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Motivation: recent advances in ombrian curves
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Recent work (Koutsoyiannis, 2021) has advanced these curves 
to theoretically-consistent stochastic models of rainfall 
intensity (ombrian models) extending their applicability to 
the full range of available scales, e.g. from minutes to decades. 

See: Chapter 8: Rainfall extremes and ombrian modelling in 
Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, 
ISBN: 978-618-85370-0-2, 333 pages, Kallipos, Athens, 2021. 
http://www.itia.ntua.gr/en/docinfo/2000/

Curves of rainfall intensity at various scales and for various return periods, else known
as ombrian (or IDF) curves, are central design tools in hydrology and engineering.

 Construction of such curves often relies heavily on empirical or semi-empirical
approaches, which hinder their applicability over large scales, and preclude
simulation.

http://www.itia.ntua.gr/en/docinfo/2000/


Implementing the framework in Python environment

3

T. Iliopoulou; D. Koutsoyiannis

 We develop an open-source python toolbox (PythOm) implementing these advances in a 
straightforward and user-friendly manner. 

 The toolbox also employs advanced estimation procedures from Koutsoyiannis (2021) 
including:
 sophisticated statistical fitting methods for extremes (K-moments), 
 handling of bias induced by temporal dependence, and 
 optional blending of daily-scale data to reduce uncertainty of sub-daily records. 

 The end result is the parameterization of the ombrian model and the graphical 
representation of rainfall intensity for any range of scales (supported by the data) and 
return periods.



From ombrian curves to ombrian models

Typical ombrian curves are advanced to stochastic models of the all-scale rainfall 
intensity, i.e. ombrian models. The ombrian model offers: 

 mathematical and physical consistency and coverage of all time scales, from zero to 
infinity;

 provision for estimation bias due to time dependence;

 good behaviour on both very fine time scales and very large time scales, whereas 
conventional curves have a limited range of applicability;

 simultaneous treatment and preservation of the process’s second- and higher-order 
properties along with the probability dry/wet.

 capability to perform direct simulation of rainfall intensity.
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 These advances can be achieved on the basis of simple stochastic characterizations of 
the parent process, namely of its joint second-order and marginal higher-order 
properties.



Overview of modelling framework (I)
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A theoretically-consistent ombrian model should ideally satisfy the following requirements
(Koutsoyiannis, 2021):

 As in every stochastic model, the first and second order properties of the process of

interest, i.e. the temporal average of rainfall intensity 𝑥(𝑘)over any time scale 𝑘, should be

preserved.

 The process’s asymptotic variance at 𝑘 → 0 should be finite; the contrary would imply that
the process requires infinite energy to materialize which is absurd for physical processes.
In addition, the process’s asymptotic variance at 𝑘→∞ should be zero, in order for the
process to be ergodic.

 The model should deal with the intermittence of rainfall occurrences at fine time scales,

describing both the probability dry 𝑃0
(𝑘)

≔ 𝑃{𝑥(𝑘) = 0}, and the probability wet, 𝑃1
(𝑘)

≔

𝐹
(𝑘)
(0) = 1 − 𝑃0

(𝑘)
for any time scale k, including for 𝑘→0.

 The principle modelling focus is on rainfall maxima, and hence it is important to preserve
the higher-order properties of the process.

 The tail index of the rainfall intensity distribution should be constant for all time scales.



Overview of modelling framework (II)

4

T. Iliopoulou; D. Koutsoyiannis

 At small time scales the rainfall intensity follows a mixed type distribution, with a discrete
part at the origin described by the probability dry, and a continuous part following the
Pareto distribution with a constant tail index 𝜉 and a state scale parameter 𝜆(𝑘) as a
function of the timescale:

 At larger time-scales the rainfall intensity follows the Pareto-Burr-Feller (PBF)
distribution with discontinuity at zero, characterized by an extra parameter 𝜁(𝑘) as a
function of the timescale:

𝐹 𝑘 𝑥 = 1 − 𝑃1
𝑘

1 + 𝜉
𝑥

)𝜆(𝑘

−  1 𝜉

𝐹 𝑘 𝑥 = 1 − 𝑃1
𝑘

1 + 𝜉
𝑥

𝜆 𝑘

)𝜁(𝑘 −  1 𝜉

 The Pareto distribution constitutes an optimal choice for small time scales due to its 
simplicity and explicit relationship between the time-averaged intensity and return 
period, and  support by worldwide empirical evidence.

