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Abstract 7 

Although storage-reliability-yield (SRY) relationships have been widely used in the 8 

design and planning of water supply reservoirs, their application in hydroelectricity is 9 

practically missing. Here we revisit the SRY analysis and seek for its generic configuration 10 

for hydroelectric reservoirs, following a stochastic simulation approach. After defining 11 

key concepts and tools of conventional SRY studies, we adapt them for hydropower 12 

systems, which are subject to several peculiarities. We illustrate that under some 13 

reasonable assumptions, the problem can be substantially simplified. Major innovations 14 

are the storage-head-energy conversion via the use of a sole parameter, representing the 15 

reservoir geometry, and the development of an empirical statistical metric expressing the 16 

reservoir performance on the basis of the simulated energy-probability curve. The 17 

proposed framework is applied to numerous hypothetical reservoirs at three river sites 18 

in Greece, using monthly synthetic inflow data, to provide empirical expressions of 19 

reliable energy as function of reservoir storage and geometry. 20 
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1 Introduction 24 

Storage-reliability-yield (SRY) relationships offer simple yet effective means (analytical 25 

formulae or nomographs) to evaluate the overall behavior of complex reservoir systems, 26 

possibly (but not necessarily) summarizing results of more sophisticated and detailed 27 

modelling approaches. In particular, for a given hydrological regime, which is typically 28 

expressed in terms of key statistical characteristics of inflows, these allow for estimating 29 

the reservoir size (actually, its active capacity) that guarantees a steady water abstraction 30 

(referred to as yield or draft) with a given level of reliability. In this respect, they actually 31 

provide an overview of the major conflicting objectives arising in water resources 32 

planning and management studies, i.e. minimization of investment costs (associated with 33 

reservoir capacity), maximization of revenues (associated with yield) and minimization 34 

of water deficits (associated with reliability). 35 

Finding the appropriate reservoir capacity to meet a given demand is a typical water 36 

engineering problem, the origins of which go back to the 19th century (see detailed review 37 

by Klemeš 1987, and Koutsoyiannis 2005a). For a long time, this has been handled with 38 

fully deterministic means, i.e. the mass curve analysis by Rippl (1883) and its improved 39 

variations, such as the sequent peak method that still remains a widespread tool for 40 

reservoir sizing yet ignoring uncertainty (Mays and Tung 1992).  41 
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Interestingly, the first attempt to establish SRY relationships, thus embedding the 42 

concept of probability within reservoir design, appeared very early, in the pioneering 43 

work by Hazen (1914), who proposed an empirical simulation technique and generated 44 

a synthetic time series by combining historical flow records of different rivers ‘spliced’ 45 

sequentially together. Few years later, Sudler (1927) extended this empirical work by 46 

resampling from a sequence of historical flows using cards, which he shuffled to form new 47 

sequences of data (Koutsoyiannis 2020). In contrast, pre-war Russian hydrologists 48 

attempted to provide more rigorous approaches. For instance, Kritskiy and Menkel 49 

(1935, 1940) and Savarenskiy (1940) employed theoretical studies concluding to a 50 

practical methodology for reservoir design, based on reliability and the SRY relationship, 51 

while Pleshkov (1939) constructed nomographs for facilitating the practical application 52 

of the method. Nevertheless, in the water resources literature the origins of modern SRY 53 

analysis are generally attributed to Moran (1954, 1959) and Gould (1961), also 54 

recognizing Pegram’s (1980) contribution, and is sometimes referred to as Gould-Dincer 55 

method, as proposed by McMahon et al. (2007a, b).  56 

From the 80’s, many researchers have developed multiple methods for linking the three 57 

characteristic reservoir quantities and expressing them as a function of summary 58 

streamflow statistics (e.g., Hashimoto et al. 1982, Harr 1987, Vogel and Stedinger 1987, 59 

Phien 1993, Vogel and Bolognese 1995; Vogel et al. 1995, Fletcher and Ponnambalam 60 

1996, Koutsoyiannis 2005a, Adeloye and De Munari 2006, McMahon et al. 2007a, b, c, 61 

Adeloye 2009, Adeloye et al. 2010, Hamed 2012, Silva and Portela 2013, Kuria and Vogel 62 

2014, Adeloye et al. 2015). Their analyses were based on different underlying hypotheses 63 

and techniques (theoretical, empirical or simulation-based), different definitions of 64 
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reliability and yield, and different expressions of streamflow data (actual or synthetically-65 

generated). Finally, the range of application of the derived SRY formulae range from the 66 

local scale of a specific reservoir site to much wider scales, through the derivation of more 67 

generic laws that account for varying flow regimes across the globe. 68 

While there exist dozens of references on the SRY topic, their applicability is only limited 69 

to water supply reservoirs (more precisely, reservoirs serving consumptive water uses). 70 

Surprisingly, a similar framework for preliminary design of hydroelectric reservoirs is 71 

missing, although hydropower is globally one of the dominant purposes of dams, also 72 

considered as the backbone of the power generation sector in low-carbon and sustainable 73 

energy systems (Xu et al. 2015). To our knowledge, there is only one proceedings article 74 

by Xie et al. (2010; see also follow-up paper by Xie et al. 2013), who employed a Gould-75 

Dincer approach to express the mean annual hydropower generation benefits with 76 

respect to reservoir storage and reliability. 77 

The objective of this paper is the revision of conventional SRY analysis and its adaptation 78 

to hydroelectric systems, based on the stochastic simulation approach. Initially, we 79 

provide essential definitions of key concepts and tools used in SRY analysis, and deploy 80 

the simulation model for water supply reservoirs. After discussing the peculiarities of 81 

hydroelectricity, we provide the generic simulation and performance assessment 82 

framework for hydroelectric reservoirs. Next, we illustrate a parsimonious configuration 83 

of the problem, based on several reasonable assumptions and simplifications, which 84 

makes essential the use of only one additional parameter, representing the reservoir 85 

geometry. The proposed framework is applied to a number of hypothetical reservoirs at 86 
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three river sites in Greece, resulting in empirically-derived expressions of reliable energy 87 

yield as function of reservoir storage and geometry. 88 

2 Concepts and tools 89 

2.1 Reliability 90 

In water resource systems analysis, reliability can be expressed both in terms of time and 91 

magnitude, thus representing a measure of average frequency and quantity of deficits, 92 

respectively. In particular, the time-based (also referred to as occurrence-based) 93 

reliability is defined as the probability: 94 

 𝑎 = 1 −  𝑃(𝑦𝑡 < 𝑦𝑡
∗) (1) 

where 𝑦𝑡 is the actual water outflow (which may be also referred to as withdrawal, 95 

abstraction, release or draft) through the water system to fulfill a desirable outflow 96 

(hereafter referred to as demand) 𝑦𝑡
∗. We remark that throughout the paper, the 97 

underline notation (also known as Dutch notation) is used to denote a stochastic 98 

(random) variable (thus both inflows and demands are here treated as stochastic 99 

variables or, more accurately, processes), while the non-underlined typeface denotes a 100 

realization of it. In a theoretical context, the reliability and all involved processes refer to 101 

continuous time, while in practice the concept refers to discrete time. In this respect, the 102 

time index t denotes a certain time interval [𝑡, 𝑡 + ∆𝑡] over a certain time horizon, 𝑇 =103 

𝑛 ∆𝑡, where n is the size of data.  104 

On the other hand, the quantity-based (or volumetric-based) reliability is defined as: 105 
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 𝑎𝑉 =
𝐸 [𝑦𝑡]

𝐸[𝑦𝑡
∗]

 (2) 

In the former definition, the complementary of reliability is the failure probability, while 106 

in the latter is the volumetric failure. In general, the performance of a water resource 107 

system is evaluated in terms of the probabilistic, time-based reliability, while the 108 

volumetric reliability is more often associated with the concept of resilience (Celeste 109 

2015; for a comprehensive review of reservoir performance metrics, please refer to 110 

McMahon et al. 2006). 111 

We emphasize that, in general, not only the outflow but also the demand should be 112 

treated as a random variable, since it depends on highly uncertain socioeconomic and/or 113 

climatic factors. However, most of studies handle 𝑦𝑡
∗ as a constant, sometimes following a 114 

seasonally-varying (periodic) pattern. In any case, the deviation of the desirable outflow 115 

from the actual one, i.e. the quantity Δ𝑦𝑡 = 𝑦𝑡 −  𝑦𝑡
∗, is a random variable. In the general 116 

case, this may take not only negative values (deficits) but also positive ones, if the system 117 

(and the associated management policy) allows for releasing surplus water through the 118 

intakes instead of the spillway. This case is quite frequent in hydroelectric reservoirs, as 119 

will be discussed latter. For this reason, the precise definition of deficits is:  120 

 𝑑𝑡 = min(0, 𝑦𝑡 −  𝑦𝑡
∗) (3) 

2.2 Reliability vs. scale 121 

While the estimation of the volumetric reliability through eq. (2) is independent of the 122 

time scale, the time-based reliability is strongly associated with it. Let ∆𝑡 be the time step 123 

of data (e.g., monthly), and let a coarser period comprising k sub-steps (e.g., annual, thus 124 
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𝑘 = 12). By definition, any deficit occurring in one or more finer-scale steps of duration 125 

∆𝑡 is encountered as a deficit at the coarser period of duration 𝑘 ∆𝑡. In this respect, we 126 

get the general formula of the herein referred to as scaled reliability:  127 

 𝑎(𝑘) = 1 −  𝑃 (∑ 𝑦𝑡 − 𝑖

𝑘

𝑖 = 1

< ∑ 𝑦𝑡 − 𝑖
∗

𝑘

𝑖 = 1

) (4) 

