \[254(w) (7.17)

The equation can be written also as:

1/2
a, = 2[0 cos(2n(9(w) — na))) AR (w)dw (7.18)

To calculate the sequence of a,, we must first know the frequency functions A% (w) (from the
power spectrum) and &(w). For an array of frequencies w; = jwy,j = 0,1,...,q,wy =
1/ qD, we form data arrays (vectors) AR and A!, with the superscripts R and | standing for a
real and an imaginary vector, respectively. On these we perform FFT methodology discussed
earlier. Both vectors are of size 2q indexed as 0,...,2q - 1. FFT works only if we have

chosen g as a power of 2. When q is not a power of 2 DFT (Direct Fourier Transform). The
real vector has elements:

AR(w;)cos (2710(0)]-))

[AR]; = 70 ,  j=0,..,q (7.19)
[AR]; = [AR],q—;,  Jj=q+1,..2q—1 (7.20)
And the imaginary vector:
], = AR(a)j)sir;gZﬂQ(wj)), P (7.21)
[A];=0, j=gq (7.22)
[A"]; = —[A']4-, j=q+1,..2q-1 (7.23)

Performing the Fourier transform and getting the real part of the result for j = 0,... ,q, we
will have the sequence of a,,
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7.7 Algorithm modification for further irreversibility conservation

In the current study there is an attempt to modify the algorithm proposed by Koutsoyiannis
(2019). The goal is to simulate time series that conserve the irreversibility at larger scales
without disturbing the balance of the existing method and keeping all of its necessary
features. The existing algorithm simulates time series preserving irreversibility at only first
scale therefore the attempt is to preserve irreversibility at both scales: first and second. At first
it is important to calculate the theoretical moments of the AMA model at the first and second
scale.

For simulation length i, the AMA model can be written as:

2q+1

Xi = Z Azq+2-jViej—1 = Azq41Vi + -+ A1Visaq41 (7.24)
=1

Where V; is lognormal white noise. For the first scale we must calculate the second and third
moment of the differenced and the original sequence respectively.

The second moment of the original sequence is:

2q+1

2 _ 2
Morig. - Z (aZQ+2—j) (7.25)

Also the second moment of the differenced sequence is:

2q+1
2 2
M(gij)“fer. = Z (a2q+1—j - a2q+2—j) + a2q+12 (7.26)
j=1

The third moment of the original sequence is:

2q+1

3 § 3
Morig. = (aZQ+2—f) (7.27)
j=1

Finally the third moment of the differenced sequence is:

2q+1
3 3
Mc(li])‘fer. = z (a2q+1—j - azq+z—j) + ayq41° (7.28)
j=1

At last, for the second scale we must calculate the second and third moment of the differenced
and the original sequence respectively. We highlight that at first the process is averaged at the
second scale and afterwards differenced and not the other way around.

The second moment of the original sequence at second scale:
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2q+1 2

(2) &=2) (a2q+1—j + a2q+2—j) Azq+1°

ori = + (729)
g 4 4

Jj=1

Also the second moment of the differenced sequence at second scale is:

2q+1 2
y® (k=2) (azq—1—j'+ A2q-j—A2q+1-j — a2q+2—j)
dif fer. - + 4
j=1 (7.30)
2 2 5
(an + azq-1 — a2q+1> n (an + a2q+1) n A2q+1
4 4 4
The third moment of the original sequence at the second scale is:
2q+1 3
3) ®&=2) (a2q+1—j + a2q+2—j) n Azq+41° (7.31)
orig. - 8 8 '
j=1
Finally the third moment of the differenced sequence at the second scale is:
2q+1 3
e (k=2) (a2q—1—j + Azq-j—Q2q+1-j ~ a2q+z—j)
differ. - - 38
j=1 (7.32)

_ (an + Arq-1 — a2q+1)3 _ (an + a2q+1)3 _ a2q+13
8 8 8

After calculating the sample moments, computational tools have to equalize between the
sample (empirical) and the sequence (theoretical) moments so that the parameters are
satisfied. Optimization tools are used to find the parameters needed. The parameterization
follows the same methodology as in Koutsoyiannis (2019): A definition of 6(w) as the
smooth minimum of two hyperbolic functions of frequency, i.e.:

1 C,;,w
0(w) = Eln (9591(@ + 6592(1/2“")), 0;(w) = —= o + Co,i (7.33)

After parameter estimation we also use the function of 6(w) that was found to perform the
Fourier transform and get the real part of the result for j = 0, ... ,q, At last we have the
sequence of a,. At the end we have simulations that conserve reversibility at two scales. For
example if we choose as the first scale as one hour the second scale to be conserved is two
hours.
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8. Case Study: Monocacy River
8.1 Introduction

In this chapter there is a case study to test the results from using the modified algorithm
described in the previous chapter with real data. The case of Monocacy River is investigated.
The station name is: “MONOCACY RIVER AT BRIDGEPORT” and is located in the state
Maryland in the U.S.A. The reversibility of the time series is being quantified and conserved
at both scales (hourly and two hours). In the figure 8.1 daily mean discharge is given for the

last five years.
azUSGS

USGS 01639000 MONOCACY RIVER AT BRIDGEPORT, MD

L

1686,.8

168.8

18.8

DAILY Discharge, cubic feet per second

2814 2814 2815 2815 2816 2816 2817 2817 2818 2813

— Daily nean discharge == period of approved data
— Estinated daily mean discharge

Figure 8.1 Daily mean discharge of Monocacy River at Bridgeport, Maryland.

Figure 8.2 Monocacy River.
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8.2 Computational tools

For the computational part of the study Spyder was used. Spyder is an open source cross-
platform integrated development environment (IDE) for scientific programming in the Python
language. In Spyder’s website it is stated:“Spyder is a powerful scientific environment written
in Python, for Python, and designed by and for scientists, engineers and data analysts.”
Python is a general purpose language created by Guido van Rossum and first released in
1991. Python's design philosophy emphasizes code readability . Its language constructs
and object oriented approach aim to help programmers write clear, logical code for small and
large-scale projects.

The following packages were used with Python:
e Numpy: Base N-dimensional array package
e Math: for mathematical functions
e Pandas: data structures and data analysis tools
e Matplotlib: for plotting
e Scipy: package for scientific computing

e Climata: is a pythonic interface for loading and processing time series data from
climate and flow monitoring stations and observers. climata leverages a number of
web services as listed below. Climata is powered by waq.io, and shares its goal of
maximizing the reusability of data parsing code, by smoothing over some of the
differences between various data formats.

For optimization the scipy.optimize.minimize function was used. It minimizes a scalar
function of one or more variables using Sequential Least SQuares Programming
(SLSQP).

8.3 Database

Time series were downloaded from the water department of the United States Geological
Survey (USGS). USGS is the largest provider of in situ water data in the world, and the Water
Resources Mission is committed to observe, understand, predict, and deliver water data and
information.

