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Abstract: The stochastic structures of potential evaporation and evapotranspiration (PEV and PET or
ETo) are analyzed using the ERA5 hourly reanalysis data and the Penman–Monteith model applied to
the well-known CIMIS network. The latter includes high-quality ground meteorological samples with
long lengths and simultaneous measurements of monthly incoming shortwave radiation, temperature,
relative humidity, and wind speed. It is found that both the PEV and PET processes exhibit a
moderate long-range dependence structure with a Hurst parameter of 0.64 and 0.69, respectively.
Additionally, it is noted that their marginal structures are found to be light-tailed when estimated
through the Pareto–Burr–Feller distribution function. Both results are consistent with the global-
scale hydrological-cycle path, determined by all the above variables and rainfall, in terms of the
marginal and dependence structures. Finally, it is discussed how the existence of, even moderate,
long-range dependence can increase the variability and uncertainty of both processes and, thus, limit
their predictability.

Keywords: potential evapotranspiration; stochastic simulation; marginal structure; long-range
dependence; Hurst–Kolmogorov dynamics

1. Introduction

Evapotranspiration is a paramount element in hydrology, with relevance in many
aspects of the geosciences. From hydrological and agronomic perspectives, the potential
evapotranspiration (PET) and (potential) evaporation (PEV) are key for water balance
estimation, the assessment of crop water demand, and integrated rainfall-runoff modelling.
PET [1] is defined as “the amount of water transpired in a given time by a short green
crop, completely shading the ground, of uniform height and with adequate water status in
the soil profile”. A particular (reference) case thereof is the reference evapotranspiration
(ETo), which refers to “the rate of evapotranspiration from a hypothetical reference crop
with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s/m, and an albedo
of 0.23, closely resembling the evapotranspiration from an extensive surface of green
(cool season) grass of uniform height, actively growing, well-watered, and completely
shading the ground” [2]. Evaporation is the physical process by which liquid water
enters the atmosphere as water vapor. In what follows, when we refer to all of the above
processes, we use the acronym PE. We also note that PE may be different from the actual
evapo(transpi)ration (in cases where there is not adequate water availability).

For the PE assessment, historically, many models have been developed highlighting
the Penman–Monteith model as the most suitable [3]. One of the main shortcomings of
estimating PE with the Penman–Monteith model is the requirement of a significant number
of meteorological inputs such as, without distinction, temperature, radiation, relative
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humidity, and wind speed [4–6]. In the case that we require a synthetic PE timeseries for risk
management (e.g., in a Monte Carlo simulation framework), when the above meteorological
inputs are not available for the requested period, then one may use a stochastic model
that preserves the important statistical attributes of PE. Additionally, due to the physical
complexity of assessing the PE, stochastic modelling provides a solid scientific ground
for further consideration in several fields of PE assessment, and the stochastic analysis
can contribute to the PE physical interpretation along with other hydrometeorological
processes because stochastics is proven as a collection of mathematical tools able to give
physical explanations [7]. As highlighted in the aforementioned work [7], the role of
stochastics is crucial: (a) to infer dynamics (laws) from past data; (b) to formulate the
complex natural system equations; (c) to estimate the involved parameters; and (d) to test
any hypothesis regarding the dynamics. There are only limited works providing a thorough
stochastic analysis in PE timeseries, even though the necessity of stochastic modelling is of
paramount importance. Based on the published literature, a seasonal ARIMA model and
Winters’ exponential smoothing model [8] have been investigated for their applicability
for forecasting weekly reference crop ETo [9]. Both models demonstrated satisfactory
results compared to a simple PE model. Pandey et al. [10] provided a stochastic analysis
in assessing black gram evapotranspiration regimes using a long-term pan-evaporation
dataset of 23 years in Udaipur, India. Black gram is an important crop of the Udaipur region,
and the lack of long-term crop demand assessment led to the need for stochastic analysis
using pan-evaporation gauges to predict daily black gram evapotranspiration. As noted
by the authors, the new stochastic model for black gram evapotranspiration was found
to predict daily black gram evapotranspiration with high accuracy (R2 = 0.94). Dynamic
stochastic modelling, with a focus on the marginal probability distribution function (known
as cumulative distribution function), has been also used for quantifying the PE uncertainty
associated with irrigation scheduling [11–13]. Recently, an application of vine copulas with
a focus on the short-term structure of the daily evaporation process has been presented [14].
Rainfall-runoff approaches have been presented using stochastic inputs of precipitation and
PE to overcome the lack of Penman–Monteith estimates and long-term gauge inputs [15,16].