It is easy to prove that as the scale becomes coarser, the value of reliability 128 

decreases. This interesting property makes it essential to link the reliability with the scale 129 

of aggregation of deficits. In practice, the definition of scale depends on the system’s 130 

purpose. For instance, it is extremely rare to detect deficits during wet seasons and under 131 

low demands, and even more it is absolutely unreasonable to account for periods without 132 

demand (case of systems serving irrigation uses). In such hydrosystems, in order to avoid 133 

misleading assessments of the frequency of failures, the common practice is the 134 

aggregation of deficits at the annual scale and the use of the annual reliability as the most 135 

representative (and most conservative) measure of the system’s performance.  136 

2.3 Induction-based approaches and their limitations 137 

Let assume an elementary hydrosystem comprising one source (e.g., a river intake) and 138 

one user with a constant demand, 𝑦∗. Let also a time series of inflows 𝒙𝑡 = (𝑥1, … , 𝑥𝑛). In 139 

the absence of storage capacity and other constraints, the operation of this system is very 140 

simple: whenever the inflow exceeds the demand, the actual withdrawal equals the 141 

demand, otherwise it equals the inflow. Under this premise, the time-based reliability of 142 

this system can be analytically estimated through (statistical) induction, i.e. by fitting to 143 

the data set of inflows either an empirical or theoretical distribution and estimating the 144 

probability of exceeding the target value, 𝑦∗.  145 
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Apparently, if the demand is not constant but varying, a specific quantile to the 146 

distribution of inflows does not determine the reliability. We also remark that a similar 147 

approach for estimating the volumetric reliability is not applicable, since the fitting of the 148 

distribution model is made to the system input, i.e. the inflows, 𝑥𝑡, and not to the outflows, 149 

𝑦𝑡, which are, even for this elementary configuration, nonlinear transformations of 𝑥𝑡. 150 

Nevertheless, the concept of reliability is applicable to much more complex systems, 151 

which may involve multiple water resources to fulfill multiple uses, through multiple 152 

paths and under multiple constraints, technical and human-induced. Another major 153 

aspect of nonlinearity is the temporal regulation of the water fluxes across hydrosystems, 154 

as result of flow control structures (weirs, gates) and storage components, i.e. reservoirs 155 

and tanks. In all these cases, the direct evaluation of probabilistic metrics (1) and (2) 156 

through statistical analysis, i.e. inference from inflow data, is definitely impossible. 157 

2.4 Deduction-based evaluation of reliability via simulation 158 

Simulation is a generic, well-established approach for analyzing complex problems that 159 

do not have analytical solution or its derivation is time-consuming. As a numerical 160 

solution of an analytical problem, it could be classified as deduction, given that it is not 161 

directly based on observations; rather it is based on a theoretical model of the system 162 

studied. In the context of systems analysis, simulation can be defined as a time-163 

discretized representation of the system's dynamics through a computer model that 164 

mimics its actual operation. This allows for understanding and assessing the system’s 165 

behavior by evaluating the model responses instead of the actual ones (for this reason, it 166 

is also referred to as behavior analysis; e.g. McMahon et al. 2007a). Having a sequence of 167 
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simulated outputs also allows for employing any kind of statistical processing, and among 168 

others, providing empirical estimations of probabilities via sampling; in this vein, 169 

simulation is a means for explaining and quantifying uncertainties. It can also be easily 170 

combined with optimization, thus offering a robust and generic method for modelling 171 

water resource systems of any complexity and scale (Koutsoyiannis and Economou 172 

2003;), including hydroelectric reservoir systems (e.g., Hatamkhani et al. 2019) and 173 

electric systems, in general (e.g., Piao et al. 2014). 174 

In a simulation context, the reliability of a water system is assessed as the percentage of 175 

deficits over the total simulation period. We remind that deficits are often aggregated to 176 

a coarser scale than the time interval of simulation (usually the annual one), to ensure a 177 

representative measure of the system’s performance and also being consistent with the 178 

key assumption of stationarity. In this respect, if n is the number of simulated time steps 179 

and k is the aggregation scale, the empirical estimation of reliability is employed through 180 

accounting the aggregated deficits over the time horizon of simulation, thus configuring 181 

an evaluation period comprising 𝑛/𝑘 steps. Following the formulation by Koutsoyiannis 182 

(2005a), the scale-based expression of reliability is written as: 183 

 𝑎[𝑘] =
𝑘

𝑛
 ∑ [1 − 𝑈 (− ∑ 𝑑𝑡+1

𝑘𝑝−1

𝑡 = 𝑘(𝑝−1)

)]

𝑛/𝑘

𝑝 = 1

 (5) 

where 𝑑𝑡 are the simulated deficits, and 𝑈(𝑧) is the Heaviside’s unit step function, with 184 

𝑈(𝑧) = 1 for 𝑑𝑡 = 0 and 𝑈(𝑧) = 0 for 𝑑𝑡 > 0. 185 

For 𝑘 = 1 the above expression is simplified to: 186 
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 𝑎[1] =
1

𝑛
 ∑ [1 − 𝑈(−𝑑𝑡)]

𝑛

𝑡 = 1

 (6) 

It is interesting to mention that, as result of discretization, the generic reliability function 187 

(5) is not continuous but takes a finite number of feasible values within the range [0, 𝑘/𝑛, 188 

2𝑘/𝑛, …, 1]. Therefore, for a given sample of simulated deficits of size n, as the time scale 189 

of aggregation, k, increases, the less accurate becomes the estimation of reliability, since 190 

the solution space is 𝑛 𝑘⁄ + 1. 191 

2.5 Reliable yield 192 

In the design and management of water resource systems, apart from specifying the 193 

reliability for a given demand, constant or varying (the forward problem), the inverse 194 

question is also posed, i.e. which is the constant demand that ensures a given reliability 195 

level. In the literature, this hypothetical demand is also referred to as firm yield or, more 196 

accurately, reliable yield. This term embeds two key quantities, i.e., the demand, which is 197 

an external forcing to the system, and its reliability, which is a measure of the system 198 

response against this forcing. Apparently, the reliable yield, which is next denoted 𝑦𝑎, also 199 

depends on the aggregation scale; however herein, the associated index, k, although 200 

absolutely necessary, will be omitted for simplicity. 201 

In the elementary case of a direct abstraction from a river, where the induction-based 202 

approach is applicable, the reliable yield, 𝑦𝑎, is easily estimated by considering the inverse 203 

distribution of inflows and extract the inflow value for a non-exceedance probability 204 

equal to the desirable reliability, 𝑎. In any other case, the evaluation of 𝑦𝑎 requires a trial-205 

and-error simulation procedure in order to test the system’s response against different 206 
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demand values. Alternatively, the estimation of the reliable yield can be handled as an 207 

optimization problem (in fact, a combined simulation-optimization problem) with a 208 

single control variable, i.e. the (constant) demand value that ensures the desirable 209 

reliability. More precisely, given that the simulation-based approach provides a specific 210 

number of feasible reliability values, i.e. 𝑖 (𝑛 𝑘⁄ + 1)⁄  (where n is the discretization scale, 211 

k the aggregation scale and 𝑖 = 0, … , 𝑛/𝑘), the inverse problem should be better set as the 212 

minimization of the deviation from the target reliability. Interestingly, although the 213 

underlying optimization task seems straightforward (it comprises only one variable), the 214 

discrete form of the objective function may impose some computational troubles, as the 215 

search procedure can be quite trapped to sub-optimal demand values. 216 

2.6 Stochastic simulation 217 

In water resource systems analysis, the use of synthetic inputs instead of historical 218 

records is strongly preferable for providing sufficiently large samples (as required for the 219 

desired accuracy of the numerical method) of the random processes or short-term 220 

ensemble realizations of it, conditioned to past data, to be inputs within steady-state and 221 

terminating simulations, respectively (Ripley 1987 p. 142, Koutsoyiannis 2005b, 222 

Efstratiadis et al., 2014a). This is the core of the stochastic (also referred to as Monte 223 

Carlo) simulation approach, in which synthetic series of model inputs (e.g., inflows) are 224 

generated from a suitable stochastic model and then transformed, through the operation 225 

model, into synthetic outputs (e.g., withdrawals). The use of long synthetic data instead 226 

of historical ones makes the step from induction to deduction. It also ensures better 227 

representation of the variability of the associated processes and their interactions, and 228 

evaluation of the system performance across a wide range of potential states, through 229 



12 

 

statistical analysis of its responses. In fact, the use of synthetic data becomes the unique 230 

option when dealing with extreme probabilities and rare events. 231 

The literature offers a plethora of generating schemes. The classical work by Matalas and 232 

Wallis (1976) imposed the minimum specifications for hydrological applications, 233 

asserting the preservation of some essential statistical characteristics of the historical 234 

data (i.e., first three moments, first order autocorrelations, and zero order cross-235 

correlations) within the synthetic ones. From the early 2000s, Koutsoyiannis (2000, 236 

2003, 2011) strongly emphasized the representation of the Hurst-Kolmogorov dynamics 237 

(widely known as long-term persistence), as a key feature of hydrometeorological 238 

processes, which is also associated with the perpetually changing and thus highly 239 

uncertain hydroclimate. Recent advances suggest a shift towards the explicit 240 

preservation of the distribution of the modelled processes instead of their statistical 241 

characteristics (Tsoukalas et al. 2018), or the preservation of high-order moments, thus 242 

ensuring an almost perfect approximate of the actual distributions (Koutsoyiannis 2019). 243 

Another key requirement of hydrological synthesis refers to the so-called scale-244 

consistency, namely the preservation of the desirable statistical behavior not only at the 245 

time scale of data but also across higher ones (for a detailed review, cf. Tsoukalas et al. 246 

2019). This feature becomes significantly important in reliability analysis, in which the 247 

scale of simulation is often finer than the scale of evaluation. 248 

Key issue of stochastic simulation is the length of synthetic data, which is a compromise 249 

between accuracy and computational effort. Koutsoyiannis (2005a) provides statistical 250 

relationships that link the size of data with the accuracy of extracted probabilistic 251 

quantities, to be used as guide for selecting the length of Monte Carlo sampling. 252 
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3 Storage-reliability-yield analysis for water supply reservoirs 253 

In the design of water supply reservoirs, the Storage-Reliability-Yield (SRY) relationship 254 

is the tool that has traditionally been used to determine the active storage capacity of a 255 

standalone reservoir, to ensure a water supply yield with a specified reliability, or the 256 

reliable yield that can be supplied from a reservoir with known storage capacity (Kuria 257 

and Vogel 2014). The SRY curve can be easily derived through stepwise computations of 258 

the associated simulation-optimization problem, which is formulated as follows: 259 