The USGS works with partners to monitor, assess, conduct targeted research, and deliver
information on a wide range of water resources and conditions including streamflow,
groundwater, water quality, and water use and availability. It has collected water-resources
data at approximately 1.5 million sites in all 50 States.

There is a variety of types of data, but generally fit into the broad categories of surface water
and groundwater. Surface-water data, such as gage height (stage) and streamflow (discharge),
are collected at major rivers, lakes, and reservoirs. Groundwater data, such as water level, are
collected at wells and springs. Water-quality data are available for both surface water and
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groundwater. Examples of water-quality data collected are temperature, specific conductance,
pH (Www.usgs.gov).

8.4 Station Information

Figure 8.3 Monocacy River at Bridgeport.

Figure 8.4 Monocacy River at Bridgeport Station.

The exact location of the station is: (39°40'44.6, 77°14'04.3). It is in Frederick County,
Maryland and the Hydrologic Unit’s number is: 02070009. It is located on right bank at
downstream side of bridge on State Highway 140 at Bridgeport, 0.9 mi upstream from Cattail
Branch, 3.4 miles northwest of Taneytown, 4.8 miles downstream from confluence of Rock
and Marsh Creeks at Pennsylvania-Maryland State line, and 52 miles upstream from mouth.

The drainage area is 173 miles? and the period of record is from May 1942 to now.

Some remarks are that there is an occasional regulation at low flow from Lake Heritage and
other unknown sources upstream from station.

Extremes for the period of record: maximum discharge, 24,400 ft3/s, June 19, 1996, gage
height, 25.42 ft; minimum discharge, 0.0 ft3/s, July 24-29, 1966.

Extremes outside the period of record Flood of Aug. 24, 1933, reached a stage of about 25 ft,
present site and gage datum, from floodmarks, discharge, about 23,000 ft3/s. Stage exceeded
that of June 1889, from information by local residents (www.usgs.gov).
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8.5 Methodology

The methodology implemented is discussed in this section.

First of all the station was picked randomly. The time series was downloaded with the help of
climata.usgs package for a period of 5 years (from November 2014 until November 2019).
The data was at first 15 minute measurements but was aggregated to 1 hour scale — relevant
scale for hydrosystem management.

After that, stationarization of the time series was considered important to take place.
Specifically the effect of the annual cycle was “removed” by multiplying the discharge values
by 12 different coefficients, one per month, summing up to 1. These coefficients were found
by minimizing the total variance of the transformed time. For optimization the
scipy.optimize.minimize function was used. It minimizes a scalar function of one or more
variables using Sequential Least SQuares Programming (SLSQP). A python function was
developed to perform the above task. The function uses as an input the station “code number”
and gives back the time series aggregated at hourly scale and stationarized.

Additionally the data had to be fitted into the Filtered Hurst Kolmogorov model to estimate
the parameters H, M and a. The time series were normalized at first. For these tasks another
function was built. The function used both the climacogam and the climacospectrum
(empirical and theoretical) to fit the data giving emphasis to the climacospectrum at the finer
scales and to the climacogram in the greater scales. The reason behind that is in the theoretical
context of these stochastic tools and has been discussed earlier. Also the fitting was not done
with the pure theoretical climacogram but with the one adapted for bias, in a way also
discussed earlier. The same happened with the climacospectrum.

More Python functions were built to calculate the discrete power spectrum through FFT and
the AMA coefficient. These were translated to Python from the VBA file accompanying the
study by Koutsoyiannis (2019).

The next step was to develop a Python function to detect reversibility scalewise. It aggregates
the data until scale 100 is reached and calculates the sample skewness of the differenced and
the original process. The ratio is the reversibility estimator and the output is a plot. Also the
reversibility of scale 1 and 2 was important to be calculated because it was to be conserved
later by the algorithm.

In the first case, when reversibility is conserved at only scale one, optimization tools are used
to find the parameters needed to find the constant 6. In the second case for sequence 6 (w)
which is defined as the smooth minimum of two hyperbolic functions of frequency, again
optimization was used. The concept is that after building functions to calculate the sample and
theoretical moments, computational tools have to minimize difference between the
sample(real) and the sequence(theoretical) moments. In the second case the difference is that
this happens for two scales and the square error is minimized. The output is the 6(w)
sequence.

With the knowledge of the power spectrum and the 6 or 6(w) sequence we are able to
calculate the AMA coeffiecients, the a, sequence through another Python function. After that
synthetic time series can be simulated.

In the end we make 100 simulations with 10000 length for each case and test them for
reversibility using the same criterion as before (skewness ratio). The average of the
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simulations at each scale is being highlighted in black and each simulation is shown in grey, a
denotation of variability.

8.6 Results

In figure 8.5 the reversibility of Monocacy River at Bridgeport scalewise. The ratio at scale
one was calculated as: r; = 1.390 and at scale two: r, = 1.197. It seems that it safe to say
that the physical process is reversible at scale 100 (approximately 4 days).

MONOCACY RIVER AT BRIDGEPORT, MD

1.4 A

1.2 1

1.0

0.8 A

0.6 -

Skewness ratio

0.4 A

0.2 -

0.0 A

10° 10! 10?2
Scale(1lhr)

Figure 8.5 Reversibility test.
As described before the processed time series were fitted into the Filtered Hurst Kolmogorov

model through both the climacogram (8.6) and the climacospectrum (8.7). The results were
assumed satisfactory. The parameters calculated were: a = 19.399,H = 0.628, M = 0.724
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Figure 8.6 FHK Climacogram data fit.

80 4 —— Climacospectrum, empirical

20 - ——— Climacospectrum, theoretical adapted for bias
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Figure 8.7 FHK Climacospectrum data fit.

In the following figure the discrete power spectrum is shown (8.8). However it is drawn in a
continuous line.
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Figure 8.8 Descrite Power Spectrum

In figure 8.9 we can see the a, sequence for the first case of conserving the reversibility at
only one scale.

a
0.4
0.3
0.2 1
0.1
0.0 ‘J L

0 500 1000 1500 2000

Figure 8.9 a,, sequence results for the first case with constant 6.

A stated before 6 (w) which is defined as the smooth minimum of two hyperbolic functions of
frequency, after optimization was used the following sequence was found. In the plot (8.10) it
seen as a line but in reality there are 1024 6 (w)parameters.
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Figure 8.10 8 sequence for the second case of conserving reversibility at both scales.

After using the 6(w) parameters, the the a,) sequence for the second case is found (8.11). In
this case for conserving the reversibility at both scales.

0.35 -
0.30 -
0.25 A
0.20 A
0.15 A
0.10 A

0.05 - -_J

0.00 -

0 500 1000 1500 2000

Figure 8.11 a, sequence results for the second case with varying .