A substantial amount of previous works have focused on the trend PE assessment [17,18]
in conjunction with the well-known term, evaporation paradox [19,20]. The later has been
defined as the assumption that, under warming climate and higher temperatures, increased
PE rates are expected; however, gauge data show the opposite because observations across the
U.S. and the globe show a decreasing trend in pan evaporation. Recent studies recommend
the revision of common trend tests through re-evaluation of the statistical significance of an
observed trend in a timeseries by assuming a model exhibiting the scaling hypothesis [21],
which is shown to be apparent in most key hydrological-cycle processes [22] and provides a
more accurate modelling framework than a trend-based approach [23].

The stochastic structure of the PE process, ranging from hourly to climatic scales, is
studied here in terms of Hurst–Kolmogorov (HK) dynamics, which describes all processes
exhibiting the Hurst phenomenon (i.e., with a power-law autocorrelation function at large
scales). Additionally, we focus on the marginal structure of the PE process as fitted through
the Pareto–Burr–Feller (PBF) distribution function [24], which includes a large variety of
tail-behaviors [25]. Both marginal and second-order dependence structures of the HK
dynamics are estimated and compared to the ones identified from global-scale analyses
in other key hydrometeorological processes that form the hydrological-cycle path driven
by atmospheric turbulence [26], such as temperature, wind, solar radiation, and relative
humidity [22,27–29].

Because observations for the PE process are usually found on monthly or daily res-
olutions, here we use two datasets. The first dataset comprises PET timeseries with
monthly resolution extracted from the California Irrigation Management Information Sys-
tem (CIMIS) network in California, comprising 41 ground stations. For the second dataset,
we extracted gridded reanalysis PEV data of hourly resolution. In particular, we retrieved
the reanalysis data for the grid points in the same area of the network of the ground stations,
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so that we could compare its stochastic structures to the PET records, with a focus on the
long-range dependence (LRD) behavior.

In Section 2, we introduce the methodology on the estimation of the marginal and
second-order dependence structures, while in Section 3, we present the statistical char-
acteristics of the selected stations as well as the results obtained from the analysis, with
a focus on the marginal and the dependence structures. Finally, in Sections 4 and 5, we
summarize our findings, and we discuss how the results may be consistent with the ones
obtained from the hydrological-cycle path under HK dynamics, expanding from Gaussian
to Pareto-type tail behavior, and from fractal and intermittent behavior at small scales to
LRD behavior at large scales.

2. Metrics of Marginal and Dependence Structures

The estimators and models applied for both the marginal and the second-order depen-
dence structures are part of the stochastic framework of the HK dynamics, with a focus on
the LRD behavior [30–35], and they have been applied to turbulent and key hydrological-
cycle processes of global networks with resolutions spanning from small scales (relevant to
the fractal behavior) to climatic scales (for a review, see [26]).

It has been shown that a flexible probability distribution function, which seems to fit
well a great variety of key hydrological-cycle processes [25,26], with tail-behaviors ranging
from Gaussian to Pareto, is the PBF distribution function [24,36–38], i.e.:

F(x) = P{x ≤ x} = 1−
(

1 + ζξ

(
x− d

λ

)ζ
)− 1

ξζ

(1)

where x > d, d is a location parameter (in units of x), ζ and ξ are dimensionless shape pa-
rameters, and λ is a scale parameter (in units of x). It is noted that here the Dutch convention
is adopted, where underlined symbols denote random variables and stochastic processes.

The estimation of the parameters of the PBF distribution function for the identification
of the marginal structure of the PE process is based on the first four statistical moments,
and particularly on the central moments and coefficients (i.e., mean, variance, skewness,
and kurtosis). It is stressed that, although the estimation from the classical moments of high
order are unknowable, especially in the presence of heavy tails and LRD [25], the hourly
PEV and the monthly PET processes are expected to be close to a light-tail behavior and,
therefore, the estimation of skewness and kurtosis coefficients could be, in approximation,
reliably estimated from data.

For the dependence structure of the PE processes, we select the climacogram metric,
which is defined as the variance of the averaged process at the scale domain [7]. i.e.:

γ(k) := Var
[∫ k

0
x(y)dy

]
/k2 (2)

where k is the scale (in units of x). (See discussion on the origins of the name, mathematical
definitions, etc., in [26,39])

It has been shown that the climacogram estimator at the scale domain is a more
powerful estimator than the autocovariance function at the lag domain or the power-
spectrum at the frequency domain [34], while its classical estimator adjusted for bias is
defined as [40]:

γ̂(κ∆) =
1

bn/κc

bn/κc

∑
i=1

(
x(κ)i − µ̂

)2
+ γ(bn/κcκ∆) (3)
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where κ = k/∆ is the dimensionless scale, ∆ is the time resolution of the process, µ̂ is the

mean of the process, bn/κc is the integer part of n/κ, and x(κ)i is the i-th element of the
averaged sample of the process at scale κ, i.e.:

x(κ)i =
1
κ

iκ

∑
j=(i−1)κ+1

xj (4)

For the climacogram model, contained in the above estimator, we select a generaliza-
tion of the HK model (for details and more sophisticated models, see [25,26]), which has
been shown to well simulate processes from sub-hourly to over-annual resolutions, and
from short- to long-term scales associated with fractal and LRD behaviors that exclude the
drop of variance at the intermediate scales:

γ(k) =
a(

1 + (k/q)2M )(1−H)/M
(5)

where a is the variance of the process, q is a scale parameter (in units of the scale k),
M is the fractal parameter, and H is the Hurst parameter indicative of the LRD of the
process, i.e., for 0.5 < H < 1 the process exhibits LRD behavior, while for 0 < H < 0.5
it exhibits an anti-persistent behavior, and for H = 0.5 a white-noise behavior. Here, the
standardized climacogram is used, i.e., γ̂(k)/γ̂(1), because the effect of the sample variance
is already accounted for through the marginal fitting. We also note that a Gaussian process
with q→ 0 and M = 0.5 coincides with the well-known fractional Gaussian noise model
(e.g., [41]).

3. Data Extraction and Processing

For the analysis of the hourly PEV process, we use the reanalysis ensemble data
extracted (access date at 29/10/2021; with coordinates S32-N42 and W115-E125)
from the ERA5 [42] of the Centre for Medium-Range Weather Forecasts (ECMWF;
https://cds.climate.copernicus.eu/ accessed on 1 October 2021) across California (Figure 1)
and for the period 1979–today (Table 1).
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Table 1. Information on the selected stations and the reanalysis data.

