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Highlights 

• Prediction-oriented evaluation of rainfall trends 

• Trend and mean models are used to project 30 years of rainfall indices  

• The predictive skill of the models is assessed by moving-window validation 

• Trends have the worst performance and local mean models the best 

Abstract Non-stationarity approaches have been increasingly popular in hydrology, reflecting 

scientific concerns regarding intensification of the water cycle due to global warming. A 

considerable share of relevant studies is dominated by the practice of identifying linear trends 

in data through in-sample analysis. In this work, we reframe the problem of trend identification 

using the out-of-sample predictive performance of trends as a reference point. We devise a 

systematic methodological framework in which linear trends are compared to simpler mean 

models, based on their performance in predicting climatic-scale (30-year) annual rainfall 

indices, i.e. maxima, totals, wet-day average and probability dry, from long-term daily records. 

The models are calibrated in two different schemes: block-moving, i.e. fitted on the recent 30 

years of data, obtaining the local trend and local mean, and global-moving, i.e. fitted on the 

whole period known to an observer moving in time, thus obtaining the global trend and global 

mean. The investigation of empirical records spanning over 150 years of daily data suggests 

that a great degree of variability has been ever present in the rainfall process, leaving small 

potential for long-term predictability. The local mean model ranks first in terms of average 

predictive performance, followed by the global mean and the global trend, in decreasing order 

of performance, while the local trend model ranks last among the models, showing the worst 

performance overall. Parallel experiments from synthetic timeseries characterized by 

persistence corroborated this finding, suggesting that future long-term variability of persistent 

processes is better captured using parsimonious features of the past. In line with the empirical 

findings, it is shown that, prediction-wise, simple is preferable to trendy.  
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1. Introduction 

“A trend is a trend is a trend / But the question is, will it bend? / 

Will it alter its course / Through some unforeseen force / 

And come to a premature end?”  

(Sir Alec Cairncross, 1969, signing as “Stein Age Forecaster”) 

In the past decades there has been a plethora of trend analyses in rainfall studies (Bunting et al., 

1976; Haylock and Nicholls, 2000, 2000; Rotstayn and Lohmann, 2002; Modarres and da Silva, 

2007; Ntegeka and Willems, 2008; Kumar et al., 2010), and it could be argued that relevant 

studies are still on the rise (e.g. Biasutti, 2019; Degefu et al., 2019; Folton et al., 2019; Khan et 

al., 2019; Papalexiou and Montanari, 2019; Quadros et al., 2019; Rahimi and Fatemi, 2019). 

For a quantitative analysis of the relevant literature, the reader is referred to Appendix I. This 

boom of trend studies has had various scopes, most of which are related to global warming 

assessment (IPCC, 2013). These include historic climate variability quantification, attribution 

to deterministic drivers, projections to the future and impact assessments (e.g. Kumar et al., 

2010; Parmesan and Yohe, 2003; Biasutti, 2013; Rotstayn and Lohmann, 2002). Arguably what 

is common in the majority of trend studies, even when not explicitly stated, is the expectation 

for a monotonically changing future, which as a result, has initiated a growing discourse on the 

appropriate modelling approach.  

In climatology and hydrology, there has been an ongoing debate between stationary vs 

nonstationary methods, with the former representing a well-established hydrological practice 

(Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015) and the latter 

reflecting recent attempts of the scientific community to find a new way to respond to change 

and uncertainty under the anthropogenic climate change scenario (Milly et al., 2008; Craig, 

2010; Milly et al., 2015). Yet deterministic trend modelling has been examined —and mostly 

criticized, on different grounds, namely with respect to empirical evidence (McKitrick and 

Christy, 2019; Cohn and Lins, 2005), theoretical consistency (Koutsoyiannis and Montanari, 

2015), modelling efficiency (Montanari and Koutsoyiannis, 2014), and meaningfulness of the 

results (Serinaldi et al., 2018). It has also been argued that the concepts of change and 

uncertainty are already well-represented within the stationarity framework (Koutsoyiannis and 

Montanari, 2007; Serinaldi and Kilsby, 2018). In this research, we examine the trend modelling 
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framework from a new perspective, through the evaluation of its out-of-sample modelling 

qualities, namely, its predictive powers for a given record.  

For this purpose, we introduce a validation framework for the evaluation of the results, 

adding simpler, mean models in the pool of candidates, and basing the reasoning of model 

selection on the statistical out-of-sample performance of the models. While split-sample 

techniques (Klemeš, 1986) and multi-model approaches (Georgakakos et al., 2004; Duan et al., 

2007) are certainly not new in hydrology, they are usually disregarded as concepts in the field 

of trend modelling, where the research question typically revolves around explanatory 

performance, mostly by means of in-sample measures, as hypothesis testing (Shmueli, 2010). 

In this work, we extend the simple split-sample validation by introducing a moving window 

calibration and validation approach that progressively scans each record by sliding windows of 

climatic-length, i.e. 30 years according to the common climate definition (IPCC, 2013). In this 

manner, we obtain a sample of estimates of the models’ predictive performance, instead of a 

single value.  

By shifting the focus to the predictive modelling of linear trend, this analysis seeks to 

answer the following key questions: (a) how well are the rainfall statistics of the most recent 

climatic period predicted by the linear trend calibrated to the prior 30-year period? and (b) how 

do the statistics of the predictive performance of linear trends compare to the ones derived from 

application of simple mean models?  

The first question is driven by the omnipresent scientific concerns regarding 

intensification of extremes due to global warming during the last decades (e.g. Houghton et al., 

1991; Parmesan and Yohe, 2003; Oreskes, 2004; Solomon et al., 2007; McCarl et al., 2008; 

Moss et al., 2010; Craig, 2010; Pachauri et al., 2014; Kellogg, 2019). According to the fifth 

(latest) IPCC assessment (IPCC, 2013), the expected intensification mechanism suggests a 6%–

7% increase of the global water vapour per °C of warming, followed by a 1% to 3% increase in 

global mean precipitation. Recently, the physical assumptions behind these estimates have been 

questioned and revisited in light of global datasets (Koutsoyiannis, 2020), while the evaluation 

of hydrological impacts from increased greenhouse emissions remains an open research subject 

with often conflicting evidence (e.g. Hirsch and Ryberg, 2012; Mallakpour and Villarini, 2015; 

Blöschl et al., 2019). Therefore, the first examination of predictability is consciously biased in 

favour of a model capturing the variability of the most recent period of data.  

The second question introduces the abovementioned methodological framework for 

validating model predictions, which is applied to the empirical long-term rainfall records as 

well as to synthetic series produced in order to mimic the natural long-term variability of the 
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rainfall process. A discussion on the relevance of the framework in light of potential 

deterministic changes is also provided. 

2. Dataset 

Our dataset is an update of the previous long-term dataset explored in Iliopoulou et al. (2018) 

of long rainfall records surpassing 150 years of daily values. It includes the 60 longest available 

daily rainfall records collected from global datasets, i.e. the Global Historical Climatology 

Network Daily database (Menne et al., 2012), the European Climate Assessment and Dataset 

(Klein Tank et al., 2002), as well as third parties listed in in the Appendix II (Table A1), along 

with a brief summary of the stations’ properties; the geographic location of the rain gauges is 

shown in Figure 1. The length of the timeseries provides rare insights into long-term rainfall 

variability and enables the statistical evaluation of the predictive performance of linear trends 

from multiple time windows.  

 

Figure 1. Map of the 60 stations with longest records used in the analysis. 