In the end we have the results from 100 simulations of 10000 in length for the first (8.12) and
the second case (8.13) respectively. The red dots indicate the reversibility that was aimed to
be conserved. It is shown that the irreversibility targets are achieved. It is also observed that
the first method cannot achieve the second scale target efficiently as it was expected.
However it is significantly close to it.
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Figure 8.12 100 simulations with 10000 length, conserving the reversibility only at the first scale.
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Figure 8.13 100 simulations with 10000 length, conserving the reversibility at both first and second scale.

8.7 Conclusions

The results seem to be generally satisfying. The optimization was successful for both the first
and the second case finding adequate 8 parameters.

More specifically for the first case, where the reversibility has to be conserved only for the
first scale, the average of the simulations is very close to the sample skewness ratio. This case
study further verifies the effectiveness of the original algorithm and model. The original
algorithm actually tends to conserve also the second scale (through the power spectrum of the
process). That means that the new modification acts as a small adjustment.
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In the second case again there is high precision with only 100 simulations. The average of the
simulations is very close to the sample skewness ratio at both scales this time.

A higher skewness ratio means that more simulations are needed to achieve the same result.

At last the modification affects the irreversibility at even greater scales implicitly.
Furthermore the same method could be used to conserve the reversibility at even greater

scales with high precision.
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9. Irreversibility investigation from the USGS Database

9.1 Introduction

In this section there is an attempt to quantify the irreversibility at the first 100 scales from a
large sample of streamflow data. The aim is to study a lot of stations and find the average
value of skewness ratio for each scale. The first case is the state of Maryland consisting of
222 stations (9.1). The second case is an even bigger dataset consisting 762 stations around
the USA (9.2). At first the station number was higher (802) but some stations were excluded
due to data management criteria. The criterion for missing values was 10%. In the first case
the data recording period was 2013-2018 or less (mostly 5 year in length). In the second case
the data recording period was 1900-2019 or less (mostly 20-30 years in length).

9.2 Methodology

The methodology is quite similar to the one for the Monocacy River reversibility test. The
dataset was downloaded with the exact wanted timeframe using the climate package. The data
was at first 15 minute measurements but was aggregated to 1 hour scale — relevant scale for
hydrosystem management. After that, stationarization of the time series took place.
Specifically the effect of the annual cycle was “removed” by multiplying the discharge values
by 12 different coefficients, one per month, summing up to 1. These coefficients were found
by minimizing the total variance of the transformed time. For optimization the
scipy.optimize.minimize function was used. A python function was developed to perform the
above task. The function uses as an input the station “code number” and gives back the time
series aggregated at hourly scale and stationarized.

The next step was to develop a Python function to detect reversibility scalewise. It aggregates
the data until scale 100 is reached and calculates the sample skewness of the differenced and
the original process. For each station the data were saved in a matrix and after the average and
the variance for each scale were calculated, the plots were produced.

9.3 Results

The results are presented in the form of plots. The skewness ratio of the first scale for the two
cases is 2.42 and 2.51 respectively. The skewness ratios of the second scale for the two cases
are 1.7 and 1.9 respectively. The variance at the first scale of the second case is 43.58 and for
the second 7.65 (9.3).
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Figure 9.1 Maryland, 222 stations skewness ratio.
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Figure 9.2 Skewness ratio from 762 stations around USA.

49



50

°
+ 40
0
0
L}
S
5 30 1
~
n
cu
<
4
4620-
cu
v}
c
.©
o 10 -
>
10° 101 102

Scale(1hr)

Figure 9.3 Variance of the skewness ratio of the second case.

9.4 Conclusions

The conclusion from the above is that the reversibility of streamflow in the USA at least, has
expected value of skewness ratio at the first scale around 2.5 and at the second scale around
1.9. However this result has a very high variance at the first scale that tends to get smaller at
as the scales get higher.
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10. Conclusions and Future Research

Uncertainty is a major factor in physical sciences and engineering. The main purpose of
uncertainty analysis is to quantify the uncertainty by estimating statistical properties of the
system outputs that are affected by the stochastic nature of the natural process or sensitivity in
the initial conditions.

It is essential to study he probabilistic behavior of an engineering system is essential
considering that uncertainty issues are important and must be managed. The true distribution
for the system response subject to parameter uncertainty is a lot of times difficult or even
impossible sometimes to infer. This is due to the complexity of the hydrosystems. In such
cases, Monte Carlo simulation is a very useful tool to provide numerical estimations of the
stochastic features of the system response.

Time’s arrow has an important role in science and is related to randomness and uncertainty. It
has been implemented in stochastics for some time and it has recently attracted attention in
hydrological relevant publications. Time asymmetry in stochastic processes is synonymous
with steeper ascending parts and gradual descending parts in a realization. The same happens
in a hydrograph where irreversibility is manifested by the steeper rise of the climbing limb in
contrast to the falling limb. We try to reproduce this behavior through the concept of time
asymmetry. Some studies have found that the irreversibility of streamflow is marked for
scales of several days and this highlights the need to reproduce it in flood simulations.

In this study real world streamflow data from a large database i.e. the USGS database are used
to investigate the irreversibility of hourly scale streamflow time series at scales up to one
hundred hours. The aim is estimate the temporal asymmetry of streamflow data at fine
timescales in order to assess the importance of taking it into account in its modelling. The
reversibility of streamflow in the USA, has expected value of skewness ratio at the first scale
around 2.5 and at the second scale around 1.9. However this result has a very high variance at
the first scale that tends to get smaller at as the scales get higher.

This study proposes a modification to the existing method by Koutsoyiannis (2019) that
conserves irreversibility only at the first scale and makes it capable of preserving the
irreversibility simultaneously at the first and second scale. To test the method, we use real
world data. The results verify the method successfully.

The modification affects the irreversibility at even greater scales implicitly. Furthermore the
same method could be used to conserve the reversibility at even greater scales.