Let a reservoir of active (also known as useful) storage capacity K, denoting the volume 260 

between the minimum and maximum operation levels 𝑧min and 𝑧max, respectively. Let 261 

also 𝑥𝑡 be a sequence of inflows, either known from historical records or synthetically 262 

generated, e.g., through a stochastic model. If n is the length of simulation, the reservoir 263 

dynamics is described via the water balance equation, written in the discretized form: 264 

 𝑠𝑡 = 𝑠𝑡−1 + 𝑥𝑡 − 𝑟𝑡 − 𝑤𝑡 (7) 

where 𝑟𝑡 are the controlled releases to fulfill a given demand 𝑦∗, 𝑤𝑡 are the uncontrolled 265 

water losses due to spill, and 𝑠𝑡 is the reservoir storage at the end of time step t. 266 

Starting from a given initial storage 𝑠0, the estimation of the unknown outputs 𝑟𝑡 and 𝑤𝑡 267 

can be explicitly employed, by considering an ordered implementation of the fluxes that 268 

are embedded in eq. (7) as follows: 269 

1. At the beginning of time step t, the active storage is set equal to the known storage 270 

at the end of previous step, i.e. 𝑠𝑡 = 𝑠𝑡−1. 271 

2. The active storage is updated by adding the known inflows, thus 𝑠𝑡 → 𝑠𝑡 + 𝑥𝑡 . 272 
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3. The active storage is updated by extracting the releases, which are determined as 273 

the minimum between the current water availability and the demand, i.e.: 274 

 𝑟𝑡 = min (𝑠𝑡−1 + 𝑥𝑡 , 𝑦∗) (8) 

4. The storage is updated by extracting the spill losses, which are determined as: 275 

 𝑤𝑡 = max (𝑠𝑡−1 + 𝑥𝑡 − 𝑟𝑡 − 𝐾, 0) (9) 

Based on simulated outflow data (raw or aggregated) we can estimate the reliability 276 

against the demand target, by computing the frequency of deficits through (5) or (6), by 277 

setting 𝑦𝑡 = 𝑟𝑡. 278 

In the above procedure, all calculations refer to useful storage values, i.e. storage above 279 

the intake level, while the reservoir geometry information, by means of elevation-area or 280 

elevation-storage relationships, is omitted. In this respect, in a river site with given 281 

inflows, 𝑥𝑡, the reservoir reliability, a, is only function of the target release, 𝑦∗, which is 282 

an operational input, and the useful storage capacity, K, which is a design input. We 283 

underline that in the stochastic simulation context, the description of the inflow process 284 

is expressed in terms of its marginal distribution and autocorrelation structure, not the 285 

data per se (Koutsoyiannis and Economou 2003). 286 

To run the simulation model, it is necessary to specify the initial state, namely the storage, 287 

𝑠0, at time 𝑡 = 0. In theory, in order to establish fully steady-state conditions, this should 288 

be equal to the (unknown) final storage, 𝑠𝑛, which requires a trial-and-error approach to 289 

assign the correct value of 𝑠0. To avoid complexities, a workaround solution is assuming 290 

the reservoir empty in the first step of simulation and next considering a warming-up 291 

period, during which deficits are not accounted for. Alternatively, we can express the 292 
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initial storage as a “reasonable” portion of useful capacity, e.g., 𝑠0 = 𝐾/2. Nevertheless, if 293 

the time horizon of simulation is long enough (as made when using synthetic data), the 294 

influence of initial conditions becomes negligible. 295 

On the other hand, a non-negligible error may be introduced as result of the explicit 296 

numerical scheme, if the time interval of simulation, ∆𝑡, is relatively large, e.g. monthly. 297 

Evidently, the model results are influenced by the order of implementation of the three 298 

fluxes (inflows, releases, spilling), and this influence is also subject to the reservoir size 299 

(the smaller the reservoir, the larger the error). Since the choice of ∆𝑡 mainly depends on 300 

the temporal resolution of inflow data, it may be essential employing finer time intervals, 301 

either by splitting the values into uniformly-distributed sub-sets or via stochastic 302 

disaggregation of the available coarse-scale data (e.g., Tsoukalas et al. 2019). 303 

A final remark involves the definition of inflows. Actually, these comprise the sum of all 304 

hydrological inputs over each time step, i.e. the runoff from the upstream basin and the 305 

rainfall over the reservoir area minus the water losses due to evaporation, seepage and 306 

leakage. Often, in a preliminary design setting, we only account for the major processes, 307 

namely the runoff arriving at the dam site, and omit the storage-dependent processes or 308 

estimating them by assigning a representative value of reservoir level. However, in some 309 

circumstances this simplification may also result in non-negligible errors in reservoir 310 

analyses (e.g., large-scale reservoirs in semi-arid climates, having significant losses due 311 

to evaporation), as thoroughly discussed in the literature (e.g., Lele 1987, Sivapragasam 312 

et al. 2003, Adeloye et al. 2019). In such cases, the simulation model has to be extended, 313 

to also include level-dependent processes. Nevertheless, embedding level calculations 314 
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within reservoir modelling may make necessary the use of fine-scale input processes, e.g. 315 

through disaggregation, for eliminating the impacts of discretization errors.  316 

4 Simulation framework for hydroelectric reservoirs 317 

4.1 Peculiarities of hydroelectricity 318 

Water resource systems involving hydroelectric reservoirs have substantial differences 319 

with respect to water supply works, the design objectives and management policies of 320 

which are rather simple, i.e. fulfilling specific demands across the strict boundaries of the 321 

associated hydrosystem. In fact, hydropower is the most peculiar of common water uses, 322 

since it exhibits multiple challenges and complexities across all its aspects.  323 

Hydropower is generally delivered through large-scale (i.e., national) interconnected 324 

electric grids, comprising a mix of plethora power sources with different characteristics. 325 

Apart from evident technical issues, e.g. water and head availability, the sizing of several 326 

crucial components of a hydroelectric system is also subject to its role in the overall 327 

energy mix. In general, large hydroelectric plants usually fulfil peak energy demands, thus 328 

releasing water only during a few hours per day, while less often is their operation as 329 

base-load oriented, i.e., generating power at a near-constant level throughout the year. In 330 

this respect, the conveyance and power capacity of penstocks and turbines, respectively, 331 

are determined according to the desirable operation schedule of the hydropower plant. 332 

The latter is usually expressed in terms of capacity factor, defined as ratio of an actual 333 

electrical energy output over a given period of time to the maximum possible one. 334 

Therefore, the smaller is this ratio, the larger should be the size of penstocks and turbines, 335 

since the expected hydroelectric energy will be delivered in shorter time. 336 
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The practically unlimited number of potential sources and users also makes the concept 337 

of reliable yield quite ambiguous. In contrast to water supply reservoirs, the design and 338 

everyday operation of hydroelectric works is not dictated by the energy needs of a 339 

specific region; in fact, in many areas the generation of hydropower is mainly subject to 340 

financial criteria, associated with the rules of highly-competitive energy stock markets. 341 

The systematically increasing insertion of renewables to the energy scene imposes 342 

additional challenges to hydropower, which is still the main efficient option for energy 343 

regulation and storage at the large scale (Koutsoyiannis et al. 2009, Mamassis et al. 2020). 344 

The modelling context of hydropower is also subject to several peculiarities that are not 345 

appearing in water supply reservoirs. Given that the generation of energy depends both 346 

on discharge and head, as the reservoir level decreases more water must be released to 347 

fulfill the same power demand. Furthermore, whenever the reservoir tends to spill, it is 348 

strongly preferable to take advantage of the surplus conveyance capacity of the penstocks 349 

and operate the power station out of its normal schedule, instead of simply leaving water 350 

passing from the spillway. The surplus water returns to the downstream river system, 351 

while the surplus energy is absorbed by the electrical grid. 352 

Hence, in hydroelectric reservoirs there exist two operational modes, namely the normal 353 

one, for scheduled energy production, and the emergent one, in order to absorb potential 354 

spill losses. Consequently, the hydropower community defines two types of energy, i.e. 355 

the firm or primary, which is delivered systematically and with minimal risk, and the 356 

surplus or dump or secondary energy, which is produced occasionally (mainly for avoiding 357 

spills) and delivered as an excess energy to the electric grid. According to alternative 358 

definitions given in the literature, firm energy denotes the generating ability of a 359 
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hydropower plant under adverse water and demand conditions, which are referred to a 360 

specific critical period, e.g. during the dry season of a year or during a sequence of dry 361 

years (ASCE 1995, Georgakakos et al. 1997). Following the same rationale with water 362 

supply yield, a more convenient expression for this type of energy is reliable energy, 363 

herein symbolized 𝑒𝑎, where a denotes the reliability level at the specific time scale of 364 

interest, k. This should not be confused with peak energy. Nevertheless, we emphasize 365 

that the reliable energy (and the peak energy, as well) commands a higher price than the 366 

excess one (ReVelle 1999 p. 59), and this feature is of key importance in the design and 367 

management of hydroelectric systems. 368 

A last important issue is the balancing of tradeoffs between hydropower and ecological 369 

flows. In water supply reservoirs, the amount of water that is reserved for environmental 370 

purposes is extracted from its yield, thus also affecting its reliability. On the other hand, 371 

in hydroelectric reservoirs, provided that the water is released just downstream of the 372 

dam and not diverted elsewhere, the ecological flows are not a direct water loss, given 373 

that they can also pass from the turbines and generate energy. However, this 374 

configuration implies a cost, since the time scheduling of ecological flows do not coincide 375 

the hydropower production policy (e.g., in the case of peak energy, the turbines operate 376 

few hours per day, while the ecological flows are released continuously). The most 377 

efficient option is the use of low-cost settlements downstream of the dam to regulate the 378 

water releases through the turbines (e.g. Efstratiadis et al. 2014b), and thus implement 379 

the environmental constraints without affecting the system’s performance, as quantified 380 

in terms of reliable energy. 381 
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4.2 Simulation model 382 

