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ITpoAoyog

2a Byeig otov mnyauo yia tnv 10axn,
va euyeoal va ‘vai Jaxkpug o Opolog,
YEUATOS MEPLITETELES, YEUATOS YVWOELS. ...

K.II. Kabapng, «l8axn»

'Eva talidt yepdto yveoelg, mIpetoyvepeg epmelpleg Kar Iolkida Suvatd
ouvaroOnpata nav Kat to 61k6 pou tagiol otn ommoudn tng emotnpng tou IloAvtikou
Mnxavikou, oto EOviko MetooBro IToAutexvelo.

'Eva taidv oe diugvag mpwroidwusvoug, 6miog Aeel Kav o mmounTng.

Kav twpa mou £@Baca otov mpoopiouo pou, viwbe va mAnpuupide oo
LKavorroinon xat Qavpaopo, mlovora yia ooa kgpdioa orov Hpopo, eUYVOUOV yid TO
wpato talion.

*kkkdk

Kavovtag pra avaokormon oe autd ta mevee Xpovid T@V oI1oudmv pou, atcfavopat
KOG IETUXA VA KATAKTII 06 TOUS APXLKOUE LOU 0TOX0UG. LUXVa avaloyilopal meg 100g
KAl va toug {emepaod...

Aev eXVO IOE KATA TNV MIPOTH HOU £Oi0KeWn 0TnVv 10tooeAiba tng XXoAng, Atyo
HETA TNV AVAKOLV®OI] TV AIOTEALOUATOV TOV EL0AY®YLKOV ££eTA0LROV, £VIRNOa Jia
exwprotn €A&n yuwa tnv katevbuvon tou YOpaudikou Mnxavikou, Aeg¢ xai 1tav
@Tiaypevi yua péva. Ku otav apxioa va evipu@e og autTilV, ©¢ (QOLTITPLA HAL0V
PATOPEVRV OAOKAA®V, TOTe pe ayylwle otnv wuxn o0oo kapia dAAn. Taiprae Aeg
IIEPLOCOTEPO A0 TLg AAAeg pe eKelvn TNV, amo mawdl, aBepdrreutn) pou ayarmn yua Tt
@uon.

Oewpn 1TOg unnpda TuxXepr), YAt 0ta IEVie XpOVid TV OIIoUS®V HOoU YVoplod
avOpeIIoUg MOU IIoteyayv o Peva KAt otddnkav apoyotl SimmAa pou oe oTiypeg Xapdag
Ha KAl ayeviag, mepa KAl Iave armd t1) oupBoAr Toug 0Ttnv «KOW®VIK» 10U HE TOo
YVOOTIKO AVTIKELPEVO KAl TOV £@OOLa0I0 110U He 0TEPEES EMOTNIOVIKES Baoeig.

O k. Avbpgag Euotpatiadng, o mpotog xabnyntng tng oxXoAng mou Siekpive v
QYAQIn pou yluo TO eIIAyyeApa Kol mioteye OTig LKavoTnTeg pou, pe evetade otnv
EILOTNHOVLKI] JOU OlKOoyevela, Tng omoiag ta ueAn ouvoéovtalr pe OGeopoug
aAAndootnpidng kat mveupa ouvepyaoiag. Madl tou meépaoca to peyadutepo peEPog Tou
7aé1d10U PO, TO OIO010 YEUL0e OXU POVO He TLg ITAPNIOAAES EMLOTILOVIKES TOU YVROELS
addd xav pe tig afieg mou appoder va xapaktnpidouv evav emotnpova. O 1d1og
otaOnke 6imAa pou oe kaBe armmopia, SuokoAia Kat IpoBAnpaTLopo, 1000 ®g Kadnyntng
pou, kaB' 0An tn Sudpkela TOV omoudwv 1ou, 000 Kal ¢ emiBALIIOV KaBnyntng tng
SumAwpatiking pou epyaociag. I'ia tnv kaboprotikry oupBolAr tou og 0An tnv mopeia
toU 7a1O10U TOV £UXaPLOTR PEOA A0 TNV WYUXI) HoU.

I'a tn omoubdaia umootnplwn oTnV epeuvd Hou, KATA TNV €KIOVNOI TNng
SumAwpatiking pou, arobavopar Babiud tnv avaykn va eK@paom Tig eLALKPLVELS 110U



guxaplotieg Kal otoug kadnynteg k. Anunten Koutooyiavvn kat k. Niko Mapdoon,
peAn tng tptpuedoug MLTPOIG.

Xapn otn BonBewa, emotnpovikny kav ndikn, tng vmoyneuag o6p. Tdwptdivag
Yaxkr, tou 6p. ['dvvn Tooukadd xat tou &p. Ilavayiwtny Kooowepn, n ¢peuva pou
yia T OUIAQUATLKI] HOU £pyacia Ipaypatornoundnke pe peyaAutepn UKOoAla Kat
evolagepov. KaBevag toug amotedel mpoTUIIo yia peva Kal Xaipopal oAU TOO0 10U
OUVEPYAOTNKA EIILOTNHOVIKA padl Toug 000 Kal IIOU TOUC YVROPLod g avOpamoug. Ao
KapOldg ToUg eUXapLoTw.

Tov vmownglo 6p. Arovuon Nikolomoudo Kat tov epeuvntn Zmmupo Toattadro,
£ITLOTE EUXAPLOT®, Yid TNV Ipobupia Toug va e 51eUK0AUVOoUV, OII0TE Toug To {1)TNHod,
Ha KAl IIoU £€Kavayv 1o opop@a ta dtadeippatd pou amo to dvabBaopa....

Tnv olkoy£veld pou, Toug yoveig Hou Kat ta adep@la pou, yua tnyv, pe Kabe tporo,
otnpiin oto zadidl Kav tnv eud8xO1 Tou 0TOX0U, 0OAOWUXa euXaplotw. Ooeg GuokoAieg
KAl av IPOEKUWAV 1)TAV IIAVTA IIAPOVTEG.

*kkkkk

Telog, OeAw va avagepbo og £vav ard Toug mo onuavtikoug avipomoug tng {ong
pou, mou pe mepreBadde pe moAArn TpuEepOTNTA KAl IILOTEUE O Peva KAl 0Tl
£ITLAOY£¢ 10U, OTOV €K U1 TPOE IIAIIOU HOU.

O mammoug eviwbe oAU meprj@avog mou Oa yivopouv pnxavikog. 'Etol, eKtog amrd
TO VO HOU YPA@PEL KAl VA HOU A@PLEPWVEL TIOUHATA, OUYKEVTPOVE HAVIOOKOE OII0L0
apBpo epnuepibag eme@te ota XEPLA TOU KAl ava@epotav otoug YOpaulikoug
Mnxavikoug!

[Tammmoy pou, {epw OtL pe BAemelg amo ekel wnla kat pe kapapovelrg. I1oco
nepn@avog Kar yeAaotog Ba eioar amoye...

Xtnv Koptiva pou

Meg otnv kapdia pouv Boiokeoal
Ozlw va to katéxerg

va ue Quuaocar takTika

Kair pulaxto va u’ gxerg

Kai otav Karou {opileoal

{njta pouv tnv euxy) Uou
Kai Ba otnv otédve mavrote

uéoa am’ tnv yuxn Uou.

K.M. , namrmouvg



Abstract

Motivated by the challenges induced by the so-called Target Model and the
associated changes to the current structure of the energy market, we revisit two
different aspects regarding the everyday management of Small Hydropower Plants
(SHPPs) without storage capacity. The first focuses on determining an optimal
operational rule for a given turbine system, while the second confronts the problem
of day-ahead prediction of energy by looking for a credible forecasting model with
minimal data requirements and little complexity. The task of establishing an
efficient operational policy is addressed through extended theoretical analysis, in
which we investigate alternative configurations of potential turbine combinations.
In order to obtain generic conclusions, we provide a dimensionless formulation of
the turbine mixing and the power production procedure. The proposed operation
policy, next referred to as synergetic, is compared by using as reference a simpler
operation rule, the so-called hierarchical. On the other hand, for the day-ahead
energy forecasting problem we use as example a typical run-of-river SHPP, in the
upper course of river Achelous ,Western Greece. Based on daily hydrological data
for a 39-year period, we test alternative forecasting schemes of varying complexity
(from regression-based to machine learning) that take advantage of different levels
of information. In this respect, we investigate whether it is preferable to use as
predictor the known energy production of previous days, or to predict the day-
ahead inflows and next estimate the resulting energy production via simulation.
Our analyses indicate that the second approach becomes -clearly more
advantageous when the expert’s knowledge about both the hydrological regime and
the technical characteristics of the SHPP is incorporated within the model training
procedure. Beyond these, we also focus on the predictive uncertainty that
characterize such forecasts, with overarching objective to move beyond the
standard, yet risky, point forecasting methods, providing a single expected value
of power production. Finally, we discuss the use of the proposed forecasting
procedure under uncertainty in the real-world electricity market.



2 UVOIITULKI) IIepIANWN

'Exovtag og yvopova tig paybaieg e§eAileig mou epepe 1 £10060g Tou vEou Beopikou
m\aioiou Aevtoupylag (Target Model) oto Evpomnaiko Xpnpatiwotnplro Evepyevag, oe
ouvduaopd pe v évraln tev Mikpav Yopondextpikov Epyov (MYHE) oe auto,
emAefajie, HEO® TNG ITAPAKAT® £pyaciag, va avadntnooupe tpomoug Bedtiotomnoinong
Tng mapayopevng evepyelag mou vmooxetar eva MYHE apeAnteag amobnkeutiking
wkavotntag. H epeuva pag amotedeital amd 600 Sia@opetikav 180V mpooeyyiloelg yia
TtV ev AOy® Beldtiotomoinon, omou 1 pla dradexetar tnv AAAn, yia thnv TeAukn)
mapouoiaon tou BeAdtiotou povtedou mapaywyng evepyelag. H mpwtn mpooeyylon
a@QoPA TNV £UPE0T] £VOG ATIOO0TLKOTEPOU KAVOVA AELTOUPYLAE TOV 0TPOoBIA®Y, 08 oxeon
He Tov amAoiKO mou opldel To 1epapX1Ko povtedo. Aokipadetal €va pelypa otpobilev
OLAPOPETIK®V XAPAKTIPLOTIKOV KAl S1ap0p@aveTtal £vag veog, BeAtiopevog kavovag,
0 OUVEPYATLKOG, EKPPACHIEVOE 1E0K YEVIKEUPEVOV Pabnpatikev e§l00oewv, ©ote va
propel va mpooappootel o KaBe mepimtwon. H Seltepn mpoogyylon Snuioupyel
LKAVA povteda IIpoyveong g evepyerag,. Ta Sebopeva mou adromowOnkav otnv
£peUvVa TV MOPAIIAVE IIPOOLYYLoe®V ava@eépovtal oe Oedopeva Imapoxng Kat
Bpoxomtwong tou motapou Axedwou, oty Autiky EAAGSa yia 39 £tn. Kabe povtedo
IPOYV®OONE Xpnotpomolel 61a@opeTiky mAnpo@opia wg petabAntn etoobou. EmAeape
va 1mpooeyylooupe to mpoOBAnpa tng mpoyveong pecm ovo odov. H mpwotn
XPNOLIOIIOLEL WG AN POMOPLA £10000U TNV eVEPYELA TV MPONYOULEVOV NUEPROV, OF
ouvouaopo pe tn BpoXOIT®orn, £IIOTPEPOVTAS S OIMOTEAEOUA TNV EVEPYELA TNG
ermopevng nuéepag. Avtfetwng, n 6eutepn 060¢ £xel wg deGopgva e10060U TNV mapoxI)
TOV IIPONYOUHEVRV NHIEPOV J1E TNV avTiotolxXn BpoxXomtwor), amod ta omola IIPOKUIITEL
N IIAaPoOXI) TNE emopevng NUEpag. Luvexela, AapBavoupe tnv evepyela g emopevng
nuepag, £Loayovtag Thv Iapoxn otov BeAtioto Kavova Aettoupylag TV oTpoBlAmv.
Y1OX0g pag eival va S1aImot®ooue IoLo HOVTEAO IPOYVROOIE £Lval IIL0 A0S0 TLKO, TO
apeoo 1 to eppeco. Ov umodoyiopol pag £6e1av O0TL TO ePIPE00 POVTEAO YivETAL ITLO
adromoto, O0tav oupmeplddaBel Tnv TEXVOAOYLKI) Yyvwon Iepl Ttng Aeitoupylag Tou
ovotnpatog. To mA¢ov BeAtiwpevo povtedo Grapop@mbnke kKataAAnAa, £ToL ®OTE Va
neptdapBavel kal tnv aBeBarotnta oty Soprn Tou, O AVAIOPEUKTO IAPAYOVTA £VOG
povteéAou mpoyveong mou otnpidetalr oty oUAAOYI) LOTOPLKMOV KALPLKWV Oe50pEveV.
Télog, MPOKELPEVOU va €XOUNE Pl IIPAKTUKI] £QAPUOYI] TNE €peuvag KAl TV
AIOTEAEOPATOV TNE, £QAPPIOOAE TO M0 OIOO0TIKO MOVTEAO IIPOYV®OONE OTh
Snuioupyla TPLOV MOATIKGOV ayopov, avdloya pe tov Xapartipa (Ouvtnpntixo,
acpadég, pupokivbuvo) mou OfAel o Xpriotng Tou €pyou va uloBetnoel, Katd T
OUPIETOXI] TOU 0TO XPNHIATLOTPL0 EVEPYELAG.

Yuprepaopatika, Oa Aeyape OTL 11 mapouoa £pyacia eIITUYyXAavel va Ipoteivel
otov Aertoupyo tou MYHE pua evxpnotn xav adiomotn pebBobodoyila mpoyvwong tng
evepyelag eropevng nuepag, Baoet xataAAndouv pabnpatikoy povtelou, Kabog Kal
¢vav  BeATiopevo mpoypappatiopd  tng  Aevtoupylag  peilypatog  otpoBllwv,
UIIOOXOHEVO PEYLOTI) SUVaTI) IAPAYRYI) EVEPYELAC.



Extevng mepiAnywn

YLKX0I10g £pyaoiag

H ouykekpupevn Aumdeopatikn epyacia exel Sutto xapaktnpa, kabaog mmpooeyyidet
Kal otoxevel otn BeAtiotn poviedomoinon 6U0 S1a@opeTikav OWerV Tou 1610U, OPKG,
“voptopatog’. Qg voplopa voeitar 1 Bedtiotomoinon tng Svaxeiplong twv Mikpov
Y6ponAextpikov Epyov (MYHE), amd tn oxomid tou Aevtoupyou Ttou épyou. H
£PEUVA pag EMKEVTPOVETAL 0g 6U0 {nrpata:

I. v elpeon tng Bedtiotng pubulong Aertoupylag Tou pelypatog towv otpobilmy,
Olapop@evovtag €vav IMIPOTUIIo  Kavova IIPOoYPARPATIORoU  Aettoupylag
(“Cuvepyatird kavova’);

II.  ©n Snuuoupyia povTEA®V IPOYVROONE TN IApAyORevnS eVEPYELAS TNS EITOUEVIG
nuepag, AapBavovtag vmowlwy tov mapayovta tng aBeBaidotntag, Adyw
OPAAPATOV TOU POVTEAOU Kal aduvapiag akpifelag tng yveoong tov Karplkov
PALVOUEVRV.

Afovag mpoogyylong teov 6U0 mapamave otoXev amoteAel ) Snuoupyla Kavova
Aertoupylag Kalr povteAnv mpoBAewng, eUKOA®V OTNV £@APHUOYI KAl €II0IITELA AIIO
TOV XPNOTH TOU £pyou, X0pig¢ va Bewpeitar avaykaia mpoimoBeon omoladnmote
e£eLOKEUPEVT] YVQOOT) 1) XP101 ITEPLITAOK®OV TEXVOAOYLROV UIIOAOYLOHOU.

Ileproxn) pedétng

2To mAAlolwo TNg HAparave avaduong, Bewpnoape eva vmoBetiko MYHE
extporrg (run-of-river) otov ave pou tou AxeAdou motapoy, Autikng EANdSag. H
mapox1 mou @Bavel otnv uGpoAnyia eKTpLmeTal, PE0K £VOS AVOLKTOU KAVAALOU, 08
pua Seapevi) @OPTIONG, KAl €IeLrta, PE0® £VOg ay®you IIT®OOoNg Kol OUOTIHATOS
0TPOoBIA®Y, mapdyel NAEKTPLKI] 10XV, efartiag vwopeTplkng drapopag, tong pe 150
m.

H 6wabéowun udpodoyikn mAnpogopia mou aromoirjoape 1tav ta USPOAOYLKA
6ebopeva Bpoxomtwong amd 10 Srapopetiroug otabpoug otnv euputepn meploXl) Tou
¢pyou udpoAnuwiag, Kabng xat ta debopeva mapoxwv oto onpeio autod. H tedeutaia
mAnpo@opia avaktOnke pe tn pebodog IPocapuoyT¢ TOV IAPATHPNIEVEV IIAPOX WOV
ota Katavtn, amd tov tapteutnpa tov Kpepaotov (Efstratiadis et al., 2014),
AapBavovtag umOWv Tov AOY0 TV avTLoTolX®V AeKaveyv amopporg (IIpooeyylotikd
1:40). H neploSog kataypapne Sedopévav exteiverar ota 39 xpovia (Mdwog 1969
ewg AexepBpro tou 2008), pe péon mapatnpoUpevn Tuan mapoxne 2.15 md/s. Tto
Yxnpa 1 mapouoiadetal n Xpovooeipd Peong nUepnoag mapoxng evog ubpoloyitkou
étoug (1971-72).