Temporal asymmetry investigation from large databases around the world should be a topic
for future research. Other research topics could be the connection of temporal asymmetry with
conceptual characteristics of the basin e.g. the surface area. Downstream stations are
suspected to have higher irreversibility than the upstream ones and this could also be studied.
Parametric equations could be made for further irreversibility conservation. At last other odd
functions could be used as the 8(w) function to conserve irreversibility at greater scales
implicitly.
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APENDIX A

Models for AMA (models_for_ AMA)
def FHK Cauchy (n, M, H, a, la):
import numpy as np
gamma k=np.zeros ((n+2))
c_h=np.zeros((n+2))
for i in range (0, n+2):
gamma_k[i]=la * (1 +(i/ a) ** (2 * M)) ** ((H - 1) / M)

for i in range (0, n+1):

L..it1 1) /2 - (i) ** 2 *gamma k[i]
c h[0]=gamma k[1]
c h=c h[:-1]

return c_h

def Markov (n, a, la):
import numpy as np
import math
#import matplotlib.pyplot as plt
#import pandas as pd
n=1024
la=1
a=20
gamma_k=np.zeros ((n+1))
¢ _h=np.zeros(n+1l)
#la einai to A =y (0)
gamma_k[0]=la
for 1 in range(l, n+l):
gamma k[i]=(2 * la) * (a / 1) * (1 - (1 -...
math.exp((-1) / a)) * (a / 1))
¢ h[0]=gamma k[1]
for i in range(l, n):
c h[i]=((1 - 1) ** 2 * gamma k[ 1 - 1] + (i + 1) ** 2...
* gamma k[ 1 + 1]) / 2 - (i) ** 2 *gamma k[i]

return c¢_h, gamma k
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APENDIX B

Spectra for AMA (last_try)

def DFT_ (f,t):

import numpy as np

import math

n=f.shape[0]+1

df=np.zeros((n,2),dtype=np.single)

w =np.floatl6( 2 * math.pi / n)

for k in range (0,n - 1):

for M in range(0, n - 1):

c math.cos(k * w * M)

S = math.sin(k * w * M) * t

df [k, 0] = df[k, 0] + £[M, O] * ¢ + f£[M,

df [k, 1] = df[k, 1] + £[M, 1] * ¢ - fI[M,
if t ==1

df[k, 0] = df[k, 0] / n

df [k, 1] = dflk, 1] / n

#print ('dft mpike2')

for k in range( 0, n - 1):
flk, 0] = df[k, O]
flk, 1] = df[k, 1]
return £

def FFT__ (£, t):
#print (t)
import math
n=f.shape[0]
M=math.log(n) /math.log(2)
for j in range(l , int(M)+1):
1 =int(n / 2 ** j)
for k in range( 0 , n ,2 * 1):
w =( math.pi / 1)
for i in range( 0 , 1 ):
=( math.cos (i * w))

c
S =(math.sin(i * w) * t)
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x =k + 1
y =k +1+1
fix, 0] = f[x, 0] + fly, O]
#if (i==0) and (j==1):
# print (£[0,07])
fix, 1] = f[x, 11 + fly, 1]
tr = (f£[x, 0] - fly, 0] - f£ly, 01])
ti = (f£[x, 11 - fly, 11 - fly, 11)
fly, 0] = tr * ¢ + ti * S
fly, 1] = ti * ¢ - tr * S

f=Bit Reverse (f, n)

if abs(t-1)<0.1
for i in range (0, (n )):
fri, 01 = £{i, 01 / n
fri, 11 = £1i, 11 / n

return £
def Bit Reverse(f,n):
i =0
for i in range (0, n - 1):
if i < 3

t=f[i, 0] #swaping
£li, 0] =£[3, O]
f[3, 0]l=t

t=f[i, 1] #swaping

J=3-k
k =k / 2
j=31+k
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j=int(3)

return f

def FFTPowSpec_ (A):
import numpy as np
# n=2**n+1
#n=1025 KANONIKA
n=1025

f=np.zeros ((2*n-3+1,2))
df=np.zeros((n-1+1,2))

for i in range( 0 , n ):

f[i,0] =4 * (n - 1) * A[i ]
for i in range( n , 2 * n - 2):
f[(i,0 ] = f[2 * n - 1 - 2,0]

f=FFT__ (f, 1)

for i in range(0 , n ):
df[i, 0] = (1) / 2 / (n-1)
df[i, 1] = £[i,0]
#if df[1,11<0:
#porint (df[i,1])
#import sys

#sys.exit ("Error message")

return df

df(i + n - 1-1, 1] = f[2 * (n - 2) + 2 - i-1, O]l#to allaksa

def FFT AMACoef (spectrum, theta):
import last try
# import pandas as pd
import numpy as np
#theta=0.0625
#spectrum=pd.read excel...

. (r'C:\Users\USER\Desktop\gia python paradeigma9.xlsx"')

58



#spectrum=pd.DataFrame.to numpy (spectrum)

#spectrum=spectrum|:,1]

n=spectrum.shape[0]
th=np.zeros ((n))
th[l:n]=theta
th[0]=0

#import numpy as np

import math

#n=spectrum.shape[0]
ss=np.zeros((n))

for i in range( 0 ,

n

)t

ss[i] = (2 * spectrum[i

.math.cos (2 * math.pi * th[il])

f=np.zeros ((2*n-2,2)

)

/

1) ** 0.5 * ..

* math.tan(2 * math.pi * th[i])

for i in range( 0 , n ):
fli, 0] = ss[i]
fli, 1] = ss[i]

f[n -1, 11 =0

for i in range ( n, 2 * n - 2):
fri, 0] = f[2 *n -1 - 2, 0]
fri, 1] = -f[{2 * n - 1 - 2, 1]

f=last try.FFT__ (f,-1)

df=np.zeros((2 * (n - 1)

for i in range(0 , n

#print (i + n - 1,
df[i, 0] =1 - n +
df[i + n - 1, 0] =
df[i, 1] = f[n - 1
if 1 ==

df[(i + n - 1, 1]
else:
df[(i + n - 1, 1]

return df

2

) e

*

+ 1, 2))
(n - 2) +2 - 1)
i, 0]
f[n - 1, O]#to allaksa

fl2

*

(n - 2)

+ 2 - i,

def FFT _AMACoef var_ theta(spectrum, theta):

#

import last try

import pandas as pd
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import numpy as np
#theta=0.0625

#spectrum= pd.read excel
(r'C:\Users\USER\Desktop\gia python paradeigma9.xlsx')

#spectrum=pd.DataFrame.to numpy (spectrum)
n=spectrum.shape[0]

th=theta

#import numpy as np

import math

#n=spectrum.shape[0]

ss=np.zeros((n))

for i in range( 0 , n ):

i] = (2 * spectrum[i ]) ** 0.5 * math.cos(2 * math.pi *

ss[i]
(4 * (n-1))

[
th{i]) / (4
f=np.zeros ((2*n-2,2))

for i in range( 0 , n ):

fli, 0] = ss[i]

fli, 1] = ss[i] * math.tan(2 * math.pi * th[i])
fln -1, 11 =0
for i in range ( n, 2 * n - 2):

f{i, 0] = f[2 * n - i - 2, 0]

fri, 1] = -f[2 * n - 1 - 2, 1]

f=last try.FFT (f,-1)
df=np.zeros((2 * (n - 1) + 1, 2))
for i in range(0 , n ):