3. Methodological framework 

3.1 Overview of literature approaches to trend modelling: From explanatory trends 

to out-of-sample performance  

It is well-known that studying the explanatory power of trends in hydroclimatic data is a very 

active research field; see the literature analysis included in the Appendix I for the rising use of 

relevant in-text words as well as in-title words from Google Scholar. Before discussing 
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literature modelling strategies for trends, it is imperative to define the meaning of a trend per 

se. Although ‘trends’ are frequently used as a synonym of temporal ‘changes’ (Fig. A3 provides 

a quantitative analysis on the use of both words) and their notion has sometimes been extended 

to encompass stochastic stationary models (Fatichi et al., 2009; Chandler and Scott, 2011), the 

general idea behind the trend concept, is that the expected value of a response variable 𝑦 is 

specified as a deterministic function of time t, E [𝑦] = 𝑓(𝑡). The function f may take different 

forms —the linear model being only the first one adopted, and the most widely used. Indeed, 

this definition of a trend can be traced back to the development of the field of econometrics in 

the early 20th century, when ‘secular’ trends, meaning long-term trends, were deemed to be a 

component of financial timeseries, along with seasonal variation, cycles and residual elements 

(Persons, 1922; Mitchell, 1930). Decomposition of a timeseries into components, one of them 

being a trend, continued to dominate the econometrics literature, although even at early times 

certain critiques were raised (Slutsky, 1927). 

The most established technique to evaluate fitted trends is statistical hypothesis testing, 

i.e. a statistical inference technique that estimates the probability of an outcome as far from 

what is expected as the observed under the assumption that the null hypothesis is true (Gauch 

Jr et al., 2003). The latter is known as the p-value and is compared to predefined significance 

levels, in order to reject or not the null hypothesis. This is a scientific method for model 

evaluation, which has been in part misused. For instance, its misuse in hydrology has been 

showcased by seminal studies (e.g. Cohn and Lins, 2005; Koutsoyiannis and Montanari, 2007; 

Serinaldi et al., 2018) which have established the fact that for hydrological, non i.i.d. data the 

null hypothesis, which tacitly contains independence, is a priori wrong, and its rejection, if 

correctly interpreted, should point out to the wrong independence assumption. Still, the 

common practice has been to misinterpret outcomes in favour of trends. Part of the statistician 

community argues against the concept of significance testing (Nuzzo, 2014; Wasserstein and 

Lazar, 2016; Amrhein and Greenland, 2018; Trafimow et al., 2018; Wasserstein et al., 2019), 

with the main critique summarized in the statement of the American Statistical Association that 

“the widespread use of 'statistical significance' (generally interpreted as 'p ≤ 0.05') as a license 

for making a claim of a scientific finding (or implied truth) leads to considerable distortion of 

the scientific process” (Wasserstein and Lazar, 2016). Other inference techniques for assessing 

the plausibility of changes under an a priori assumed model are also used, most notably change 

point analysis (Hinkley, 1970), which attempts to identify points of abrupt changes in the data. 
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This approach too, is very sensitive on a priori hypotheses about the expected degree of 

variability in the data (a brief discussion on the issue in provided in Chandler and Scott, 2011). 

With a stronger focus on modelling power rather than confirmatory analysis, model 

selection criteria have been developed arising from Akaike’s work (Akaike, 1969). Akaike has 

contributed to the introduction of information theory into model selection criteria (Akaike, 

1974) which are now established worldwide in model inference (Anderson and Burnham, 2004) 

and are increasingly adopted in hydrology as well (e.g. Ye et al., 2008; Laio et al., 2009; 

Iliopoulou et al., 2018a). Information criteria are useful in that they try to achieve a better out-

of-sample performance by prompting for parsimony when fitting the model to the calibration 

set. There is a vast literature on the asymptotic equivalence of information criteria and out-of-

sample prediction measures under specific conditions (Stone, 1977; Shibata, 1980; Wei, 1992; 

Inoue and Kilian, 2006), which typically though imply large record lengths.  

A discourse regarding the relative powers of the abovementioned ‘in-sample’ measures 

compared to the assessment of predictive or out-of-sample performance is active in numerous 

scientific fields (Breiman, 2001; Stein, 2002; Inoue and Kilian, 2006; Yarkoni and Westfall, 

2017; Shmueli, 2010), while in fact, it has been argued that the distinction between the two 

approaches might only arise due to the different objectives of each study (Gauch, 2003; Inoue 

and Kilian, 2005). Obviously, predictive modelling dominates in operational fields concerned 

with short-term prediction, as numerical weather prediction (Lorenc, 1986), and in such 

domains, it is widely acknowledged that the model yielding the best predictions, in non-

stochastic terms, is not necessarily the ‘true’ one (Shmueli, 2010).  

The premise of this work is that while explanatory performance of trends has been 

thoroughly explored in hydrological studies (e.g. Chandler and Scott (2011) provide a 

comprehensive review on the matter), much less attention has been given to the predictive 

performance of trend modelling. A simple explanation might lie in the fact that in many 

environmental studies trends have been employed as descriptors of changes or causal effects, 

and less as models for predictions, in spite of the fact that they strongly communicate 

expectations for the future by suggesting causal mechanisms (e.g. Fig. A2 on the combined use 

of the word ‘trends’ and ‘projections’). The second reason could be related to the scarcity of 

long-term environmental data for out-of-sample validation. Therefore, our aim is to assess the 

relevance of long-term trend modelling in terms of point prediction, not examining elements of 

stochastic prediction and categorically, not engaging in the identification of a ‘true’ model for 

the data. We deem that this shift in point-of-view may provide contrasting insights to current 

literature with respect to the relevance of trends for operational applications.  
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3.2 Out-of-sample validation schemes  

Cross-validation techniques are a systematic way to assess predictive power (Stone, 1974; 

Simonoff, 2012). The procedure typically entails multiple runs of validation schemes on 

random partitions of the original dataset and summarizes the model skill from the sample of all 

validation scores. Standard cross-validation is not straightforward to apply for timeseries data 

where the order of the data must be respected. Instead the use of a ‘holdout’ set for validation 

is frequently applied, e.g. in hydrology this is done by reserving some data for validation, while 

the rest are used for calibration (Klemeš, 1986). We consider an alternative approach respecting 

the data order, by performing calibration and validation in moving-window partitions of the 

original dataset, that constantly shift forward in time till the end of the record is reached. This 

approach is known as ‘walk-forward’ analysis in the field of econometrics (Kirkpatrick II and 

Dahlquist, 2010), and it is advantageous in that instead of a single measure of out-of-sample 

performance obtained by the ‘split-sample’ approach, a sample of values is obtained, which can 

be statistically analysed. Further, it compensates for hindsight bias providing realistic estimates 

of historical predictability of changes by a given model. The statistics of a model’s past 

performance can be considered a proxy of its future performance.  

3.2.1 Static calibration and validation 

We apply this type of analysis to the rainfall records by formulating two distinct calibration-

validation schemes, which are illustrated in Fig. 2. In the first scheme (Fig.2a), we evaluate the 

models’ performance in capturing the variability of the recent 30-year period of each station 

based on calibration on the prior 30-year period. By this ‘static validation’ scheme we intend to 

evaluate whether extremes have changed in a consistent manner in the second half of the 20th 

century, as they are commonly assumed. We also examine the performance of the models in 

backward validation, i.e. in predicting observations occurring before the calibration period (Fig. 

2a). In order to maximize the exploitation of the length of each record, we apply this evaluation 

to the most recent period of each station, even if the final dates of all records do not coincide. 