-10-



Inflovy (m3a‘$)

Oct 1.9?‘1 Jan :IQ?E Apr 1(1_‘—?2 Jul ‘IIQ?Q Oct IIQ?E
Yxnpa 1 : Xpovooeipd mapoxng ubpoloyikou £toug 1971-1972.

BeAtwotomoinon Aevtoupyia peiypatog otpoBideav: amd tov Iepapxird
otov Xuvepyatikou Kavova

H avaykn avadntnong evog ImpoOTUmoU Kavovad MPOYyPAapaTIoRoU A£1Toupylag
otpoBilwv amotedel amoppola tou yvepiopatog tov MYHE, wg ¢pyov mou otnv
MMAEL0VOTITA TOUG £X0UV apeAntea armodnKeuTik) tkavotnta. ¢ amotédeopa toutou,
N IaPOXI) IIOU KAAOUVTAL VA €KPETAAALUTOUV Yid IIOPAYOYT] eVEPYeLag mIapouotadel
Owapkeig Srakupavoelg. Meow tng Xpnong Helypatog TOUPUIVGV, Omou Kabe pua
Aevtoupyet oe £va Srapopetird eUpog mapoX®V (G; mins Gimax), TETUXALVOUPE EITAPKT)
agromoinon tou udatikoy Suvapikoy, pe opra Aevtoupylag (Gmin = Min(qimin)
Gmax = 2e1 Qimax )» KAL, 0UvaxOAouBa, pewwpévn v emidpaon tng Stakupdvong tng
mapoxng. O avrtiktumog tng petabBadldopevng mapoxng g mpog tnv e§ac@aAion
Iapaywyng evepyelag prmopel va elaxioromolnbel akopa MmePLocOTEPO HECK TNG
BeAT1L0TOIIOLN0NE TOU MIPOYPARHIATIONOU TOV 0TPoBidav.

'Evag am\og xar arrodotikog Kavovag Aertoupyilag Tou OUOTHHIATOE 0TPOBLAGY eival
o Aeyduevoe “Tepapxixoe kavovae” ,(Exfpa 3). Autde 0 Kavovag mpoimodétel Ty
unapdn 6U0 0TPoBLAGV, £VOL KUPLAPXOU Kal TOU avtiotorXou deutepevovta. O mpwtog,
£XovTag peyaAuTepn OVOUOOTLKI] HaPOoXI), £KHUETAAAeULTAlL MOAPOXES HeyaAuTepng
KAlpakag, oe avtifeon pe tov teAeutalo, OIIou eival umeubuvog yia TNV Iapay®yr)
evepyelag peo® tng aglomoinong XapnAov mapoxev. ITwo ocuykekpipeva, otav n
EKTPEIOIEVI) POI] €Xel TLUN HUKPOTEPN armd tnv eAldaxiotn Suvatn IIapoxX! Tou
OUOTNATOG TIPOG EKPETAAAEUOT, Gmin, KAl 0L 0U0 0TpOoBldol elval eKTog Aettoupylag.
Orav n mapoxr mou Siepxetal To cuoTnHa {emepvast TNV Peylotn Suvatr mapoxi) Tou
OUOTNIATOS, Gmax » KAl OL §U0 oTpoBilol Aevtoupyouv otn peylotn amodoor Toug,
EITLOTPEPOVTAS TUXOV uIlepXeldioelg otn por] tou motapou. IMa evoiuapeoeg tineg
mapoX®v to Iepapxiko povtedo Beter oe Aettoupyia povo tov deutepevovta otpoBido,
OtV qq € (q2mins Grmin)- Ao Tv AAAn mheupd, o xKuplapxog otpdBldog tibetar oe
potepaloTNTd, OTAV qp € (q1max Qimax + 2max), APNVOVTAG TO €VOEXOHEVO Va
Aevtoupyei o Seutepeviov novo ywa mapoxn 4q = qp — (q1max + G2max) = 92.min-
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H nmoapamave amlovoteupevn pubpion tou Kavova Asttoupylag pelypatog
0TPOoBIA®V mapouoLddetal CUVOIITIKA NE0K TOV aKOAoUOwV eflonoewy :

q; = min(q, ql,max)

Av g > qimax TOTE 1) €MUIAEOV MOPOXI) ITOU O1EpXetal amod tov deutepevovta
oTpoBlAo voouTal pe -

qz = min(q — 41, 92,max)

Ia q; < gimin TO OUOTNHA TIAPAYEL UNOEVIKI] 10XU, €VO YW G; > Gimin 1
IIAPAyOREVT] 10XUG A0 TOV £€Ka0To 0TpoBido wooutal pe :

0 qi < Qimin
pi =3P 9 Ni(4) 4ihn(qi)  dimin < 9 < Qimax
pi,max qi,max < qi

ommou q oupBoAidetalr n mapoXr moU @TAVEL OTO Onpuelo IIPOCANWNS PONE AII0 TOV
IIOTAP0, €XOVTAS a@AlPeoel TNV IeplBAAAOVTIKY] MAPOXI] (., OUHQ®VA HE TNV
avtiotolxn vopoBeoia, n;(g;) eivar o ouvoAikog Babuog amoGoong tou ouotrpatog,
KA hy,(q;) To xaBapd vyog mtwong, To omoio aviifetwg elval @Bivouoca ouvaptnon
TNG MAPOXNS q;. Znpeltwvetal 0t o Babpog amodoong twv otpoBidwv eival pia £vrova
11 YpappuKy) oxéon mou Sivetatl pe popen vopoypagnpatog (Exnpa 2), og ouvaptnon
TOU AOYOU Tn¢ SrepXOpevng mapoxg IPog TV OVORAOTUKY), §/Gnom (OVOTOVA aiouca
£0g TO ovopaoTikd onpeto). Ia eukolia otoug umoloyiopolg, 11 OXéon auty) pmopet
va mpooeyylotel ammo tnv akoAouOn avadlutiki ek@paon:

b
a_g a
_ dnom
N1 = Nmin + 1-|11- 1—-9 (nmax - 77min)
Francis Pelton Axial-Flow
Francis approach curve Pelton approach curve ® .. Axial-Flow approach curve
1,00
B it i e Qi —_

0,90 o e

= - ——

- 080 /-

2 'y,

L 070 4 Francis Pelton Axial-Flow

o ./

% a 1,37 1,00 1,00

@ 060 b 2,10 8,31 5,76

] a' 2,44 4,08 4,99

050 b’ 1,00 1,00 1,00
nmax 0,93 0,89 0,93
nmin 0,80 0,36 0,37

0 0,2 0,4 0,6 0,8 1 1,2 14 1,6
Rated flow, /4 o,

Exnpa 2 @ Kapmildeg Babpou anoboong Sta@opav tunev otpoBilev.
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H maparmave moArtikn Aettoupylag pmopet va eival arrAr) otny eQappoyr) aAla dev
ouvemayetar OtL eivar Kar mo amodotiky. H pn ypappikn oupmepipopd tou
ywopevou 7;(q;) q;, 6mou o Oeixtng i Xapartnpider tov Kabe otpoBido, n omoia
eK@PAdeTal armo KapImuAeg Tou Tapakate dtaypappatog, odnynoe oe eva veo BeEAtioto
Kavova Aetvtoupylag, Tov amokadoupevo og “Tuvepyatikd kavova”® Exnua 4). O
Kavovag autog pubpider toug otpoBidoug oup@eva e ta mapakdate Bnpata -

e Otav q < qymin, Kavevag otpoBldog Sev Aettoupyet, apa Sev umapxet
MAPAY®YT) EVEPYELAS

e Otav gz2min < g < g1min » HOVO 0 NKPOTEPOG O SUVANLKO 0TPOoBLAog
Aevtoupyet:

e Otav q1min < q < G2,max, HOVO €vag otpoBllog oe Xp1on, exeivog Moy
UmoOCXeTal PeyaAUutepo YIVOUEVO 1);q;°

e Otav q2max < 9 < q1max> NOVO €vag oTpoBllog oe Xp1non, exelvog 1e To
peyaAutepo SUVAPLKO:

e Otav q1max < 4 < @imax + G2,min, ONPELO Savelopou, Kar ot Suo otpoBilot
0e Xp101, OUPIPKVA HE TOV M0 arodoTIKO ouviuaopd Aettoupylag,
6ndadn o pikpodHTEPOg 0TPOBLAOG AetToupyel e T peyrotn amodoon Kat o
peyddog pe arrodoon Atyo XapnAotepn amo T HEYLOTI), Yid HUKPO eUpog
IAPOXMOV*

o Otav q1max + 92min < 4 < Gimax T 92,max» Kau 01 Suo otpoBldor oe Xp1on,
OUHP®VA H€ TOV II10 armoS0TIKO ouvouaopo Aertoupylag

e Otav q > q1max + 92,max, KAt oL Suo otpoBirdor Aettoupyouv pe v
HEYLoT arroso01) Toug.

6.0 : : 9.0
Hierarchical rule —
5.5 “ 8.0
! 7 :
5.0 Flow through large turbine -
45 Flow through small turbine 7 el 7.0
7’
_ 40 = =Output power 7’ 6.0
) s %
[r)
Cl g 50 2
E 3.0 7 g
7 .
?_, 25 IR 40 Jé'
5 s g
2 2.0 p 3.0 8
S 15 7 "
' s 20 ¢
1.0 7 £

0.5 //1' s /_ 10
0.0 0.0
0.0 05 1.0 15 20 25 30 35 40 45 50 55 6.0 65 7.0
Total flow (m3/s)

Ixnpa 3 : Atepxopevn mapoxn amo to peitypa otpobilev, ouvaptnoet tng
£1oepXOpevng 0To oUOTNIA KAl 1) AVTioTolXn Iapayayl) 1oxvog, Bdoel tou
Iepapxixot xavova Aettoupyiag.
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6.0 9.0

Synergetic rule I—
5.5 y 80
5.0 Flow through large turbine b ’
, Lrd
45 Flow through small turbine P 7.0
”
__ 40 = =Output power P 6.0
= ’
% 35 L %
E , 50 =
E 3.0 7 g
/ .

= 25 |l 40 4;
"-E 2.0 7 3.0 e
[E 1.5 s ?

' | 2.0 §

1.0 7’ g

=W

” e
05 f 1.0
0.0 0.0
00 05 1.0 15 2.0 25 3.0 35 40 45 50 55 60 65 7.0
Total flow (m%s)

Yxnpa 4 : Atepxopevn mapoxn amo to peitypa otpobilev, ouvaptoel tng
£10epXONeVNg 0TO CUOTNIA KAl 1) AVTIOTOLXN Iapay®yr) 1oxuog, Bdoel tou
ZUVEPYATLKOU KAVOVA AELTOUPYLAS .

0.70 -
0.60 __=,_,_J Donation area I ]
E 0.50
o 040
=9
"
=
g 0.30 i
g i —
E 0.20 Donation
5 | areall
i —
0.10
0.00

00 05 10 15 20 25 30 35 40 45 50 55 60 65 7.0
Total flow (m3/s)

Yxnpa 5 : To mAeovérTna og 6poUC MAPAYRDYI)E LOXUOE TOU LUVEPYATLKOU Kavova
évavty tou Iepapxikou Swapoppavovtag xapartnprotikeg “Ileproxee Awpeag”.

2o Xxnpa 5 mapouoiadetal to mAegovextna mou Kepodidoupe o mapay®yr) 1oxXuog
HEe TNV eQAPUOYI] TOU XUVEPYATLKOU Kavova evavtlt tou lepapxikou. Auvo
xapaktnplotikeg meploxeg, “Ileproxn Awpeag I” xkar “Ileproxn Awpeag I17, xaBopidouv
T eUPI TV IAPOXKOV, OIIOU 0 peyaAutepng Suvapikotntag otpobldog ‘Gopidel pia
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moootnTa tng Suvathg dlepXOpevg mapoxXng Tou 0Tov HIKPOTepo 0tpoBilo, xabag,
HE0® QUTNG TNg MPOOMOPAS, TO OUVOALKO yuvopevo 1;(q;) g; TOU OUOTHPATOS
avéavetar. H oxeon mou meprypd@er Tn OUVOALKI) IIAPAY®YH 1OXUOC aIrd Tn)
ouppetoxn KaOe otpobidou, gaivetal mapaxdte, (Yo Adyoug amlotntag to Kabapd
uwog mtwong h, Bewpeitar otabepd, KabBwg n G1apeTpog TOU AYRYOU IIT®ONG £XEL
emAex0el 1kavr oe Sraotdoelg, mote va eivar apeAnteou Babpov o anwleleg Katda
PnKoug auTov):

q1 qz
pwt=pghn<n1< )CI1+772< >q2>
Q1Jnax qZJnax

e H mpwtn meproxn dwpeag {exivael otav n d1epXOUeVI) IIAPOXI] Ao
ToUg 0TPoPBiAoug 1ooUTal pe TO €AAXL0TO OPlL0 TOU HEYAAUTEPOU
0tpoBilou, q; min (0.85 m3/s), 6mou 6An 1 mapoxrn Siépxetar amd tov
HKpO otpoBllo pe T péywotn amoddoon tou, KAORS Gqmin >
d2,max KAl apa

Kavova, Aevtoupyouoe o peyadlog otpoBldog, TO  OUVOALKO
TIapayopevo ywopevo 1;(q;) q;, 0a nrav pikpotepo, kabwg o BaBpog
arroo01g¢ Tou yua Xapndeg mapoxeg eivar apketda xapndog. To
oNpelo mepATEOoNE TNE MPAOTNE IEPLOXNE O00Pedg, OIou 0 pPeyaAog
0TPOBLAOg AIIOKTA IIpoTEPALOTNTA, 0pleTal OTAV:

. = 1 AvtiBgtwg, av, oUPEEVA J1e TOV LEPAPXLKO
2,max

Ch,max

q1
N < )Ch = N2max92,max

e H &evtepn meproxn 6wpedg exivasl otav 1 SiepXoOpevi mapoxr 1ooUTal pe
G1max(.69 m3/s), omou 1 Sepxopevn mapoxn amd Tov peyddo otpobido
HELOVETAL KATA G2 max (0.77 m3/s), pe okonod va Aevtoupyetl o pikpodg otpoBidog
e peyioto Babpod amoddoong, Kar o peydadog pe eAdX1ota XapnAotepo amo Ttov
peyloto, Givovtag maAl vwndotepo ywopevo 1;(q;) q;- H Oeltepn meproxn
ep@avigetal peXptl Kat to onpelo 0Iou q = qq max + 92,max-

[Tpoxewuévou va efaydyouple cURIEpAoRaTa, OC IPOg TNV Ipaypatiky (cupgova
pe ta udpoloyikd SeSopéva otn Ofon Tou €pyou) emumAéov 10XU Iou pIopel va
IIPOOPEPEL 0 LUVEPYATLKOG KAVOVAE €VaVTL TOU [epapX1koU, Katataoooupe Tig TLUES
Tng mapoxneg oe @Oivouoa oelpd Kar avtiotorxoupe oe Kabe tiun tnv mbavotnta
vnepBaong mou tng avaloyel p; = (1/n +1) 010U N eival n n-ootn @Oivouca Tium.
2tn ouvexela, yra Kabe tiurn mapoxrng vmmodoyidetal 1 avtiotolXn mapayopevn 1oxug
a6 xaBe xavova Kau ek@padetal ouvaptnoel tng mbavotntag virepbaong, cUPPEVA
He Ta Iaparate draypappata:
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Inflow (m3/s)

80.0
70.0
60.0
50.0
40.0
30.0
200
10.0

0.0
000 010 020 030 040 050 060 070 080 090 100

Exceedence probability of inflow

Yxnua 6 : Kapmudn Svapkelag mapoxng.

9.0
8.0 —— Hierarchical 1ule

~

‘. — Synergetic rule
6.0

5.0
40
3.0
20
10

0.0
000 010 020 030 040 050 060 070 080 090 100

Output power (MW)

Exceedence probahility of inflow

Yxnua 7 : IIpocopoltwpevn mapaymyr) 10XU0¢ wg OUVAPTHOI] TNE EUIIELPLKIE
mBavotntag vnepBaong mapoxng, yra toug 6Uo Kavoveg Aettoupylag.
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9.0

85 —— Hierarchical rule
~ 80 — Synergetic rule
E 75
g
B 170
=4
B 65
1=
8 60

55

5.0

0.00 001 002 0.03 004 005 006 007 008 009 010
Exceedence probahility of inflow

Yxnua 8 : Aemrtopepeia tou ave oxnpatog, epbBabuvovtag otnv meploxr dwpeag I1.