#fprint(i + n -1, 2 * (n - 2) + 2 - 1)

dffi, 0] =1 - n + 1

df{i + n -1, 0] =1

dffi, 1] = f[n - 1 - i, O]
if 1 ==

df[i + n - 1, 1] f[n - 1, O]#to allaksa
else:
df[i + n -1, 1] = f[2 * (n - 2) + 2 - i, 0]#to allaksa

return df
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APENDIX C

Scripts for USGS Database study

Script: Reversibility test 2
import numpy as np

import math

import pandas as pd

import scipy.stats

import matplotlib.pyplot as plt
def aggr(n,3):

if A.shape[0]>n:
B=np.zeros (np.int (A.shape[0]/n))
Bl[O0]l=np.average (A[0:n])
for i in range(1l,B.shape[0]):
Bli]=np.average (A[i*n: (i+1) *n])

return B

def dif proc_ (A):
dif proc= np.empty((A.shapel[0]-1,1))
for i in range(0,A.shape[0]-1):
dif proc[i]=A[i+1]-A[1i]

return dif proc

def reversibility test (A, name):

max =100

intervals=100

k=np.linspace(l,max ,intervals,dtype=int)
l=np.zeros ((k.shape[0]+1,1))

for i in range (0, (k.shape[0])) :

gl=scipy.stats.skew(dif proc (aggr(k[i],A)), bias=False,
nan_policy='omit'")

g2=scipy.stats.skew(aggr(k[i],A),bias=False, nan policy='omit')
1[i+1]=gl/qg2
1[0]1=0
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plt.plot (1)
plt.xscale('log'")

plt.title (name)

plt.xlabel ('Scale(lhr) ")
plt.x1lim (1, 200)

plt.ylabel ('Skewness ratio')
plt.grid(True)

#plt.show()
plt.savefig(name,dpi=300)
print(1[1]1,1[2])

plt.close()

import winsound

duration = 1000 # milliseconds
freq = 440 # Hz

winsound.Beep (freq, duration)

def reversibility test no plot(A,name):

max =100

intervals=100

k=np.linspace(l,max ,intervals,dtype=int)
1=np.zeros ((k.shape[0]+1))

for i in range (0, (k.shape[0])) :

gl=scipy.stats.skew(dif proc (aggr(k[i],A)),bias=False,
nan policy='omit")

g2=scipy.stats.skew(aggr(k[i],A),bias=False, nan policy='omit')
1[i+l]=gl/g2
170]=0

return 1

Script:Rev_test _generator

#import sys
#sys.path.append(r'C:\Users\guestl3\Desktop\python path')
import pandas as pd

import numpy as np

from stationarize new import import and stationarise

#import matplotlib.pyplot as plt

62



from climata.usgs import InstantValueIO,DailyValueIO

from scipy.optimize import minimize

#from reversibility test 2 import reversibility test
from reversibility test 2 import reversibility test no plot

#xronoseira = pd.read excel
(r'C:\Users\USER\Desktop\gia python paradeigmad.xlsx')

#xronoseiral'values'] = xronoseiral['values'].apply (lambda X
'{0:0>8}"'.format (x))

#xronoseira=pd.read_excel()

#xronoseira=np.loadtxt ('C:\\Users\\USER\\Desktop\\zeros.txt', dtype=s
tr)

df = pd.read csv('station ids final.txt', dtype = str,header=None)
A=pd.DataFrame.to numpy (df ,dtype=str)
fmatr=np.zeros ((7951,101))
matr=np.load(r'C:\Users\USER\Desktop\python path\matr.npy"')
k=np.load(r'C:\Users\USER\Desktop\python path\k.npy")
for i in range(k,0,-1):
try:

station id = A[i,0]

#station id="03076500"

a=import and stationarise(station id)

#reversibility test(a[0],al[l])

matr[i, :]=reversibility test no plot(al[0],a[l])
print (i)
k=1

np.save ('k', k)
np.save ('matr',matr)
except UnboundLocalError:
pass
except ConnectionError:

np.save ('matr',matr)

except Typekrror:

pass

Script:stationarize new
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import pandas as pd

def import and stationarise(station_id):

from climata.usgs import InstantValueIO,DailyValueIO
import numpy as np

from scipy.optimize import minimize

#print (station id)

# set parameters
#station id = "01496200"
"01484719"

#station id

param id = "00060"

datelist =... pd.date range(start='1900-10-01",end='2019-12-
12',freg="15T") .tolist ()

data = InstantValueIO(start date=datelist[0],end date=datelist[-
1] ,station=station id,parameter=param id,)

# create lists of date-flow values
flow =np.empty ((1000000,1))
for series in data:
flow = [r[l] for r in series.data]
dates = [r[0] for r in series.data]
flow =np.asarray(flow )
#plt.plot (dates, flow)
#plt.xlabel ('Date')
#plt.ylabel ('Streamflow")
#plt.title(series.site name)
#plt.xticks (rotation="'vertical')
#plt.show()
name=series.site name

n=len (flow )

cn=0
for i in range (0, flow .shape[0]):
if flow [1]<0.5:
cn=cn+1

if flow [1]<0.0:
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flow [i]=np.NaN
#

np.savetxt (str(station id)+' '+4str(name), (flow ,dates),delimiter="
",header=str (station id)+' '+str (name) +' '+'Missing Values'+' '+
str(cn/flow .shape[0])+'%")

flow =pd.Series(flow )
flow .index=dates
flow .to csv(str(station id)+' '+str(name)+'.txt')

#
np.savetxt (str(station id)+' '+str(name), (flow ,dates),delimiter="

")

if (cn/flow .shape[0])>0.1:
print ('too few')
return
month =np.zeros(n,dtype=np.int8)
for i in range (0, n):
month [i]=np.int (dates[i].month)
del data,dates,datelist
flowl =np.empty((n,1))
flowl [:,0]1=0.0283168466*flow

const=np.empty (12)
const[:]=0.08

flow2=np.empty ((n,1))

def constraintsl (const)

return sum(const)-1

Script:usgs_stationarise

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from climata.usgs import InstantValueIO,DailyValueIO

from scipy.optimize import minimize

def import_ and save(station_id):
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param _id = "00060"

datelist = pd.date range(start='2013-10-01"',end='2018-10-
1',freg="H'") .tolist ()

data = InstantValueIO(start date=datelist[0],end date=datelist[-
1] ,station=station id,parameter=param id,)

# create lists of date-flow values
flow =np.empty ((360000,1))
for series in data:
flow = [r[l] for r in series.data]
dates = [r[0] for r in series.data]

flow =np.asarray(flow )

name=series.site name

np.savetxt (str(station id)+' '+4str(name),flow ,delimiter="
",header=str (station id)+' '+str (name))

cn=0
for 1 in range (0,flow .shape[0]):
if flow [1]1<0.5:
cn=cn+1
if (cn/flow shape[0])>0.1:
return
return flow

def stationarise(station_ id):

param id = "00060"

datelist = pd.date range(start='2013-10-01"',end="'2018-10-
1',freg="H'") .tolist ()

data = InstantValueIO(start date=datelist[0],end date=datelist([-
1],station=station id,parameter=param id,)