The simulation model for hydroelectric reservoirs follows, in general, the rationale of the 383 

explicit scheme for water supply ones, with additional inputs and calculations, imposed 384 

by the underlying hydropower dynamics. In particular, the governing equation for 385 

electric power production via transformation of dynamic and kinetic energy of water is: 386 

 𝑝 = 𝜌 𝑔 𝜂 𝑞 ℎ𝑛 (10) 

where ρ is the water density (1000 kg/m-), 𝑔 is the acceleration of gravity (9.81 m/s2); η 387 

is the electromechanical system’s efficiency (turbines, generators, transformers); q is the 388 

discharge; and ℎ𝑛 is the net head, defined as the available hydraulic energy at the 389 

turbines. The latter is expressed in terms of elevation, and is written as: 390 

 ℎn = 𝑧 − 𝑧d − ℎL (11) 

where z is the reservoir level, which is a time-varying quantity, 𝑧d is the downstream 391 

level, and ℎL are the sum of hydraulic losses, friction and minor, across the water transfer 392 

from the intake to the turbines. The energy losses are increasing function of discharge, 393 

while the efficiency also changes with q, according to a complex relationship which is 394 

characteristic of the turbines (generally, 𝜂 increases with q). Level 𝑧d is constant, in case 395 

of impulse-type turbines, e.g., Pelton, functioning under atmospheric pressure, or 396 

approximatively constant, in case of reaction ones, e.g. Francis, provided that the flow is 397 

conveyed to a tailrace, where the water level only exhibits small fluctuations. 398 

By considering a constant discharge q during a time interval ∆𝑡, and thus a released 399 

volume 𝑟 = 𝑞 ∆𝑡, the head losses and the efficiency are also constants, since they are 400 
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functions of q. Under this premise, by taking the integral of (10) we get the following 401 

formula of energy production, introduced by Koutsoyiannis and Economou (2003): 402 

  𝑒 = 𝜓 𝑟 (𝑧 − 𝑧d) (12) 

The quantity 𝜓 is called specific energy and is defined as: 403 

 𝜓 = 𝛾 𝜂 ℎn / (𝑧 − 𝑧d)  (13) 

By expressing the water release in m3, the head in m and the energy in kWh, the specific 404 

energy is given in kWh/m4. Actually, 𝜓 is function of head, while for an ideal turbine 405 

without energy conversion losses, thus 𝜂 = 1, and an ideal conveyance system without 406 

hydraulic losses, thus ℎn = 𝑧 − 𝑧d, its theoretical maximum value is 0.002725 kWh/m4 407 

(or 0.2725 GWh/hm4, is the water release is expressed in hm3 and the head in hm). 408 

Essential inputs for the simulation of a hydroelectric reservoir are three characteristic 409 

elevations, i.e. the intake level, 𝑧min, the spill level, 𝑧max (denoting the minimum and 410 

maximum operation levels, respectively), and the downstream level, 𝑧d, as well as three 411 

characteristic relationships that are all functions of the reservoir level, i.e. gross storage 412 

𝑆 = 𝑓1(𝑧), discharge 𝑞 = 𝑓2(𝑧), and specific energy 𝜓 = 𝑓3(𝑧). By setting 𝑆min = 𝑓1(𝑧min) 413 

and 𝑆max = 𝑓1(𝑧max), the active storage and active storage capacity, which are embedded 414 

in the simulation model, are estimated as 𝑠 = 𝑆 −  𝑆min and 𝐾 = 𝑆max − 𝑆min, 415 

respectively. The last two formulae can be extracted on the basis of geometrical and 416 

hydraulic properties of the conveyance system (intake, penstock) and the operation 417 

curves of the turbines. Within simulation, the discharge function is used to determine the 418 

conveyance capacity of the system, and thus the maximum allowable release, 𝑐 = 𝑞 ∆𝑡. 419 
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Let assume a constant energy target, 𝑒∗, representing, in fact, a theoretical rather than a 420 

real quantity, which allows for evaluating a hydroelectric reservoir as a standalone 421 

energy source. Similarly to a water supply reservoir, at each time step we seek for the 422 

unknown outputs 𝑟𝑡 (in that case, the water releases through the turbines) and 𝑤𝑡 (water 423 

loses due to spill), by solving the water balance equation (7) as follows: 424 

1. At the beginning of time step t, the active storage is set equal to the known value 425 

at the end of previous step, i.e. 𝑠𝑡 = 𝑠𝑡−1. 426 

2. On the basis of 𝑠𝑡 we update the level, 𝑧𝑡, the conveyance capacity 𝑐𝑡, and the 427 

specific energy 𝜓𝑡 . We also determine the desirable release through the turbines, 428 

by solving eq. (12) for the given energy target, i.e. 429 

  𝑦𝑡
∗ =

𝑒∗

𝜓𝑡  (𝑧𝑡 − 𝑧d)
  (14) 

3. The active storage is updated by adding the known inflows, thus 𝑠𝑡 → 𝑠𝑡 + 𝑥𝑡 . 430 

4. The active storage is updated by extracting the releases to fulfill the target energy, 431 

𝑒∗, which are subject to the current water availability, the target release and the 432 

conveyance capacity of the hydropower system, i.e.: 433 

 𝑟𝑡
(1)

= min (𝑠𝑡−1 + 𝑥𝑡, 𝑦𝑡
∗, 𝑐𝑡) (15) 

5. If essential, additional releases are employed to convey the surplus storage 434 

through the turbines, subject to their remaining conveyance capacity, i.e.: 435 

 𝑟𝑡
(2)

= min [max (𝑠𝑡−1 + 𝑥𝑡 − 𝑟𝑡
(1)

− 𝐾, 0), 𝑐𝑡 −  𝑟𝑡
1] (16) 

6. The reservoir storage at the end of time step is updated by extracting the spill 436 

losses, which are estimated by: 437 
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 𝑤𝑡 = max (𝑠𝑡−1 + 𝑥𝑡 − 𝑟𝑡
(1)

− 𝑟𝑡
(2)

− 𝐾, 0) (17) 

7. The produced energy over the time interval is computed through eq. (12), by 438 

setting the sum of releases, 𝑟𝑡 = 𝑟𝑡
(1)

+ 𝑟𝑡
(2)

, and after re-estimating the specific 439 

energy and the head by considering the average reservoir level at the beginning 440 

and end of time step. 441 

The use of average level in energy estimations at the end of each time step ensures more 442 

accurate results, without affecting the explicit formulation of the simulation procedure, a 443 

key advantage of which is its computational efficiency. However, this correction may not 444 

be sufficient if the level fluctuations are relatively large, which depends on the reservoir 445 

geometry, as expressed by the elevation-storage relationship, and the time step of 446 

simulation. As already discussed for the case of water supply reservoirs, in such cases it 447 

may be preferable to apply a finer time interval in water balance calculations, which may 448 

be artificially done, by downscaling the inflow data and thus splitting all reservoir fluxes. 449 

An alternative approach is the use of an implicit scheme, in which the computations 450 

within each time interval are repeated by updating the reservoir level and associated 451 

head from the previous iteration cycle. Preliminary experiments with monthly data 452 

showed that this scheme converges very quickly, even after only one iteration. 453 

4.3 Energy-probability curve 454 

The operation of a hydroelectric reservoir is easily depicted by plotting the energy-455 

probability curve (EPC). As with the well-known flow-duration curve, this is constructed 456 

by sorting the simulated energy data in descending order and assigning an empirical 457 

exceedance probability, based on the order of each value. Thus, the vertical axis 458 
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represents the energy value and the horizontal axis the percentage of the time that the 459 

energy production exceeds this value. As the EPC expresses the distribution of energy 460 

over the simulation period, it embeds all essential information for recognizing different 461 

aspects of the system’s operation. 462 

In Figure 1 we show the EPC provided by a simulation experiment considering the 463 

hydroelectric system of Kremasta at river Achelous, NW Greece. The computations are 464 

made with the implicit scheme, enabling a single iteration for the correction of head. The 465 

energy data is extracted by assigning a monthly energy target of 𝑒∗ = 65 GWh, and using 466 

the historical inflows from 1966 to 2008 (42 years, 504 monthly steps). The plotted area 467 

is divided into four regions, corresponding to associated operation modes: 468 

Region A: The system produces excess energy with respect to target 𝑒∗, by conveying 469 

surplus storage through the turbines, and at the same time the reservoir is spilling, since 470 

the conveyance capacity of the penstock is exhausted. In this mode the EPC is flat, given 471 

that both the discharge and the gross head are maximized, thus providing the maximum 472 

possible energy, i.e.: 473 

 𝑒max = 𝜓 𝑞(𝑧max) ∆𝑡 (𝑧max − 𝑧d)  (18) 

Region B: The system produces excess energy, by passing all surplus storage from the 474 

turbines, in order to prohibit the generation of spill losses. 475 

Region C: The system operates according to its normal schedule, thus producing the 476 

target energy, 𝑒∗, which in turn results to a flat EPC. Had we employed the explicit 477 

simulation scheme this region would be approximately flat. The reason is that in explicit 478 

simulations, the actual energy is estimated a posteriori, on the basis of the average head 479 
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across each simulated time interval, while the target volume to release is computed a 480 

priori, on the basis of the known head at the beginning of each time step. 481 

Region D: The system produces lower energy than the desirable value, 𝑒∗, because of 482 

reduced storage and/or head. 483 

 484 

Figure 1: Simulated energy-probability curve (EPC) of Kremasta reservoir, also 485 

depicting its characteristic regions and probability values. 486 

Using the EPC we can also obtain the average energy production, by integrating the 487 

simulated energy vs. percentage of time, the probability of spilling, PS, the probability of 488 

producing excess energy, PE, and the probability of producing the target energy, PT, thus 489 

the reliability of the hydroelectric system with respect to the associated target value. By 490 

assigning a lower target, its reliability will evidently increase, yet the spread of regions A 491 

and B is also expected to increase, thus generating more excess energy and more water 492 

losses due to reservoir spilling. On the other hand, by setting a larger target, the region D 493 
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will expand, thus resulting in more frequent deficits but less water losses. In this context, 494 

the shape of the EPC can be used as indicator of the overall performance of a hydroelectric 495 

system: the more extended is the flat region C, the more spread is the energy production, 496 

and thus the more efficient is the operation of the system. 497 

4.4 Performance metrics 498 

The twofold operation of hydroelectric reservoirs, i.e. normal and emergent, and the 499 

higher price of reliable over surplus energy make essential to revise the key concept of 500 

reliable yield, used in conventional storage-reliability-yield analysis. To begin with, we 501 

can outline this metric in a similar manner with water supply reservoirs, namely as the 502 

energy value ensured with a given reliability, and estimate it empirically, through EPC 503 

analysis. More precisely, the reliable yield of a hydropower system is defined in terms of 504 

reliable energy, which requires the assignment of a high probability of exceedance, e.g. 505 