We favour separate treatment of each station, since in this case our focus is placed on the 

operational exploitation of records for predictive purposes and less on a summary of the results 

for a specific time period. However, the majority of the records span the whole 20th century, 

and extend beyond, with a few exceptions that are mentioned in Table A1. In a second 

examination, we directly evaluate changes in the predictive performance of each model 

throughout the past 110 years up to 2009. Specifically, we compare the prediction errors of each 

model for the following climatic periods: 1900‒1929 (calibration period 1870‒1899), 1930‒
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1959 (calibration period 1900‒1929), 1960‒1989 (calibration period 1930‒1959), and 1980‒

2009 (calibration period 1950‒1979). The end year (2009) of the last period (overlapping with 

the previous one by 10 years) is selected in order to maximize the number of stations having 

predictions for all four periods. This results to 52 stations for the AM and 51 for the AT, WDAV 

and PD indices.  

3.2.2 Dynamic calibration and validation  

The second scheme (Fig.2b) focuses on the historical performance of the models by the 

‘dynamic’ (else, ‘walk-forward’) validation scheme introduced before. It assumes a 

hypothetical observer moving in time and making predictions for the future 30-year period 

updating the models as access to new information progressively becomes available. We 

formulate two different schemes for making these predictions. In the first, which we call block-

moving calibration and validation, the models are calibrated on 30-year periods and validated 

by the next ‘unobserved’ 30 years, and this procedure is repeated by rolling the calibration and 

validation origin in time (Fig.2bi). New information is gradually taking the place of the past 

information, which is discarded by the 30-year sliding windows. The start of the first moving-

window coincides with the start of each station, while the start of the last calibration moving-

window is 59 years prior to the end of the station, so that 30 years of validation data remain 

available. This last validation window is the recent 30-year window that is exploited for 

validation in the static scheme (Fig. 2a). The second scheme of the dynamic calibration-

validation, which we call global-moving, validates the models using sliding 30-year periods, 

exactly as in the prior scheme, but calibrates the models on the whole available record, that is 

known at each time step to the observer. Therefore, the origin of the calibration window remains 

stable, but the window gradually extends in length as more data are assimilated into the model, 

while no data are discarded (Fig.2bii). This scheme explores the potential of employing all 

available information to make a prediction for the future. Since the validation periods are the 

same in both schemes, results between the two can be directly compared.  
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Figure 2. Explanatory sketch showing the two calibration and validation schemes (a. Static 

and b. Dynamic) for an example station. 

For the evaluation of the candidate models we estimate the Root Mean Square Error, a standard 

and established metric of goodness of fit (Sharma et al., 2019). The RMSE is defined as the 

square root of the mean square error of the predicted values �̂�𝑖 with respect to the observed xi:  

RMSE = √
∑ (�̂�𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
 (1) 

where n is the length of the data. We present the sample RMSE distribution of the models for 

each station and we summarize the results by computing the average RMSE for each station 

and its standard deviation. For the longest uninterrupted record of the station, we present a 

comprehensive analysis including the temporal evolution of the errors. 

3.3 Predictive models  

Let xi be a stochastic process in discrete time i, i.e. a collection of random variables xi, and 

x:= (x1, …, xn) a single realization (observation) of the latter, i.e. a timeseries. We assume that 

in time i ≤ n the hypothetical observer makes a forecast based on a subset of the historical 

information. Namely from the entire available information that we have (the observed series 

(x1, …, xn)) we assume that the hypothetical observer knows only the subseries x = (x1, …, xi).  
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To predict the unobserved periods, past or future, we employ two model structures. The 

first is the typical linear trend model, encompassing two parameters, a slope 𝑏 and an intercept 

𝑎, whose mean 𝜇 is a deterministic linear function of time t: 

𝜇(𝑡) = 𝑎 + 𝑏𝑡 (2) 

The trend model is fitted via least-squares regression. Robust regression techniques are also 

explored, namely median quantile regression (Koenker and Hallock, 2001) and the Theil-Sen 

slope estimation (Sen, 1968; Theil, 1992), but they did not yield better predictions, and hence, 

the least-squares approach, which is also more rigorous in theoretical terms (e.g. Papoulis, 

1990), was retained. For details on the application and discussion of the results, the reader is 

referred to the analysis presented in Appendix III.  

The second model considered is the mean model, including only one parameter, the mean 

of the calibration period, extrapolated to the unobserved periods: 

𝜇(𝑡) = 𝑎 (3) 

According to the followed calibration scheme, fitted to block-moving (local) 30 years or to all 

the known (global) period, the trend model is termed local trend (L-Trend) and global trend (G-

Trend), respectively, and likewise, the mean model, is termed local mean (L-Mean) and global 

mean (G-Mean). In the local models, the period [𝑖 −  59, 𝑖 −  30] is used for calibration and 

the [𝑖 −  29, 𝑖] for validation, while in the global models, the period [1, 𝑖 − 30] is used for 

calibration and the [𝑖 −  29, 𝑖] period for validation as in the former scheme. We note that these 

two seemingly simplistic predictive models, i.e. the linear model fitted with least-squares and 

the local average, can be found in a variety of theoretical results in statistical sciences, for 

instance use of (temporally) local data constitutes a central concept in the k-nearest neighbours 

technique, as discussed in Hastie et al. (2005), as well as in local regression as discussed in 

Chandler and Scott (2011). 

3.4 Selected indices of rainfall extremes and quality control 

We examine four statistical indices of rainfall: annual maxima (AM), annual totals (AT), annual 

wet-day average rainfall (WDAV) and probability dry (PD) also computed at the annual scale. 

As wet, we consider any day with rainfall surpassing the threshold of 1 mm, while values below 

this threshold are counted as dry days taken into account for the PD estimation. We employ the 

following criteria for missing values. For the annual maxima we use a methodology proposed 

by Papalexiou and Koutsoyiannis (2013), according to which an annual maximum in a year 
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with missing values is not accepted if (a) it belongs to the lowest 40% of the annual maxima 

values and (b) 30% or more of the observations for that year are missing. For the rest of the 

indices, we do not compute the yearly index in years with more than 15% of missing values. In 

general, most records have low percentages of missing values (Table A1), which in most cases 

are clustered in the beginning of the records. A few records have consecutive missing periods 

which might imply a change of instrumentation or relocation of the gauge. To avoid possible 

artefacts in trend estimation in static validation (in backward validation) that may arise from 

such cases, we analyse periods containing less than 5% of consecutive missing values of the 

yearly indices. For the dynamic calibration and validation scheme, we fit the models only if 

there exist at least 27 valid indices in each of the 30-year periods of calibration and validation. 

3.5 Predictability of climatic changes under natural variability 

In order to understand the predictive performance of the considered models under typical 

conditions of natural variability, we run similar experiments with synthetic timeseries 

reproducing increasing degrees of persistence. We recall that persistence, also known as Hurst-

Kolmogorov dynamics, is associated with enhanced natural variability at all scales 

(Koutsoyiannis, 2003), which in turn implies increased unpredictability at large time horizons, 

with some potential for predictability at short time steps due to the presence of temporal 

clustering (Dimitriadis et al., 2016). This provides a scientifically relevant comparison to the 

empirical data as rainfall series are known to exhibit mild to moderate degree of persistence 

(e.g. Iliopoulou et al., 2018b; Iliopoulou and Koutsoyiannis, 2019). Moreover, segments of 

persistent series resemble trends and can easily be misinterpreted as such (Cohn and Lins, 

2005).  

Therefore, we examine both the comparative predictive performance of the four models 

for persistent processes, where long-term changes are the rule (Serinaldi and Kilsby, 2018), and 

the effect of available record length on the quality of the model predictions. The latter becomes 

relevant in the global-moving scheme, in which the calibration period varies in length.  