# create lists of date-flow values
flow =np.empty ((360000,1))
for series in data:

flow

[r[1] for r in series.datal]

dates = [r[0] for r in series.data]
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flow =np.asarray(flow )

name=series.site name
n=len (flow )
month =np.zeros(n,dtype=np.int8)
for i in range (0, n):
month [i]=np.int (dates[i].month)
del data,dates,datelist
flowl =np.empty((n,1))
flowl [:,0]=0.0283168466*flow

const=np.empty (12)
const[:]=0.08

flow2=np.empty((n, 1))

def constraintsl (const)

return sum(const)-1

cons = [{'type':'eq', 'fun': constraintsl}]

bnds = ((0, None), (0, None), (0, None), (0, None), (0, None),
None), (O, None), (0, None), (0, None), (0, None), (0, None),
None) )

def var (const):

flow2[:,0]=flowl [:,0]*const[month [:]-1]
var =np.std(flow2)

ret=abs (var )

print (ret)

return ret

rez=minimize (var ,const,constraints=cons,bounds=bnds)
const=rez['x"']

flow2[:,0]=flowl [:,0]*const[month [:]-1]

def aggr_sum(n,A):
if A.shape[0]l>n:
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B=np.zeros (np.int (A.shape[0]/n))
B[O]=np.sum(A[0:n])
for i in range(l,B.shape[0]):
Bli]l=np.sum(A[i*n: (i+1)*n])
return B
flow lhr=aggr sum (4, flow2)

return flow lhr, name

Script: maryland skewness ratio

import numpy as np

import matplotlib.pyplot as plt

fig=np.zeros ((101))

for i in range(0,100):
fig[i]l=np.mean(matr[:,i])

for i in range (0,222):

plt.plot(matr[i,0:101], 'grey',linewidth=1.5,alpha=0.4)

plt.plot (fig[0:101], 'black', linewidth=2)
plt.ylim (0, 10)

plt.xlim(1, 100)

plt.xscale('log')
#plt.title('Simulations using AMA at scale lhr and 2hr')
plt.xlabel ('Scale(lhr) ")

plt.ylabel ('Skewness ratio')

plt.grid (True)

#plt.show ()

plt.savefig('Maryland sk',dpi=300)
plt.close()

Script: import usgs_and normalise

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from climata.usgs import InstantValueIO,DailyValueIO

from scipy.optimize import minimize
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# set parameters
station _id = "01639000"
param id = "00060"

datelist = pd.date range(start='2013-10-01"',end='2018-10-
1',fregq="15T") .tolist ()

data = InstantValueIO (start date=datelist[0],end date=datelist[-
1] ,station=station id,parameter=param id,)

# create lists of date-flow values
flow =np.empty((360000,1))
for series in data:

flow = [r[l] for r in series.data]

dates [r[0] for r in series.data]
flow =np.asarray (flow )
#plt.plot (dates, flow)
#plt.xlabel ('Date’')
#plt.ylabel ('Streamflow')
#plt.title(series.site name)
#plt.xticks (rotation="'vertical')
#plt.show ()
n=len(flow )
nl=4
n2=np.int (n/nl)
month =np.zeros(n2,dtype=np.int8)
for i in range (0, n2):

month [i]=np.int (dates[i*nl] .month)
del data,dates,datelist
flowl =np.empty (n)
flowl [:]1=0.0283168466*flow

def aggr_sum(n,A):
if A.shape[0]>n:
B=np.zeros (np.int (A.shape([0]/n))
B[O]=np.sum(A[0:n])
for i in range(l,B.shape[0]):
Bli]=np.sum(A[i*n: (i+1)*n])

return B
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flow3=np.empty((n2,1))
flow3=aggr sum(4,flowl )

d = {'coll': (flow3), 'col2': (month )}

df =pd.DataFrame (index=None,data=d,dtype=float)

mean =df .groupby(['col2']) .mean ()
mean l=pd.DataFrame.to numpy (mean )
std =df .groupby(['col2']) .std()
std l=pd.DataFrame.to numpy(std )
flow2 =np.empty((n2,1))
flowd=np.empty ((n2,1))

flow2 [:,0]=flow3[:]

flow4[:,O]=(flow2_[:,0]—mean_l[month_[:]—l,O])/Std_l[month_[:]—l,O]

var epal=np.var (flow4)

mean epal=np.mean (flow4)
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APENDIX D

Scripts about parameter estimation

Script:theta parameter

def theta parameter (spectrum,A):#spectrum momo h mia sthlh, A
xronoseira pou tha vrethei to skewness ratio

X1l=spectrum

def rev_parameter (A):

sh=A.shape[0]

skewA= (scipy.stats.skew(A[O:sh-1],bias=False,
nan policy='omit')) # unbiased, omit agnoei ta NaN

skewAdif=(scipy.stats.skew ((A[0O:sh-1]-A[l:sh]),bias=False,
nan policy='omit'"))

rev_param=skewAdif/skewA

return rev_param

rev_param=rev_parameter (A)

def theta(theta):

X=AMA coeffiecient.FFT AMACoef (X1, theta)
X=X[:,1]

X dif=X[1l: (X.shape[0])]1-X[0:X.shape[0]-1]
orig var=sum (X**2)

dif var=sum(X dif**2)+X[0]**2

orig m3=sum(X**3)

dif m3=sum(X dif**3)+X[0]**3

orig skew=orig m3/orig var**1.5

dif skew=dif m3/dif var**1.5

sk _ratio=dif skew/orig skew

print (theta, (sk _ratio-rev param))
return abs (sk ratio-rev_ param)

# M=HHK parameter...
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# dif=AMA (theta, H,M)

# return dif

res = minimize (theta, 0.1,bounds=((0,0.251),))
return res['x']

Script:scale_1lk reversibility

import numpy as np

import math

import pandas as pd

import AMA coeffiecient

import matplotlib.pyplot as plt
import AMA coeffiecient

import scipy.stats

from scipy.optimize import minimize

import last try

Xw=pd.DataFrame.to numpy (pd.read excel
(r'C:\Users\USER\Desktop\gia python paradeigma8.xlsx') )

Xp=pd.DataFrame.to numpy (pd.read excel
(r'C:\Users\USER\Desktop\gia python paradeigma7.xlsx'))

#Xw=np.zeros ((g.shape[0],1))
#Xp=np.zeros ((g.shape[0],1))
Xwl:,0]=p[:,0]
Xpl[:,0]=pl:,1]

def theoretic_sk_ratio_(X):
X dif=X[1l: (X.shape[0])]1-X[0:X.shape[0]-1]
orig var=np.nansum(X**2)
dif var=np.nansum(X dif**2)+X[0]**2
orig m3=np.nansum(X**3)
dif m3=np.nansum (X dif**3)+X[0]**3
orig skew=orig m3/orig var**1.5
dif skew=dif m3/dif var**1.5
theoretic sk ratio=dif skew/orig skew

return theoretic sk ratio
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bnds = ((None))