99% on monthly basis (Koutsoyiannis et al. 2002), to guarantee that this energy will be 506 

available even under adverse water conditions (Georgakakos et al. 1997). 507 

Interestingly, while in water supply reservoirs the target water demand and the reliable 508 

yield are identical (as the reliable yield is the demand ensured with a given reliability), in 509 

hydroelectric reservoirs the target energy, 𝑒∗, and the reliable energy, herein symbolized 510 

𝑒𝑎 (where 𝑎 is the reliability level), are two different concepts. Actually, the target energy 511 

dictates the operation of the reservoir, while 𝑒𝑎 is a performance metric. In a simulation 512 

context, the former is input and the latter is output. To demonstrate this difference, in 513 

Figure Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. we plot 𝑒𝑎 as function 514 

of target energy for two reliability levels, namely 95 and 99%, using again as example the 515 

hydroelectric reservoir at Kremasta. This function can be divided into four distinct parts. 516 
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For low target values, 𝑒𝑎 takes a small constant value. For intermediate target energy 517 

values, it equals the target one, while after reaching its maximum it drops abruptly. 518 

Finally, for large target values, the system produces an overall minimum reliable energy. 519 

Apparently, the 99% reliability curve is more conservative than the 95% one, in terms of 520 

both minimum and maximum reliable energy. Moreover, the rising limb of the former is 521 

very sharp, denoting that the assignment of a very high reliability level makes the 522 

detection of the maximized 𝑒𝑎 quite sensitive against errors and uncertainties. In 523 

particular, the sampling uncertainty of historical data may significantly affect the 524 

estimation of 𝑒𝑎, which furthermore reveals the usefulness of stochastic approaches. 525 

 526 

Figure 2: Plots of alternative energy metrics (95 and 99% reliable energy and monthly 527 

average) vs. monthly target energy for the hydroelectric system of Kremasta. 528 

In the same graph we also plot the mean monthly energy production, which has been 529 

widely used as an overall performance measure in the analysis and optimization of 530 

hydroelectric reservoir systems. In contrast to 𝑒𝑎, this metric exhibits limited variability 531 



27 

 

against target energy, thus being little only influenced by the management policy of the 532 

reservoir. In particular, by not distinguishing energy according to its price, this metric 533 

does not follow the obvious deterioration of the reliability of energy production, when 534 

assigning unrealistically high production goals, thus providing a misleading picture of the 535 

system’s performance. Hence, the optimal performance of a hydroelectric system is much 536 

better ensured by maximizing the reliable energy for a reasonably high reliability level. 537 

This quantity can be easily obtained by using as underlying model the simulation scheme 538 

of section 4.2 and solving an optimization problem with one control variable, i.e. the 539 

target energy. 540 

However, the maximization of 𝑒𝑎 may still not be sufficient for fully assessing the system’s 541 

performance, without also considering the sharing between reliable and surplus energy. 542 

Surprisingly, the literature reports limited works clearly distinguishing these two types 543 

of energy in a simulation-optimization context (Koutsoyiannis et al. 2002, 2003, Afzali et 544 

al. 2008, Li and Qiu 2015, Tsoukalas and Makropoulos 2015, Taghian and Ahmadianfar 545 

2018). On the other hand, retaining water for later hydropower generation, in order to 546 

reduce the overall risk of energy shortage, is a well-known practice, through the concept 547 

of hedging rules (e.g., Tayebiyan et al. 2019, Wang et al. 2019), also employed in water 548 

supply systems (e.g., Draper and Lund 2004). Nevertheless, the practical question arising 549 

is the formulation of an overall metric that also accounts for over- and under-production 550 

with respect to the energy target, to be used as alternative or complementary to 𝑒𝑎. This 551 

option is offered by introducing a quasi-economic function, reflecting the different 552 

market prices of reliable against secondary energy and against energy deficits, i.e.: 553 
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  𝐹(𝑒∗) =
1

𝑛
 ∑ [𝑐f min(𝑒𝑡, 𝑒∗) + 𝑐s max(0, 𝑒𝑡 −  𝑒∗) − 𝑐d max(0, 𝑒∗ − 𝑒𝑡)]

𝑛

𝑡 = 1

  (19) 

where 𝑐f is the unit profit for energy production up to the target value 𝑒∗, 𝑐s is the unit 554 

profit for producing excess energy with respect to 𝑒∗, and 𝑐d is a unit penalty for deficits; 555 

the latter should be large enough, to confirm that the system will produce the target value 556 

𝑒∗ with high reliability. We underline that eq. (19) handles reliable and target energy as 557 

equivalents. As already discussed, this key assumption is true for a specific range of 558 

intermediate target energy values (not very small, neither very large), which obviously 559 

includes the target value that maximizes the overall benefit. 560 

 561 

Figure 3: Plots of alternative profit/penalty metrics vs. monthly target energy for the 562 

hydroelectric system of Kremasta (see definitions in the text). 563 

Once again using the Kremasta case, we plot the energy benefit function F versus target 564 

𝑒∗ by considering three combinations of unit profit/cost values, i.e. 0.10, 0.05 and 1.0 565 

€/KWh, 0.10, 0.025 and 1.0 €/KWh, and 0.10, 0.05 and 0.10 €/KWh (Figure Σφάλμα! Το 566 
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αρχείο προέλευσης της αναφοράς δεν βρέθηκε.). In the first setting, we assume a ratio of 567 

2:1 among reliable and secondary energy, and a ratio of 1:10 among production and 568 

deficit. The second setting assigns a small benefit for secondary energy generation (4:1 569 

ratio), while the third assigns a very small penalty for deficits (1:1 ratio). It is worth 570 

mentioning that all unit profit combinations converge to the same optimal energy target, 571 

i.e. 60 GWh/month, which is the identical to the one obtained for maximizing the 99% 572 

reliable energy (Figure Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.). We 573 

observe that for the first two settings the profit function (19) increases linearly with 574 

target energy 𝑒∗ and after reaching its maximum it drops rapidly. For, by assigning a 575 

target energy production even little far from its optimum results to largely negative profit 576 

values, thus penalizing the reduction of reliability further than the optimization of 577 

reliable energy itself. On the other hand, a much smoother behavior is shown with the 578 

use of much smaller penalties (third setting), while the profit curve becomes almost flat 579 

in the vicinity of the optimum. Nevertheless, the assignment of too small penalties for 580 

energy deficits is not realistic, since it ignores the impacts of shortages in the real-world 581 

energy industry. 582 

5 Generalized storage-yield analysis for hydroelectric reservoirs 583 

5.1 Problem setting 584 

As discussed so far, the hydroelectric yield can be expressed in terms of the constant 585 

energy target that ensures the maximization of the reliable energy 𝑒𝑎 or, alternatively, 586 

the profit function (19), after assigning reasonable sets of unit profit/cost values. Under 587 

the optimization context, the reliable yield of a hydroelectric reservoir with given design 588 
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characteristics is practically unique, since it can only refer to a very high reliability, while 589 

in the case of water supply systems the acceptable reliability range is quite extended. In 590 

fact, this describes the trade-off between potential abstractions and frequency of deficits, 591 

also applied in multicriteria analyses (e.g., Christofides et al. 2005). 592 

On the other hand, while in the water supply case the reliable yield is determined on the 593 

basis of a single design quantity, i.e. the useful storage capacity, the hydroelectric yield is 594 

subject to a number of design inputs of the associated simulation model. As explained in 595 

section 4.2, these include the minimum and maximum reservoir levels, 𝑧min and 𝑧max, the 596 

downstream elevation, 𝑧D, and the characteristic relationships 𝑆 = 𝑓1(𝑧), 𝑞 = 𝑓2(𝑧) and 597 

𝜓 = 𝑓3(𝑧). From a first glance, the extent of the required information, topographic and 598 

hydraulic, makes the problem not only very complicated but also site-specific and thus 599 

impractical to generalize. However, under some reasonable assumptions, we can 600 

significantly reduce the essential inputs of simulation or express them in terms of 601 

representative values (e.g., specific energy), thus providing a generic approach, good for 602 

preliminary studies, expressing the hydroelectric yield as function of few only inputs. In 603 

particular, the problem can be fully determined under the following data: 604 

• the time series of inflows arriving from the upstream basin (hydrological input); 605 

• the capacity factor of the hydropower plant (operational input); 606 

• the shape parameter of the elevation-storage function (topographic input); 607 

• the elevation difference of the outlet from the foot of the dam (design input); 608 

• the useful storage capacity of the reservoir (design input). 609 

The individual assumptions and associated methodologies are discussed in detail next.  610 
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5.2 Design discharge as function of capacity factor  611 

As mentioned in section 4.1, several major design variables of the hydroelectric system 612 

are dictated by the role of the power plant in the entire energy mix, which in turn 613 

determines the operational schedule of hydropower production. The governing decision 614 

is expressed in terms of capacity factor, defined as: 615 

 CF =
𝐸tot

𝑃 𝑇
  (20) 

where 𝐸tot is the total energy produced during a long enough time interval (typically, a 616 

year), P is the installed capacity of the power plant, and T is the duration of the given time 617 

interval. Under the hypothesis of systematic operation of the turbines in full capacity, the 618 

product P T denotes the energy that can potentially be produced in uninterrupted 619 

operation, and the ratio 𝑇a =  𝐸tot/𝑃 denotes the actual time of operation. In mean annual 620 

basis, the latter can be equivalently expressed in terms of capacity factor, i.e., 𝑇a =621 