Onwg @aivetar oto ZxApa 7, o Zuvepyatikog Kavovag Aertoupylag UIIEpEXEL TOU
Iepapxixou, e1d1ka otnv meproxn dwpeag I, omou n Giepxopevn oto cuoTHHA ITAPOXT]
elval peong tadng kat 1 aveiotorxn mbavotnta vepBaong tng eivar 45 pe 55%. Auto
onuaiver otL yra eva 10% I10cootd XpOVou TO XUVEPYATLKO HOVTEAO MIPOOQPEPEL
IAPATIAVE® 10XU og oxeon pe to lepapxiko. Amo tnv aAAn, to 0@elog oe 10XU II0U
mapdyetar otnv mepoxn owpedg II eivar apedntéo Exnpa 8). Kabéva amd Ta
IAPAIIAVE OLaypAPPaTa AarmoteAel AIIOKAEL0TIKI] AVTUIPO0OMIIEUCH] TOU EIILAEYHEVOU
poBANpatog, pe ta 61Kd Tou UGPOAOYLKA XAPAKTNPLOTIKA, OUVENROE TA IAPAIIAVE
OUHIIEPAOHATA O10PEPOUV ava IIEPLOXI) HEALTNC Kal avd £pyo.

2T ouvexeld, IIPOKELPNEVOU Vad OlaTUIIOOOUIE O YeVIKEUHUEVI] HOopP@Ln TNV
mapayopevn 10xXU amo Tnv  e@appoyrn peiypatog otpoBidev, BOswpoupe eva
UOPONAEKTPLKO £pYO 11e XP101 6U0 0TPOBLAGY OUVOALKNG OVOUAOTLKIG LOXUOS Prmax =
1, pe adromrouolpo xaBapo vwog mtwong hy, = 1.

I'evixa, to £1dog TV otpoBidev Bewpeital S1a@opeTiko, Kal 1) KApmuAn amodoong
N = f(q/%nom) TEPLYPAPETAL ATIO FLAPOPETIKEG IIAPANETPOUS, M; max, i @; KAl b; yia
tov KaOe otpoBrdo. Oewpoupe 0TL KAOe otpoBilog Aertoupyel pe peyvotn drepxopevn
IIapoxn 1on pe Ttnv ovouaoTLKI] TOu, dpda euAoyd BETOUNE Grom = Tmax KAV Pnom =
Pmax- EITlong, o Babpog amodoong n; avagepetatr otnv oAko Babpod amoboong tou
ouotnpatog, 6e6o0pEVou OTL 01 AIMALLEG 0TA UTIOAOLIIA 0TASLA TNG EYKATAOTAONS, HECK
TOU YWOPEVOU NrrNeNe (HETaoXnuatiotng, yevviTpla, nAektpikd Sixtuo), eival
otaBepég, Kal Katd rmpooeyylon toeg pe 95%.

Teleutaio Brjpa yra tnv yevikeuon Tou Kavova Aeltoupyiag elval 1) eL0ay®yr) evog
Oeiktn Srapeplopou @ = 0.50, opidovtag £Tol TNV OVOUAOTIKY 10XU KaBe otpoBilou
10N NE Pmax = @ KAL P3 max = 1 — @. Emumdéov opidovtar mapardte n Siepxopevn
mapox1 yla Kabe otpoBido Kal Tou cuoTIHATOg OUVOALKA, NTOL UEYLOTY (G maxs Tmax)
Kol eAAXV0TN (G mins Gmin)> AVTIOTOLXA.
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*
pi,max

pg Tli,max h";kl

*
qi,max -

*
pi,max

g, — 2
lp g ni,maxh;k‘t

*
Qi,min -

o= 7 e )
Amax pgh; N1imax MN2max

*
Qmin

1 . ( 619 6,(1— <P)>
= —min ,
p ghy,

nl,max 772,max

O¢tovtag U = q/Gmax, €K@pPAoOUE TNV adLA0TATOIIOLNIEVI] MAPOXI] KAl TNV
AVTIOTOLXI) HAPAY®YT) LOXU0E MG

CI* =u q:nax
p; = pgni(wq*hy

Enevta Soxwpdaoape Tig HOPAIIAVE YEVIKEUPEVES (POPHOUAES Ylua O1a@opoug
ouvluaopoug Tou ouVTeAeoTr] SLAPEPLOPOU @ KAl TNE HAPAPETpou 6; = qi'mi"/ql. om
yia toug Suo mo ouvndeig tumoug otpoBidev (Pelton, Francis). Ilapaxdte

Iapouoladetal £vag aro Toug ouvouaopoug IIoU £QAPPIO0TNKAY, e XAPAKTIPLOTIKA
otpoBidev omwg gaivovtal otov ITivaka 1.

Telog, KaOe ouvduaopog otpoBidev ePappooTnke pe OKOIo TNV afloAdynon tng
QmOKALONG TOU XUVEPYATIKOU aIld0 TO IepapXikO pPOVTEAO 0O HAPAYRDYT)
adlaotatonoumpevng 10xvog Api,operational = (p;pt,i - p;klier,i)’ omou, Ap; = (Po,i - P:)
Kav po; =p 9 ¢ (0,00 Mimax @i bi) hy, 1N Tmapayopevn w0xUg amd evav 8aviko
otpoBldo pe BabBpd amddoong 100% yia OAa ta evpn mapoxev. O avrtiotorxog
ouvluaopog mapouvotadetar oto Lxnua 10.

ITivakag 1: Xapaxtnplotikd Tou ouotnpatog otpobidev ouviuaopou II.

Yuvouaopog I XtpoBidog 1 LtpoBidog 2

Tumog otpoBidouv  Francis Francis
[Tapdapetpog 6; 0.15 0.15
i max 0.93 0.93
a; 0.78 0.78
b; 3.11 3.11
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0.20

—¢=0.2 Combination IT
—@=0.4
@=0.5
0.15
-~ 0.10
=1
<
0.05
0.00

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Rated flow g/qmax

Exnpa 9 : Avdpopa oevapra ouvtedeot:) Stapeplopou yia 6edopeva ouvouaoou
II, ouykpivovtag tnv amodoor) Toug 0g IaPaAY®Yl] 10XU0g OUYKPUTLKA e eva 10aviKO
ovotnua otpoBidwv.

0.15 o ‘
Combination IT —=0.2

—p=0.4
p=0.5
p=0.6

0.10 /

0.05

Ap i,operational

0.00 ‘ :
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Rated flow g/gmax

Yxnpa 10 : Avagopa oevapra ouvtedeotr) Swapepiopov yua 6edopgva ouvoéuaopou 11,
OUYKPLVOVTAE TNV arrdod001) Toug 0g IIapay®yn 1oxuog Bdost tou Xuvepyatikou
KAVOVA OUYKPUTLKA e tov Iepapxiko.

To mpoBAnua mpdyveong tng nUepnoLag Iapay®yIg EVepyelag

Emopevog otoxog tng mapouoag Sumdepatiking epyaoiag eival n dnploupyia evog
BeAtiotou pev, euxpnotou g, POVTEAOU MPOYVOONE TNG IIAPAYOUEVNE €VEPYELUS
enmopevng nuépag arod eva Mikpd Yépondextpikd Epyo (MYHE). Avtia tng mapamdve
npoogyylong eivar 1 peddovtikn evtaln tov MYHE oto xpnupatiwotnplo evépyerag,
0to mMAaiolo g Snuoupylag eviaiag ayopdg NAEKTPLKNG evepyelag, Ornng opidet to
veo Oeopiko miatowo “Target Model”. To mpoavagepBév, oe cuviuaopod pe to yeyovog
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0Tl eAdX10Tn) elval 1 £0¢ TOPA £peUva YUP® amro tnv mpoBAewn evepyelag oe MYE,
Hag IPOLTPEWAV TNV ITAPAKAT® EPEUVA.

Ytnv mpoorrdfeld pag yia eupeon evog LKavou povtelou 1mpoBAewng tng
evepyelag, Baoel 10topLk®v 6edopevev, Kabwg Kat teXVoAOYLKIS YVROoNE, ITap1yaue
mowKiAa povteda, pe Sragopetikd dedopeva eroodou - e§odou, Kabng Kar petpwv
amodoong, IIpokeipevou va BaBpovounocoupe xkaBe povredo mpoyvaong, kabag Kat
Va OUYKpiLvoupe TtV adloImotia toug, £1o1X01 1o mapakate PeTpo amodoong,:

2

. Z?:l(Et, obs — Et, forecast)
2

2?:1(Et,obs - Et, bencmark)

omou E; ops £lVal 1 mapatnpoupevn evepyela TV NHepa t, YV@OTI) 0¢ Pag oo Ty
£(QAPOYT) TOU Kavova Aeltoupylag ota 10Toplkd pag dedopeva mapoxng, E¢ forecast 11
mpoBAerrdopev Tuun tng evepyelag, eKTipopev Baosr tng Svabeovung mAnpogopiag
Tou 1mapeABovtog (Xi—q Xi—z, ..), EKPPAONEVN] ammod Ora@opeTtikeég petaBAnteg ava
povtedo mpoBAewng, Kav E; pencmark AII0TEAEL TV TUII) TIpOBAewng avagpopdg, Baoet
evog povtedou benchmark. To pétpo auto eival oAU Mo auotnPd, CUYKPLTLKA HE
TOV KAQOLKO G£1KTI) AImoTeAeonaTIKOTTAG.

F=1

AxolouBrjoape 600 06oUg pe okomd TNV mPoyvwon tng evepyevwag. H mpwtn
0exetar ¢ petaBAnteg ewoobou TV evepyela TV OU0  IPONYOUUEVOV
nuepwv (Ey, E;—4), tnv mapoxn tng mponyoupevng nuepag (q;), kabog rar tig
Bpoxomthoelg tng mponyoupevng nuépag (py) (©g mpooeyylotikod pétpo tng uypaociag
Tou e8d@oug, MOU OUVIOTA emuIA£ov IANPo@opia 0to Hovteélo), Sivovtag g
petaBAntn e£66ou tnv mpoBAemopevn evepyera tng emopevng nuépag. a avtdov tov
AOY0 TO OUYKekplLuevo povtedo ovopdadetal direct model, xav avddoya pe tov
ouvouaopo mou emAeape va akodouBouv ol petabAnteg e1o0060u, mpogkuwav 6U0
exdoxég tou, n General (Exfpa 11) xau n Crossroad (Exfpa 12), pe tnv tedeutaia
va elval o armoSoTUKY).

General direct ex8oxn -

E _ {4-79 (Et)0'48 (Qt)0'06(5t—1)0'12 (Pt)o'ls'pt > 0.1mm
17 E, pe < 0.1mm
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Xxnpa 11 : Xpovooelpd eveépyelag mpoyveong KAl IPAyHATIKYG, OULQKOVA UE TO
povtedo General direct, yua to uSpodoyiko €tog 1971-72.

Crossroad direct ekdoxn) :

E. = 3.88 (Ep)***(Ec-1) " (p)*'%, p > 0.1 mm
t+l 1.51 (E,)%63(E,_)%%5, p,<0.1mm

—Forecasted Energy
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Yxnua 12 : Xpovooelpd evepyelag Impoyveong Kal IIPAYHATIKYG, OULQKOVA HE TO
povtedo Crossroad direct, yia to upoloyiko £tog 1971-72.

H 8eitepn 060¢ mou akoloubnoape eivar i indirect, kabng n mpoBAewn oe autnv
TNV IEPLIITOON ava@epetal 0to peyebog tng mapoxng e emopevng nuépag, 1 omoia
otn ouvexewa aflommoleital Peow TOU Kavova Aettoupylag yia tnv efayoyn g
avrtiotolxng evepyevag emopevne nuépag. IIdAr xkav oe autnv tnv Ipooeyylon
mapnyape Suo Svagopetirég exdoxée tng, v Simple Exnpa 13) xav tnv Smart
(Exnna 14). H Sragpopd Ttoug £yKettal oto yeyovog 0Tl 1) Seutepn AapBavel ummoyv ta
A£1TOUPYLKA XAPAKTNPLOTIKA TV OTPOBIA®Y KaAl TN YV®OOT YUP® arid Tnv Aettoupyia
Toug, KaBwg 0Tov UIIOAOYLONO TOou o@aApatog adia@opel otav 1 mpoBAemopevn tiun
elval neyaAutepn ammo gy tor KOU LKPOTEPT) ATIO pin tor, EPOOOV TAUTOXPOVA KAl 1)
IPAYPATIKY] TUUIN HAPOXIE LKavorolel Tig avtiotoixeg ouvOnkeg. Aev éxel adila
Adowunov  va AapBavoupe ogadpa, otav Qforecast < Qmintot KAV {forecast > Gmax,tots
avtiotorxa. Kau otig 600 ekboxeg, wg 6edopeva £10060u Xp1OLIOIIOU0AUE THV TUL
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NG TWapoXng Tmponyoupevng nuepag (qe), T HEOn Mmapoxn TOU HNva, I0U
vmodoyidoupe tnv I1mpoPBAemopevi), TNV €AAX10TH MIAPOXI] TOV IIEVTIE TEALUTALOV
nuepev, kabeog Kat tn Bpoxn tng mponyoupevng npepag. OAeg ol maparmave
petaBAnTteg €Xouv ®¢ 0TOXO Va II0COTLKOIIOW)00UV, HE0® Tng BaBpovounong, tn
OUOXETLOT] THE IAPOXNE TNE SIMOPevIg NUEPAS Pe To UOPOAOYLKO Kabeotrg Tou pnva
aAdd Kal Ty amofnKeupevn Kataotaon e5a@LKIg uypaoiag.

Simple, Smart Indirect ex6oxn) :

a1 (Gmins) + B1(qe) + V1(Gmeant), pr < 0.1mm

Qev1 = {az (QminS) + ﬁZ(Qt) + Y2 (Qmeant) + 6(}%), Pe = 0.1mm

Smart exdoxr), opLopog o@aApatog :

Qmax,tot - Qforecast' qobs > qmax,tot and Qforecast < qmax,tot
e = Qforecast - qmin,tot' obs < qmin,tot and Qforecast > qmin,tot
Qobs — Qforecast' obs > qmin,tot and obs < qmax,tot
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Yxnpa 13 : Xpovooeipd evepyelag amod PovteAo Ipoyvaong mapoxng Simple
indirect Kau TG mpAypaTIKE, Y To UOPOoAoYyLKO £tog 1971-72.
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Yxnpa 14 : Xpovooeipd evepyelag armd HovTeAo IIpOyveong mapoxng Smart
indirect Kal Tng mpaypaTikng, yia To UOPoAoYLKO etog 1971-72.

O¢lovtag va GOKLPACOUNE TNV AmOKPLON £vVOg APKeTA M0 IIPONYHEVOU TUIIOU
POYVeOong aAAd Kal va OUYKPLVOUHE TNV armddoor) Tou, 0g 0X£01 He To KaAUTeEPOo
£ Tpa povtedo pag (Smart model), epappdoaie éva poviédo pnxavikng padnong
(Machine Learning), pe ovopaoia Deep Feedforward Neural Network (DNN), o
orolo opwg 6ev AapBavel vmowly tou tnv texvikn mAnpogopia. To DNN povtelo
amoteAeital amo tpla Kpu@d emimeda 128, 64 kal 32 veupwveg, avtiotolXd, e v
Rectified Linear Unit (ReLu) va amotelel tnv ouvdptnon evepyonoinong yia kabe
£vav ard autoug.

Qg Sebopeva e10060U XPNOLHOIOWOAE TNV IIAPOXI) TOV TEALUTALOV 5 Nuepev
Kal TV Bpox1 tev mponyoupevev 2 nuepov (mAnpogopia uvypaciag eddgoug). Amod
Ta emopeva oxnuata yiveratr epgaveg ott eve to DNN katagepver va mmpooeyyiloet
mo arodotikd and to Smart Model tnv mapoxn (R2= 0.82 kot 0.63, avtiotoixa)
Exnpa 15), eve otnv mpoyveon Tng evepyelag mapouctddel oagpmg XevpoTtepn
andSoon (R2=0.55 kat 0.83, avtiotouxa) (Exnpa 16).

15 ‘ ‘ —Forecasted Discharge
) ‘ 1 DNN
Cg 10 ‘ ;’ ‘ —Forecasted Discharge
= ’ 1 8 | b, | Smart Model |
g !L ‘l S‘\ “ —Actual Inflow 1 A
c‘:: 5 'l: W '\l \‘1« l\‘ﬂ}\. ‘\,X(\l'&‘“‘\a't" ! N \IU ;’hl
v ) f ' owad. . )
- 0 '\-._’\—)‘-\Nt\IA '\(‘M}"’\A‘) \‘"A - ‘ 0“".I‘i&?ﬁ'\—“ﬂ&;\‘\'Jk\“".—,\ejxg‘!-‘dn\th\, : J
A A o &V & b(\‘”‘z v & & wz\:‘v v & &V
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Exnpa 15 : Xpovooelpd mapoxng mpoyveong Kol IpayHaTikg, OUR@@VA HIe TOo
povtedo DNN, yua to udpoloyiko £tog 1971-72.
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Zxnpa 16 : Xpovooelpd evepyelag amo poveedo mpoyveong mapoxng DNN kau
NG IPAYHATLKIE, Yia To USpoAoYyLKO etog 1971-72.

H ¢vvoua tng aBeBardtntag otnv mpodyveon tng nuePnolag mopaymayng
eveépyelag

To mo amoSotikd poveelo mpoyveong e evépyerag (Smart Model) OewpriOnke
Kdl TO ITL0 AVTUIPOo®IeUTIKO. EmBupovtag va elocaydyoupe tov mapayovta Tng
aBeBatotntag otnv mmpoyvworn pag, Snprovpynoape £va minbog ouvOeTIK@V TLI@V TOU
o@dApatog wi= E¢ ops — Et ror TOU arkoAouBel I'apa Katavour, epdoov ta otatiotika
XOPOKTNPLOTLKA TOU O@AAPATOg £0®woav ONPAVTLKI AaOUPPETPLa KAl apeAnTteo
ouvteleot) autoouoxétione (ouvtedeotne aouppetplag = 1.23, autoouoxétiong =
0.066). Xtn ouvéxela Xp1OLI0IIOW|0alle T OUVOETIKI) XpOVooelpd Tou 6@AAaTog oty
Onpuloupyia cuVOETIKOV XPOVOOELp®Y IIAPAYOUEVIE eVEPYeLag, e§AYovVTag eV TEALL T
TPELG ITL0 ONHAVTLKEG O£ EVEPYELAKI] ITANPOMOPLA, OCOV a@opd TnV aglommoinor toug
0TIV aYyopd evepyelag, armo ToV XPHoTh) To £pYou.