#theta m=np.ones ((3,3))

theta s=0.1

def theta(theta_ s):

Xa=AMA coeffiecient.FFT AMACoef (Xp, theta s)
Xa =np.zeros((Xa.shape[0],1))

Xa [:,0]=Xal:,1]

#print (theta, (sk ratio-rev param))

rev 1=1.39
rev_th l=theoretic sk ratio (Xa )
error=(rev_1l-rev th 1)**2

print(rev_th 1,error)

return (error)

# M=HHK parameter...
# dif=AMA (theta, H, M)
# return dif

res = minimize (theta, theta s)
print (res['x"'])

theta s=res['x"']

Xa=AMA coeffiecient.FFT AMACoef (Xp, theta s)
plt.plot(Xal:,1])

plt.title('a"')

plt.grid (True)

plt.savefig('af',dpi=300)

#plt.show ()

#rez=minimize (var ,const,constraints=cons,bounds=bnds)

#const=rez['x"']
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Script:scale 2k reversibility
import numpy as np

import math

import pandas as pd

import AMA coeffiecient

import matplotlib.pyplot as plt
import AMA coeffiecient

import scipy.stats

from scipy.optimize import minimize

import last try

Xw=pd.DataFrame.to numpy (pd.read excel
(r'C:\Users\USER\Desktop\gia python paradeigma8.xlsx') )

Xp=pd.DataFrame.to numpy (pd.read excel
(r'C:\Users\USER\Desktop\gia python paradeigma7.xlsx'))

#Xw=np.zeros ((g.shape[0],1))
#Xp=np.zeros ((g.shape[0],1))
#Xw[:,0]=g[:,0]
#Xpl[:,0]=g[:,1]

def theoretic sk ratio (X):
X dif=X[1l:(X.shape[0])]-X[0:X.shape[0]-1]
orig var=np.nansum(X**2)
dif var=np.nansum(X dif**2)+X[0]**2
orig m3=np.nansum(X**3)
dif m3=np.nansum (X dif**3)+X[0]**3
orig skew=orig m3/orig var**1.5
dif skew=dif m3/dif var**1.5
theoretic sk ratio=dif skew/orig skew

return theoretic sk ratio

def theoretic_sk_ratio_scale 2(X):

end=X.shape[0]
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orig var=X[0]**2/44+np.sum((X[0: (end-1)]+X[1l: (end)])**2) /4

dif_var=X[O]**2/4+(X[O]+X[1])**2/4+(X[l]+X[2]—
X[0])**2/44np.sum((X[2:end-1]+X[3:end]-X[1l:end-2]-X[0:end-3]) **2/4)

X[1l:end])**3/8)

_I_
dif m3=-X[0]**3/8-(X[0]+X[1])**3/8-(X[1]1+X[2]-X[0])**3/8~
np.sum((X[2:end-1]+X[3:end]-X[1l:end-2]-X[0:end-3])**3/8)

orig m3=X[0]**3/8+np.sum((X[0: (end-1)]

dif skew=dif m3/dif var**1.5
orig skew=orig m3/orig var**1.5
theoretic sk ratio scale 2=dif skew/orig skew

return theoretic sk ratio scale 2

bnds = ((None, None), (None, None), (None, None), (None, None), (None,
None), (None, None), (None, None), (None, None), (None, None))

#theta m=np.ones ((3,3))

theta s=np.ones|(9)

theta s[:]=1

#print (theta m[2,1])

def theta(theta s):
endl=Xw.shape[0]
Ul=np.zeros((endl, 1))
U2=np.zeros((endl, 1))
# U3=np.zeros((endl,1))
#print (theta m)

Ul[:,O]=theta_s[1]*Xw[O:endl,O]/(theta_s[2]+Xw[O:endl,O])+theta_s[0]

U2[:,0]=theta s[4]*(0.5-Xw[:,0])/ (theta s[5]+0.5-
Xw[:,0])+theta s[3]

# U3[:,O]=theta_s[7]*(Xw[:,O])/(theta_s[8]+Xw[:,O])+theta_s[6]

th=np.zeros (Xw.shape[0])

th=np.log(np.exp (-10*Ul[:])+np.exp (-10*U2[:]1))/ (-10)
Xa=AMA coeffiecient.FFT AMACoef var theta (Xp, th)

Xa =np.zeros((Xa.shape[0],1))

Xa [:,0]=Xal:,1]

#print (theta, (sk ratio-rev param))

rev_1=1.39

rev 2=-1.2

rev_th I=theoretic sk ratio (Xa )
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rev_th 2=theoretic sk ratio scale 2(Xa )
error=(rev_l-rev_th 1)**2+(rev _2-rev_th 2)**2
print(rev_th 1,rev th 2)

return (error)

# M=HHK parameter...

=

dif=AMA (theta, H,M)

# return dif

res = minimize (theta, theta s)
print (res['x"'])
theta s=res['x"']
endl=Xw.shape[0]
Ul=np.zeros((endl, 1))
U2=np.zeros((endl, 1))
#print (theta m)
Ul[:,O]=theta_s[1]*Xw[O:endl,O]/(theta_s[2]+Xw[O:endl,O])+theta_s[0]
U2[:,0]=theta s[4]*(0.5-Xw[:,0])/(theta s[5]+0.5-Xw[:,0])+theta s[3]

th=np.zeros (Xw.shape[0])
th=np.log(np.exp (-10*Ul[:])+np.exp (-10*U2[:]))/ (-10)

plt.plot (th)

plt.title('6")

plt.grid (True)
plt.savefig('theta',dpi=300)
#plt.show ()

plt.close()

Xa=AMA coeffiecient.FFT AMACoef var theta (Xp, th)
plt.plot(Xa[:,1])

plt.title('a")

plt.grid (True)

plt.savefig('a, sc=22',dpi=300)

#plt.show ()

#rez=minimize (var_ ,const,constraints=cons,bounds=bnds)
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#const=rez['x"']
Script:Parameters final

import numpy as np

from scipy.optimize import curve fit
import matplotlib.pyplot as plt

from scipy.optimize import minimize

import pandas as pd

def HHK(10,a,M,H):
# for i1 in range(0,Nj):