4. Results 

4.1 Models’ performance in static validation 

Results from the performance of the local mean and local trend models on the last 30 years of 

each station, as well as on the years preceding the 30-year calibration, are shown in Figure 3 

for all studied indices.  
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Figure 3. Boxplots of the RMSE distribution from the static validation application to all 

stations, for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall 

indices. The band inside the box reports the median of the distribution, the lower and upper 

ends of the box represent the 1st and 3rd quartiles, respectively, and the whiskers extend to 

the most extreme value within 1.5 IQR (interquartile range) from the box ends; outliers are 

plotted as points.  

The local mean model performs on average better than the local trend model for all indices 

in capturing their most recent changes of extremes, while the performance of the local trend 

deteriorates considerably with respect to hindcasting the past. Interestingly, the larger 

discrepancies of the trends —both in future and past validation periods, are encountered in the 

annual maxima, followed by probability dry. In most of the opposite cases, of trends showing 

a better performance, the fitted slope is very mild, thus hardly differing from the local mean. A 

visual examination of the plots of the 60 long-term stations, provided in the Appendix figures 
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(A4-A7), suggests a positive answer to the opening question, providing empirical evidence that 

climatic trends fluctuate and in fact, abruptly reverse. 

 

Figure 4. Boxplots of the RMSE distribution from the static validation application to the 

stations with data in all four prediction periods, 1900-1929, 1930-1959, 1960-1989, 1980-

2009, for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall indices. 

For the boxplots’ properties description see Figure 3. 

In order to gain further insights into temporal changes of predictability, we compare the 

predictive performance of each model (L-Mean, L-Trend) for four distinct climatic periods, 

covering the past 110 years up to year 2009. It is observed (Fig. 4) that the error distribution of 

the L-Trend model does not present pronounced temporal differences for the indices among 
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these periods, with the exception of PD which shows a larger, yet not consistent, variability 

over these periods. Among the four periods, the L-Trend model performed best in the prediction 

of the 1960–1989 period, based on calibration on 1930–1959, a period which however does not 

include the decades of pronounced increase in greenhouse emissions (from the 60s and 

thereafter). The predictive performance of trends on the latest period is not markedly different 

from the previous periods, if not it is slightly worse for some indices, e.g. the AT. A particular 

pattern is neither observed for the L-Mean. As it will be discussed next, these results seem to 

be well-within the range of the statistical variability of the predictive skill of each model, 

evaluated from the whole record. Finally, in this examination as well, the L-Mean model proves 

superior to the L-Trend (only one or two exceptions are seen). 

4.2 Moving-window validation of predictive performance  

In this section, we explore the predictive qualities of the models by delving into the statistical 

analysis of the whole record, considering the models from the global-moving calibration as 

well, namely, the global trend and the global mean.  

4.2.1 An examination of one of the longest records 

As an illustration of the application of the methodology, we first explore the longest 

uninterrupted station of our dataset, i.e. the Prague station in Czech Republic (211 years), shown 

in Figure 5. The models’ error evolution pattern is reflective of their performance. For the 

majority of time, the mean models are at the lower front of the errors, with the local mean model 

showing slightly superior performance. The local trend model results in higher errors and its 

predictions may quickly deteriorate, taking longer to converge to the mean models’ predictions 

in areas of lower errors (Fig. 5). This is attributed to the fact that the trend model projects to the 

future sensitive features of the calibration period, i.e. extreme observations or ‘trendy’ 

behaviour, which do not have a high chance to survive the end of the calibration period. The 

more parsimonious structure of the mean model encapsulates minimal but robust knowledge of 

the process behaviour, which is more likely to characterize its future evolution as well. In the 

absence of an underlying global trend and as the sample grows larger, the global trend model 

converges to the predictions of the mean models, but its performance remains slightly inferior 

even towards the end of the record. 
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Figure 5. Case study of the rainfall station in Prague. Timeseries of annual maxima, annual 

totals, annual wet-day average and annual probability dry, error evolution and distribution of 

the prediction RMSE for the four prediction models, global and local trend, and global and 

local mean. 

4.2.2 Application to all records 

Figures 6-9 show the empirical distributions of the models’ prediction RMSE for each rainfall 

index and for all 60 stations. For most stations the local mean and global mean models have the 

lower probabilities of exceeding high errors, contrary to the local trend model whose error 

distribution is clearly shifted to the right, in the higher error area. The distribution of the 

prediction RMSE of the global trend model is located in between the two, showing in general 

a better behaviour than the local trend.  
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Figure 6. Empirical cumulative distribution function (ECDF) for the prediction RMSE of 

annual maxima for the local trend, the global trend, the global mean and the local mean model 

for the 60 stations.  
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Figure 7. Empirical cumulative distribution function (ECDF) for the prediction RMSE of 

annual totals for the local trend, the global trend, the global mean and the local mean model 

for the 60 stations.  
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Figure 8. Empirical cumulative distribution function (ECDF) for the prediction RMSE of 

wet-day average rainfall for the local trend, the global trend, the global mean and the local 

mean model for the 60 stations.  
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Figure 9. Empirical cumulative distribution function (ECDF) for the prediction RMSE of 

probability dry for the local trend, the global trend, the global mean and the local mean model 

for the 60 stations.  

A summary of the distributional properties of the prediction RMSE of all stations shown 

in Fig. 6-9, is provided in Fig. 10, in terms of the average and the standard deviation of the 

RMSE distribution of each station. The average values of the latter also summarized in Table 

1. Accordingly, the models’ performance can be ranked from best to worst as follows: (1) local 

mean, (2) global mean, (3) global trend and (4) local trend. The local mean model marginally 

outperforms the global mean with respect to the average RMSE, yet in terms of the standard 

deviation of the RMSE distribution (Fig. 10b, d, f, h), it is evident that the local mean model 

prevails showing smaller standard deviation of prediction errors, and thus more reliable 

performance. In this case, the linear trend model shows markedly inferior performance.  
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Figure 10. Boxplots of the average RMSE and standard deviation of RMSE as estimated for 

each station from moving window application of the local (L-) mean, global (G-) mean and 

local (L-) and global (G-) trend for all the indices. For the boxplots’ properties description see 

Figure 3. 
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Table 1 Averages of the average RMSE and the standard deviation of RMSE of the four 

models (local (L-) mean, global (G-) mean, local (L-) trend and global (G-) trend) from all 

stations and for all four indices, as shown in Figure 10.  

  Annual Maxima (mm)   Annual Totals (mm)  

 L-mean G-mean G-trend L-trend L-mean G-mean G-trend L-trend 

Average 

RMSE 

16.00 16.05 16.73 18.76 149.07 154.18 154.77 174.7 

St. Dev. 

RMSE 

3.04 3.13 3.37 4.74 21.52 23.02 27.4 45.45 

Wet-Day Average (mm/d)  Probability Dry (-)   

 L-mean G-mean G-trend L-trend L-mean G-mean G-trend L-trend 

Average 

RMSE 

0.98 1.01 1.11 1.2 0.04 0.05 0.05 0.05 

St. Dev. 

RMSE 

0.18 0.18 0.27 0.39 0.01 0.01 0.01 0.02 

 

4.3 Models’ performance under natural variability  

4.3.1 An experiment with synthetic series 

Following the rationale outlined in Section 3.5, the goal of this experiment is to test the 

performance of the predictive models in conditions of enhanced structured uncertainty, 

characterized by changes at all scales and ‘trend-like’ behaviour for small periods. As the latter 

are distinctive features of persistent processes (Koutsoyiannis, 2002), we produce five long-

term timeseries from a standard normal distribution with length N = 10 000 that reproduce HK 

dynamics, using the SMA algorithm (Koutsoyiannis, 2000; Dimitriadis and Koutsoyiannis, 

2018). The series are generated with increasing degree of persistence, quantified through the 

Hurst parameter H, from mild persistence H = 0.6 to very strong H = 0.99. In order to explore 

the impact of record length we also examine smaller segments of the same timeseries of lengths 

N = 100 and N = 1000. Because smaller segments are impacted by larger estimation uncertainty, 

we plot the average ECDF of the prediction RMSE estimated from non-overlapping segments 

extracted from the original timeseries of length N = 10 000. Therefore, the N = 100 plots 

correspond to the average of 100 timeseries of length 100, derived from the 10 000 series. 