Avutég ov Tpelg eivar ta 0.10, 0.50 xav 0.90 mocootnuopra (quantiles), mou
QAVTUIPOOKIIEVOUV AVTIOTOLXA OSVAPL0 PLPOKIVOUVO, aO0@AAEC KAl OUVTIPITIKO
Exnuna 19). H npoogyylon tng moootikomoinong tng aBeBardtntag, kKabog xar 1
EVOOUATOOT] TN¢ 0TO Povtedo mpoBAewng tng evepyelag, mpaypatono)Onke yua 6Uo
Ola@opeTIKeg MPOOLYYloelg OTNV avVAIapPAoTtaorn Trng Oopng Tou O@AAPATOg. MTnv
IIPMTI), TO OPAAPA povteloroleital wg otaoiun Siepyacia, Oewpwvtag O0tL To Setypa
£Xe1 KOLVA OTATLOTIKA XAPAKTPLOTLKA, avedapTntwg ermoXwv. L20tooo, pia OnpavTiK)
apatnEnon pag odnynoe otnv e{aymyr avtioTtolX®V oUVOETIK@OV XPOVOOELPROV Yla
pla mo ouvBetn Srabikaoia, tnv KUKAOOTAOLUI, 1) ommoia mPoBAEmel Sta@opeTika
OTATLOTIKA XAPAKTNPLOTIKA ava pnva. H mapatnpnon mou o61ynoe otnv Snuioupyia
g Tedeutaiag Kat opBotepng mpooeyylong eivat 0Ty KaTd TNV Ip@Tl Iapatnpnonke
peyddo eupog aBeBarotntag Katd toug Enpoug pnveg, to omoto 6ev oupbBadidel pe tou
XapnAou Uyoug aroppomyV Iou Ttoug avtiotorxouv (Ixnpa 17,18).
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Ixnua 17 : Xpovooelpd evepyelag mpoyveong pe abeBatotnta tov 0.1, 0.5 kat
0.9 quantiles, cuykplTIKA pe TNV IPAYHATUKI), Yid TO UOPOAOYLKO £tog 1971-72,
(oTdor10 oQAApQ).
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Ixnua 18 : Xpovooelpd evepyelag mpoyvwong pe abeBatotnta tov 0.1, 0.5 xau
0.9 quantiles, cUYKpPLTIKA Pe TNV IPAYHATUKT], Y1 TO UOPOAOYIKO £€tog 1971-72,
(KUKAOOTAOLO OQAANQ).
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EYxnua 19 : Xpovooeipd o@eAdoug avaloya pe TV DOALTIKI IOANOoNg evepyelag,
yia to uSpodoyiko tog 1971-72.

Amotedéopata epeuvag Katl peAdovtikol otoxol

Meow tng mapovoag SLMAG@UATLKIG £pyaoiag emTUYyXAVoUle Va IIPOTELVOULE OTOV
Aertoupyo tou MYHE &0 xprnowpa epyadeia yia tn Bedtiotn ekpetadAdeuvon tng
eykataotaong tou. To mpwto epyadeio eivar o Bedtwwpevog alyopiBpog
IPOYPAPUPATIONOU TN¢ Aglttoupyiag pelypatog otpoBilwv, 1kavog va umooxebel
péylotn duvatn mapayeyn eveépyelag. Asutepo epyaldeio armotedel to pabnpatixo
HovTeAo mPOYyVRONE TNE evepyelag emopevng nuepag, Baowldpevo oe pua eUXpnotn Ka
adromotn pebodoloyia.

MeAAovTiKOlL 0TOXOl €II€KTAONG TS Iapouoag £peuvag oupneptdapBavouv tnv
epappoyn Tou BeAtiotou ouvepyatikou Kavova Aettoupylag  otpoBldov  oe
OltapopeTika udpoloylkd kabeotmta, pe okomo Ty a§loAoynon tng amodoorg Tou, oe
oxeon pe tov 1epapXx1ko. ‘Ocov agopd to mpoBAnpa mpoyveong evepyelag emoOpevng
nuepag, vmdapxer minBwopa mpog adiomoinon povtedwv, Baowlopeveov oe gpyaleia
KALPLKQOV IIPOYVOoeRV, KaBwg kar efedvypeveov  pebdodwv texvithig vonpoouvng.
Expetaddeuopevol ta maparndve, okomevoule va BeAtiwooupe Tr) 0ToXKI] £K@PaoT)
tou povtedou DNN opidovrag to RMSE, dpoa e tou BéAtiotou poveédou (Smart
model). Yuvenag, otoxevoupe oty Snploupyla evog axopa KaAUtepou HOovTelou
IPOYVROONE, £XOVTAS IAVTA O¢ YVOLOVA VA PNV AIaltel armo Tov AeLtoupyo e@appoyn
e£eLOIKEUPEVROV YVROOEOV T KAl XPT0T) TEXVIKOV epyaAeioV, GUOKOA®V otV emiBAeyn
Kal erreepyaota.
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1 Introduction

1.1 Motivation

The humanity has been consuming, as main sources for power, oil and coal, and
since there is a limit in their use, a need for alternative energy sources has been
created. Those are known to us as renewable sources and no matter their
peculiarities and additional challenges that these forms of energy production pose,
nowadays, humanity relies on them.

When we deal with energy production by renewable sources such as
Hydropower, Wind, Solar, Geothermal, on the one hand we develop and take
advantage of far cleaner forms of energy, thus preserving our ecosystem’s
balance, but on the other hand it does not nullify the fact that the associated
investments are generally more expensive, comparing to oil, coal, natural gas and
nuclear energy. Nevertheless, the key challenge that defines renewable energy is
the issue of unpredictability, which is even more amplified due to the lack of
means for energy storage.

Short-term scheduling of energy production is a of high importance for power
systems of all forms and scales. This task becomes even more crucial for the
renewable sources, which are governed by stochastic drivers, namely weather-
related processes (e.g., wind velocity, solar radiation, streamflow). The
dependence between renewable energy production and weather prediction make
it particularly difficult to ensure a credible power supply scheduling.

The topic of our thesis is a specific type of hydroelectricity, which are referred
to as Small Hydropower Plants (SHPPs). Among several configurations of such
systems, we investigate the most typical case, which are either in-stream or run-
of-river plants of negligible storage capacity. In particular, we revisit two
different aspects regarding the everyday management of SHPPs, namely the
optimal co-operation of their turbines, and the problem of next day energy
forecasting. In this respect, our research objective is twofold. The first is the
determination of generic operational rules across different turbine mixing
schemes, while the second focuses on minimizing the uncertainty which
accompanies SHPPs, by seeking for credible forecasting approaches for day-ahead
energy scheduling, in terms of a credible forecasting model with minimal data
requirements and little complexity.

1.2 Research objectives

The main objectives, and at the same time novelties, of our research our
summarized as follows:

o 1mproving a recently introduced analytical formula to approximate the full
range of commercial efficiency curves;
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o recognizing the shortcomings of the classical “hierarchical” operational
rule, which is typically applied in SHPP simulations;

o providing generic formulas for establishing a more effective operational
rule, in order to be applied in a wide range of turbine characteristics;

o approaching the problem of energy production forecasting from two
different point-of-views, direct prediction of energy through past values of
energy and indirect prediction of energy through discharge forecasting
models;

o quantifying uncertainties on forecasting error;
proposing an uncertainty-aware framework to take advantage of uncertain
forecasts in the context of energy market policies;

1.3 Thesis outline
This thesis has been composed through ten chapters.

The first chapter is an introduction to our motivation for the following research
and the objectives which we will be focusing on and dealing with through it.

The second chapter summarizes the importance of Hydropower through the
years till our days and presents as well the various facilities we can construct in
order to benefit from this form of renewable energy. Also, it includes the essential
mathematical formulas to be used in next calculations.

The third chapter presents the various types of turbines, their technical and
operational characteristics along with some of their most important charts. Also,
we present an analytical configuration of turbine efficiency curves, as an extension
of the work by Sakki (2020) and Sakki et al. (2021).

The fourth chapter presents the calculations and methodologies which take
place in order to create a new operational rule which can ensure higher energy
production comparing to the hierarchical one.

The fifth chapter revises to the new legal framework, named as “Target Model”,
and the various regulations behind it. In addition, it summarized the research
progress so far on the topic of day-ahead energy forecasting in SHPPs.

The sixth chapter describes the study area and the hydrological information
which we collect and process, along with the technical characteristics of our run-
of-river system.

The seventh chapter presents the different approaches of forecasting models and
their results through various diagrams and tables.

The eighth chapter draws the attention on the modelling procedure in order to
include the issue of uncertainty in our forecasting model.
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The ninth chapter illustrates the computational implementation of the
algorithms that were built in the R environment,.

The tenth chapter summarizes the conclusions from our research and the future
perspectives to accompany its progress.

-29-



2 Hydropower as an essential renewable source

2.1 Historical background

Since the dawn of civilization, humans have come to the realization of
hydropower’s importance. The wide use of watermills in ancient times for grinding
wheat into flour for more than 2000 years ago by the Greeks, of Archimedes’ screw
pump as irrigation machine by the Egyptians and hushing, also known as
hydraulic mining, by the Romans are some examples of what impact water had in
our lives and society’s evolution since the beginning of times.

The very first progress in the field of modern hydropower turbine was marked
in the mid-1700s by the French hydraulic and military engineer, Bernard Forest
de Belidor and his innovative book ‘Architecture Hydraulique’.

In the 19th century, the improvement of technological knowledge accompanied
by the work of French engineer Benoit Fourneyron, led to the replacement of the
open water mill to an enclosed turbine, as known to us today. It was James B.
Francis, a British-American engineer, the one who managed to improve the
turbine’s operational efficiency up to 90%, in 1848 , through his research in the
optimization of turbine design, by means of applied scientific principles and testing
methods. Another breakthrough in the field of hydraulic turbines, was established
by Lester Allan Pelton, an American inventor, in 1870, after developing the high
efficiency Pelton wheel impulse turbine, which used hydropower from the high
streams characteristic of the Sierra Nevada, a mountain range in California.

More details about the operation of the above mention turbines and others which
have been later invented, are presented in Chapter 3.

2.2 Hydropower nowadays

2.2.1 Overview

One of the most efficient sources of renewable energy is Hydropower. To be more
specific, the ability of storing huge quantities of water downstream of a
advantageous mountain basin by the creation of dams or by extracting a part of
the natural river flow, through a diversion structure (Figure 2.1), proves how
flexible and wide applied this element of nature can be in order to produce energy.
Not only the various establishments of hydropower but also the water’s natural
properties, like density, affect its performance.

Each hydropower facility is driven by the kinetic energy and pressure of flowing
water as it streams through the penstock. This energy is a transformation of the
water’s gravity energy, which is ensured either with dams (creating a high water
level through storage) or by taking advantage the favorable relief in mountainous
regions (Small Hydropower Plants). Hydropower plants include turbines and
generators, that are activated by the hydrodynamic energy and convert it into
electricity, which is then delivered to electrical grid in order to provide households,
industries and urban facilities with power.
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Figure 2.1: Sketch of a hydropower plant which storages water due to a dam and also
provides safety measures in case of flood incidents (left), and a Small Hydropower Plant
(run-off-river type), which is benefits from the facility’s geographical relief (right).

2.2.2 Classification of hydropower plants

As i1t 1s implied from the previous paragraph, there are different type of
hydropower facilities by which we can take advantage of water’s power to produce
electricity.

a. Impoundment facilities are the most common type of hydropower plant. As
main characteristics we should point out the use of dams in order to store the
water, that flows from upstream of the basin from different torrents, in a reservoir.
Also as an important difference comparing with the Small Hydropower Plants is
that impoundment plants are bigger facilities thus more expensive. Moreover,
since the outflow is manageable and can be controlled depending the demand and
the scheduling of the producer, impoundment plants can produce predictable
amount of energy. Last but not least, those type of facilities, can also play the role
of flood control safety plant, water supply and/or for irrigation needs.

b. Small Hydropower Plants (SHPPs) which are plants of up to a certain power
capacity limit, which is specified from national standards, e.g., 15 MW, 30 MW and
50 MW, according to Greek, South America /USA, Canada/China and New Zealand
legislation law, respectively. Diversion facilities, also known as run-off-river
plants, are the most common type of SHPPs. These have negligible water storage
and utilize the streamflow as it arrives by extracting a part of the river’s inflow by
leading it through a channel and then taking advantage of the height difference,
due to rough terrain, passing the flow through a penstock and the to the turbines
system for energy production. As a result, they have limited requirements from the
investment’s perspective, but their most important shortcoming is the lack of
storage capacity, thus the unpredictable quantity of water passing through the
turbine systems and produced energy. In order to face the above obstacle, day-
ahead energy forecasting methods should be established to minimize the uncertain
power production from SHPPs’. Except from run-off-river type, SHPPs can also be
settled downstream of large dams in order to take advantage of the environmental
flow, which is released from an independent intake, such as bottom outlet. Another
type of SHPP’s is the in-stream, which utilize the streamflow to produce energy,
by installing a low-head dam across large rivers (and, occasionally, channels).
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2.3 Governing equations

The governing equation for electric power production via transformation of the
dynamic and kinetic energy of water is

P=n(q) pgqh.(q) (2.1)

where p is the water density with a typical value for clean water of 1000 kg/m3; g
1s the gravity acceleration with a typical value of 9.81 m/s?; g is the discharge; h,
1s the net or effective head, i1.e. the dynamic energy, expressed as elevation
difference, after subtracting the hydraulic losses across the water transfer to the
turbine, which depend on ¢ and 1 is the total efficiency of the electromechanical
system, that changes with ¢. The issue of efficiency is been emphasized more in
Chapter 3. The Both h, and ¢ may vary in time, and therefore so does P. By
applying the SI units for ¢ (m3/s) and h,, (m), the power Pis expressed in Joules
per second (J/s) or Watts (W).

The energy produced or consumed during a time interval [#, %] is the integral
of P, i.e.

t2

E= f P(t)dt (2.2)

t1

After simplifications, we get the following formula, expressing the average
energy produced over a specific time interval

E=pgVH,i (2.3)

where Vis the water volume of that passes through the turbines during the time
interval [#, #] and H, and 7 are the net head and efficiency during this period,
respectively, averaged over time.
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3 Hydro-turbines: technology and operation

3.1 Key principles of hydro-turbine operation

By turbine system is implied a rotary mechanical structure that transforms
hydraulic energy (kinetic energy and pressure of water) to rotational kinetic energy
by which an electro-magnetic field is been activated (of low-voltage) through an
inductor inside the generator unit.

The turbines and associated electromechanical equipment are hosted in the
power station.

In the case of impoundment systems (i.e., hydroelectric reservoirs and dams),
there are several options for location of the power station. Specifically:

+ power stations installed close to the dam;
+ power stations installed at a significant distance downstream of the dam;

+ power stations installed at an adjacent river basin (inter-basin water
transfer).

The typical case is the first, thus involving a penstock of relatively small length,
in order to minimize the friction losses and the environmental impacts. Yet, there
are cases where it is more advantageous to construct the power plant at a
downstream location in order to increase the available head. Apparently, such a
layout is economically efficient only when the river slope is large, so that the gains
from elevation difference exceed the hydraulic losses due to the water being
transferred at a long distance. An important issue to account for is the
environmental impacts, since the water does not return to the river just
downstream of the dam, as happens in typical configurations where the power
station is located close to the foot of the dam.

Another case is the installation of the power station in a neighboring basin,
where the water is transferred through a pipeline connecting the two basins. This
layout is preferred when there is a significant elevation difference between the
upstream catchment, in which the water is gathered, to the one downstream,
where the power station is installed. Typically, in large-scale inter basin systems
Pelton type turbines are used, as this option becomes economically efficient when
the head is large enough. However, if the transfer is implemented for other reasons
(e.g. if the principal objective is the transfer of water per se), then the head may be
small.

3.1.1 Turbine types

The turbines used in hydroelectric plants are classified into two categories,
according to their reaction degree(re), which is defined as the ratio of the
static pressure drop in the rotor to the static pressure drop in the stage :

i. impulse turbines, re=0, (e.g. Pelton, Cross-flow, Turgo), with partial flow
impact and activation of only a specific area of the runner each time, take
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advantage of the kinetic energy of water falling from a large elevation (outflow to
the atmosphere); the flow velocity is substantially amplified by passing water
through a nozzle;

ii. reaction turbines, re=1, (e.g. Francis, Kaplan, Deriaz, Bulb), with total flow
1mpact, operate under pressure, as the chamber of the runner remains completely
filled by water;

In the following paragraphs are presented the main mechanical characteristics
of each turbine type:

The design of Pelton’s turbine, which was first introduced by the American
engineer Lester Allan Pelton in 1889, lays on the philosophy of the traditional
overshot water wheel. Since 1767, it was well known that in order to have the
maximum efficiency in power production, the water should enter the wheel with
high momentum and exit with negligible velocity.

