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Simulation and optimization for the design and management of hydroelectric works 

Fundamental concepts 
 Storage: Main function of reservoirs. Because of it—and unlike other works such as flood 

protection—reservoirs cannot be designed based on merely the marginal distribution of 
inflows. The time succession of inflows is of great importance and this requires a much more 
sophisticated probabilistic (or better stochastic) design methodology.  

 Firm yield: Problematic (or even nonscientific) concept (because it implies elimination of 
risk), which, however, has constituted the design basis of most reservoirs worldwide.  

 Reliability: The probability of achieving a target, which in the case of a reservoir is to satisfy 
the water demand. (Reliability = 1 – failure probability).  

 Reliable yield: A constant withdrawal which can be satisfied for a specified reliability. It 
replaces the concept of firm yield. 

 Storage capacity-yield-reliability (SYR) relationship: The relationship among these three 
concepts which constitutes the rational basis of reservoir design. 

 Monte Carlo or stochastic simulation: Numerical mathematical method of solving complex 
problems, which was founded in Los Alamos (Metropolis and Ulam, 1949). 

 Optimization: Mathematical methodology for locating the values of variables that maximize 
or minimize a function. In combination with simulation, it constitutes the rational basis for 
the design and management of reservoirs. 

 Hurst-Kolmogorov dynamics or long-term persistence: Stochastic-dynamic behaviour that 
characterizes natural (as well as socio-economical and technological) processes. It is required 
to consider it in the design and management of reservoirs.  

 Generation of synthetic samples: While stochastic simulation of a system is in principle 
possible if there exists a time series of observations with adequate length, in most problems 
observation periods are too short to support reliable results; therefore we resort to 
generating synthetic samples, which must have specified properties.   
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“Classical” methodology (Anglo-American School)  

 Ripple (1883) Method of mass (cumulative) inflow-outflow curves: 
graphical method of reservoir design, based on the historical sample of 
inflows. 

 Hurst (1951) Statistical study of the concept of range for reservoir design 
and its dependence on sample size. Important is the discovery of the 
eponymous behaviour. 

 Thomas and Burden (1963) Sequent-peak method: tabulated version of 
Ripple’s method. 

 Schultz (1976) (perhaps anticipated by others) A variant of Ripple’s method 
using synthetic (instead of observed) time series.  

 The Anglo-American School’s methods, in spite of dominating in 
engineering education and handbooks for practitioners, do not have 
scientific consistency.  

For more information on the chronicle of related research, see comprehensive review 
by Klemes (1987) 
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Systems-based methodology  
 Required: Determination of the minimum net storage capacity c, so as to satisfy a 

constant demand δ,  given an inflow time series xt  for a specific control horizon of 

length n, and an initial storage s0. 

 Control variables: Storage capacity c, (net) storage st and losses due to spill wt for n 

time steps (2n + 1 variables in total). 

 Mathematical formulation as a linear programming problem: 

minimize  f = c 

subject to  st = st – 1 + xt – d – wt  for each t = 1, …, n (water balance) 

    st ≤ c for each t = 1, …, n  

    sn = s0 (steady state condition) 

    c, st, wt ≥ 0 

 Disadvantages: 

 Very big number of control variables. 

 Inability to incorporate nonlinear relationships. 

 Fully deterministic formulation – reliability is not considered. 
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Stochastic methodology (Russian School)  
 Hazen (1914) (American!) Introduction of the reliability concept and the 

SYR relationship. 

 Kritskiy & Menkel (1935, 1940) and Savarenskiy (1940) Theoretical study 
and materialization of a practical methodology for reservoir design based 
on reliability and the SYR relationship.  

 Pleshkov (1939) Construction of nomographs for facilitating  practical 
application of the method.  

 Kolmogorov (1940) Proposal of a mathematical model that represents the 
behaviour to be discovered 10 years after by Hurst. Kolmogorov was not 
involved in reservoir studies but in turbulence.  

 Moran (1954) (Australian) Reinvention (perhaps independent) of the 
stochastic theory of reservoirs. 

 Most of these contributions, although theoretically consistent, often 
involve unrealistic assumptions, such as the independence of inflows over 
time, which make them unsatisfactory in practice. 