#10=1
n=A.shape[0]
gamma_=np.zeros(np.int(A.shape[O]/lO))
for k in range (0, (int (A.shape[0]/10))):
gamma_[k]=10* (1+(k/a)** (2*M)) ** ((H-1) /M)
g n=10* (1+ (int (A.shape[0]) /a) ** (2*M) ) ** ( (H-1) /M)

return gamma ,g n,n

def aggr(n,3):

if A.shape[0]>n:
B=np.zeros (np.int (A.shape[0]/n))
B[O0]l=np.average (A[0:n])
for i in range(1l,B.shape[0]):
Bli]l=np.average (A[i*n: (1i+1)*n])

return B

def Climacospectrum(A) :#to A einai o pinakas me to HHK climacogram
# A=1
cli spec=np.zeros((int (A.shape[0]/2),1))
for 1 in range (0,int (A.shape[0]/2)):
cli spec[i]=(1)*(A[1i]-A[2*(1)])/np.log(2)
if cli spec[i]<0
cli spec[i1]=0.00001
cli spec=cli spec[l: (int (A.shape[0]/2)+1)]
return cli spec
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def Climacogram(A,ints):

max =int (A.shape[0]/10)
intervals=int (A.shape[0]/10)

k=np.linspace(1l,int (max ),intervals,dtype=int)
l=np.zeros ((k.shape[0],1))

for i in range (0, (int (k.shape[0]))) :
gl=np.nanvar (aggr (k[i],A))

1[il=ql

#print (ql)

return 1

def Climacogram biased(A,g n,n): #A is for theoretical climacogram

max =int (A.shape[0])

intervals=int (A.shape[0])

k=np.linspace(l,int (max ),intervals,dtype=int)
# ll=np.zeros ((k.shape[0],1))

12=np.zeros((k.shape[0],1))

11=A

for i in range (0, (int (k.shape[0]-1))):

gl=(11[i]-g_n)/ (1-(i+1)/n)

12[1i]1=qgl

12[-11=12[-2]

return 12

param=np.array ([31.704337789505427, 0.7458597738634244,
0.7922178198926836])

def parameter estimator(param) :
a=param[0]

M=param([1]

H=param[2]
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clgram real=Climacogram(A, 0)

clspec real=Climacospectrum(clgram real)

clgram_theory=np.zeros((int(A.shape[O]/lO),l))
resl=HHK (clgram real([0],a,M, H)
clgram theory=Climacogram biased(resl[0],resl[1l],resl[2])

clspec theory=Climacospectrum(clgram theory)

numb=np.arange (1, clgram real.real.shape[0]+1)

b2=np.sum(np.log(clgram theory[:]/clgram real[:])**2+numb[:]**0.5)

a1=np.sum(np.log(clspec_theory[:]/clspec_real[:])**2+numb[:]**0.5)
bl=(clgram theory[0]-clgram real[0])**2
a2=pl+b2*10**5
suma=al+az
print (suma, param)
return suma
bnds = ((0, 100), (0.1, 0.9999999), (0.1, 0.9999999))
strval=np.array([52.52,0.6421,0.72941])

res = minimize (parameter estimator,strval,bounds=bnds)

import winsound
duration = 1000 # milliseconds
freq = 440 # Hz

winsound.Beep (freq, duration)

#plt.plot(c,label="'Climacogram, theoretical')
plt.plot (clgram real,label='Climacogram, empirical')

plt.plot (clgram theory,label='Climacogram, theoretical adapted for
bias'")

#plt.plot(clspec real,label='Climacospectrum, empirical')

#plt.plot(clspec theory,label='Climacospectrum, theoretical adapted
for bias')

plt.xscale('log')
plt.grid (True)

#plt.title('Climacogram')
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#plt.title('Climacospectrum')
plt.xlabel ('Scale(lhr) ")
plt.legend()

plt.grid (True)

#plt.show ()

plt.savefig('Climac31,704337789505427,
0,7922178198926836, ',dpi=300)

#plt.savefig('Climacospectrum',dpi=2000)
plt.close()
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APENDIX E

Scripts for simulation
def AMA simulation(Cl,sim length):
# import models for AMA
# import last try
# import AMA coeffiecient
import time

import numpy as np

arr = np.array(Cl)

Cl = arr[::-1]

#start = time.time ()

import numpy as np
import math
from scipy.stats import norm

# from scipy.stats import pearsonr

n=Cl.shape[0]
#sim length=1000

# logparam=1
V=np.zeros (sim length+n)
rnd=np.random.rand(sim length+n)
V=norm.ppf (rnd[0:sim length+n])
for 1 in range(0,sim length+n):

V[i]=math.exp(V[i])

X=np.zeros((sim length,1l),dtype=float)

for i in range(0,sim length):

>
'_I.
Il

(sum(np.multiply(C1l[0:n],V[i:i+n])))
#end = time.time ()

# print ((end-start), 'seconds simulation')
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return X
Script: 1000simulations
import AMA simulation
import numpy as np
import math
import pandas as pd
import scipy.stats

import matplotlib.pyplot as plt

def aggr(n,3):

if A.shape[0]>n:
B=np.zeros (np.int (A.shape[0]/n))
B[O0]l=np.average (A[0:n])
for i in range(l,B.shape[0]):
Bli]=np.average (A[i*n: (i+1) *n])

return B

def dif proc_ (A):
dif proc= np.empty((A.shapel[0]-1,1))
for i in range(0,A.shape[0]-1):
dif proc[i]=A[i+1]-A[1i]

return dif proc

def reversibility matrix(A):

#dif proc= np.empty((A.shape[0]-1,1))
#for i in range(0,A.shape[0]-1):
# dif proc[i]=A[i+1]-A[1]

max =100

intervals=100

k=np.linspace(l,max ,intervals,dtype=int)

l1=np.zeros ((k.shape[0]+1))

for i in range (0, (k.shape[0])) :
gl=scipy.stats.skew(dif proc_ (aggr(k[i],A)),bias=False,

nan_policy='omit'")
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g2=scipy.stats.skew(aggr(k[i],A),bias=False, nan policy='omit')
1[i+l1]=gl/g2
1[0]1=0

return 1

count=0
nn=100
rev_matr=np.zeros((101))
var prev=np.zeros((101))

rev_matr f=np.zeros((101))

for j in range (0,nn) :
po=AMA simulation.AMA simulation(Xa[:,1],10000)
var=reversibility matrix (po)
rev matr([:]=var prev[:]+var[:]
count=count+1
print (count)
var prev=rev _matr
plt.plot(var[0:40], 'grey',linewidth=1.5,alpha=0.4)
rev matr f[:]=rev matr[:]/count
x=[1,2]
y=[1.39,1.2]
plt.scatter (x,y,color="'black"', s=60)
plt.plot(rev matr £[0:40], 'black',linewidth=2)
plt.ylim (0, 2)
plt.xlim (1, 40)
plt.xscale('log"')
#plt.title('Simulations using AMA at scale lhr and 2hr')
plt.xlabel ('Scale(lhr) ")
plt.ylabel ('Skewness ratio')
plt.grid (True)
plt.scatter(x,y,color="red',s=60,zorder=nn+1)
#plt.show ()
plt.savefig('Simulations dfsd',dpi=300)
plt.close()

import winsound
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duration = 1000 # milliseconds
freq = 440 # Hz

winsound.Beep (freq, duration)