Taking this principal as a guideline, a Pelton wheel extracts high-speed jets of
water, that emerge through the injectors (their number can vary from one to six)
at atmospheric pressure, that hit the center of the bucket where the water jet is
divided into two streams. The two separate streams then flow along the inner curve
of the bucket and leave in the opposite direction that it came in. Water leaving
those wheels typically still had high speed, carrying away much of the dynamic
energy brought to the wheels. Pelton's paddle geometry was designed so that when
the rim ran at half the speed of the water jet, the water left the wheel with very
little speed; thus, his design extracted almost all of the water's impulse energy—
which made for a very efficient turbine.

Figure 3.1: Various types of hydraulic turbines; from left to right: Pelton, Francis,
Cross-Flow, Turgo, Kaplan.

Up until 1960, Pelton wheels were designed only with horizontal axis of
operation with one or two maximum injectors, but after realizing how more
efficient the turbine system can be if the jets of water extract from more injectors
(without affecting each other in a negative way), Pelton wheels with vertical
operation and the ability to combine up to six injectors, have been manufactured.

-34-



Francis turbines were the first hydraulic turbines that had a radial inflow,
designed by American scientist James Francis around 1920. High pressure water
enters these turbines radially meaning that it enters the turbine perpendicular to
the rotational axis. This lowers the pressure as the water curls through the tube,
but the speed of the water is maintained. Once the water has flown through the
turbine, it exits axially - parallel to the rotational axis out of a draft tube to the tail
race. This tube reduces the exit velocity of the water to obtain the maximum
amount of energy from the input water. The water deflected through the runner
blades results in a force that pushes the blades in the opposite direction as the
water is deflected. This reaction force (like Newton's third law) is what causes
power to be transferred from the water to the turbine's shaft, maintaining rotation.
Because the turbine moves as a result of this reaction force, Francis turbines are
known as reaction turbines. The change of direction of the water flow also results
in a decrease in pressure within the turbine itself. They work equally well when
positioned horizontally as they do when they are oriented vertically.

In cross-flow turbines the water passes through the turbine twice: on the upper
part of the runner when inserting the turbine and on the lower part after, before
leaving the system. Passing through the runner twice provides additional
efficiency, and also allows self-cleaning from small debris, leaves etc. Another
advantage of cross-flow turbines is the practically flat efficiency curve under
varying loads, which makes them ideal for run-of-river plants.

Turgo has similar of operation as Pelton with main difference the angle in which
the water enters the runner’s level. This type of turbine can function in a more
endurable way when it comes to intense sediment erosion.

Kaplan type, is the most used hydro turbine for high-flow and low-head power
production. The runner is a form of a propeller, the water inserts vertical the axis
of the turbine, spins and then meets with the runner. Another propeller type
turbine is the Bulb, the Straflo, the S-type Kaplan and the Deriaz. Each one of
them has a different operation and design mode making them suitable for a large
scale of occasions.

3.1.2 Turbine selection

In order to choose the most suitable turbine type for a given net head H,
(geometrical quantity, that also depends on the discharge due to friction and minor
hydraulic losses), and to a nominal flow rate Q (hydraulic quantity), we will have
to consult the chart shown in Figure 3.2. This nomograph summarizes various
combinations of net head and nominal discharge, from 0.09 MW up to 1000 MW
power capacity. Each colored area represents a specific type of turbine and the
values of the above combinations, in which each is suitable for.

According to Figure 3.2, for relatively small nominal discharge and large head
(H > 250 m), the impulse turbines are applicable, in contrary with the Francis
turbines, which are more suitable for a wider range of discharge with lower head
conditions.

Moreover, for even smaller hydraulic loads but with high discharges, propeller
type turbines, like Kaplan, fit as best.
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The selection of the turbine’s type, when it comes to overlapping areas, depends
also in the predicted variations in discharge during the year but mostly to financial
and technical issues, as the available technical knowledge.
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Figure 3.2: Turbine application range chart, depending on net head H(m) and nominal
discharge Q (m?/s).

3.2 Turbine efficiency

3.2.1 Definition

The total efficiency of a turbine 1, is defined as the ratio of the output power
produced by the turbine system to the input power which is provided to the turbine
system. The efficiency of a turbine is always lower that one, due to energy losses.
It’s range also varies, depending the type of the turbine and the passing inflow.
Typical ranges of efficiency are 80%-95%.

But in order to know its real value we need to take into consideration the
different types of energy losses that occur inside a turbine system. Specifically:

e Hydraulic losses, due to friction losses of the fluid layers in motion and

also due to water crashing on blades, local losses due to changes of the
tube section;

e Volumetric losses, only for impulse turbines, due to small amounts of

water that are extracted to the atmosphere, without crashing on the
blade;

e Mechanical losses, that are developed in the rotating parts of the turbine.

Moreover, except from the turbine’s losses, the total efficiency of our
Hydropower plant is defined by the generator’s efficiency n; (~ 96%), the

transformer’s efficiency nrr (~ 98%)and lastly by the transmission lines’ efficiency
ng (~ 98%).

In conclusion, the total efficiency of our system equals to the product:

1N =NtNrrNcNE (3.1)
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and implies the ration of the actual power provided to the electrical grid to the
hydraulic energy provided to the turbine system.

3.2.2 Efficiency curves

The efficiency of the turbine system, is a nonlinear function of the net head and
the inflow. Their relation can be expressed by a two-dimensional diagram, Figure
3.3 provided by the turbine manufacturers or measured by the hydropower
producers on-site. The bellowed diagram represents the percentage of typical
efficiency of a turbine, n (%), as a function of the load in dimensionless terms,

q/qnom, where the subscript refers to the nominal operating point of the turbine.
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Figure 3.3: Typical efficiency curves for different types of hydropower turbines.

Some typical ranges of the maximum efficiency, in relation with the turbine
type, are also given in the following Table 3.1.

As we can see from the above diagram in Figure 3.3, Pelton, Kaplan and Cross-
flow machines are capable of operating close to their maximum efficiency for a
large range of hydraulic load, comparing to Francis and Propeller ones.

Pelton turbines, manage to have that kind of operation due to their ability of
changing the opening of the injectors, through a flow regulator (needle), resulting
to keeping the fluid’s velocity stable.

In addition, Kaplan exceeds the Propeller type, due to its faculty of adjusting
the angle of the rotor and guide blades in the most efficient way.

Cross-flow, it may operate in a large range of q/qnomwith its best efficiency but
it cannot compete with Pelton, due to its higher efficiency level.
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Table 3.1: Typical efficiency ranges for various turbine types.

Type Efficiency range
Pelton 0.880-0.920
Cross-flow 0.800-0.840
Turgo 0.800-0.870
Francis 0.910-0.945
Deriaz 0.910-0.940
Kaplan 0.910-0.945
Bulb 0.900-0.940

The maximum and minimum efficiency of a turbine depends on the type of the
turbine, its size and manufacturer’s design criteria. To be more specific, when it
comes to impulse turbines (e.g. Pelton, Cross Flow), their size does not affect in a
great scale their maximum efficiency level, thus we can assume it as a constant
value. On the other hand, the maximum efficiency of reaction turbines (e.g.
Francis, Kaplan) varies depending on their nominal power capacity and cannot be
taken as constant.

The following chart in Figure 3.4 is the so-called hill chart, that expresses the
relationship between the net head (blue dotted curve), the nominal discharge, the
turbine’s efficiency ranges (red dotted curves) and the opening of the turbine’s
guide vanes (olive green curves). The optimal efficiency point is determined as the
cross point of the net head curve (depending on the gross head and the inflow) with
the higher possible efficiency curve.

30 | 1 | i T T 0

Net head, H (m)

~.
~

et efficiency
_\1:\

Discharge, Q (m¥/s)

Figure 3.4: Example of determining the operation range of hydropower turbines, by
drawing the flow-head relationship of the penstock.
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3.2.3 Specific speed; a key variable for optimal operation of turbine systems

A lot of research has been taken place on the operation of the turbines with
variable speed. This approach is of particular importance in the field of Small
Hydropower Plants, when there is no storage capacity, thus meaning unsteady net
head and variable efficiency rate. In order to ensure an operational range with
higher efficiency levels not only in nominal values but in operating points as well,
we choose a flexible scheduling of the runner by changing the speed of rotation
depending on the inflow of each time, setting as goal the best operational efficiency
for the incoming flow and as a result the maximization of the produced energy.

In few words, for each incoming discharge we choose the right angle of the guide
vane system and the corresponding turbine speed in order to have the best
efficiency point. Taken from a research on an experimental Small Hydropower
Plant, with nominal head H equals to 3,5 m and nominal discharge Q equals to
3m3 /s, with a propeller turbine and a permanent magnet synchronous generator,
in Figure 3.5 is shown the co-dependency of the above turbine operational values.
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Figure 3.5: Typical hill chart of hydropower turbines.

The above technique, requires the use of power electronic converters (PECs),
since we need to supply the electrical network with stable electrical frequency. The
only drawback of this approach is the reduction of the total efficiency caused by
the additional electromechanical equipment, which can be balanced by
accompanying the PECs with permanent magnet synchronous generators. The
usage of these type of generators increase the efficiency of the system since their
design include a polar pair number, which allows the elimination of mechanical
transmission gears.

3.3 Fundamental mathematical formulas

3.3.1 Operational range of turbines

As it is apparent from the previously presented typical efficiency curve (Figure
2.3), each turbine can operate in a specific range of inflow, in other words electricity
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can be produced by the selected turbine system only if the passing discharge
belongs between a minimum and a maximum value, symbolized as g and qqx,
respectively, which differ according to the turbine model.

The nominal discharge is given by the following formula

=P
Anom /)/ Nmax hn (3.2)

where 1,418 the maximum total efficiency represented by the nominal discharge,
y is the specific weight of water (9.81 KN/m3) and h,, is the net head, i.e. the gross
head, H, after subtracting hydraulic losses, h;. Hydraulic losses include friction and
minor ones, which are function of discharge and the penstock properties
(roughness, length, diameter, geometrical transitions).

The minimum discharge also depends on the manufacturer, since is a ratio of
the nominal, and also differs according to the type of the turbine.

The expression that gives the above value, is the following formula

Amin = 0qnom (3.3)

where 6 expresses the percentage of the g,,m,» that g, equals to.

It 1s worth mentioned, that the discharge rate which refers to the best efficiency
factor (nominal operating point) is not necessarily the maximum flow limit of the
turbine. On the contrary, the unit is designed to produce energy for discharges up
to 1.2-1.25 times the nominal rate or even greater for some turbines. Some typical
ranges for common turbine types in SHPPs are shown in Table 3.2.In this range
(1 < Qi/Qnominal < 1.20 — 1.25) the efficiency curve becomes monotonically
decreasing, in a rate that depends on the type of the turbine and the manufacturer.
More details follow in the next paragraph.

Table 3.2: Typical values of range of operation for different turbine types.

Type Of turbine qmin/ 9nom Qmax/ 9nom

Pelton 0.1087 1.25

Francis 0.5 1.25
Cross Flow 0.285 1.428

Kaplan 0.1242 1.4286

3.3.2 Analytical formula

A more flexible and efficient method to determine the efficiency value of each
incoming inflow in every time step and then extract its efficiency curve, is through
an analytical formula, introduced by Sakki (2020) and Sakki et al. (2021). In the
following formula, a and b are non-negative shape parameters that in combination
with the appropriate values of 0,45 »Nmin 1t 18 possible to change the efficiency curve
and extract its loyal form to the in-situ results.
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a b
q
-0

dnom

Nr =Mmin+|1—-(1- ﬁ (nmax - nmin) (3.4)

The above formula helps us to define the relationship between efficiency n and
discharge , by taking into consideration the turbine’s characteristics in size and
type Mmax sNMmins0, @, b). The lower limit of the expression (3.4) is (Gmin,Nmin) and

the upper (¢nom,Nmax)-

In case that we decide the nominal discharge to also be the maximum discharge
that our turbine should operate, as it happens with the present case study then
there above formula is the best fit to our problem. In a more generic way, in order
to include a broader approach, we also provide a second formula, as shown in
expression (3.5), similar to the above. The second formula acts as a supplement to
expression (3.4), since is applicable forn < 1,4 While ¢rom < 9 < Gmax-

q ary b’

dnom

N =Mmax—|1—|1- ﬁ (nmax = Nmin) (3.5)

Figure 3.6 demonstrate three different types of turbines with their efficiency
curve given by their manufacture. In the same diagram, the analytical formulas
have been applied for each type with the appropriate turbine characteristic for
each case and shape parameters.
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Figure 3.6: Turbine efficiency compared to rated flow and its analytical
expression for different type of turbines.
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4 Generic framework for optimizing the
operational policy within turbine mixing

4.1 The concept of turbine mixing in small hydroelectric
plants

For a given layout of a small hydropower plant (siting of intake, forebay, water
conveyance system, and power plant), the most important design decision involves
the configuration of the turbine system. This imposes the specification of the type
and number of turbines, and the assignment of their power capacity. As explained
in section 3.3.1, the power capacity also determines the maximum discharge, gmax,
that can pass through the turbine (see eq.3.2), while the type of the turbine leads
to a certain value of ratio 8, thus resulting to a minimum discharge qin = 0 Gmax-

Since the majority of SHPPs have negligible storage capacity, they cannot offer
regulation of the arriving streamflow (as made in the case of hydroelectric
reservoirs), which exhibits significant variability across all scales. A single turbine
captures a relatively limited portion of this variability, thus implying the setting
of more than one turbines. The typical case is the mixing of two turbines in parallel
(one large and one small), which allows for exploiting a wide range of diverted
discharge values. In the generic case of N turbines, if the individual flow ranges
are (q; min> 9imax)> the operational flow of the combined system ranges from gy, =

min(Qi,min) to Gmax = Zliv=1 9imax-

4.2 Hierarchical operational rule

By applying two (or more) turbines instead of a single one, we confront a
challenging management problem, i.e. the sharing of the diverted streamflow
through each turbine. A simple and effective operational rule, herein called
hierarchical, indicates that the system of the two turbines comprises a master and
a secondary one. As it is implied, the master turbine refers to the one with the
larger power capacity, and thus the most extended operational flow range, while
the secondary one has the lower capacity.

The hierarchical rule is structured as follows: When the diverted discharge is
lower than the minimum flow limit of the turbine system, g, there both turbines
are shut down and there is no power production. On the other hand, when the
diverted discharge exceeds the maximum flow limit, g, then both turbines
operate at their maximum power capacity, while the excess stream flow overflows
to the natural bed of the river. For flow values within the range (q2 min, 41.min), the
flow is conveyed to the secondary turbine, while the master one remains out of
operation. Instead, between q; i, and g pmqx, only the master turbine is set in
operation. Finally, in the range (g1 max, 91.max + q2max) the hierarchical operational
rule states that the flow is by priority conveyed to the master turbine, which
operates at its capacity. On the other hand, the secondary turbine receives the
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remaining flow and produces energy only is this quantity exceeds the associated
limit g min.

The aforementioned operation policy is formalized as follows: Let g be the
streamflow arriving at the intake (typically, this is the natural flow of the river,
after subtracting a quantity q,, which is imposed by the environmental legislation).
The flow passing from the master turbine i1s given by:

¢, = min(q, Q1,max) (4.1)

If ¢ > q1max then the surplus flow passing from the secondary turbine is:

qz = min(q — 41, 92,max) (4.2)

For q; < q;min the turbine is set out of operation, while for q; > q; ;i the power
produced by each turbine is:

0 qi < Gimin
pi =43P 9 n:(q:) qihn(q:) Qimin < i < Qimax (4.3
pi,max qi,max < qi

where 1;(q;) is the total efficiency, which is typically expressed as afunction of the
rated flow, q/q,,m(monotonically increasing, up to the nominal point), and h,,(g;)
is the net head, which is, on the other hand, a decreasing function of flow g;.

4.3 Looking for an optimal operation rule

The above policy is the simplest one, but not essentially the most effective. This
is due to the nonlinearity of the product n;(q;) q;, where i refers to a specific turbine.
This nonlinearity is mainly induced by the peculiarity of the efficiency function,
which retains an almost constant ceiling, for relatively high rated flow values, and
then exhibits a steep drop. As described in previous section, the hierarchical rule
implies the occasional use of the small (secondary) turbine, since the flow is by
priority conveyed to the large (master) one. However, under some circumstances,
a combined operation of the two turbines would be more beneficial, to ensure the
maximization of the total energy production. This could be achieved by “donating”
part of the arriving flow to the small turbine, to operate close to its nominal
efficiency, with minimal efficiency loss for the large turbine.

In order to clarify this argument, we contrast the application of the hierarchical
rule with a more effective policy, hereafter called synergetic. We use the data from
the pilot small hydroelectric plant in upper Achelous, which takes advantage of a
practically constant net head equal to 150 m (Chapter 6). This comprises two
Francis-type turbines, which characteristics are shown in Table 4.1. The efficiency
curve of the two turbines is illustrated in Figure 4.1.
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Table 4.1: Design characteristics of the two Francis-type turbines.