𝑇year CF (one year = 8760 hours). 622 

In the design of large hydroelectric reservoirs, the capacity factor, CF, or, equivalently, 623 

the annual time of operation, 𝑇a, can be specified a priori, given that the outflows are 624 

practically fully regulated. Consequently, this allows for estimating the design capacity of 625 

all conveyance components. In particular, if 𝑉a is the expected (mean) annual water 626 

release for energy production, then the discharge capacity is:  627 

 𝑞0 =
𝑉a

𝑇year CF
  (21) 

For the estimation of the hydroelectric yield via the simulation model of section 4.2, we 628 

can use 𝑞0 as an upper limit of withdrawals, instead of employing the more accurate yet 629 
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site-specific hydraulic relationship, i.e. 𝑞 = 𝑓2(𝑧). Considering also a single water use, i.e. 630 

hydropower production, and minimal losses due to spill (thus a reservoir with quite large 631 

capacity), the mean annual water release can be set equal to the mean annual inflow, as 632 

estimated from the available hydrological data. 633 

5.3 Representative value of specific energy 634 

As explained in section 4.2, specific energy, 𝜓, is an overall measure that embeds the 635 

hydraulic losses across the water conveyance system as well as the energy losses across 636 

the electromechanical components (turbines, generators, transformers). Actually, this 637 

varies with discharge and efficiency, which are functions of head. However, the common 638 

operation policy of large hydroelectric work implies releasing a constant discharge, also 639 

referred to as nominal, which is equal or close to the flow capacity, in order to ensure the 640 

maximization of efficiency. Under this premise, the variation of specific energy with 641 

respect to head is very small, which allows for considering 𝜓 as a constant property.  642 

In order to assign a representative value of specific energy, we consider the efficiency and 643 

the percentage of hydraulic losses as normally-distributed random variables. In 644 

particular, we assign a mean value of 0.90 and 0.05, respectively, and a common standard 645 

deviation of 0.01, to describe their expected variability in real-world large hydroelectric 646 

systems. In can be easily proved that the derived distribution function of specific energy, 647 

which is the product of the two random variables, is also normal, with mean value 648 

0.00233 kWh/m4 and a slight coefficient of variation of only 1.5%. In this context, the 649 

specific energy can be handled as a constant, using the aforementioned mean value as 650 

representative input property within energy-head-outflow calculations. 651 
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5.4 Generalized elevation-storage relationship 652 

The literature reports several attempts to establish generic relationships to link the three 653 

characteristic geometrical variables of reservoirs, i.e. elevation, area and storage, through 654 

linear or nonlinear formulae. To our knowledge, the most extensively used are the ones 655 

developed by Lehner et al. (2011) from the Global Reservoir and Dam (GRanD) database. 656 

Other researchers provided regional relationships that evidently ensure better results 657 

rather than the global ones, due to geomorphological similarity (van Bemmelen et al. 658 

2016, Adeloye et al. 2019). Nevertheless, such approaches have been mostly applied for 659 

dam siting, storage capacity estimations and evaporation adjustment, and not for the 660 

simulation of hydroelectric energy. 661 

Herein we present an alternative parameterization, where the storage-elevation function 662 

is expressed by means of a sole geomorphological input, using a power-type relationship: 663 

 ℎ(𝑆) = 𝜆 𝑆𝜅  (22) 

where h is the water depth with respect to a characteristic elevation (in particular, the 664 

ground elevation at the foot of the dam), while λ and κ are scale and shape parameters, 665 

respectively (we remind that capital symbol S is applied for gross storage, while the 666 

lower-case symbol s denotes the active one.). The relationship is not dimensionally 667 

homogeneous and we evaluate it for units of m for h and hm3 for S. For a given reservoir, 668 

λ and κ can be empirically derived by fitting eq. (22) to local bathymetric data. The 669 

straightforward fitting method is regression, providing analytical estimations of λ and κ. 670 

In order to investigate the variation of water elevation with respect to storage for 671 

different reliefs, we used topographic information from 20 large reservoirs in Greece (13 672 
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of which hydroelectric). Summary data, including the optimized “local” parameters, λ and 673 

κ, are provided in Table 1, while the full data, including the analyses herein, are given as 674 

supplementary material. We remark that the local shape parameter values are ranging 675 

from 0.318 (Ilarion dam, in the middle course of Aliakmon), to 0.558 (Stratos dam, in the 676 

lower course of Achelous). Evidently, the lower is the value of κ, the sharper is the relief, 677 

and thus the faster is the increase of elevation with respect of storage (and vice versa). 678 

Table 1: Summary information for the sample of 20 large reservoirs in Greece (hydroelectric 679 

reservoirs are marked with *) 680 

Name  

Basin  

area 

(km2) 

Min. 

level 

(m) 

Max.  

level 

(m) 

Dead 

vol. 

(hm3) 

Total 

capacity 

(hm3) 

Local 

κ 

Local 

λ 

RMSE 

local 

(hm3) 

Generic 

κ 

RMSE 

gen. 

(hm3) 

Aposelemis 62.4 184.0 216.0 0.9 27.5 0.419 10.47 0.36 0.356 1.82 

Evinos 351.9 458.5 505.0 25.0 138.9 0.392 13.75 1.35 0.344 2.50 

Gadouras 151.5 95.0 117.5 7.4 67.5 0.341 10.12 0.12 0.370 0.68 

Ilarionas* 5005.0 366.0 403.0 166.1 575.2 0.318 14.74 3.81 0.359 4.94 

Kastraki* 548.0 142.0 144.2 750.0 800.0 0.408 4.85 0.64 0.400 0.76 

Kremasta* 3570.0 227.0 282.0 1000.0 4500.0 0.434 3.15 1.46 0.427 1.33 

Marathon 120.0 204.4 224.0 9.4 42.0 0.484 6.21 0.42 0.372 2.03 

Mornos 588.1 384.0 435.0 133.9 772.1 0.334 12.44 0.36 0.363 2.02 

Mesohora* 633.0 731.0 770.0 132.8 358.0 0.350 16.52 0.79 0.344 0.95 

Mouzaki* 139.1 250.0 290.0 28.5 162.9 0.364 13.33 8.93 0.355 4.86 

Plastiras* 161.3 776.0 792.0 144.0 507.8 0.380 3.93 0.86 0.437 1.17 

Platanovrysi* 10.0 223.5 227.5 71.1 82.8 0.325 19.64 1.23 0.341 1.47 

Polyfyto* 5800.0 270.0 291.1 1024.0 2244.0 0.384 5.79 0.33 0.398 0.81 

Pournari* 1814.0 100.0 120.0 387.7 736.4 0.448 4.14 0.00 0.390 2.90 

Pyli 132.0 310.0 355.0 19.2 125.8 0.362 15.78 1.23 0.344 1.34 

Sfikia* 10.0 141.8 146.5 81.0 99.0 0.333 14.70 1.11 0.354 0.72 

Smokovo 376.5 331.0 375.0 30.8 230.0 0.333 14.70 1.92 0.354 1.97 

Stratos* 202.0 67.0 68.6 60.0 70.2 0.558 1.60 0.28 0.448 0.80 

Sykia* 540.0 485.0 550.0 94.0 590.8 0.346 15.61 2.89 0.348 2.83 

Thesavros* 4315.5 320.0 380.0 128.9 671.0 0.339 15.44 2.49 0.350 3.08 

 681 
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 682 

Figure 4: Scatter plot of shape vs. scale parameters of the elevation-storage function 683 

(22), using data from 20 large reservoirs in Greece. 684 

As illustrated in Figure 4, the optimized values of λ and κ are well correlated, through a 685 

negative power-type law. This enables the application of a more parsimonious 686 

formulation of the elevation-storage relationship, where the scale parameter, λ, is 687 

expressed as function of shape parameter, κ. After testing several parameterizations, we 688 

concluded to the following generalized formula: 689 

 ℎ(𝑆) = 𝑎(𝜅 − 𝜅0)−𝛽 𝑆𝜅  (23) 

where 𝑎 and 𝛽 are numerical coefficients, and 𝜅0 is a lower threshold of the shape 690 

parameter κ, that has been a priori set equal to ¼ = 0.25. This refers to an extremely steep 691 

topography, where the rate of storage increase with respect to elevation is a power 692 

function of order of 4. Next, the numerical coefficients were estimated together with the 693 

individual shape parameters of the 20 reservoirs, by fitting eq. (23) to the entire data set, 694 

using as objective function the sum of root means square errors (RMSE). The optimized 695 

expression of the scale parameter was found to be: 696 

R² = 0.7024
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 𝜆 = 0.0386(𝜅 − 0.25)−2.574  (24) 

The adjusted values of 𝜅 (herein referred to as generic shape parameter), now ranging 697 

from 0.341 to 0.448, are given in Table 1. In almost all cases, the use of the generalized 698 

expression ensures a very satisfactory fitting to the real topography, as also indicated by 699 

the close values of RMSE with respect to the local approach, i.e. regression. This confirms 700 

the suitability of (23) for quantifying the impacts of relief in any kind of reservoir analysis, 701 

by only tuning one input, namely the generic shape parameter, κ. 702 

5.5 Other assumptions 703 

The remaining inputs of hydroelectric yield simulations are the characteristic levels 𝑧min, 704 

𝑧max, and 𝑧d. The first two are equivalently expressed in terms of minimum and maximum 705 

storage, both being essential subjects of reservoir planning. In the general case, 𝑆min is 706 

set at least equal to the volume of sediment that is expected to be deposited into the 707 

reservoir during its economic life. However, in hydroelectric reservoirs it is quite usual 708 

to put the intake level at a higher elevation, in order to ensure increased heads. The 709 

underlying design problem is far from straightforward, and it is apparently site-specific. 710 