For more information see Klemes (1987) 
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Which School is followed in Greece?  

 Technical Universities mostly teach Anglo-American methods. 

 However, consultants have been aware of the Russian 
School’s methods and have applied them in real-world studies. 

Final design of the 
Iasmos dam (1971) 
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Differences in the behaviour of hydrological processes 
from that in simple random events 

Simulation and optimization for the design and management of hydroelectric works 7 

Roulette wheel River discharge 

Discrete and finite set of 
possible values, {0, 1, ..., 36} 

Infinite and continuous set of possible 
values, from 0 to +∞. The rate with which 
a value tends to +∞, for probability 
tending to 0, is not the minimum possible 
(Noah phenomenon) 

Constant behaviour in time Changing behaviour in time (regular 
seasonal changes–irregular changes in 
other time scales) 

A priori known probability of 
occurrence of each value (1/37) 

Unknown probability distribution function 
which needs observations to infer 

Each outcome does not depend 
of the previous ones 

Each value depends on the previous 
values (persistence) 



Change at different time scales in hydrological processes 
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Difference in determination of probability of 
composite events 

 Example for roulette wheel:  
What is the probability that in two 
consecutive throws the outcome be 
equal or smaller than 3? 

 

 Analogous example for streamflow:  
If:  

(a) we characterize as dry any year in 
which the annual streamflow volume 
is less than or equal to 3 km3, and  

(b) we know that the probability of a dry 
year is 1/10,  

what is the probability that two 
consecutive years are dry? 

 

Reply:  
(4/37)2 

Reply:  
We need stochastic 

simulation to 
determine it 
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Scientific branches to enroll in order to reply the 
previous question 

1. Probability theory: Foundation of calculations. 

2. Statistics: Inference from data or induction (estimation 
of probability distribution function from the sample of 
observations). 

3. Theory of stochastic processes: Mathematical 
description of (random) variables changing in time, and 
their dependences.  

4. Simulation: Numerical method that uses sampling to 
tackle difficult problems. 
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All these are now known with the collective name Stochastics 



History of stochastic simulation (or Monte Carlo 
method) 
 It is connected to the development of mathematics and physics in the mid-

20th century as well as the development of computers. 

 It was devised by the Polish mathematician Stanislaw Ulam (working in the 
Los Alamos team) in 1946 (Metropolis, 1989, Eckhardt, 1989). 

 Immediately after, the method was used to solve neutron collision problems 
from the physicists and mathematicians in Los Alamos (John von Neumann, 
Nicholas Metropolis, Enrico Fermi) after being encoded in the first ENIAC 
computer. 

 The “official” story of the method begins with a publication by Metropolis 
and Ulam (1949). 

 Since the 1970s, simulation has been used in water resource problems 
(although the first steps were taken in the 1950s - Barnes, 1954). 

 Research on stochastic methods in water resources continues and grows. 
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Perpetual change as seen in the Nilometer record - 
The Hurst-Kolmogorov behaviour  
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Hurst’s (1951) 
seminal paper 

 The motivation of Hurst was 
the design of Nile River 
projects . 

 However the paper was 
theoretical and explored 
numerous data sets from 
diverse fields. 

 Hurst observed that:  
Although in random events 
groups of high or low values 
do occur, their tendency to 
occur in natural events is 
greater. This is the main 
difference between natural 
and random events. 

Obstacles in the dissemination and adoption of 
Hurst’s finding: 

 Its direct connection with reservoir storage. 

 Its tight association with the Nile. 

 The use of a complicated statistic (the 
rescaled range). 
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Kolmogorov  
(1940) 

 Kolmogorov studied the 
stochastic process that 
describes the behaviour 
to be discovered a 
decade later in 
geophysics by Hurst. 

 The proof of the 
existence of this 
process is important, 
because several 
researches, ignorant of 
Kolmogorov’s work, 
regarded Hurst’s finding 
as inconsistent with 
stochastics and as 
numerical artefact. 

 Kolmogorov’s work did not become widely known. 

 The process was named by Kolmogorov “Wiener’s 
Spiral” (Wienersche Spiralen) and later “Self-similar 
process”, or “fractional Brownian motion” 
(Mandelbrot and van Ness, 1968). 