Turbine 1 Turbine 2 Total

Power capacity, P (MW) 7.40 1.00 8.40
Maximum discharge, qnq, (m3s)  5.69 0.77 6.46
Minimum discharge, ¢, (m3/s) 0.85 0.12 0.12
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Figure 4.1: Sharing of diverted discharge across the two turbines of the pilot
SHPP and associated power production for two operational rules (hierarchical,
synergetic).
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The contrast of the two operational rules, in terms of flow sharing and power
production, is demonstrated in Figure 4.1. The derivation of the associated graphs
is made by dividing the operational flow range of Table 4.1 into small intervals
(.e., /Gmax = 0.05) and next applying the following methodology:

1. We calculate the flow sharing and power production for the operational
scenario that implements the conventional hierarchical policy, in which the
large turbine is set as the master and the small one as the secondary one;

2. We repeat the calculations for the opposite hierarchical policy, where the
small turbine operates as master and the large one as secondary;

3. We compare the two scenarios, on the basis of totally produced power,
and keep for each flow value the flow sharing that maximizes the output power
through a synergetic operation of the two turbines. In fact, the optimal synergy
is ensured when the two turbines exchange roles (master/secondary) in the most
productive way.
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Figure 4.2: Gain in produced power by applying the synergetic instead of the
hierarchical operational policy.

As shown in Figure 4.2, the gain in produced power by applying the synergetic
instead of the hierarchical operational policy appears in two discrete flow intervals,
defining the so-called donation areas. Term donation originates from the fact that
the large turbine offers an amount of its discharge to the small one, in order to
optimize the product (we remind that inthis specific case, the net head, h,, is
assumed constant, for simplicity):

q q
Peot =P g hn (m ( - )q1 +1; ( 2 >q2> (4.4)
Q1Jnax QZﬂnax

The first donation area starts at q;n,(in this case, 0.85 m3/s), where all
discharge is conveyed to the small instead of the large turbine. Under this policy,
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the small turbine operates with its maximum efficiency, since the rated
flowq, /g2 maxis unit (since in our case, Gymin > G2max)- In opposite, the hierarchical
rule would require the operation of the large turbine with q/qm.x < 1, and thus a
much lower efficiency. The end point of the first donation area, where the
hierarchical rule is applied again when:

M < o )‘h = N2maxq2,max (4.5)
q1,max
The second donation area starts at g; mq,(in this case, 5.69 m3/s), where the
discharge which is conveyed to the large turbine is reduced by g, mq, (in this case,
0.77 m3/s), in order to feed the small turbine with its maximum discharge and thus
operating with its maximum efficiency. This policy is applied until the system
reaches its total power capacity, thus q = g1 max + G2max-

4.4 Summary of synergetic management rule

The generic management rule for any mixing of two turbines, by applying an
optimized synergetic operation, can be defined as follows:

e If g < g2 min, both turbines are shut down, thus there is no energy
production;

o If g2 min < 9 < qimin , only the small turbine is in operation;

o If g1 min < 9 < q2max, only one turbine is in operation, namely the one
ensuring the higher productn;q;:

o 12 max < 9 < q1.max,0nly one turbine in operation, the larger one (T1)

* If g1 max < 9 < Qimax + 92,min, donation point, both of the turbines are
in operation, in the most optimal combination meaning the small
turbine operates with its maximum efficiency and the larger one with a
slighter lower that its maximum for a small range of inflows

o Ifqimax + 92min < 9 < Qimax + 92,max> Same as above step, both
turbines in operation, distributing q in the most efficient way

o If ¢ > q1max + 92,max,both turbines operate in their maximum
efficiency.

4.5 Generic formulation of operation rules

We consider a hydroelectric plant comprising two turbines, of unit total capacity,
Pmax = 1,by taking advantage of a unit net head, h;, = 1.In the generic case, the
type of the two turbines differs, thus their efficiency functionn; = f(q/qnom) 18
expressed by different parameter values,n; mqy.0;,a; andb;.For convenience, we
assume that the system operates up to its nominal point where the efficiency is
maximized, and also the power capacity of each turbine is determined. In this
respect, we can set ¢nom = Gmax AN Prnom = Pmax-» We also consider that n; refers
to the total efficiency, thus it embeds the product nygrnsng, which refers to minor
energy losses across the rest of electromechanical components (transformer,
generator, electrical grid).
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We next introduce a sharing factor ¢ > 0.50(dimensionless), thus the large
turbine has a power capacity pj ., = @and the small one p; 4, =1 — ¢. Under
this premise, the maximum discharge passing from each turbine is expressed in
dimensionless terms as:

* p?max
Lmax pyg 7']l’,rnaxhn
Similarly, the minimum dimensionless discharge of each turbine is:
* p;max
Gt = 0 —omex (4.7)
LI ' pyg ni,maxhn
In this respect, the maximum dimensionless discharge of the turbine system
equals to:
1 p 1- <p>
Qmax = - + (4.9
max p ghn <n1,max 772,max

On the other hand, the minimum dimensionless discharge of the system is:

1 (619 6,(1— (P)>
Amin = ——7> min : (4.9)
mn Py hn <r]1,max nz,max
By setting u = q/qmqx, We can express the dimensionless discharge as:
q" = U qmax (4.10)

Under this premise, the dimensionless power production is:
pi =pgniwqhy (4.11)

In order to determine the optimal operation of alternative configurations of the
turbine system, we examine different scenarios depending on the value of the
sharing factor ¢,the parameter 6; and the turbine type, which affects the efficiency
function parametersn; mqy, a; andb;.

4.6 Experimental scenarios on power production

After testing different combinations of the sharing factor ¢ and the parameter
9; for the two most used turbine types (Pelton, Francis)we compared their results
in terms of total dimensionless power production, p;" = p1; + p, ;.

Depending on the mixing characteristics’ for various values of the sharing factor
9;(0.2, 0.4, 0.5, 0.6, 0.7, 0.8), we settle on the most efficient combination. In Table
4.2, we present all the combinations (I,II,III,IV) along with their characteristics.
In order to set a measure for defying the most efficient combination, we compare
with the theoretical power which can be produced by an ideal turbine system with
unit efficiency, 1.e.:

Poi = P 9 (0,01 Mimax @i, bi) iy (4.12)

Afterwards, for each value of the sharing factor ¢;, for the four combinations,
we calculated the deviation of each’s scenarios power production from the ideal
system, Ap; = (po; — p;), as shown in Figure 4.6 .
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We also desire to evaluate the deviation of optimal from the hierarchical
dimensionless power production,(p;,,Pp., respectively) in each different
combination of turbines mixing in type (LILIILIV) and sharing ¢;, meaning
Ap; operationat = Popt,i — Phier,i)-Lhe results of the above calculations are presented

in Figure 4.10 : .

Table 4.2: Different combinations of turbine mixing

Combination I Turbine 1 Turbine 2 Combination II Turbine 1 Turbine 2
Turbine Type  Francis  Francis Turbine Type Francis  Francis
parameter 6; 0.50 0.50 parameter 6; 0.15 0.15
Mi max 0.93 0.93 i max 0.93 0.93
a; 0.78 0.78 a; 1.00 1.00
b; 3.11 3.11 b; 2.11 2.11

Combination III Turbine 1 Turbine 2 Combination IV Turbine 1 Turbine 2

Turbine Type Pelton Francis  Turbine Type Pelton Francis
parameter 6; 0.10 0.50 parameter 6; 0.10 0.15
i max 0.89 0.93 Mi max 0.89 0.93
a; 1.13 0.78 a; 1.13 1.00
b; 12.8 3.11 b; 12.8 2.11
0.45
—=0.2 Combination I
0.40 —{p:()_)‘l
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Figure 4.3 : Combination I of the deviation of dimensionless power production
between real and ideal operation.
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Figure 4.4 : Combination II of the deviation of dimensionless power production
between real and ideal operation.
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Figure 4.5 : Combination III of the deviation of dimensionless power production
between real and ideal operation.
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Figure 4.6 :Combination IV of the deviation of dimensionless power production
between real and ideal operation.
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Figure 4.7 : Combination I of the deviation of dimensionless power production
between optimal and hierarchical scheduling
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Figure 4.8 : Combination II of the deviation of dimensionless power production
between optimal and hierarchical scheduling.
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Figure 4.9 : Combination III of the deviation of dimensionless power production
between optimal and hierarchical scheduling.
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Figure 4.10 : Combination IV of the deviation of dimensionless power production
between optimal and hierarchical scheduling.

Through the Figures 4.3, 4.4, 4.5 and 4.6, we can examine which combination is
closer to the ideal operation of our system. As is shown in the aforementioned
figures, in Combination I (¢wo Francis with identical 6; = 0.5) the best sharing
scheme is the one with ¢; = 0.8 and ¢; = 0.2, which are the same since the turbine
mixing is symmetrical and the above sharing factors are complementary, and the
worst is for ¢; = 0.5. In Combinations II (¢wo Francis with identical 8; = 0.15), III
(one Pelton with 6; = 0.10 and one Francis with 6; = 0.50), and IV (one Pelton with
0; = 0.10 and one Francis with 6; = 0.15) closer to the ideal operation happens to
be achieved with sharing factor ¢; = 0.7. On those combinations, the less efficient

schemes regarding the sharing factor differ depending on the range of q/ Gmax: 1O

be more specific, in Combination II, the worst performance is obtained when ¢; =
0.5 and ¢; = 0.8, for high and low discharge rate, respectively, in Combination III,
@; = 0.2 leads to the least appealing scenario and in the end in Combination IV,
@; = 0.2 for low discharge rates and ¢; = 0.4,0.5 for higher discharge rates but in
smaller ranges, are the sharing factors which we should avoid in terms of better
efficiency.

On the other hand, the Figures 4.7, 4.8, 4.9 and 4.10 remark how much the
optimal power production outnumbers the one produced from the hierarchical
scheduling, regarding the above selected efficient scenarios. The usage of these
observations is twofold: first we can conclude of how important is the use of the
synergetic scheduling versus the hierarchical and secondly if the above divergence
1sn’t in a great scale, to reconsider which scheduling to choose since the optimal
might lead to more complex operation management. Depending the combination
and the value of ¢;, the above figures combined with the given hydrological regime
of the, under research, SHHP, can quantify the benefit of exploited discharge we
gain or not by using the optimal (synergetic) rule instead of the hierarchical.
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In order to assess the actual benefit (i.e., in power production terms) from the
application of the synergetic vs. the hierarchical rule, we use the historical inflow
data and the energy production resulting by them, sorted in descending order, thus
forming the so-called energy and flow-duration curve (Figure 4.11 and Figure
4.12), respectively. For each value of sorted inflow data, we estimate the power
production by the two management policies, and assign it to the corresponding
exceedance probability (Figure 4.13 ).
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Figure 4.11 : Energy—duration curve.
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Figure 4.12 : Flow-duration curve.
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Figure 4.13 : Simulated power production as function of the empirical
exceedance probability of inflow, according to the two operation policies.
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Figure 4.14 : Detalil of previous figure, focusing on donation area II.

As shown in Figure 4.13 the synergetic rule outperforms the hierarchical one
particularly within donation area I, in which the system is driven by medium-scale
inflows having exceedance probability from 45 to 55%. Thus, this mode is applied
about 10% of time, resulting to an obvious benefit for the system. On the other
hand, the gain within donation area II is not as much significant, as the rule is
activated for a limited portion of time (see detailed graph in Figure 4.14). This
highlights that the optimal performance of a mixed turbine system is subject to
both the management rule and the flow regime.
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5 Setting the problem of energy production
forecasting in Small Hydropower Plants

5.1 The Target Model Era

Today, the energy market is subject to a new legal framework, called “Target
Model”. This model has been recently introduced as the new legal framework of
the electricity market across Europe. Its main goal is to create a well-organized
electricity market and an unified power system across European borders, through
the cooperation of different markets by exchanging their natural sources in the
most efficient scheduling.

The above legislation is a part of the European Union’s third energy package,
which aims at a new and improved function of the internal energy market by
redefining the role of each participant (producers, aggregators) and the nature
of their interaction.

Regarding the application of the “Target Model” in the Greek energy market,
a variety of challenges arise, especially in the field of Renewable Energy Sources
(RES) considering that new renewable energy projects are obliged to participate
in the Greek wholesale electricity market. The above can be executed either
directly or through renewable energy aggregators —meaning assigning them some
of the balancing responsibilities.

This new role-allocation, leaves the RES producers financially responsible for
the additional balancing cost between their forecasts and their actual energy
production. From that point of view, it is clear that the contractual framework
governing and representing the relations between RES producers and RES
aggregators in the market, becomes of high importance.

Another significant measure which changes the structure of the energy market
due to the “Target Model” and also intensify the need of credible forecasting
predictors, are the additional costs for RES producers such as deviation between
their forecasts and their actual energy production, clearance and non- compliance
charges.

In this concept, RES aggregators’ concerns focus on the commercially
successful operation of their represented units, in terms of energy-schedule
optimization or of power-system control services. As a result, they could ensure a
better prediction of the actual production of RES units, leading to low level
deviation charges accounting to RES producers.

Till our days, traditional units are mostly used on order to provide stable
energy generation. Since the later are starting to be replaced by RES, it comes to
question whether RES units are capable to autonomously maintain this stability
by adapting with flexibility variable and possible unforeseen changes in operating
conditions which also depends on the weather processes.
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Geothermal

Figure 5.1 :Representation of various forms of renewable energy and their
dependence on weather processes. (Source: https://www.deccanherald.com/
content/661665/impacts-renewable-energy-projects.html)

5.2 Research advances and limitations

The associated research and operational applications so far mostly span over
two main directions, regarding the forecasting of energy production.

The first refers to the short-term energy production forecasting by solar and
wind power systems. Numerical Weather Prediction (NWP) models, are used by
providing deterministic point forecasts.

The second field of interest deals with the long-term energy production by large
hydropower reservoirs and is based on projections of their inflows (e.g.,
Cassagnole et al., 2021).

Nowadays, emphasis is given to data-driven approaches (e.g., machine
learning), also combined with stochastic-probabilistic schemes for representing
uncertainties that are ignored by NWP models (Felder et al., 2018; Talari et al.,
2018; Croonenbroeck and Stadtmann, 2019).

Small hydroelectric works are classified as one of the most cost-effective
technologies, establishing them as one of the most widespread form of renewable
energy. We remind that this concerns hydropower systems up to a specific
capacity value (e.g., 15 MW in Greece), commonly of negligible storage capacity,
where the energy production is a direct conversion of the streamflow arriving at
the intake. In contrast to other renewables, the short-term energy forecasting
problem, in the field of SHPPs without storage, has not gained the necessary
attention from the research community (Yildiz and Acikgéz, 2021). The typical
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input information used in forecasting schemes appears to be the observed energy
production and rainfall (e.g., Li et al., 2015), while some researchers also use
forecasted precipitation, provided by NWP models (Monteiro et al., 2013).
However, we should highlight that the accuracy of NWPs with respect to rainfall
forecasting 1s still questionable, particularly in complex mountainous reliefs
(Olafsson and Agﬁstsson, 2021).

Surprisingly, streamflow forecasting procedures, followed by turbine operation
models employing flow-energy conversions, seem to be missing. A plausible
explanation is the scarcity of streamflow observations, since most of SHPPs are
located in small remote catchments, lacking of hydrometric infrastructures.

On the other hand, given that the technical and operational characteristics of
the SHPP are known (e.g., turbine scheduling and efficiency curves), the past
inflows can be retrieved with quite satisfactory accuracy, on the basis of observed
power production data, through reverse engineering (Sakki et al., 2021a).

Taking as an example a run-off-river SHPP, in the upper course of river
Achelous, Western Greece, we investigate different day-ahead power forecasting
approaches, driven by alternative data sources.

Since the limited scale of the SHPP industry makes difficult to support highly
sophisticated operational forecasting systems, we seek for establishing simple
and parsimonious regression-type approaches, instead of more complex schemes,
e.g., from the domain of machine learning (ML) (cf. Papacharalampous et al.,
2020), that yet require significant expertise to be properly used and often
demanding computational infrastructures. This fact is probably associated with
the growing interest in explain ability of such techniques (cf. discussion by
Ribeiro et al., 2016). Key objective, and at the same time novelty of this research,
is the maximization of information gathered from the available data, by taking
advantage of the hydrological expertise and knowledge about the system’s
operation. Our research also highlights the training and evaluation procedure of
each forecasting approach, as well as the representation of uncertainty and its
practical interpretation.

In this vein, our overall objective is to move beyond the standard, yet risky,
point forecasting methods, providing a single expected value of hydropower
production, thus quantifying the overall predictive uncertainty of each method,
and use it as a guidance for modelling energy market behaviors and support
decision-making.
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6 Study area and data

6.1 Overview and hydrological data

In the context of our analysis, we consider a hypothetical run-of-river plant
under study, in the upper course of river Achelous, Western Greece. The flow
arriving at the intake is diverted through an open channel to a forebay and next
conveyed to the power station through a penstock, thus creating an elevation
difference of 150 m.

The available hydrological information comprises spatially-averaged daily
precipitation data from ten representative meteorological stations, and daily
streamflow data at the intake. The latter input is extracted by adjusting the
observed inflows to a downstream site, i.e., Kremasta reservoir (Efstratiadis et
al., 2014), by accounting for the ratio of the corresponding drainage areas (about
1:40). The common period of the two records extends over 39 years (May 1969 to
December 2008). Figure 6.1 illustrates the adjusted flow time series, the mean
annual value of which is 2.15 m?3/s.

Inflowy (m3a‘$)

Oct 1971 Jan 1972 Apr 1972 Jul 1972 Oct 1972

Figure 6.1: Streamflow time series at the intake for hydrological year 1971-72.

