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Abstract. All required equations for quantifying the presence of water vapour in the atmosphere are 

gathered in one page. They are physically consistent and accurate, and mathematically easy to use for 

meteorological and hydrological applications. Physical and mathematical details are given in two 

Appendices. * 

1 Nomenclature 

Variables Constants 

T: temperature (K) 

𝑇d: dew point (K) 

e: saturation water vapour pressure (hPa) 

𝑒a: actual water vapour pressure (hPa) 

p: air pressure (hPa) 

U: relative humidity (-)  

q: specific humidity (-) 

𝑊−1(𝑧): Lambert W function of z (non-

principal real branch; see Appendix B) 

𝑇0 = 273.16 K: temperature of the triple 

point of water 

𝑒0 = 6.11657 hPa: vapour pressure of the 

triple point of water 

ε = 0.622: ratio of the molecular mass of 

water to that of the mixture of gases in 

the dry air  

𝑎1 = 24.921 

𝑎2 = 5.06 

2 Relationship of temperature and saturation water vapour pressure 
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Notes: (a) See Koutsoyiannis (2012, 2014) for justification and Appendix A for a summary. (b) The same 

equations hold true if we substitute (𝑇d, 𝑒a) for (𝑇, 𝑒). 

3 Relationship of relative humidity and dew point 
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4 Relationship of specific humidity and relative humidity 

𝑞 =
𝜀𝑒a

𝑝 − (1 − 𝜀)𝑒a
=

𝜀𝑈𝑒

𝑝 − (1 − 𝜀)𝑈𝑒
 𝑈 =

𝑝

𝑒
 

𝑞

𝜀 + (1 − 𝜀)𝑞
 

Note: While relative humidity is the ratio of vapour pressures, specific humidity is the ratio of masses 
or densities, i.e. the water vapour density 𝜌v to the total air density 𝜌d + 𝜌v (𝜌d is the dry air density).  

 
* All equations are physically and dimensionally consistent and thus can be used with units other than hPa. Note 
though that they will not work if we change K to °C. If you find these equations useful and apply them, please cite 
Koutsoyiannis (2012) or (2014). If you have suggestions please send an email.  

mailto:dk@itia.ntua.gr
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Appendix A: Physical background 

The Clausius-Clapeyron equation describes the equilibrium law of the liquid and gaseous phase 

of water. Koutsoyiannis (2014) has highlighted the probabilistic nature of the law deriving it 

purely by maximizing probabilistic entropy, i.e. uncertainty. In particular, the law was derived 

by studying a single molecule (Figure A1) and maximizing the combined uncertainty of its state 

related to:  

(a) its phase (whether gaseous, denoted as A, or liquid, denoted as B); 

(b) its position in space; and 

(c) its kinetic state, i.e., its velocity and other coordinates corresponding to its degrees of 

freedom and making up its thermal energy.  

 
Figure A1 Explanatory sketch indicating basic quantities involved in the equilibrium of the water 

vapour with liquid water, with zoom on a single molecule which “tries to hide itself” by maximizing the 

combined uncertainty related to its phase (being either gaseous or liquid with probabilities πΑ and πB, 

respectively), position and kinetic state. 

 The partial entropies of the two phases, i.e., the entropies conditional on the particle being 

in the gaseous (A) or liquid (B) phase, are: 

𝜑A = 𝑐A + (𝛽A/2) ln 𝜀A + ln 𝑉A , 𝜑B = 𝑐B + (𝛽B/2) ln 𝜀B + ln 𝑉B (A1) 

with 𝑐𝑖 (𝑖 = A, B) denoting a constant (incorporating several physical and mathematical 

constants), 𝛽𝑖 the degrees of freedom of a water molecule, 𝜀𝑖 the (thermal) energy of the water 

molecule and 𝑉𝑖 the volume available for the motion of the water molecule in the specified 

phase. As the water molecule has a 3-dimensional (not linear) structure, the rotational energy 

is distributed into three directions, so that the total number of degrees of freedom 

(translational and rotational) is 𝛽A = 6. The number of degrees of freedom in the liquid phase 

is greater than 6 because of the “social behaviour” of water molecules. Specifically, in addition 

to the translational and rotational degrees of freedom of individual molecules, there are local 

clusters with low energy vibrational modes that can be thermally excited. The average number 
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of degrees of freedom per molecule (individual and collective involving more than one water 

molecules) is very high, 𝛽B = 18.  