 Today it is called the Hurst-Kolmogorov (HK) process. 
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Properties of the HK 
process  

At an arbitrary 
observation scale  
k = 1 (e.g. annual) 

At any scale k 

Standard deviation σ ≡ σ (1)
 

σ (k) = σ / k 1 – H   
(can serve as a definition of the HK 
process; H is the Hurst coefficient; 
0.5 < H <1) 

Autocorrelation 
function (for lag j) ρj ≡ ρ

(1)

j  =ρ
(k)

j   H (2 H – 1) |j |2H – 2 

Power spectrum 
(for frequency ω) 

s(ω) ≡ s(1)(ω)   
4 (1 – H) σ 2 (2 ω)1 – 2 H 

s(k)(ω)   
4(1 – H) σ 2 k 2H – 2 (2 ω)1 – 2 H 

 

The Hurst-Kolmogorov (HK) process and its multi-scale 
stochastic properties 

A natural process evolves in continuous time, t: 𝑥(𝑡) 

We model it as a stochastic process in continuous time, t: 𝑥(𝑡) 

… but we observe and study it by taking averages in discrete 
time i = 1, 2, …, for a convenient time scale k: 

𝑥𝑖
(𝑘)
≔  𝑥 𝑡 d𝑡

𝑖𝑘

𝑖−1 𝑘

 

For detailed descriptions see Koutsoyiannis (2002, 2013) 

In classical 
statistics 
σ (k) = σ/√k 

All equations are 
power laws of  
scale k, lag j, 
frequency ω 
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Example 1: Clustering of floods 

Flood discharges of the Vltava river in Prague in the last 5 centuries (Brázdil et al., 2006) 

1845-90: Three floods greater than 
the 100-year flood in 45 years 

1900-45: No flood greater than 
the 10-year flood in 40 years 
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Simulation and optimization for the design and management of hydroelectric works 

Example 2: 
Annual 
minimum water 
levels of the Nile 

 The longest time series of 
observations available (849 
years). 

 Hurst parameter H = 0.87. 
 A similar value of H is found 

from the simultaneous time 
series of maximum water levels 
and from a modern time series 
of annual discharge of Nile at 
Aswan (131 years). 

Roda 
Nilometer 

For an ΗΚ process, the classical 
statistical estimator of the 
standard deviation entails bias, 
which has accounted for in the 
estimation of Η. 

17 



Simulation and optimization for the design and management of hydroelectric works 

Example 3: The 
Moberg et al.  
proxy series of the 
Northern 
Hemisphere 
temperature  
 

Suggests an HK 
behaviour with a very 
high Hurst coefficient: 
H = 0.94. 
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Estimation bias was determined by 
Monte Carlo simulation (200 
simulations with length equal to 
the historical series). 
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Example 4: The Greenland temperature proxy during the 
Holocene 

Reconstructed from the GISP2 Ice Core (Alley, 2000, 2004). Data from:  
ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt 
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Example 4 (cont.): The Greenland temperature proxy on 
multi-millennial time scales 
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Example 4 
(cont.): The 
Greenland 
temperature 
proxy on all 
scales 

All three periods 
suggest an HK 
behaviour with a 
very high Hurst 
coefficient:  
H ≈ 0.94. 

Estimation bias and 95% prediction 
limits were determined by Monte 
Carlo simulation (200 simulations 
with length equal to the historical 
series) 
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What we avoid in reservoir design 

 Deterministic methods or pseudo-stochastic variants thereof 
(the Anglo-American methodology). 

 Stochastic simulation methods incapable to reproduce  Hurst-
Kolmogorov dynamics. 

 Software applications that are based on the above methods. 

22 



Simulation and optimization for the design and management of hydroelectric works 

What we do for a preliminary reservoir design 
1. We construct a SYR relationship from historical observations—if the 

record length is satisfactory. 

 Calculations are very simple and only require the water balance 
equation in the form:  
st = max[0, min(st – 1 + xt – δt , c)],  
where st is the storage at time t, xt the net inflow, δt the water 
demand, and c the storage capacity. A failure is counted when st = 0. 