Likewise, the N = 1000 series are the average of 10 timeseries of length 1000. The plots of the 
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ECDF distribution (Fig.11) of the prediction RMSE for the four predictive models are produced 

employing the same dynamic validation schemes applied for the real-world stations.  

The contrasting performance of the two local models is observed here as well; local 

features are better exploited by the mean rather than the trend model, irrespective of the record 

size. The latter becomes important when the global models are considered. In the absence of a 

global underlying trend, the increased variability encountered in small calibration periods (N = 

100) leads the global trend model to bad predictions. When the trend model is calibrated from 

larger series, the trend component is smoothed out, and therefore, the prediction performance 

approaches the one from the mean models. Regarding the competition between global and local 

mean, it appears that it is a function of both the record length and degree of persistence. For 

large record lengths and H > 0.7, the local mean model prevails, while for small record lengths 

and medium persistence, the two are comparable. In persistent process, where clustering arises, 

local information is likely to be more relevant for prediction, yet for long-term prediction as is 

the case here, ‘local’ may need to extend a few steps back in the past, which for small record 

lengths could be within the reach of the calibration period employed for the global mean model. 

Obviously though, results from the global model become less relevant when the sample is large 

and therefore global information extends too far in the past. A thorough treatment of the 

theoretical basis and practical formulation of local mean models in relation to the persistence 

properties of the parent process is given by Koutsoyiannis (2020).  

We note that the behavior observed in the N = 100 plots is qualitatively consistent with 

the one observed from the rainfall records. Moreover, indices known for their persistence 

properties, such as annual totals (Iliopoulou et al., 2018b; Tyralis et al., 2018) and probability 

dry (Koutsoyiannis, 2006) show a slight preference for the local mean model, while others 

where persistence is less manifested, as annual maxima (Iliopoulou and Koutsoyiannis, 2019) 

the performance of the global and the local mean model in terms of the average RMSE are 

indistinguishable (Fig. 10); the variance of the errors still being smaller for the latter. 
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Figure 11. Empirical cumulative distribution function (ECDF) for the prediction RMSE of 

the HK timeseries resulting from application of the local trend, the global trend, the global 

mean and the local mean model, for segments of the original timeseries with increasing 

sample size, N = 100, 1000, 10 000 (original). The ECDF for the first two lengths are the 

averages as computed from 100 and 10 non-overlapping segments of the 10 000 values.  

4.3.2 A discussion on parsimony and predictive accuracy 

In the above controlled experiment, where the generating mechanism of the data is known, it 

is evident that among the four ‘false’ models, the local mean yields the most accurate 

predictions in terms of RMSE, using in-sample data more efficiently by means of its single 
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parameter. The increase in predictive accuracy and statistical efficiency is tightly associated 

with the notion of parsimony, which is a dual criterion measuring the model’s fit to the data as 

well its simplicity (Gauch, 2003). In these terms, the local mean model is deemed to be a 

parsimonious model, since it fits the out-of-sample data either better or at least equally well to 

the more complicated trend model.  

The reason behind the sometimes interchangeable use of the words parsimony and 

simplicity is a certain tendency of simple models to make reliable predictions, which among 

other approaches as information criteria discussed in Section 3.1, is also incorporated as a 

concept in Bayesian analysis assigning higher prior probabilities to simpler models, and a 

posteriori favouring the simpler model (Berger and Bernardo, 1992; Berger and Pericchi, 

1996; Gauch, 2003 and references therein). More recent developments from the Bayesian 

standpoint include constructing penalized complexity priors (Simpson et al., 2017), while the 

concept informs variable selection in linear regression though various techniques as the Lasso 

and ridge regression (Tibshirani, 1996). Another demonstration of the relation between 

predictive accuracy and simplicity is the possibly better predictive performance in terms of 

mean square error of simpler, yet misspecified models, compared to the ones derived from the 

correctly structured model (Hocking, 1976); for instance, Wu et al. (2007) provided a set of 

conditions for which this holds true in the case of linear models. Therefore, theoretical 

arguments are in favour of simpler predictive models, all the more so in the case of natural 

processes characterized by a great degree of variability, for which our understanding is 

limited. A comprehensive discussion on the connection of simplicity to wider epistemological 

and philosophical principles is provided in Gauch (2003). 

4.3.3 On alternative climatic predictors of rainfall 

It is beyond the scope of the paper to formulate and suggest a good climatic prediction method 

for rainfall. Having shown however that past climatic trends of rainfall are not useful predictors 

of its future evolution, it is tempting to reflect on a common alternative option for long-term 

prediction, namely the use of large-scale climatic oscillations. The latter are considered a 

potential source of decadal climatic predictability (Latif et al., 2006). The predictive skill arising 

from the use of a climatic oscillation as a covariate for prediction relies upon two factors; 

existence of significant correlation of rainfall with large-scale climatic oscillations, and reliable 

predictability of the latter. On the over-decadal climatic scale examined here fulfilment of both 

conditions is challenging. There is an increasing number of studies relating climatic oscillations 

to decadal rainfall, but both the type of the correlated oscillation and the specification of the 

correlation (type, lagged response), are region-specific (e.g. Krichak et al., 2002; Scaife et al., 
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2008; Lee and Ouarda, 2010; Sun et al., 2015; Krishnamurthy and Krishnamurthy, 2016; Nalley 

et al., 2019). Therefore, with respect to multi-sites analyses, the identification of robust response 

patterns of decadal rainfall to climatic oscillations constitutes a nontrivial research subject. 

Even more challenging is the predictability of the climatic oscillations themselves on the 30-

year scale. For instance, it is only during the last 5 years, that prediction of the North Atlantic 

Oscillation (NAO) has become skilful on the seasonal scale, and at the moment research efforts 

are directed towards predictability on beyond annual scales (Scaife et al., 2014; Smith et al., 

2016). While some progress has been reported in terms of the decadal predictability of climatic 

oscillations related to the NAO, as the Atlantic Multi-decadal Oscillation (AMO), predictability 

of the actual values of the NAO beyond the seasonal scale remains very limited (Smith et al., 

2016; Yeager and Robson, 2017). A relevant case study by Lee and Quarda (2010) concluded 

that predictions of decadal streamflow extremes using the NAO as a covariate were impacted 

by large uncertainty to the point of almost being non-informative. Although a promising 

research subject, it appears that in the best case, there is still way to go before attaining 

hydrologically relevant climatic predictions based on climatic oscillations, at least to the degree 

that this is becoming possible at the seasonal scale for some regions (e.g.  Scaife et al., 2014). 

Yet the case that this proves to be infeasible cannot be excluded (Koutsoyiannis, 2010). 

4.3.4 Can a stationary framework be compatible with a deterministic forcing? 

A question that often arises is the relevance of past predictability under the hypothesis of a 

climate impacted by monotonic anthropogenic forcing, not existing in the past. In this case, it 

could be argued that the examination of the predictive performance in the past in which 

stationarity is implicitly assumed, is an irrelevant approach as the past might no longer 

representative be of the future. As a first remark, it is worth recalling that change is not 

synonymous to non-stationarity, while in the presence of uncertainty in every real-world 

system, the choice of a stationary versus a non-stationary model is done in terms of modelling 

convenience rather than based on the existence (or co-existence) of deterministic drivers 

(Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015b). De Luca et al. 