6.2 Technical characteristics

Before proceeding with the forecasting problem, it is essential to specify the
technical characteristics of the project.

First, we estimate the environmental flow to be released downstream of the
intake, in order to sustain the riverine ecosystems (Efstratiadis et al., 2014).
According to Greek legislation, the time-constant environmental flow which
should be preserved downstream of the Small Hydropower Plant, is defined as
the maximum of the following quantities:
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e 30% of average streamflow during the summer period (June, July,
August);

e 50% of average streamflow of September:;

e 30 L/s, 1n any case.

Following this, we defined a constant flow of 0.25 m3/s as the 30% of mean
discharge of September.

We should highlight that in next computations, we consider a constant net
head, for simplicity. This comes in agreement with reality, by placing a penstock
with quite large diameter (1500 mm), thus causing minimal hydraulic losses,
even at the maximum discharge capacity.

Moreover, as it has already implied, in our case study, we set as an optimal
operational system, a mixing of two Francis-type turbines, which characteristics
are summarized in Table 4.2. The two capacities have been selected by the
estimations, after solving an optimization problem (Sakki et al., 2021b). In this
respect, a standard technoeconomic optimization problem is formalized by setting
as goal the maximization of financial quantities such as the net present value
(NPV). In this concept, the discounted value of future net cash flows should
exceed the investment cost, so as to ensure a sustainable investment. The cash
flows derived from the production of electrical energy during the entire life-cycle
of the system, while the investment cost (involving the E/M equipment and the
civil works) was directly or indirectly associated with the power capacity.

The objective function of the design optimization problem is expressed in
annual profit terms as:

F(1,p) = wEa(l,p) — AU 6.19)

This function is strongly nonlinear and contains two conflicting components,
namely the mean annual energy production, E,(I,p), to maximize, and the

equivalent annual cost, A(I), to minimize.

To ensure robust solutions, the research also accounted for the resulting
capacity factor of the RES, since they consider it may also comprise a mixing of
different sources. This factor is a fundamental performance metric of power
systems, defined as the ratio of the mean annual electrical energy output to the
maximum possible one (Mamassis et al., 2021), i.e.:

(6.12)

F(Lp) (L)

B Ta Zi\’:l Il

In order insight to the optimization problem, Sakki et al. (2021b) repeated the
design procedure for a large number of turbine capacity combinations, driven
with the historical streamflow data. In their research they highlight that since
the formulation of the problem is deterministic, it leads to a unique solution. As
derives from their numerical and graphical results, two alternative operation
policies with quite close performance characterized as optimal mixings. One of
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them , named as “global optimum”, is the one we chose to be the selected turbine
mixing in our case study.

The operation policy of the SHPP, in combination with both mathematical and
graphic formulations, have been expounded extensively on Chapter 4. This has
been obtained by seeking for the optimal hierarchy of the two turbines, in order
to maximize the power production across different discharge ranges.
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7 Day-ahead energy forecasting approaches

7.1 Application of energy forecasting schemes

7.1.1 Two routes leading to energy forecasting

In order to deal with the difficult task of energy prediction we established two
alternative routes (direct, indirect) to the power forecasting problem of SHPP’s,
on a day-ahead basis. The direct route aims at predicting the next-day energy
production via regression models. These models use as explanatory variables past
observations, in terms of power production and the past rainfall, as the sole
source of hydrological data. On the other hand, the indirect route initially aims
at predicting the day-ahead discharge, given that such data exist. The forecasted
flows are next introduced to the operation model of the system Figure 7.1 , for
extracting the forecasted energy. For each approach, we assess alternative
forecasting schemes, in terms of model structure and data.
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Figure 7.1 : Operational scheduling of the turbine system, ensuring an
optimal power production.

7.1.2 Precipitation data

For the precipitation’s information, each one of the ten stations’ data were
analyzed according to their degree of correlation to the observed inflow data.

In more words, since the linked relationship between the ten stations and the
streamflow varies, for each one we set a relevant weight rate w; , then for each
time step t(here day) ,of our collected, n,data we calculate the following sum
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product: Y1(ps; w;), where p,; stands for the precipitation value of station i at
day t. The weighting coefficients w; we assigned to each meteorological station,
account as variables for optimization, aiming to give the best correlation value
between the aforementioned sum product, and the flow value of the next day,
meaning correl] X1 (Dy; W) , qer1l-

The above method represents a credible approach of combining hydrological
information from different recording sources. In our case, we combine the
precipitation data from different meteorological stations while defining the
rainfall time series Y. 7(p;; w;), which are next used as inputs to the forecasting
problem.

Table 7.1 summarizes the correlation coefficients of each precipitation data set
with the flow data, for two different lag values (0 and 1). It also includes the final
weight rates for each case.

Table 7.1: Correlation and weight factor for the ten different precipitation
stations

St.Vlassios Helidona Granitsa Karpenisi Katafito

correl (pe;;qt) 0.340 0.407 0.397 0.370 0.364
correl (Pei; Ges1) 0.420 0.500 0.523 0.476 0.402
w; 0.073 0.138 0.158

Perdikaki Pertoulio Sargiada Theodoriana Viniali

correl (pg;;qy) 0.393 0.491 0.325 0.542 0.394
correl (De;i; Qee1) 0.464 0.434 0.489 0.487 0.436
w; 0.082 0.050 0.107 0.086 0.076

7.1.3 Efficiency metric to evaluate forecasting’s accuracy

In order to calibrate the free parameters of each forecasting model and
evaluate their predictive capacity, we introduce a quite strict skill score in terms
of the generic efficiency formula:

F=1— 2?:1(Et, obs—Et, forecast)2 (71)

2
Z?=1(Et,obs_ Et,bencmark)

where E; ,ps 15 the “observed” energy at day t, which is known from the simulation
model, E; forecast 18 the forecasted value, which is estimated on the basis of past
data (X¢-1Xt-2,..), and differs according to each approach as presented
extensively in the next paragraphs, and E¢ pencmark 18 @ reference prediction,
provided by a benchmark model.

In the classical definition of efficiency, a benchmark model coincides with the
mean observation (thus the daily average energy production), yet here we also
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apply a stricter benchmark prediction, i.e., the so-called naive forecasting model
E; = Ery; (hereafter referred to as modified efficiency). The aforementioned
expression ensures an efficiency up to 78%, for the entire period of historical data
(1969-2008; see Table 7.2 ).

In Figure 7.2 we present the timeseries of the produced energy in comparison
with the naive- benchmark model, for the hydrological period 1971-1972. In
addition, in Figure 7.3 we demonstrate, in the form of a scatter plot, the correlated

relationship between energy production at t day and t + 1,through the 39 years
of collected data.
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Figure 7.2 : Comparison of actual energy production with itself placed one
day later (benchmark model ) for hydrological year 1971-72.
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Figure 7.3 : Scatter plot of energy production at day t comparing to the
energy production of the “Naive model” at day t+1.
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7.1.4 Direct (energy-based) approaches

In the direct approaches we use as independent variables (predictors) for the
energy generated at time step (day) t + 1,the past energy production, E, as well
as the available hydrological data, by means of rainfall, p, from a representative
meteorological station or the spatially-aggregated rainfall from a set of stations
(paragraph 7.1.2). After investigations, we concluded to two possible models, for
expressing the day-ahead energy, the “Generic Model” and “Crossroad Model”.

Both models are expressed in the form of branched equations that take into
consideration the appearance of a rainfall event at day t, which is expected to
influence the generation of streamflow due to the increase of soil moisture over
the basin. We highlight that the “Generic Model” (7.2) represents a simpler
approach, since for minor precipitation events from the previous day, we assume
an equal energy production as in the day before. On the other hand, the
“Crossroad Model” (7.8), is more complex ,yet more efficient (see Table 7.2 ), model
since even for negligible precipitation events, is designed to relate the next day
energy with the energy from the two previous days. Also, the “Generic Model”
takes into consideration the extracted discharge of the day before.

4.79 (E)**® (q0)**° (E-1) "2 (p0) "', pr > 0.1 mm

Erer = {Et, pe < 0.1mm (7.2
3.88 (Ep)°5*(Ey_1)%12 (p)°1%, p, > 0.1 mm
Ety, = 0.63 0.25 (7.3)
1.51 (E))°®°(E~1)"*>, p: < 0.1mm

Following the typical split-sample approach, we estimated each model’s
parameters by calibrating against the actual energy production values in the half
of observations, and validating its predictive capacity in the other half. From the
aforementioned calculations the skill scores in calibration and validation,
expressed in terms of classical and modified efficiency, which resulted, as well as
the statistical characteristics of the model error, wy = E; ops — Et, forecast » are
summarized in Table 7.2 .

In an effort to visualize the correlation of each direct (energy-based) forecasting
model, with the energy which was actually produced, we present two
representative figures for each one of the above approaches. Those being, a
timeseries of the forecasted energy in comparison with the real energy produced
(Figure 7.4 and Figure 7.6 ) for the hydrological year 1971-72, and a scatter plot
of the above values,( Figure 7.5 and Figure 7.7 ) during the 39 years of our data
set (May 1969 to December 2008).
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Figure 7.4: Comparison of actual energy production with the forecasted
energy by the “Generic Model”, during the hydrological year 1971-72.
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Figure 7.5 : Scatter plot of actual energy production comparing to forecasted
energy by the “Generic model”.
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Figure 7.6 : Comparison of actual energy production with the forecasted
energy by the “Crossroad Model”, during the hydrological year 1971-72.
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Figure 7.7 : Scatter plot of actual energy production comparing to forecasted
energy by the “Crossroad Model”.

As the above figures and Table 7.2 summarize, the “Crossroad Model” in terms
of classical efficiency surpasses slightly the “Generic Model”, leading to the
assumption that they are of same credibility, yet when we advise a stricter skill
score, meaning the modified efficiency, the rate of exceedance of the Crossroad
approach comparing to the Generic becomes clearer to us.

7.1.5 Indirect (flow-based) approaches

In the indirect approaches we aim to provide day-ahead forecasts of the
discharge to feed the flow-energy conversion model, which is summarized in the
diagram of Figure 7.1 . In this respect we use as predictors, of streamflow at day
t + 1, the past streamflow and the rainfall. In order to account for the baseflow
component of streamflow, we also extract the minimum value of last five days,
Qmins » and the mean monthly value of the full data sample.

We remark that the baseflow component may incorporate several slow-flow
elements, associated with groundwater runoff, snow melting (which is quite
significant, during the spring period) as well as the falling limb of floods. After
investigations, we conclude to the parametric expression:

a (qmins) + ﬁl (Qt) + Y1 (Qmeant)' Pe < 0.1mm

Qev1 = {az (Qmins) + .82 (Qt) t+ 72 (Qmeant) + 5(pt)’ Pt = 0.1 mm

(7.4)

The above expression can be defined by different values of its parameters,
depending on under which conditions we calibrate the above model (7.4) by the
use of a performance metric (Root Mean Square Error -RMSE) as goal for
minimization.

In our case, the calibration was reached by two approaches, the one called
“Simple Model” and the other “Smart Model”. As it is indicated by their names, the
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first approach is simpler since the calibration has as goal to ensure the optimal
fitting of the modeled to actual discharge data by minimizing the RMSE. On the
other hand, the second approach, is baptized with the characterization of smart ,
since it uses the knowledge about the technical properties of the system in the
model calibration by minimizing the RMSE after taking into consideration that
should count it only when the passing flow belongs into the limits of the turbines
operation range, meaning that through the logic of the “Smart Model”, errors are
not been account for if the model correctly predicts that the flow is outside of the
operation range.

As shown in Table 7.2 , by employing a typical calibration on the basis of
maximizing the efficiency of the simulated against the observed stream flows, in
terms of day-ahead energy prediction we obtain a small only improvement with
respect to the direct modelling approach, namely from 79.4(“Generic Model”),79,9
(“Crossroad Model”) to 80.7%(“Simple Model”) -for the full data.

On the other hand, the model error characteristics are less satisfactory, since
the forecasting model underestimates the energy production by about -3.8 MWh,
on average, while with the direct approach the bias is negligible. This is due to the
attempt of the calibration procedure to predict stream flows outside of the
operational range of turbines, and particularly the peak flows, which result to large
errors. Yet, these errors are beyond our concerns, since during these periods the
system operates continuously in its nominal capacity.

In order to remedy the above shortcomings, as we already have mentioned, we
adjusted the fitting metric, i.e., RMSE, to the turbine operation range (qmin tot,
Gmax.tot), 10 order to ignore the errors that are produced from the flow forecasting
model, if this correctly predicts that the flows being outside this range. Moreover,
if the forecasted flow is inside the range, whereas the observed is outside, we only
account from the distance from the two flow limits. Under this premise, the error
is calculated as follows:

Qmax,tot — Qforecastr Qobs > Qmax,tot and Qforecast < Qmax,tot
e = Qforecast — Qmintotr Qobs < Qmin,tot and CIforecast > Qmin,tot (5)
Qobs — Qforecast' Qobs > Qmintot and obs < Qmax,tot

The above error expression incorporates within calibration, apart from the
hydrological data, the expert’s knowledge about the technical properties of the
system that affect the flow-energy conversions. The knowledge-based calibration
approach, herein called “Smart Model”, ensures a clearly better skill score in
terms of modified efficiency than the typical calibration approach (Indirect
“Simple Model”), and good error properties as well (practically zero mean and
autocorrelation-see Table 7.2 ).

In the following figures are presented the inflow timeseries which were
predicted by each one of the indirect models, in comparison with the real inflow
through the hydrological year 1971-72 (Figure 7.8 and Figure 7.12 ). After using
the forecasted discharge as input to the operational rule ( Chapter 4.4 ), we
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received the energy production thus creating the energy timeseries resulting from
the above models and setting in comparison with the actual energy production,
as shown in Figure 7.10 Figure 7.14 .Moreover, in order to have a more
supervisory view, the scatter plots of both forecasted inflow and energy in
relation with the real inflow and energy for the 39 years data, are provided
through the Figures 7.9,7.11,7.15,7.13.
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Figure 7.8 : Comparison of actual inflow with the forecasted discharge by the
“Simple Model”, during the hydrological year 1971-72.
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Figure 7.9 : Scatter plot of actual inflow comparing to forecasted discharge by
the “Simple model”.
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Figure 7.10 : Comparison of actual energy production with the resulting
energy by the “Simple Model”, during the hydrological year 1971-72

"Simple Model"
200
§ 2= ().82 i
S 160 |0 e oo oofeesy AEE LRSS,
< TR v Xt L
o0 AT
S 1nn | "ol ] i S
g 100 5 etlrsd, SAlAES L
B e, Gl
R A, 4.
O A
2 50 (LU
8 e
5
= 0"
0 50 100 150 200

Actual Energy Production (MWh)

Figure 7.11 : Scatter plot of actual energy production comparing to resulting
energy by the “Simple model”.
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Figure 7.12 : Comparison of actual inflow with the forecasted discharge by
the “Smart Model”, during the hydrological year 1971-72.
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Figure 7.13 : Scatter plot of actual inflow comparing to forecasted discharge
by the “Smart model”.
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Figure 7.14 : Comparison of actual energy production with the resulting
energy by the “Smart Model”, during the hydrological year 1971-72.
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Figure 7.15 : Scatter plot of actual energy production comparing to resulting
energy by the “Smart model”.
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7.1.6 Introduction to a Machine Learning approach

In addition to the aforementioned regression forecasting models, an interesting
question arises on whether just a better day-ahead flow forecasting model that
does not account for the operational characteristics of the system, would
outperform the optimal model so far. In this respect, we apply a more complex
approach from the Machine Learning (ML) family, namely a Deep Feedforward
Neural Network (DNN). The DNN model is composed by three hidden layers with
128, 64 and 32 neurons, respectively, while the Rectified Linear Unit (ReLu)
activation function is adopted for all neurons.

As inputs, we use the streamflow of past 5 days and the rainfall of past two
days. The model is fitted on the basis of Mean Square Error (MSE), for a number
of 100 epochs, by using a batch size of 64.

The results of the above approach are summarized through the Figures 7.16,
7.18,7.19 and 7.21 , in terms of timeseries and scatter plots, of both inflow and
energy compared to the real streamflow and actual resulting energy production.

In addition, in Figures 7.17 and 7.20 we compare the actual and forecasted
flow and energy values provided by the “Smart Model”, as the most efficient model
of the indirect approach, and the ML approach, for hydrological year 1971-72.
Surprisingly, while the ML: model ensures a much better fitting to the observed
flows than the simple regression expression (4), (82% vs. 67%), the conversion to
energy is rather disappointing. In particular, the classical efficiency metric is only
50.7%, while the modified efficiency is strongly negative. Therefore, the data-
driven approach results to a worse predictive capacity even than the naive
benchmark model. Furthermore, the derived error properties are clearly non
satisfactory (underestimation of the average energy up to 1 MW, quite large
standard deviation, and, significant autocorrelation).
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Figure 7.16 : Comparison of actual inflow with the forecasted discharge by
the “DNN”, during the hydrological year 1971-72.
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Figure 7.17 : Comparison of actual inflows with the forecasted ones from
“DNN” and “Smart Model”, during the hydrological year 1971-72.
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Figure 7.18 : Scatter plot of actual inflow comparing to forecasted discharge

by the “DNN”.
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Figure 7.19 : Comparison of actual energy production with the resulting
energy by the “DNN”, during the hydrological year 1971-72.
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Figure 7.20 : Comparison of actual energy production with the resulting
energy from “DNN” and “Smart Model”, during the hydrological year 1971-72.
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Figure 7.21 : Scatter plot of actual energy production comparing to resulting
energy by the “DNN”.