 The total entropy is: 

𝜑 = 𝜋Α𝜑A + 𝜋Β𝜑B + 𝜑𝜋 (A2) 

where 𝜋𝑖  is the probability that the molecule is at phase 𝑖, with corresponding entropy:  

𝜑𝜋 ≔ −𝜋Α ln 𝜋Α − 𝜋B ln 𝜋B (A3) 

Thus, the total entropy can be written as: 

𝜑 = 𝜋Α(𝜑A − ln 𝜋Α) + 𝜋Β(𝜑A − ln 𝜋Α) (A4) 

 The two phases are in open interaction and the constraints are: 

𝜋Α + 𝜋B = 1, 𝜋Α𝜀Α + 𝜋Α(𝜀Α − 𝜉) = 𝜀 (A5) 

where ξ is the amount of energy required for a molecule to move from the liquid to gaseous 

phase (i.e. to break its bonds with other molecules, the phase change energy). 

 We define the natural temperature, θ, which has units of energy (joules, rather than 

kelvins), in accordance to the probabilistic principle that entropy is a dimensionless quantity 

φ, as: 
1

𝜃
≔

𝜕𝜑

𝜕𝜀
 (A6) 

 Denoting e the partial pressure of the 𝑁𝐴 water molecules being in the gaseous phase and 

maximizing the entropy in that phase, we obtain the law of ideal gases in the form 

(Koutsoyiannis, 2014a): 

𝑒 =
𝑁A𝜃

𝑉A
 =

𝜃

𝑣
⇔ 𝑒𝑣 = 𝜃 (A7) 

where 𝑣 ≔ 𝑉A/𝑁A. 

 Now, by maximizing the combined entropy of the two phases, as given in equation (A4), 

and converting natural temperature to the conventional absolute temperature (in kelvins) we 

find the basic equation (left-hand side of the table in section 2) and after some fitting 

adjustments we find the constants in section 1. Detailed derivations are given in Koutsoyiannis 

(2014) and a summary in Koutsoyiannis (2021). The good agreement of the derived equation 

with experimental data is shown in Figure A2. 

 All other equations of sections 1-4 are readily derived from the basic equation by typical 

algebraic manipulations. The inversion of the basic equation is made through the Lambert W 

function which is described in Appendix B. 

Appendix B: The Lambert W function 

The Lambert W function (or ω-function) is defined to be the inverse of the function 𝑧 = 𝑓(𝑤) ≔

𝑤e𝑤 . This function denoted as 𝑊𝑘(𝑧) ≔ 𝑓−1(𝑧), which thus satisfies 𝑊𝑘(𝑧)e𝑊𝑘(𝑧) = 𝑧, is a 

multivalued function on the complex plane if the integer k is not specified, or single valued if k 

is specified. For real z and −1/e ≤ 𝑧 < 0, there are two possible real values of 𝑊𝑘(𝑧), denoted 

as 𝑊0(𝑧), and 𝑊−1(𝑧). If 𝑧 ≥ 0, there is a single real value 𝑊0(𝑧). The real-valued branch 𝑊0(𝑧) 

of 𝑊𝑘(𝑧) satisfying 𝑊0(𝑧) ≥ −1 is called the principal branch of the W function, and the other 

real-valued branch, 𝑊−1(𝑧), which satisfies 𝑊−1(𝑧) ≤ −1, is the non-principal real branch.  
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Figure A2 (upper) Comparison of saturation vapour pressure obtained by the proposed 

equation and by a standard equation of the literature, namely, 𝑒 = 𝑒0 exp(19.84(1 − 𝑇0/𝑇)). 