(2019) yet shed further light on this misconception by the following experiment. They show 

that artificially imposed trends —of the projected magnitude of climate scenarios, on the 

parameters of a sub-hourly rainfall generator regarding bursts intensity, duration, and number 

of occurrences, were masked on coarser temporal scales and as a result, they could be 

adequately modelled by a stationary extreme value model. This suggests that the presence of 

deterministic drivers in a system does not disfavour stationary modelling. For there is the 

possibility that even systematic changes may not be manifested at the scales of interest to the 
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degree that they warrant a more complicated representation for the future. Hence, the 

examination of a stationary framework is justified also in the presence of monotonic and 

accelerating forcing, as it aligns with the abovementioned principle of parsimonious modelling. 

Therefore, the question shifts from the existence or not of deterministic drivers, to evaluation 

of the degree to which observed changes require a more complicated modelling. In our case, it 

is assumed that the past is still representative enough for the future in order to achieve a similar 

degree of predictability by the given models, which is not falsified by the examination of the 

recent period. The entire question however relies on a simplistic view of complex systems, i.e. 

that just one factor (or the change thereof) suffices to determine the system’s future evolution. 

In our view, this is not a logically consistent framework for dealing with complex systems. 

5. Summary and conclusions 

Under the popular assumption of intensification of the water cycle due to global warming, a 

considerable deal of contemporary research in hydrology revolves around the study of temporal 

changes of extremes, with the application of trend analyses being on the rise during the past 

two decades (as illustrated in Appendix I). While the explanatory analysis of trends has 

dominated the relevant studies, assessment of the predictive skill of trend models has not been 

equally assessed, despite the apparent significance of such a task for risk planning. This research 

reframes the problem of trend evaluation, as a model selection problem oriented towards 

identifying the model with the best predictive qualities in deterministic terms, which is neither 

equivalent to the ‘true’ model nor to the model better at explaining the in-sample data.  

For this purpose, we introduce a systematic framework for evaluating projections of 

trends by means of comparing the prediction RMSE to the one obtained from simpler mean 

models. We perform a variation of cross-validation, also known as walk-forward analysis, 

devising two distinct calibration and validation schemes (Fig. 2). In block-moving calibration 

we fit the linear trend and mean models to 30 years of data (local trend and local mean) and we 

validate the results based on the outcome of their predictions for the next 30 years, repeating 

the procedure using sliding windows, till the end of the record is met. In global-moving 

calibration, we fit the models to all the known period (global trend and global mean), assuming 

that in the beginning, one knows only the first 30 years, and progressively the calibration period 

grows larger. In this case too, we evaluate the outcome of the predictions of the models for the 

next 30 years, therefore the projections of the four models can be compared in terms of the 

statistics of their empirical distribution of errors. 
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The models compete in predicting the out-of-sample behaviour of four rainfall indices: 

annual maxima, annual totals, annual wet-day average rainfall and probability dry at the annual 

scale, as estimated from a unique dataset comprising the 60 longest rainfall records surpassing 

150 years of daily data. Results show that models rank from best to worst as follows: local 

mean, global mean, global trend and local trend. A separate examination of the latest 30-year 

period for each station confirmed the above rank of the models as well. The temporal changes 

in the prediction error distribution among four fixed climatic periods, common for all stations 

covering 110 years up to 2009, are also investigated. Fluctuations of predictability do occur 

among the climatic periods, yet no increase in predictability is achieved by the local trend model 

for the latest period (1980–2009), compared to earlier periods. Results from both analyses show 

that future rainfall variability is on average better predicted by mean models, since local trend 

models identify features of the process that are unlikely to survive the end of the calibration 

period, either being extreme observations, or ‘trend-like’ behaviour. These features are 

smoothed out in longer segments, which is the reason behind the better performance of global 

trends. Robust regression techniques were also employed for the calibration of local trends but 

perhaps not surprisingly, did not improve the out-of-sample predictions (see discussion in 

Appendix III).  

In an attempt to reproduce the observed behaviour, we generate long-term timeseries 

exhibiting long-term persistence or HK dynamics (Koutsoyiannis, 2011; O’Connell et al., 2016; 

Dimitriadis, 2017), and carry out the same analysis. Persistent processes show enhanced 

variability and a user unfamiliar with their properties may misinterpret segments of their 

timeseries as trends, which perhaps explains why trend claims have been that common lately. 

Results from the synthetic records show qualitative similarities with the ones from empirical 

rainfall records, known to exhibit persistence, depending on the scale and studied index 

(Koutsoyiannis, 2006; Markonis and Koutsoyiannis, 2016; Iliopoulou et al., 2018b; Iliopoulou 

and Koutsoyiannis, 2019). The local and global mean outperform the local trend model for all 

degrees of persistence and sample sizes, while for small record lengths (N = 100) the 

performance of the global trend model is notably inferior too. Local and global mean models 

hardly show differences for medium degrees of persistence, but the local mean prevails for 

strong persistence. 

From a systematic investigation of long-term rainfall records, corroborated by simulation 

results, we have verified that local trends have poor out-of-sample performance, being 

outperformed in their predictions by simpler models, as the local mean. This empirical finding 

suggests that the large inherent variability present in the rainfall process makes the practice of 
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extrapolating local features in the long-term future dubious, especially when the complexity of 

the latter increases. This in turn questions the theoretical and practical relevance of projections 

of rainfall trends and the grounds of the related abundant publications. 
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Appendix 

I. A brief quantitative literature review 

The aim of this literature review is to evaluate the academic interest in trends of rainfall 

variables by means of a quantitative analysis of research papers appearing in Google Scholar. 

We base this analysis on the quantification of the occurrence of associated words in Google 

Scholar using Python code developed by Strobel (2018), omitting results related to citations 

and patents. This analysis was performed on 21/10/2019 and in order to refer to full calendar 

years it contains results published till the end of 2018. 

 

Figure A1. Temporal evolution along with three-year moving average of the ratio of the 

occurrence of the word ‘trends’ in Scholar items containing the words ‘precipitation’, 

‘hydrology’ and ‘extremes’. 

  In Fig. A1, we show the temporal evolution of the ratio of appearance of the word 

‘trends’ in items also containing the complete list of words [‘precipitation’, ‘hydrology’, 

‘extremes’]. Results have been randomly varying from the beginning till the mid 20th century, 

when there were less than 100 results per year fulfilling the criteria of containing the list in the 

denominator of the ratio. It can be seen though that approximately from the 1960 and later on 

there has been an increasing trend in relevant publications containing the word ‘trends,’ 

reaching 89% in 2018. Obviously, results belonging to a different context than the one 

assumed might have been calculated as well but we assume their effect to be analogous both 

in the nominator and the denominator of the ratio, thus not significantly affecting the 

conclusion. 

To further refine our search to more technical papers explicitly referring to rainfall trends 

we define the following search terms. Word combination A is the full list [‘precipitation|rainfall 
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trends’, ‘precipitation|rainfall data|records’], where the symbol | refers to ‘or’, and word 

combinations inside ‘’ should be found together, i.e. one possible combination is the list 

[‘precipitation trends’, ‘rainfall data’]. Word combination B is an extension of word 

combination A that also includes the word ‘projections’, while word combination C is an 

extension of word combination A also including the word sequence ‘linear 

trend|trends|model|regression’. The absolute numbers of the results are shown in Fig. A2a, 

while in Fig.A2b we show their relative ratio. Expectedly, the total number of studies containing 

rainfall trends are rising, however this is not surprising in terms of absolute numbers, 

considering the increasing availability of papers in Scholar over the years. However, the use of 

the word ‘projections’ appears to be increasing in relative terms as well. The relative use of 

word combination C, related to the linear trend, has slightly increased too over the years, 

stabilizing over the past 5-year period to approximately half of the related publications 

(Fig.A2b). 