 The computational framework of a spreadsheet (OpenOffice, Excel) is 
enough.  

2. We construct a «lower envelope» SYR relationship based on standardized 
relationships, expressed in terms of nomographs or equations and based 
on stochastic simulation. 

 The results give the storage capacity required for long-term (over-
annual) regulation. An additional storage of about  50%-80% of 
annual demand must be added for sub-annual regulation (the higher 
percentage corresponds to irrigation reservoirs).  

3. We estimate the design storage capacity by optimization considering 
technical, economical, and environmental data. 
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Typical results of the consistent method (storage-
yield-reliability relationship) 

Characteristic quantities  
 μ: mean inflow 
 σ: standard deviation of inflow  
 a: reliability 
 T := 1 / (1 – a): return period of 

reservoir emptying 
 δ: demand 
 c: reservoir storage capacity 
 κ := c / σ : standardized reservoir 

storage capacity 
 ε := (μ – δ)/σ : standardized 

mean loss 
 

Approximate mathematical expressions (for T > 2 or a > 0.5) 
ln(T – 1) = 2 (ε + 0.25) (κ + 0.5)0.8    or        
ln(T – 1) = –ln(1/α – 1) = (2/σ 1.8) (μ + 0.25σ – δ) (λ + 0.5σ )0.8   

For details see 
Koutsoyiannis (2005) 

Assumptions 
 Annual time scale (seasonal variation neglected) with constant withdrawal rate. 
 Inflows independent identically distributed with normal distribution. 
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Effect of skewness (Results for independent 
gamma distributed inflows) 
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Extensions of results for more complex 
stochastic structure of inflows  

 While the case presented is simple, the method is fully generic and can perform with any type 
of system dynamics and stochastic structure of inflows. 

 While there exist in the literature different approaches (e.g. the formulation by Moran, 1954, 
based on Markov chains, as well as recent attempts) these involve radical simplifications (e.g. 
discretization of the reservoir space) and their usefulness is questionable . 

 For details see Koutsoyiannis (2005). 

Effect of persistence (Results for 
normally distributed inflows) 

(ΗΚ) 
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What we do for a final reservoir design 

1. We construct a SYR curve as in step 1 of the preliminary design but 
now using a synthetic time series (with length of thousands of 
years) in monthly time scale. 

 The synthetic time series should be generated with a method 
that reproduces ΗK dynamics. 

 The simplest methods reproducing HK dynamics are those by 
Koutsoyiannis (2003) and Langousis & Koutsoyiannis (2006); 
these can easily be materialized in spreadsheets (OpenOffice, 
Excel).  

 More sophisticated methods require appropriate software 
applications (e.g. Castalia). 

2. We estimate the design storage capacity by optimization 
considering technical, economical, and environmental data. 
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Algorithmic application of simulation: Introduction 
to random numbers 
 A sequence of random numbers is a sequence of numbers xi whose every one 

statistical property is consistent with realizations from a sequence of 
independent identically distributed random variables xi (adapted from 
Papoulis, 1990).  

 A random number generator is a device (typically computer algorithm) which 
generates a sequence of random numbers xi with given distribution F(x).  

 Random number generation is also known as Monte Carlo sampling. 

 Most algorithms are purely deterministic, and generate the same sequence of 
numbers if we start from the same initial condition, often referred to as seed. 
If we change the seed we get another sequence (more precisely another part 
of a periodic sequence with very large period). Yet the numbers are random 
because if we do not know the algorithm and the initial condition (𝑞0 or 𝑞𝑖−1) 
we cannot predict these numbers.  
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Generation of independent random numbers 
with specified distribution function 

 The basis of practically all random generators is the uniform distribution in [0,1]. A 
typical procedure is the following: 

 We generate a sequence of integers qi from the recursive algorithm 𝑞
𝑖
=

𝑘𝑞𝑖−1 + 𝑐  mod 𝑚 where k, c and m are appropriate integers (e.g. k = 69 069, c = 
1, m = 232 = 4 294 967 296 or k = 75 = 16 807, c = 0, m = 231 - 1 = 2 147 483 647; 
Ripley, 1987, p. 39). 