 The PBF distribution is chosen for large scales because, contrary to the Pareto, it 
becomes bell-shaped for increasing 𝜁(𝑘) which is consistent to the behaviour of 
the rainfall intensity at large time scales (cf. the central limit theorem).



Ombrian model formulation
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All-scale ombrian model

Small scales (Pareto)
𝑘 ≤ 𝑘∗ ≪ 𝑘max

∗
Large scales (PBF)

𝑘 ≥ 𝑘∗

𝑥 𝑓𝑜𝑟
𝜉 > 0

𝜆(𝑘)
(𝑃1

(𝑘)
𝑇  𝑘)𝜉−1

𝜉
𝜆(𝑘)

(𝑃1
(𝑘)

𝑇  𝑘)𝜉−1

𝜉

1/𝜁(𝑘)

𝑥 𝑓𝑜𝑟
𝜉 = 0

𝜆 𝑘 ln(𝑃1
(𝑘)
𝑇  𝑘) 𝜆 𝑘 ln  𝑃1

𝑘
𝑇 𝑘

1/𝜁(𝑘)

Properties

mean Ε[𝑥(𝑘)] 𝜇

climacogram 𝛾 𝑘
𝜆1 1 + (  𝑘 𝛼)2𝑀

𝐻−1
𝑀

or 𝜆1 1 +  𝑘 𝛼 2𝛨−2 + 𝜆2 1 − 1 +  𝑎 𝑘 2𝛨−2

Probability wet 
across scale

𝑃1
(𝑘)

1 − 𝜉

 1 2 − 𝜉

𝜇2

𝛾 𝑘 + 𝜇2 1 − (1 − 𝑃1
(𝑘∗)

)
𝑘
𝑘∗

𝜃

Inverse of lower
tail index 
function

1

𝜁 𝑘
1 (1 − 2𝜉) 𝑃1

(𝑘) 𝛾(𝑘) + 𝜇2

𝜇2
− 1

Inverse of State-
scale function

1

𝜆 𝑘

𝑃1
(k)

𝜇(1 − 𝜉)

𝑃1
𝑘

𝜇
1 +

1

(1 − 𝜉)(𝜁 𝑘 )2
−

1

(𝜁 𝑘 ) 2



Step I: Identification of the second-order dependence structure
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with two alternative 4-parameter models for the climacogram structure:

 Example Python implementation:

where 𝛸 𝑘 is the process 𝑥 𝑡 aggregated at timescale 𝑘.

𝛾 𝑘 = 𝜆1 1 +  𝑘 𝛼 2𝑀
𝐻−1
𝑀

𝛾 𝑘 ≔ var
𝑋 𝑘

𝑘

 Using the climacogram stochastic tool:

 Filtered HK Cauchy (FHK-C) type:

 Filtered HK Cauchy-Dagum (FHK-CD) 
type for a rough and persistent process, 
and for the special case 𝑀 = 1 − 𝐻:

𝛾 𝑘 = 𝜆1 1 +
𝑘

𝛼

2𝐻−2

+ 𝜆2 1 − 1 +
𝛼

𝑘

2𝐻−2

 More details in Section 3.13 (SoE)

where 𝛼 and 𝜆1, 𝜆2 are scale parameters, with dimensions [𝑡] and[𝑥2], 𝐻 is the so-called Hurst 
parameter ranging in the interval (0,1) and 𝑀 is a dimensionless parameter which controls the 
local scaling of the process (fractal behaviour). 



…

Step II: Identification of the probability wet/dry structure

6

T. Iliopoulou; D. Koutsoyiannis

ln 𝑃0
𝑘 = ln𝑃0

𝑘∗  𝑘 𝑘∗ 𝜃 , 𝑘 ≥ 𝑘∗

where 𝑘∗ is the transition time scale from Pareto to PBF distribution, for which

𝑃0
𝑘∗

> 0 𝜁 𝑘∗ = 1

 The transition time scale 𝑘∗ is chosen at a point where the deviation of probability 
dry derived from the Pareto model from the empirical one is marginally acceptable.

 Default value of 24 h.

 Example Python implementation:

 Using a maximum entropy structure for the probability dry (Koutsoyiannis, 2006):

and , and θ is a parameter (0 ≤ 𝜃 ≤ 1).