 

Figure A2. (a) Temporal evolution of the occurrence of the word combinations A, B and C 

and their relative ratio (b). 

As a final refinement, we consider words appearing only in the title of papers, which 

should limit the results to strictly related papers. Results are shown in Fig. A3. The standard 

term that is contained in every result is ‘rainfall|precipitation’ followed by the appearance, 

anywhere in the title, of the single terms, trends|trend, variability, change|changes, and non-

stationary|non-stationarity|nonstationary|nonstationarity. Note that we consider also plural 

terms where applicable, as well as possible differences in spelling, while this time, we do not 

require words to be found in a specific order as in the previous in-text search (for instance, it 

could be “trends in rainfall...” or “rainfall trends in the..”). We do not compute ratios over 

the items containing in their title the words ‘rainfall|precipitation’ because these terms alone 

are too generic, and can be found in a variety of studies, a significant part of which are only 

loosely related to hydrology (e.g. physics, chemistry, radar technologies etc.). Instead, to 
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provide a more relevant reference point for comparison, we use two words semantically 

‘uncharged’ with the trend concept, which are however widely used in combination with the 

standard terms, namely the words ‘model’ and ‘distribution’ (e.g. “a rainfall model…” or 

“the distribution of the … precipitation”).  

Apparently, the conceptually more inclusive terms ‘changes’ and ‘variability’ are 

ranking first in the related search terms, with the explicit use of the word ‘trend(s)’ ranking 

third, yielding consistently over the last ten years above 200 results per year (288 in 2018, as 

per results appearing on Google Scholar on 21/10/2019). Terms related to non-stationarity are 

slowly rising over the past ten years (39 in-title results in 2018), while being close to zero 

before 2000. It is interesting to note the evolution of the use of terms explicitly associated 

with the temporal properties of rainfall compared to the terms more related to marginal 

properties (‘distribution’), or being more of a general use, perhaps implying both properties 

(‘model’). The mere use of the word ‘trend(s)’ has exceeded the use of an all-times classic 

word for rainfall, i.e. distribution, which clearly shows a certain shift in academic interest. 

Likewise, the ever higher-scoring word ‘model’ has been outnumbered in the past three years 

by the word ‘change(s)’.  

 

Figure A3. Temporal evolution of the occurrence of the word combinations in titles of 

Scholar items. 
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In conjunction, these results suggest that over the last two decades, there has been a 

rising scientific interest in the temporal properties of rainfall and their future evolution, with 

‘trends’ taking up a considerable share of this emerging focus. 

II. Rainfall records properties and long-term variability 

Table A1 summarizes the properties of the long-term rainfall stations. In Fig A4-A7, we 

illustrate the static validation scheme showing results from the projections of the local trend 

and the local mean model for all rainfall indices. 

Table A1. Properties (name, source, latitude, longitude, start year, end year, record length and 

missing values percentage) of the 60 longest stations used in the analysis sorted by decreasing 

length. For the global datasets, the European Climate Assessment dataset (ECA; 

http://www.ecad.eu ) and the Global Historical Climatology Network Daily database 

(GHCND; https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-

daily-version-3), the station identifier is also reported. Asterisks (*) in the “end year” column 

denote data that have been continued from a second source. The country of each station is 

abbreviated in parentheses aside its name. 

Name Source Lat Lon Start 
year 

End 
year 

Record 
length 

Missing 
% 

PADOVA (IT) Marani and Zanetti (2015) 45.87 11.53 1725 2013 289 5.04 
CHUK-WOO-KEE, 
SEOUL (KR) 

Jhun and Moon (1997) and 
Korea Meteorological 
Agency 

37.53 127.0
2 

1777 2017
* 

241 0.00 

HOHENPEISSENBERG 
(DE) 

ECA: 48 
HOHENPEISSENBERG DE 

47.80 11.01 1781 2017 237 25.56 

PALERMO (IT) GHCND:ITE00105250 38.11 13.35 1797 2008 212 17.16 
PRAGUE (CZ) Czech Hydrometeorological 

Institute 
50.05 14.25 1804 2014 211 0.20 

BOLOGNA (IT) GHCND:ITE00100550 and 
Dext3r of ARPA Emilia 
Romagna, Rete di 
monitoraggio RIRER 
(http://www.smr.arpa.emr.
it/dext3r/) 

44.50 11.35 1813 2018
* 

206 0.00 

JENA STERNWARTE GM 
(DE) 

GHCND:GM000004204 50.93 11.58 1826 2015 190 5.47 

RADCLIFFE (UK) Radcliffe Meteorological 
Station (Burt and Howden, 
2011) 

51.76 -1.26 1827 2014 188 0.05 

UPPSALA (SE) Department of Earth 
Sciences of the Uppsala 
University 

59.86 17.63 1836 2014 179 0.02 

TORONTO (CA) GHCND:CA006158350 43.67 -
79.40 

1840 2015 176 5.97 

GENOA (IT) GHCND:ITE00100552 44.41 8.93 1833 2008 176 0.00 
ONNEN (NL) ECA :2491 ONNEN NL 53.15 6.67 1846 2018 173 1.10 
SAPPEMEER (NL) ECA:2507 SAPPEMEER NL 53.17 6.73 1846 2018 173 1.10 
WOLTERSUM (NL) ECA:2553 WOLTERSUM NL 53.27 6.72 1846 2018 173 1.14 
GRONINGEN (NL) ECA:147 GRONINGEN NL 53.18 6.60 1846 2018 173 1.10 
RODEN (NL) ECA:516 RODEN NL 53.15 6.43 1846 2018 173 1.10 

http://www.ecad.eu/
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
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Name Source Lat Lon Start 
year 

End 
year 

Record 
length 

Missing 
% 

 EELDE (NL) ECA:164 EELDE NL 53.12 6.58 1846 2018 173 1.10 
HELSINKI (FI) Finnish Meteorological 

Institute 
60.17 24.93 1845 2015 171 0.33 

MANTOVA (IT) GHCND:ITE00100553 45.16 10.80 1840 2008 169 5.75 
DEN_HELDER (NL) ECA:146 DEN_HELDER NL 52.93 4.75 1850 2018 169 1.13 
 DE_KOOY (NL) ECA:145 DE_KOOY NL 52.92 4.78 1850 2018 169 1.13 
ANNA_PAULOWNA 
(NL) 

ECA:521 
ANNA_PAULOWNA NL 

52.87 4.83 1850 2018 169 1.13 

CALLANTSOOG (NL) ECA:2382 CALLANTSOOG 
NL 

52.85 4.70 1850 2018 169 1.13 

RITTHEM (NL) ECA:2503 RITTHEM NL 51.47 3.62 1854 2018 165 1.16 
VLISSINGEN (NL) ECA:166 VLISSINGEN NL 51.44 3.60 1854 2018 165 1.16 
SCHOONDIJKE (NL) ECA:572 SCHOONDIJKE NL 51.35 3.55 1854 2018 165 1.16 
'S_HEERENHOEK (NL) ECA:2350 'S_HEERENHOEK 