 We calculate the sequence of random numbers ui with uniform distribution in [0,1] 
by 𝑢

𝑖
= 𝑞

𝑖
/𝑚· 

 For any probability distribution F(x) the following procedure works always (but 
sometimes is time demanding): 

 If F–1( ) is the inverse function of F(x)  and ui are random numbers with uniform 
distribution in [0, 1], then the required random numbers are given by 

   wi = F–1(ui)  

In spreadsheets, the function rand() generates random numbers with 
uniform distribution in [0,1] and the function normsinv(rand()) generates 
random numbers with normal distribution Ν(0, 1).  
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Generation of random nambers from the HK process; 
the Symmetric Moving Average Method   

The symmetric moving average  (SMA) scheme, introduced by Koutsoyiannis 
(2000), transforms a sequence of independent random numbers (white 
noise) vi to a sequence of dependent ones xi using the equation 

xi = 
j = –q

q

 a|j| xi + j = aq vi – q + … + a1 vi – 1 + a0 vi + a1 vi + 1 + … + aq vi + q 

where aj are weights whose number q is theoretically infinite but in practice 
is chosen finite with a large value.  

In the case of the HK process (else known as fractional Gaussian noise—
FGN) it is shown (Koutsoyiannis, 2002) that the weights are:  

aj  
(2 – 2 H) γ0

3 – 2H   [|j + 1|H + 0.5 + |j – 1|H + 0.5 – 2 |j|H + 0.5] 
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Generation of 
synthetic 
samples using 
the Castalia 
software  
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The need for redesign and adaptation of 
management 
 In a first stage, several reservoirs are designed as individual hydraulic works 

of a single purpose. 
 In the course of their operation, increased needs require that they be 

complemented by new projects. 
 Characteristic example: Evinos projects to boost the water supply of 

Athens from Mornos river. 
 New projects were studied from the outset as components of a system 

rather than as individual projects (system redesign). 
 In other cases, changes in social and economic priorities make it necessary 

to adapt their management to new (multiple) purposes. 
 Typical example: Plastiras Reservoir (Phase 1: Energy, Phase 2: Irrigation 

+ Water supply + Energy, Phase 3: Ecotourism + Water Supply + Irrigation 
+ Energy). 

 The new management policy recognizes the need for a minimum 
ecological limit on the level of the reservoir without neglecting the 
importance of water supply and the economic and social benefit of 
irrigation and energy. 
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See details in Koutsoyiannis et al. (2003), Christofides et al. (2005) and Koutsoyiannis (2011). 



Example:  
The Acheloos 
hydropower 
and irrigation 
hydrosystem 

• 5 reservoirs in the Acheloos 

river system 

• 2 additional reservoirs at 

the Thessaly area 

• 1 more reservoir (Plastiras) 

out of the system 

• 8 hydropower plants 

• Conveyance network 

• Main water use: Energy 

production 

• Secondary water uses: 

Irrigation, Water supply 
• Environmental constraints 
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 Reservoir 

Kastraki  
 Reservoir 

Stratos  
 Reservoir 

Mesohora 
Reservoir 

Mouzaki 
Reservoir 

Pyli  
Reservoir 

Sykia 
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Plastiras 
Reservoir 

 0         10      20     30 km 
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Example: The 
Acheloos 
hydrosystem 
structure 

 Irrigation requirements 

 Main irrigation nodes at Stratos and 
Mavromati (450 and 600 hm3 per 
year, respectively) 

 Local demand 4 hm3 per year at Pyli 

 Environmental constraints 

 Minimum environmental 
preservation discharge at Acheloos 
river 1.5 m3/s downstream of 
Mesohora, 5 m3/s downstream of 
Sykia and 21 m3/s at the estuary 

 Minimum discharge downstream of 
Pyli and Mouzaki 0.15 m3/s 

 Additional 0.35 m3/s downstream 
of Pyli  for the aquifer recharge 
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Method of choice: 
Parameterization-
Simulation-Optimization 
For more information see  
Nalbantis & Koutsoyiannis 
(1997), Koutsoyiannis & 
Economou (2002) for the 
methodology and 
Κουτσογιάννης (1996) for 
the application. 
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