On the other hand, it is reasonable to assume the upstream basin area as key explanatory 711 

of minimum storage, 𝑆min, since it is obviously associated with erosion and sedimentation 712 

processes. This hypothesis is strongly supported by the reservoir data provided in Table 713 

1. In particular, by only considering a subset of eight large hydroelectric reservoirs, we 714 

established the following empirical relationship: 715 

  𝑆min = 1.06𝐴0.80 (25) 
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where 𝑆min is expressed in hm3 and the upstream area, A, is given in km2. As shown in 716 

Figure 6, this very simple relationship makes an excellent fitting to data. We remark that 717 

our subset contains only eight out of 20 reservoirs, since from the initial sample we 718 

excluded the water supply reservoirs as well as five small hydroelectric ones that are 719 

located downstream of head dams, for employing daily up to weekly regulations. 720 

 721 

Figure 5: Scatter plot of minimum storage vs. upstream basin area, using data from 722 

eight large hydroelectric reservoirs in Greece. 723 

Last input is the downstream level, which is expressed in terms of elevation difference 724 

from the foot of the dam, i.e. ℎd =  𝑧b − 𝑧d. Therefore, the gross head, which is employed 725 

within hydroelectric energy calculations through eq. (12), is given by: 726 

 𝑧 − 𝑧d = ℎ(𝑆) − ℎd (26) 

where ℎ(𝑆) is the elevation difference of the actual reservoir level from the foot of the 727 

dam, which is estimated by the generalized elevation-storage function (23). 728 

The problem is further simplified by assuming that the power plant is installed at the foot 729 

of the dam, while the downstream water level is not affected by river flows or a 730 
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downstream reservoir, thus ℎd = 0. This assumption is the most conservative and is valid 731 

for quite a large portion of real-world hydroelectric systems, which are equipped with 732 

reaction turbines. Finally, we also assume that the energy production is not affected by 733 

abstractions or regulations made for environmental purposes. In this respect, for given 734 

catchment area, A, shape parameter 𝜅, and capacity factor, CF, the simulation problem 735 

becomes subject to only one design variable, i.e., the active storage capacity, K. This allows 736 

for establishing an equivalent storage-reliability-yield analysis for large hydroelectric 737 

works, following the rationale of the traditional formulation for water supply reservoirs.  738 

6 Test problems 739 

6.1 Design of experiment 740 

In order to test our methodological framework for a wide range of input data, we 741 

employed monthly simulations of a large number of hypothetical reservoirs, receiving 742 

their inflows from three hypothetical river basins of the same extent, i.e. 1 000 km2. In 743 

this context, we designed a synthetic experiment by combining: 744 

• Three synthetic inflow time series of 5 000 years length (60 000 time steps), 745 

generated through a stochastic model on the basis of historical data from three 746 

river basins in Greece with different hydroclimatic regime (see section 6.2); 747 

• Two operational modes, representing the generation of base and peak energy, 748 

expressed in terms of capacity factors of 20% and 80%, respectively; 749 

• Seven reservoir geometry patterns that are shown in Figure 6, by applying the 750 

generalized storage-elevation function (23) with generic shape parameter values 751 
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𝜅 = 0.350, 0.375, 0.400, 0.425, 0.450, 0475 and 0.500, and estimating the 752 

associated scale parameters through eq. (24).  753 

In this respect, we formulated 3 × 2 × 7 = 42 settings of the hydroelectric yield analysis 754 

problem, with respect to the useful storage capacity, K. In order to avoid the generation 755 

of extremely large reservoirs, we applied combinations with shape parameters resulting 756 

to dam heights and thus heads up to 250 m (only a dozen of dams globally exceed this 757 

height) and gross storage capacities up to 4 000 hm3, which is up to four times the mean 758 

annual inflow of the most wet basin (see Table 2). 759 

For each K, we sought the target energy ensuring the optimal system performance, by 760 

setting as objective function two alternative probabilistic metrics, i.e. the 99% reliable 761 

energy and the expected annual profit (eq. 19), by setting the recommended unit 762 

profit/cost values of 0.10, 0.05 and 1.0 €/KWh, for target energy, excess energy and 763 

energy deficits, respectively (see section 4.4) For given (i.e., simulated) sets of monthly 764 

energy production and corresponding profit values, the reliable energy was empirically 765 

estimated as the 99% percentile, i.e. the 600th lowest production value, while the 766 

expected annual profit was estimated as the empirical mean of the associated profit data. 767 

At this point, it is useful to mention that the first statistical metric involves an extreme 768 

probability, which is prone to sample uncertainties, thus requiring long simulation 769 

horizons, while the profit metric is much more robust and can be accurately estimated 770 

even from relatively short data sets. 771 

Apart from the upstream drainage area, other common inputs of the problem were: 772 
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• The dead storage that was set equal to 𝑆min = 266 hm3, by solving the empirical 773 

relationship (26) for the hypothetical drainage area of 1 000 km2; 774 

• The specific energy that was set equal to 𝜓 = 0.00233 kWh/m4 (see section 5.3); 775 

• The elevation difference of the outlet level from the foot of the dam, which was set 776 

equal to ℎd = 0 (see section 5.5). 777 

 778 

Figure 6: Plots of reservoir elevation vs. storage as function of the seven shape 779 

parameter values that have been applied in simulations. 780 

6.2 Generation of synthetic inflow data 781 

In order to evaluate the simulation framework against different hydroclimatic conditions, 782 

at the same time ensuring a long enough simulation horizon, we followed a stochastic 783 

approach. In this context, we generated synthetic inflow time series of 5000 years length, 784 

which reproduce the stochastic regime of the observed runoff of three characteristic 785 

Greek river basins, i.e. Achelous (upstream of Kremasta dam), Evinos (upstream of the 786 

homonymous dam), and Boeoticos Kephisos (at the basin outlet). Summary information 787 
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about the three flow sites is given in Table 2. The first two data sets (Kremasta, Evinos) 788 

have been extracted by solving the monthly water balance of the associated reservoirs 789 

for the unknown inflows, while the monthly runoff of Boeoticos Kephisos, which is the 790 

older flow station in Greece (110 years), was estimated on the basis of daily stage 791 

observations. Further details about the three basins are provided by Efstratiadis et al. 792 

(2014b), Koutsoyiannis et al. (2003) and Nalbantis et al. (2011), respectively. 793 

For monthly data synthesis we employed the modular disaggregation-based stochastic 794 

simulation framework by Tsoukalas et al. (2019), as implemented in the R-package called 795 

AnySim (Tsoukalas et al. 2020), backbone of which is the notion of Nataf joint 796 

distribution, also known as Gaussian copula. This allows for coupling multiple Nataf-797 

based stochastic simulation models to synthesize data that follow specific marginal 798 

distributions and correlation structures across multiple temporal scales of interest and 799 

across seasons, as well. For the particular study, we configured a scheme that couples two 800 

models of this type, one for the annual scale and another one for the monthly. 801 

Specifically, at the annual time scale we used the Symmetric Moving Average To Anything 802 

(SMARTA) model of Tsoukalas et al. (2018b), which implements the symmetric moving 803 

average generation mechanism introduced by Koutsoyiannis (2000). On the other hand, 804 

for the monthly scale we employed a cyclostationary Nataf-based generation scheme 805 

termed Stochastic Periodic Autoregressive To Anything (SPARTA; Tsoukalas et al. 2018a). 806 

Both models were combined with the three-parameter Generalized Gamma distribution 807 

(Stacey 1962) for modelling the marginal distribution of the parent process (at monthly 808 

and annual scale), while SMARTA was parameterized by using the two-parameter Cauchy 809 

autocorrelation structure (Koutsoyiannis 2000, Tsoukalas et al. 2018b), which is suitable 810 
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for the description of both short- or long-range dependent processes (e.g., processes with 811 

Hurst exponent exceeding 0.50; see Table 2). The combined scheme reproduces the 812 

seasonal and annual distributional and dependence properties of the historical data, also 813 

including the Hurst phenomenon. 814 

Table 2: Summary information and key statistical characteristics of historical data used for the 815 

generation of synthetic inflows; the statistics of synthetic data are shown in parentheses 816 

 Achelous Evinos Boeoticos Kephisos 

Monitoring site Kremasta dam Evivos dam Karditsa channel 

River basin area (km2) 3570 352 1930 

Historical data 10/1966 – 12/2009 10/1970 – 11/2018 10/1907 – 9/2019 

Mean annual runoff (mm) 964.5 (958.5) 805.7 (804.6) 191.1 (188.1) 

Standard deviation (mm) 235.5 (232.8) 225.8 (223.1) 83.1 (82.0) 

Hurst exponent (*) 0.85 (0.81) 0.64 (0.66) 0.79 (0.77) 

(*) The Hurst exponent, at the annual scale, has been estimated though the method of maximum likelihood (McLeod 817 
and Hipel 1978, Tyralis and Koutsoyiannis 2011). 818 
 819 

6.3 Results 820 

The main results of the simulation-optimization analyses are illustrated in Figures 7 and 821 

8, illustrating the storage-yield relationships for capacity factors 80 and 20%, 822 

respectively. At each graph we plot the maximized values of 99% reliable energy and the 823 

maximized mean annual profit function (19), with respect to storage ratio (i.e., reservoir 824 

capacity, 𝐾, divided by mean annual inflow, 𝑉a) and reservoir geometry, expressed in 825 

terms of generic shape parameter, κ. As expected, by setting the low capacity factor, i.e. 826 

CF = 20%, thus operating the power station for peak energy production, the expected 827 

profit increases with respect to the base energy scenarios (CF = 80%), while the 828 

differences in terms of maximized reliable energy are quite small.  829 
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Figure 7: Plots of maximized 99% reliable energy (left) and maximized profit as 830 

function of storage ratio and the shape parameter, κ, for capacity factor CF = 80% 831 

(upper panel: Achelous; middle panel: Evinos; lower panel: Boeoticos Kephisos). 832 
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Figure 8: Plots of maximized 99% reliable energy (left) and maximized profit as 833 

function of storage ratio and the shape parameter, κ, for capacity factor CF = 20% 834 