NL 
51.47 3.77 1854 2018 165 1.16 

BRESKENS (NL) ECA:2377 BRESKENS NL 51.40 3.55 1854 2018 165 1.16 
MIDDELBURG (NL) ECA:2474 MIDDELBURG NL 51.48 3.60 1854 2018 165 1.16 
ARMAGH (UK) GHCND:UK000047811 54.35 -6.65 1838 2001 164 0.26 
OXFORD (UK) GHCND:UK000056225 51.77 -1.27 1853 2015 163 0.42 
HVAR (HR) ECA:1686 HVAR HR 43.17 16.45 1857 2018 162 7.74 
MELBOURNE 
REGIONAL OFFICE (AS) 

GHCND:ASN00086071 -
37.81 

144.9
7 

1855 2015 161 1.29 

STYKKISHOLMUR (IS) Icelandic Meteorological 
Office 

65.08 -
22.73 

1856 2015 160 1.00 

GRYCKSBO_D (SE) ECA:6456 GRYCKSBO_D SE 60.69 15.49 1860 2018 159 0.62 
FALUN (SE) GHCND:SW000010537  60.62 15.62 1860 2018 159 0.89 
VAEXJOE (SE) GHCND:SWE00100003 56.87 14.80 1860 2018 159 4.13 
FLORENCE (IT) Regional Hydrologic Service 

of the Tuscany Region 
43.80 11.20 1822 1979 158 2.00 

SYDNEY OBSERVATORY 
HILL (AS) 

GHCND:ASN00066062 -
33.86 

151.2
1 

1858 2015 158 0.48 

DENILIQUIN 
WILKINSON ST (AS) 

GHCND:ASN00074128  -
35.53 

144.9
5 

1858 2014 157 1.37 

ZAGREB GRIC (HR) GHCND:HR000142360  45.82 15.98 1860 2015 156 1.54 
ROBE COMPARISON 
(AS) 

GHCND:ASN00026026  -
37.16 

139.7
6 

1860 2015 156 3.66 

GABO ISLAND 
LIGHTHOUSE (AS) 

GHCND:ASN00084016  -
37.57 

149.9
2 

1864 2018 155 3.36 

NEWCASTLE NOBBYS 
SIGNAL STATIO (AS) 

GHCND:ASN00061055 -
32.92 

151.8
0 

1862 2015 154 2.55 

OVERVEEN (NL) ECA:2497 OVERVEEN NL 52.40 4.60 1866 2018 153 1.25 
HOOFDDORP (NL) ECA:151 HOOFDDORP NL 52.32 4.70 1866 2018 153 1.25 
ROELOFARENDSVEEN 
(NL) 

ECA:540 
ROELOFARENDSVEEN NL 

52.22 4.62 1866 2018 153 1.29 

SCHIPHOL (NL) ECA:593 SCHIPHOL NL 52.32 4.79 1866 2018 153 1.25 
AALSMEER (NL) ECA:2351 AALSMEER NL 52.27 4.77 1866 2018 153 1.25 
HEEMSTEDE (NL) ECA:2430 HEEMSTEDE NL 52.35 4.63 1866 2018 153 1.25 
LIJNDEN_(NH) (NL) ECA:2466 LIJNDEN_(NH) NL 52.35 4.75 1866 2018 153 1.25 
LISSE (NL) ECA:2467 LISSE NL 52.27 4.55 1866 2018 153 1.29 
NIJKERK (NL) ECA:2484 NIJKERK NL 52.23 5.47 1867 2018 152 0.75 
 VOORTHUIZEN (NL) ECA:2542 VOORTHUIZEN N 52.18 5.62 1867 2018 152 0.75 
PUTTEN_(GLD) (NL) ECA: 551 PUTTEN_(GLD) NL 5.62 14.00 1867 2018 152 0.75 
ATHENS (GR) National Observatory of 

Athens 
37.97 23.72 1863 2014 152 0.66 
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Name Source Lat Lon Start 
year 

End 
year 

Record 
length 

Missing 
% 

ELSPEET (NL) ECA:2404 ELSPEET NL 52.28 5.78 1867 2018 152 0.75 
LISBON (PT) Kutiel and Trigo (2014) 39.20 -9.25 1863 2013 151 1.06 
MILAN (IT) GHCND:ITE00100554 45.47 9.19 1858 2008 151 0.12 
NEW_YORK_CNTRL_PK
_TWR (US) 

GHCND: USW00094728  40.78 -
73.97 

1869 2018 150 0.51 

 

 

Figure A4. Local trend vs the local mean in projecting annual maxima for the 60 longest 

rainfall stations. 
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Figure A5. Local trend vs the local mean in projecting annual totals for the 60 longest rainfall 

stations. 
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Figure A6. Local trend vs the local mean in projecting wet-day average rainfall for the 60 

longest rainfall stations. 
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Figure A7. Local trend vs the local mean in projecting probability dry for the 60 longest 

rainfall stations. 

III. Fitting algorithms: Least-squares vs robust regression 

We explore the effect of the linear trend definition and fitting algorithm on the results of the 

local trends, as trends in small segments are expected to be more sensitive to the choice of the 

fitting algorithm (Santer et al., 2000). The first algorithm is the widely used ordinary least-

square estimation (OLS), which fits Eq. 2 to the data, by minimizing the sum of the squares of 

the differences between the observed data and the predictions of the linear model. Secondly, 

two alternative trend calibration approaches are explored that place less weight on influential 

observations (“outliers”) and thus belong to the range of ‘robust regression’ techniques. The 

first is the least absolute deviations (LAD) method, which estimates the regression coefficients 

by minimising the sum of absolute deviations of the predicted from the observed values, and is 
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a special case of quantile regression, fitting the trend line to the median of the observations, 

rather than the mean (Chandler and Scott, 2011). The second is the non-parametric method of 

Theil-Sen slope estimation (Sen, 1968; Theil, 1992), which estimates the slope b of the linear 

model as the median of the pairwise slopes of all sample points. Among the different approaches 

that exist for the intercept coefficient, we follow Conover (1980) and estimated the intercept as 

𝑎 = 𝑦0.5 − 𝑏𝑥0.5, where 𝑦0.5 and 𝑥0.5 are the sample medians. 

 

Figure A8. Boxplots of the average prediction RMSE as estimated for each station from 

moving window validation of the local trend using Least Squares regression (LS), least 

absolute deviation regression (LAD) and the Theil-Sen regression. For the boxplots’ 

properties description see Figure 3. 

Results from the comparison of the prediction RMSE from these three algorithms are 

shown in Figure A8. Evidently, the ordinary least square regression performs better than the 

LAD regression, while its results are very close to the Theil-Sen regression. Therefore, the OLS 

estimator is retained for the main analysis due to its better performance compared to the LAD 

estimator, non-ambiguity in definition compared to the Theil-Sen estimator, and well-studied 

mathematical properties (Papoulis, 1990). As a final note, we underline that the notion of 

‘robustness’ of statistical regression has arisen as a positive trait for systems with known and 

expected behaviour, where extreme values are considered either ‘outliers’ or erroneous 

measurements, which “contaminate” the record. Yet for natural systems, producing extremes 
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as part of a large and inherent variability, and exhibiting irregular ‘trends’ difficult or perhaps 

impossible to attribute to causal mechanisms, we deem that there might be no theoretical reason 

behind the expected superiority of robust statistics, which is in fact empirically shown in this 

experiment. 


	1. Introduction
	2. Dataset
	3. Methodological framework
	3.1 Overview of literature approaches to trend modelling: From explanatory trends to out-of-sample performance
	3.2 Out-of-sample validation schemes
	3.3 Predictive models
	3.4 Selected indices of rainfall extremes and quality control
	3.5 Predictability of climatic changes under natural variability

	4. Results
	4.1 Models’ performance in static validation
	4.2 Moving-window validation of predictive performance
	4.3 Models’ performance under natural variability

	5. Summary and conclusions
	Acknowledgments
	References
	Appendix