For each forecasting approach, we compute the marginal statistical characteristics
of residuals, w; = E¢ ops — Et forecast (mean, standard deviation, coefficient of
skewness) and the lag-1 autocorrelation, which is measure of auto-dependence
(Table 7.2).Table 7.2 These are used in next chapter, where we establish a more

integrated energy forecasting framework, which takes into account the model
uncertainty.
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Table 7.2 : Comparison of different forecasting schemes.

o Modified efficiency of Energy error statistics
Efficiency of Energy
Energy
Model
Lag-1
type _ ‘ ‘ ‘ Mean Coeff. of
Calibr. Valid. Calibr. Valid. Full data auto-
data (MWh) skewness '
(MWh correlation
Naive n/a n/a 0.766 n/a n/a n/a 0.00 27.76 1.21 -0.119
Direct Generic 0.782 0.809 0.794 0.171 0.166  0.169 -1.11  25.28 1.34 -0.012
Direct Crossroad 0.790 0.813 0.799 0.201 0.182  0.193 -0.51  24.86 1.45 0.043
Indirect Simple  0.817 0.796 0.807 0.228 0.226  0.227 -3.83 24.11 -0.37 0.079
Indirect Smart 0.848 0.819 0.833 0.356 0.314  0.331 0.112 22.64 1.23 0.066
DNN n/a n/a  0.55 n/a n/a -0.977 -0.99 39.04 -0.42 0.540
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8 Uncertainty through forecasting and their
reconciliation in practice

8.1 Generator of ensembles to estimate uncertainty

A typical means to quantify the total uncertainty of a deterministic simulation
model, is to add a random component (noise), w,, to its output, y,, where the
random process w; should be consistent with the statistical and stochastic regime
of the associated residuals (Efstratiadis et al., 2015). In the generic case of
autocorrelated errors, the process w; can be obtained by a stochastic generator
(e.g., Kossieris et al., 2019; Tsoukalas et al., 2020), or a statistical distribution
model, provided that the errors do not exhibit significant dependencies in space
and time. By generating a large enough set of random variables yi”t =y + Wi,
where i = 1,...,n, we obtain an ensemble of n model realizations at each time step
t, which allows for the detection of empirically-derived probabilistic quantities.
In our case, we use the more robust forecasting scheme (“Smart Model”) and
provide n = 100 realizations of the day-ahead energy at each time step (day), from
which we get the median and the 10th and 90th largest values (quantiles) of
forecasted energy production, as estimators of the 80% empirical confidence
intervals.

8.1.1 Statistical distribution to describe residual ensemble

Given that the observed residuals resulting from the “Smart Model” are
uncorrelated, the errors are considered as a stationary process that follows a
three-parameter gamma distribution @.e., Pearson type III), which reproduces
the mean value, p,, the standard deviation, a,, and the coefficient of skewness,
Ye, of the entire sample of residuals (Table 7.2 ).The expression of the above
distribution with its parameters are defined according to the following equation
(eq. 8.1,8.2).

/‘UC

=) (x — ¢)F~le~Alx—0) (8.1)

fx(x) =

where xk, A and c are shape, scale and location parameters, respectively, which
are estimated by the method of moments as follows :

2 /’l=E c=p,— K/l (8.2)

K=
Ye? Oe

Following, we produce the 100 realizations of the day-ahead energy, we first
result to a stationary representation of the forecasting uncertainty in energy
production through the years, since the different weather conditions depending
the seasonality and specifically the monthly customization of the errors statistical
characteristics have not been taken into consideration.
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In addition, through Figure 8.1 ,we present the timeseries for hydrological year
1971-72 1in which we compare the actual energy production with the three
characteristic prediction quantiles (10, 50 and 90%). The aftermath for
developing a stationary model , is as shown in more details in Figures 8.2 and 8.3
that through summer the forecasting is characterised by high range of
uncertainty since the statistical characteristics of those dry months are equalized
with the ones of the much wet months of autumn and winter season.
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Figure 8.1 : Comparison of actual energy production for hydrological year 1971-

72 with three characteristic prediction quantiles (10, 50 and 90%), by considering
the error process as stationary.
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Figure 8.2 : Detailed comparison of actual energy production for year 1972 with
three characteristic prediction quantiles (10, 50 and 90%), by considering the

error process as stationary, for the month of June.
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Figure 8.3 : Detailed comparison of actual energy production for year 1971 with
three characteristic prediction quantiles (10, 50 and 90%), by considering the
error process as stationary, for the month of December.

8.1.2 Accounting for seasonality within uncertainty quantification

In order develop a more credible and more consistent with the underlying
hydrological regime forecasting procedure under uncertainty, we implement the
same error modelling analysis by applying seasonally-varying (cyclostationary)
generation models, which accounts for the individual statistical characteristics
per month (Tsoukalas et al., 2018). As shown in Table 8.1, these is a considerable
difference of the statistical behavior of the error across different seasons, that is
also reflected in the uncertainty of energy predictions. In Figure 8.4 we compare
the uncertainty bounds obtained by the two methods, for hydrological year 1971-
72. In combination with Figures 8.5 Figure 8.5 and 8.6 Figure 8.6 we observe that
during the low-flow period, these bounds are substantially reduced, by accounting
for the issue of seasonality. This indicates that the more detailed analysis, where
the prediction error is represented as a cyclostationary process, is much more
realistic.
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Figure 8.4 : Comparison of actual energy production for hydrological year 1971-
72 with three characteristic prediction quantiles (10, 50 and 90%), by considering
the error process as cyclostationary.
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Figure 8.5 : Detailed comparison of actual energy production for year 1971 with
three characteristic prediction quantiles (10, 50 and 90%), by considering the
error process as cyclostationary, for the month of June.
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Figure 8.6 : Detailed comparison of actual energy production for year 1971 with
three characteristic prediction quantiles (10, 50 and 90%), by considering the
error process as cyclostationary, for the month of December.

Table 3.1 : Monthly statistical characteristics of residuals derived from the
application of Smart Model.

Month Mean (MWh) Standard deviation (MWh) Skewness Lag-1 correlation

JAN 0.82 28.65 1.23 0.069
FEB 1.59 29.07 0.87 0.138
MAR 4.87 28.05 0.95 0.066
APR 1.91 26.53 0.48 0.059
MAY 1.53 19.06 1.37 0.089
JUN -0.16 8.42 0.95 -0.062
JUL 0.11 7.74 -0.25 -0.014
AUG -0.72 7.11 -1.85 0.056
SEP -1.91 11.06 -1.39 0.044
OCT -2.51 20.75 1.76 -0.050
NOV -0.45 31.51 1.34 0.043
DEC -2.74 30.64 0.84 0.045
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8.2 Alternative market policies

In order to take advantage of the concept of uncertainty in practice, as would
be made in a real-world energy market, we can determine alternative market
policies in terms of quantiles. In particular, we can apply the upper, middle and
low quantiles as representatives of a risky, mild and conservative forecast of the
day-ahead energy, predicted from our most credible approach, the “Smart Model”
and evaluate them in economic terms, by assigning a unit profit value for
delivering the energy produced up to the forecasted value, and a unit penalty for
the deviations (i.e., deficits with respect to the forecasted value). For instance, we
account for the 90, 50 and 10% quantiles and apply a fixed profit of 60 € MWh, a
price for secondary energy equally to 306/MWh and a penalty value of 50 €/ MWh:;
the aforementioned values are representative of the recent system marginal price
and price of deviations, respectively, of the Hellenic Electricity Market. Under
this premise, the mild policy ensures a mean annual profit of 0.86 M€, the
conservative 0.81 M€, and the risky 0.43 M€. This quick pseudo-financial analysis
allows for comparing the different interpretations of a forecasting approach under
uncertainty. In Figure 8.7 we mention the profit resulting from the three above
market policies through the year 1971-72 in relation with the profit that we would
gain if the forecasting was ideal, meaning to have zero uncertainty thus
predicting the actual energy production (Real profit).
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Figure 8.7 : Representation of profit produced from three alternative market
policies in comparison with the actual profit, for hydrological year 1971-72.
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9 Model simulation in R environment

9.1 Data information produced in excel environment

The calculations which were first conducted through Excel, and next transferred
in R environment, are the following :

o Optimization of the operational rule of the turbine mixing, thus the
optimal energy production for given inflow timeseries.

o Optimal calibration of each forecasting model (direct, indirect) in terms
of maximizing the efficiency skill score.

9.2 Calculationsin R

After obtaining from excel the forecasted discharge, derived from our most
efficient approach, “Smart Model” in combination with its resulting optimal energy
production (synergetic operational rule), we proceed to define the uncertainty of
our forecasting through the following algorithm :

o First, we create a function (P3params) which calculates the three
parameters of the selected gamma distribution (i.e., Pearson type III) that
the statistical characteristics of energy residuals follow. The above function
has as insert values the following [1 x 12 ] vectors :

1. m: mean value of each month’s forecasted energy production;
2. s:standard deviation of each month’s forecasted energy production;
3. Csk: skewness of each month’s forecasted energy production.
o In addition we create the code which will return the residual value (x)
expressed by the gamma distribution and the aforementioned parameters,
through the function named as rp3.
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P3params=-function{m,s,Ccsk

k Csk

T=sgrt(k) /s

ci=ifelse(csk ;m-k/1,m-k/1
1 1

return (lisc("k"=k,"1"=1,"ci"

rp3=function(n, shape, scale, location, csk

if (csk
X= -rgamman , shape = shape, scale scale location

else
X= rgammain , shape shape, scale = scale Tocation

Figure 9.1 - Definition of gamma distribution residual value and its parameters.

To continue, we call the above functions and set as inputs the values defined as
before and named through our code with the following correspondence :

1. “Statistics_of eah_month_final matrix” is a [12 x 4] matrix, each line
represents the equivalent month and columns 1,3 and 4 express the values
m,s and Csk respectively;

params=11ist

for (i in
params [ [i]]=P3params(m =5tatistics_of_eah_month_final_matrix[i,

5 statistics_of_eah month_final_matrix[i,3],
Csk =statistics_of_eah _month_final_matrix[i,

Figure 9.2 : Call of params function for calculating the parameters of the gamma
distribution according to the statistical characteristics of each month’s data.

2. M corresponds with the third column of the matrix named “data” and
accounts for the month which each forecasted value belongs to;

3. “DEfor_gam” is a [14474 x 100] matrix and its values represent the 100
different scenarios of each day, for our 39 years of data collection. The above
ensemble of energy residuals is calculating by calling the function rp3.
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M=datali,

for (j in

DEfor_gam[i,jl=rp3(n=1,shape-params|[[M k,location params | [M ci,
scale params|[[M 1,
csk statistics_of_eah_month_final_matrix[M,

Figure 9.3 : Calling of rp3 function for producing the ensemble of energy residuals.

4. “energyfinal” is the final matrix, in which we gathered the final energy
production data, by adding to the forecasted energy production (data [j,5])
the value of deviation ( DEfor_gam [j,i] ) thus expressing the uncertainty of
weather prediction and modeling calibration.

energytinal=matrix , i O

for (i in
for (j in

energytinal [j,il=max(0,min(Emax,datalj, DEfor_gam[j,i

Figure 9.4 : Defining the forecasted energy production, after considering the factor
of uncertainty.

5. Lasty, we created three vectors, “energylarge”, “energylow” and
“energymedian”  for expressing the three characteristic quantiles
(10%,90%,50% respectively ) of energy production from our best forecasting
approach.

energylarge=c
energy low=c
energymedian=c
for (i in

energylarge[il=nthienergyfinal [i,],10,descending
energylow[il=nth{energyftinal [i,],10,descending
energymedian[i]=nthienergyfinal[i,],50,descending

Figure 9.5 : Defining the three characteristic quantiles of energy production
(10%,90%,50%)
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10 Conclusions

10.1 Summary and innovations

Through this research, two were the main fields that we aimed to investigate
and contribute to. Both are associated with the everyday management of small
hydropower plants, where the key objective is the optimal energy production. The
first research field approaches this problem in terms of turbine scheduling and the
other in terms of efficient forecasting of the day-ahead energy.

In more details, our first area of research handled the challenge of optimizing
the scheduling of turbine systems, given its technical characteristics, such us type,
nominal power, and flow-efficiency curves. Through this attempt, we introduced
an optimal operational policy, named “Synergetic rule”, and proved that it
outperforms the hierarchical rule across two specific areas of the feasible operation
range of the system, named as “Donation areas I and II”. Donation area I starts at
q1min Where all discharge is conveyed to the small instead of the large turbine,
meaning the former operates with its maximum efficiency. On the other hand,
donation area II starts at q; 4y, Where the discharge which is conveyed to the large
turbine is reduced by g, mqy, 10 order to feed the small turbine with its maximum
discharge and thus operating with its maximum efficiency. This policy is applied
until the system reaches its total power capacity, thus ¢ = q1 max + ¢2,max- The two
operation policies have been contrasted by taking as example a real-world SHPP,
also used in the investigations of the day-ahead energy forecasting problem.

In order to establish a rigorous theoretical framework for the “Synergetic rule”,
we expressed the problem in dimensionless form, using generic formulas for
multiple potential combinations of turbines. In order to investigate the impacts of
two key design characteristics, namely the turbine type and their minimum
operation point (which differs significantly across different turbine types,
particularly for Francis machines), with respect to the sharing factor ¢, we created
two types of theoretical experiments. The first refers to different combinations of
the above values focusing on how its combination affects the relationship between
the power produced by our established optimal operational rule (after been fitted
to the values of each combination) and by an ideal operational rule with turbine
efficiency equals to 100%. The second experiment uses the same combinations,
with the difference that the relationship which we investigate is between the power
produced by the hierarchical rule and the optimal, synergetic, rule. Our extended
analyses allowed to obtain a broader knowledge regarding the connection among
some basic characteristics of turbine systems and the resulting total efficiency for
numerous potential combinations.

Our second domain of interest was the problem of day-ahead power forecasting
in the case of small hydropower plants without storage capacity, which has
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(surprisingly) received little attention so far. Taking as an example a typical
project of this category, and by using simple yet effective modeling schemes, we
attempted to revisit several issues that may have been well-addressed in the
generic context of hydrological forecasting, but not in the specific case of SHPPs,
namely:

(a) the essential information as input to hydropower forecasting;

(b) the advantages of the indirect forecasting approach, involving the use of a
streamflow forecasting model, against the direct one, that does not account for the
inflow input, but relies solely on the energy production data;

(c) the importance of past precipitation data as exogenous predictor, providing
macroscopic information about the catchment state (e.g. antecedent soil moisture
conditions);

(d) the training procedure and the skill score to be applied;

(e) the representation of the predictive uncertainty around the point forecast of
day-ahead energy;

(f) and the use of uncertainty-aware forecasts from the practicians’ point-of-view
(investors, power engineers, stakeholders).

Our investigations indicated that the proposed flow-based approach is more
flexible and physically consistent, since it provides forecasts of the hydropower
system’s driver, i.e., the inflow arriving at the intake. We also revealed that apart
from the inflow data per se, additional information should be introduced within
prediction schemes in order to better reflect our hydrological knowledge, in terms
of statistical characteristics. In the particular example, these were the mean
monthly inflows and the past five-day average values, as representative of the long
and short-term regime of the upstream catchment, respectively. However, it is
worth mentioning that even a very good prediction of inflows (as quantified in
terms of efficiency), does not guarantee an equally good performance in energy
prediction. Equivalently important is the training procedure and the associated
performance measure, where the system’s characteristics, i.e., the range of
operation of turbines, are embedded as inputs to calibration.

Key outcome of this research was also the quantification of uncertainty, by
means of empirical quantiles, which were estimated through a Monte Carlo
approach, after fitting a suitable probability distribution to the model residuals.
This task, although proved to be simple and effective in its implementation,
requires more careful examination, including analysis of the error properties and
their seasonal variability, as well as could be benefited from more advanced
concepts and tools, such as copulas and conditional non-Gaussian distributions (cf.
Tsoukalas, 2018, for a development of this kind). Nevertheless, the interpretation
of uncertainty is essential as a guidance for modelling energy market behaviors
and providing decision support in the Target model era.

-85-



10.1 Future research goals

Regarding the first area of research, an interesting point for further
investigation is the evaluation of the real gain from the implementation of the
synergetic instead of the hierarchical operation policy across different flow
regimes.

As far 1t concerns the day-ahead energy forecasting problem, there is a plethora
of options offered by state-of-the-art approaches, from weather prediction tools to
advanced artificial intelligence techniques. In this respect, one of our future goals
could be the enrichment of the DNN approach with the technical information thus
defining the Mean Square Error (MSE) metric in a more realistic form. The
expected outcome will be an even more efficient energy production forecasting than
the so far best, meaning the Smart model. However, it is important to remark the
risk of employing more advanced approaches, both in terms of complexity and
uncertainty. From the user’s perspective, the significant requirements by means
of computational tools and expertise may pose significant obstacles towards using
such solutions in the everyday practice. In this vein, the ultimate challenge from
our perspective is ensuring a good balance between the effectiveness and accuracy
of forecasting methods, on the one hand, and the limited human, technical and
financial resources, as well as the limited data availability, on the other.
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