(upper panels: Achelous; middle panels: Evinos; lower panels: Boeoticos Kephisos). 835 
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Nevertheless, for all synthetic runoff sets and operation mode scenarios, common 836 

findings are the following: 837 

• The maximized 99% reliable energy, i.e. the objective function, and the control 838 

variable of the associated optimization problem, i.e. the target energy, are 839 

identical, thus confirming the preliminary findings of section 4.4. 840 

• The sole exception is the case of zero storage capacity, for which the derived 841 

reliable energy is systematically higher than the corresponding target. This 842 

outcome is reasonable, since due to the lack of regulation capacity, the target 843 

energy should be small enough, to avoid energy deficits that are due to low 844 

summer flows. In particular, in the case of Boeoticos Kephisos, considered as 845 

representative of a quite dry flow regime, the target energy is close to zero.  846 

• In general, the maximization of 99% reliable energy and the maximization of mean 847 

annual profit are ensured for the same target power value, which is also in line 848 

with the conclusions drawn in section 4.4. Few and rather small differences only 849 

appear for relatively small storage capacities. This important finding allows for 850 

handling both metrics as equivalent of the reliable yield in hydroelectricity. 851 

Although the two metrics converge to the same optimal management policy, expressed 852 

in terms of target power production, the mean annual profit is less prone to statistical 853 

uncertainties induced by the sample size. As shown in most graphs, the empirically-854 

derived reliable energy curve is quite irregular, while the mean profit curve is smooth. In 855 

fact, the estimation of extreme probabilistic quantities, such as reliable energy, would 856 

require a much larger simulation horizon, in order to ensure satisfactory accuracy. On the 857 

other hand, the mean annual profit is much easier stabilized, given that it expresses a first 858 
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order moment. We remark that the statistical accuracy of simulation outputs is not only 859 

affected by the length of simulation but also by the long‐term persistence, which is key 860 

property of hydroclimatic processes (Koutsoyiannis and Montanari 2007). 861 

6.4 Reliable energy as function of reservoir storage and geometry 862 

As shown in Figures 7 and 8, the hydroelectric yield, either expressed by means of 99% 863 

reliable energy or in profit terms, can be approximated by a power-type function of 864 

storage ratio, 𝐾/𝑉a. By considering the first metric we get: 865 

 𝑒𝑎 = 𝜁 (
𝐾

𝑉a
)

𝜃

 (27) 

where parameters ζ and θ can be straightforwardly extracted via regression. 866 

Table 3: Fitting of eq. (27) to simulated data at three river sites, for CF = 80% 867 

Shape parameter, κ 
Achelous Evinos Boeoticos Kephisos 

ζ  θ ζ  θ ζ  θ 

0.350 21.524 0.383 16.163 0.399 2.088 0.329 

0.375 14.381 0.393 10.763 0.410 1.359 0.345 

0.400 10.657 0.409 7.936 0.418 0.982 0.362 

0.425 8.484 0.421 6.284 0.430 0.765 0.378 

0.450 7.105 0.434 5.266 0.440 0.625 0.395 

0.475 6.227 0.446 4.585 0.450 0.534 0.413 

0.500 5.612 0.459 4.134 0.461 0.473 0.428 

Correlation with κ -0.916 0.999 -0.916 0.992 -0.916 0.967 

 868 

In Table 3 we show the optimized values of ζ and θ for each site and for CF = 80%, against 869 

the seven storage-elevation scenarios, which are expressed in terms of shape parameter 870 

κ of the generalized storage function. Both quantities are highly correlated with κ. In 871 
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particular, ζ is a decreasing function of κ, while the exponent θ is almost perfectly 872 

approximated by a linear function of κ. Similar conclusions are extracted for CF = 20%. 873 

This interesting outcome triggered us to look for a fully generic relationship, expressing 874 

the maximized reliable energy as function of reservoir size and geometry, given in terms 875 

of storage ratio, 𝐾/ 𝑉a, and generic shape parameter, κ, respectively. After investigations, 876 

we concluded to the following expression: 877 

 𝑒𝛼 =
1

𝛽𝜅 − 𝛿
(

𝐾

𝑉a
)

𝜅

 (28) 

The optimized values of the two parameters of eq. (28) are given in Table 4. These are 878 

derived by minimizing the total square error between the simulated reliable energy data 879 

of Figure 7, and the theoretical relationship (28). In all cases the fitting is almost perfect, 880 

as illustrated in the example of Figure 9. Apparently, the two local parameters β and δ of 881 

eq. (28) are associated with the hydrological regime of each site of interest. For instance, 882 

both parameters are decreasing with mean annual runoff, while their ratio, 𝛿/𝛽, remains 883 

practically constant at all sites, i.e. 0.30. Obviously, our sample is too small to extract safe 884 

conclusions, which would require to solve the problem for many inflow data sets, with 885 

varying stochastic behavior, in order to investigate whether these parameters can be 886 

linked with summary hydroclimatic indices. We remark that similar regionalization 887 

attempts have been quite common for water supply reservoirs, by means of regression 888 

formulas explaining SRY on the basis of mean annual statistical characteristics of inflows, 889 

such as standard deviation and skewness (e.g. Koutsoyiannis 2005, McMahon et al. 890 

2007a). 891 
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  892 

Figure 9: Fitting of generalized relationship (28), illustrated with solid lines, to 893 

empirically-derived (simulated) reliable energy against storage ratio at Achelous, for 894 

three characteristic reservoir geometries.  895 

Table 4: Optimized parameters of the generalized relationship (28) for the three river sites 896 

Parameter Achelous Evinos Boeoticos Kephisos 

β 0.955 1.316 12.652 

δ 0.289 0.401 3.931 

 897 

7 Summary and discussion 898 

While SRY analysis is a well-established tool for reservoir sizing, its applicability has been 899 

limited to systems serving consumptive water uses. Actually, a similar approach for the 900 

preliminary design of hydropower systems is missing, which is due, to our viewpoint, to 901 

two key reasons. 902 

First, the crucial concepts of yield and reliability are not well-defined in hydroelectricity, 903 

where the water demand is dictated by the energy demand and thus the yield must be 904 
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determined in terms of energy production. Since such systems allow for generating 905 

excess energy with respect to the corresponding demand, by passing surplus storage 906 

from the turbines, the yield can be considered as a two-fold component, i.e. a target rate 907 

to be guaranteed with minimal risk and the excess production above this value. These are 908 

referred to as reliable and secondary energy, respectively. In fact, reliable energy is a 909 

probabilistic quantity, which can be theoretically derived from the distribution function 910 

of power production data. Empirically, this can be easily determined by means of an 911 

extreme quantile of the energy-probability curve, e.g. the energy produced at least 99% 912 

of time. In this respect, reliable energy is the equivalent of the reliable yield ensured from 913 

water supply reservoirs. 914 

The second obstacle in establishing SRY relationships for hydroelectric reservoirs is 915 

rather technical, since it originates from the inherent complexities of the underlying 916 

processes, mainly the dependence on local geometry and the nonlinearities induced by 917 

the storage-head-energy transformations. Our research indicates that the site-specific 918 

properties of a hydroelectric system can be effectively parameterized even through a 919 

single parameter, namely the shape parameter of the storage-elevation relationship. 920 

After also employing few reasonable simplifications, which are yet acceptable for a 921 

preliminary study, the water balance dynamics of a hydroelectric reservoir that is 922 

expected to operate under a specific capacity factor, are well approximated by using only 923 

two input properties, i.e. the storage capacity and the shape parameter, both 924 

characteristics of reservoir geometry.  925 

In this respect, we demonstrated that the equivalent “storage-reliability-yield” problem 926 

for hydroelectric reservoirs involves three interdependent quantities, in addition to 927 
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reliability per se, namely the storage capacity, the geometry, and the reliable energy. For 928 

this problem, we proposed a robust stochastic simulation-optimization framework that 929 

allows for employing comprehensive screening analyses of the hydroelectric yield, on the 930 

basis of monthly runoff series. Our pilot investigations at three river sites in Greece 931 

exhibiting different hydrological regime indicates that it is possible to extract generic 932 

empirical formulae that link reservoir storage, topography and reliable energy with 933 

summary runoff statistics. 934 

In our analyses we also demonstrate that the maximization of this yield is achieved by 935 

using either the reliable energy per se or a quasi-economic (profit) function, which 936 

accounts for sharing between the expected values of reliable energy, secondary energy 937 

and energy deficits. Both approaches converge to a practically identical target energy 938 

value, which is the sole control variable of the underlying optimization problem. 939 

However, the profit function seems much less sensitive against sample uncertainties, 940 

since it is expressed in terms of first order moments, while the reliable energy function 941 

requires the empirical estimation of an extreme statistical metric, i.e. the energy 942 

produced with 99% reliability. Nevertheless, this also reveals the irreplaceable role of the 943 

stochastic approach, which allows, among others, for handling sampling uncertainties 944 

that are unavoidable when using historical runoff data in simulations. 945 

There remain several open questions to be addressed in next research steps. First, the 946 

generalized storage-elevation function (23), describing the reservoir geometry in terms 947 

of a generic shape parameter 𝜅, should be fitted to a much larger sample of reservoirs, in 948 

order to better identify the empirical relationship (24). This will allow for employing this 949 

formula not only in the context of theoretical simulation analyses (i.e., for sampling 950 
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different reservoir storages), but also for preliminary design purposes in areas with 951 

limited topographic data. 952 

Apparently, the whole framework must be also tested with an extended set of streamflow 953 

properties, in order to validate the theoretical relationship (28). Another useful task is 954 

the evaluation of the simulation results with actual reservoir data and the outcomes from 955 

real-world design studies. A final research option is the assessment of the hydroelectric 956 

yield with respect to the stochastic structure of the underlying runoff process. This will 957 

also allow for outlining the specifications of the synthetic time series generator, which is 958 

key component of our framework. Our running research outcomes for this important 959 

issue will be reported in due course. 960 
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