(lower) Comparison of relative differences of the saturation vapour pressure obtained by the 

proposed and the standard equations with accurate measurement data of different origins, as 

indicated in the legend and detailed in Koutsoyiannis (2012).  

 The function  𝑊𝑘(𝑧) is available for direct use in most computational environments. In 

Mathematica and Maple, which perform both symbolic and numerical calculations, the function 

is named ProductLog and LambertW, respectively. With the latter name, it is also available in 
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R*, MATLAB†, Python‡, etc., while several functions implementing it are available online for 

Excel§ and LibreOffice**. 

Here we deal with the non-principal real branch  𝑊−1(𝑧) only. Approximations for this, 

even for one-shot evaluation, can be found in Chapeau-Blondeau and Monir (2002), Barry et al. 

(2004) and Chatzigeorgiou (2013). 

For values of z that are relevant to our particular problem, in addition to the 

approximations found in literature, we propose the following, which is very accurate and fast:  

−𝑊−1(𝑧) = 1.285(− ln(−𝑧))0.933 + 0.872(ln(− ln(−𝑧)))0.612    (B1) 

The relative error is negligible, smaller than 3 × 10−5 for the values relevant to our calculations, 

i.e., those corresponding to the range of temperature shown in Figure A2 (for which −0.07 ≤

𝑧 ≤ −0.015). Notice the minus sign in −𝑊−1(𝑧), which makes this quantity positive. 

References 

Barry, D.A., Li, L., and Jeng, D.S., 2004. Comments on “Numerical evaluation of the Lambert W function and 

application to generation of generalized Gaussian noise with exponent ½”. IEEE Transactions on Signal 

Processing, 52 (5), 1456-1457. 

Chapeau-Blondeau, F. and Monir, A., 2002. Numerical evaluation of the Lambert W function and application to 

generation of generalized Gaussian noise with exponent 1/2. IEEE Transactions on Signal Processing, 50 (9), 

2160-2165. 

Chatzigeorgiou, I., 2013. Bounds on the Lambert function and their application to the outage analysis of user 

cooperation. IEEE Communications Letters, 17 (8), 1505-1508. 

Koutsoyiannis, D., 2012. Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled 

with practice, European Journal of Physics, 33 (2), 295–305, doi: 10.1088/0143-0807/33/2/295 

(http://www.itia.ntua.gr/1184/).  

Koutsoyiannis, D., 2014. Entropy: from thermodynamics to hydrology, Entropy, 16 (3), 1287–1314, doi: 

10.3390/e16031287 (http://www.itia.ntua.gr/1432/). 

Koutsoyiannis, D., 2021. Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, ISBN: 978-618-85370-0-2, 333 

pages, Kallipos, Athens (http://www.itia.ntua.gr/2000/). 

 

 

© Author 2021.  

This work is distributed under the Creative Commons Attribution 4.0 License. 

 

 
* https://cran.r-project.org/web/packages/LambertW/index.html  
† https://www.mathworks.com/help/symbolic/lambertw.html  
‡ https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html  
§ https://www.vbforums.com/attachment.php?attachmentid=89337&d=1341009088 
** https://gist.github.com/m93a/a0199c4f40b43bb8116810daa46dd92d  

http://www.itia.ntua.gr/1184/
http://www.itia.ntua.gr/1432/
http://www.itia.ntua.gr/2000/
https://cran.r-project.org/web/packages/LambertW/index.html
https://www.mathworks.com/help/symbolic/lambertw.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html
https://www.vbforums.com/attachment.php?attachmentid=89337&d=1341009088
https://gist.github.com/m93a/a0199c4f40b43bb8116810daa46dd92d

	1 Nomenclature
	2 Relationship of temperature and saturation water vapour pressure
	3 Relationship of relative humidity and dew point
	4 Relationship of specific humidity and relative humidity
	Appendix A: Physical background
	Appendix B: The Lambert W function
	References