Step III: Identification of high-order moments
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 𝐾𝑝
′ = 

𝑖=1

𝑛

𝑏𝑖𝑛𝑝 𝑥 𝑖:𝑛

𝑏𝑖𝑛𝑝 =  

0, 𝑖 < 𝑝

𝑝

𝑛

Γ 𝑛 − 𝑝 + 1

Γ 𝑛

Γ 𝑖

Γ 𝑖 − 𝑝 + 1
, 𝑖 ≥ 𝑝 ≥ 0

where 𝑥 𝑖:𝑛 is the ith element of a sample of 𝑥 of size 𝑛, sorted in ascending order and p is the 

moment order which can be any positive number ≤ 𝑛 (usually, but not necessarily, integer). 

 Example Python implementation:

 Using knowable moments (K-moments; Koutsoyiannis, 2019) for empirical values of 
intensities x:

 More details in Section 6.9 (SoE)



…

Step IV: Assigning return periods  
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𝛬1 = 1 − 𝜉
−
1
𝜉 𝛬∞ = )Γ(1 − 𝜉

1
𝜉

𝛬1 = 1 +
B

1
𝜁𝜉

−
1
𝜁 ,
1
𝜁

𝜁

𝜁

1
𝜁𝜉

𝑇  𝐾𝑝
′ =

𝑘

𝑃1
𝑘
𝑝′𝛬𝑝′ ≈

𝑘

𝑃1
𝑘

𝛬∞𝑝
′ + 𝛬1 − 𝛬∞

 Example Python implementation:

 Based on K-moments:

𝛬∞ = )Γ(1 − 𝜉
1
𝜉

 For Pareto 
scales

 For PBF 
scales

 More details in Section 6.14 (SoE)

where 𝑝′ the bias corrected moment order accounting for time dependence. 



…

Step V: Calibration
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𝐸𝑥 ≔ 

𝑘

1

)𝛾(𝑘

1

𝑛𝑘
 

𝑇

𝑤𝑥 𝑇 )𝑥(𝑘, 𝑇) −  𝑥(𝑘, 𝑇
2

Parameter Meaning of parameter

μ Mean intensity

𝜆1, 𝜆2 Intensity scale parameters

𝛼 Time scale parameter

M Fractal (smoothness) parameter

H Hurst parameter

θ Exponent of the expression of probability dry 

ξ Tail index

 Example Python implementation:

 Minimizing an error metric focusing on distribution quantiles 𝒙(𝒌, 𝑻) for all 
available time scales k and a series of return periods 𝑻 :

Minimize using 
SciPy’s global 
optimizers
(e.g. differential 
evolution)

where 𝑤𝑥 𝑇 is a weighting factor as a function of 
the return period T, and 𝑛𝑘 is the number of 𝑥
values at time scale k.



Application: 1 h to 16 y rainfall in Bologna
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Using:
 Hourly series (1990-2013)
 Daily timeseries of Bologna 

(1813-2018) (Koutsoyiannis, 
2021)

o Climacogram type: CD
o Transition time-scale: 96 h

Parameters

μ 0.0746

𝜆1 0.0011

𝜆2 2.1986

𝛼 8.4341

H 0.95

θ 1

ξ 0.11067

 More details in Digression 8.E (SoE)

Parameterization of the model and visualization of the results



Overview of toolbox structure
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Package dependencies: NumPy, Pandas, SciPy, Matplotlib, Seaborn

Use full rainfall series at a 
sub-daily time-scale &

optionally blend with other 
daily series

Choose range of time-scales for the 
calibration of the ombrian model, e.g. from 

the minimum available to years

Empirical climacogram 

Empirical probability wet vs 
scale

Empirical K-moments

Choose climacogram model & obtain first 
guess of climacogram parameters

Choose transition time-scale 
from Pareto to PBF distribution

Minimize error between empirical K-moments and model quantiles

Parameters of the ombrian model

User choicesInput data

End result

Toolbox functions



Summary

 Advancing empirically-derived ombrian curves to theoretically-consistent ombrian models 

allows the user to address bias and estimation uncertainty, extrapolate results to longer 

timescales and perform simulation for complex hydrological systems.

 The PythOm toolbox implements these advances in an easy and nearly-automated manner, 

requiring minimal choices by the user. 

 The toolbox is currently in beta testing and will be released soon alongside user manual at 

https://www.itia.ntua.gr/en/docinfo/2111/. 
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