Sequence
Number Name Process Temporal

Resolution Time Period Number of
Data Values Mean (mm) Standard

Deviation (mm)
Skewness
Coefficient

1 Five Points PET monthly 1982–2013 363 131.5 73.7 0.0

2 Davis PET monthly 1982–2013 372 120.6 68.7 0.0

3 Firebaugh Teles PET monthly 1982–2013 370 118.1 68.9 0.1

4 Gerber PET monthly 1982–2013 370 117.3 67.9 0.1

5 Durham PET monthly 1982–2013 369 107.8 61.7 0.1

6 Carmino PET monthly 1982–2013 369 116.8 68.8 0.3

7 Stratford PET monthly 1982–2013 369 128.2 75.4 0.0

8 Castorville PET monthly 1982–2013 368 79.9 32.0 0.1

9 Kettleman PET monthly 1982–2013 368 130.4 73.9 0.0

10 Bishop PET monthly 1983–2013 363 125.5 60.9 0.0

11 Parlier PET monthly 1983–2013 362 112.5 66.0 0.1

12 Calipatria PET monthly 1983–2013 360 151.2 65.2 −0.1

13 Mc_Arthur PET monthly 1983–2013 357 101.2 66.2 0.2

14 UC_Riverside PET monthly 1985–2013 337 121.9 47.0 0.1

15 Brentwood PET monthly 1985–2013 327 115.8 68.1 0.1

16 San_Luis_Obispo PET monthly 1986–2013 327 107.5 39.5 −0.1

17 Blackwells_corner PET monthly 1987–2013 321 128.9 73.1 0.2

18 Los Banos PET monthly 1988–2013 301 119.8 70.4 0.1

19 Buntigville PET monthly 1986–2013 325 112.9 67.8 0.1

20 Temecula PET monthly 1986–2013 320 113.5 39.9 0.0

21 Santa_Ynez PET monthly 1986–2013 320 105.1 46.3 0.0

22 Seeley PET monthly 1987–2013 314 159.7 69.1 −0.1

23 Manteca PET monthly 1987–2013 308 109.7 64.7 0.1

24 Modesto PET monthly 1987–2013 312 110.7 64.9 0.1

25 Irvine PET monthly 1987–2013 309 105.0 39.4 0.1

26 Oakville PET monthly 1989–2013 292 103.8 55.5 0.0

27 Pomona PET monthly 1989–2013 291 103.4 44.7 0.1

28 Frenso_State PET monthly 1988–2013 297 117.7 71.2 0.1

29 Santa_Rosa PET monthly 1990–2013 282 93.9 50.9 0.0

30 Browns_Valley PET monthly 1989–2013 291 112.2 65.4 0.1

31 Lindcove PET monthly 1989–2013 290 110.4 65.9 0.1

32 Meloland PET monthly 1989–2013 283 153.3 66.5 −0.1

33 Alturas PET monthly 1989–2013 291 97.0 60.7 0.3

34 Cuyama PET monthly 1989–2013 289 128.4 61.4 0.1

35 Tulelake PET monthly 1990–2013 291 96.4 60.6 0.2

36 Goleta_foothills * PET monthly 1990–2013 197 99.1 34.8 0.0

37 Windsor PET monthly 1990–2013 266 96.4 53.6 0.1

38 De_Laveaga PET monthly 1990–2013 274 88.6 39.4 −0.1

39 Westlands PET monthly 1992–2013 255 131.2 76.0 0.0

40 Sanel_Valley PET monthly 1990–2013 269 107.2 62.8 0.1

41 Santa_Monica PET monthly 1993–2013 246 99.1 34.9 0.0

42 CIMIS (overall) PET monthly 1983–2013 12985 114.4 63.5 0.2

44 ERA5 PEV hourly 1979–2021 0.93 × 106 0.08 0.11 1.5

* There is a large gap in timeseries from 1995–2001.
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Observations for the PE processes are usually available in monthly or daily resolutions
and usually only for short periods, while a global gridded dataset based on the ERA5 data
has been recently released [43]. Here, we use two datasets and compare the marginal and
dependence structures of the reanalysis PEV timeseries with the PET timeseries of coarser
monthly resolution, extracted from a network of 41 ground stations (see details in Table 1
and Figures 2 and 3). Particularly, the monthly Penman–Monteith dataset of the CIMIS
network is used, in which reference evapotranspiration and potential evapotranspiration
coincide due to local surface and vegetation conditions. The samples of 41 meteorological
stations (https://cimis.water.ca.gov/, accessed on 1 October 2021) are well-distributed
across California (Figure 1) for the period 1983–2013 (Table 1), which corresponds to a
maximum of 372 monthly values. The meteorological network has been developed in co-
operation with Davis University, and the local environment of the meteorological stations
allow accurate estimation of the PET.
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To account for the impact of the double periodicity (diurnal and seasonal) of the PE
processes on the dependence structure, we simulate the transformed process by applying
a double standardization on the original timeseries. Particularly, we subtract the hourly
and monthly means (Figures 4 and 5) and then we divide with the hourly and monthly
standard deviations (Figures 6 and 7). Other transformation methods could be applied that
take into consideration higher moments (e.g., [26]) such as skewness (Figure 8) and kurtosis

https://cimis.water.ca.gov/
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(Figure 9) coefficients, or even more sophisticated ones [44]; however, as can be derived
from Table 1 and Figures 6 and 7, the PE processes (especially the aggregated PET process)
is close to a light-tail distribution, and therefore we do not expect any significant differences
by applying those methods. After the double standardization, we de-standardize each
timeseries based on the total mean and standard deviation of the original timeseries
(Table 1 and Figure 10). Finally, we fit the marginal and dependence models described
in the previous section to each transformed timeseries, and the results are depicted and
described in the next section.

Hydrology 2021, 8, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Minimum and maximum values of the PET timeseries for each station. 

To account for the impact of the double periodicity (diurnal and seasonal) of the PE 
processes on the dependence structure, we simulate the transformed process by applying 
a double standardization on the original timeseries. Particularly, we subtract the hourly 
and monthly means (Figures 4 and 5) and then we divide with the hourly and monthly 
standard deviations (Figures 6 and 7). Other transformation methods could be applied 
that take into consideration higher moments (e.g., [26]) such as skewness (Figure 8) and 
kurtosis (Figure 9) coefficients, or even more sophisticated ones [44]; however, as can be 
derived from Table 1 and Figures 6 and 7, the PE processes (especially the aggregated PET 
process) is close to a light-tail distribution, and therefore we do not expect any significant 
differences by applying those methods. After the double standardization, we de-stand-
ardize each timeseries based on the total mean and standard deviation of the original 
timeseries (Table 1 and Figure 10). Finally, we fit the marginal and dependence models 
described in the previous section to each transformed timeseries, and the results are de-
picted and described in the next section. 

 
Figure 4. Monthly means of the PET timeseries for each station. 

0
50

100
150
200
250
300

0 5 10 15 20 25 30 35 40

month
ly ETo 

(mm)

Sequence number of station in database

Minimum recorded value in 31 yearsMaximum recorded value in 31 years

0
50

100
150
200
250
300
350

1 2 3 4 5 6 7 8 9 10 11 12

month
ly mean

 (mm)

Month

1. Five Points 2. Davis 3. Firebaugh Teles 4. Gerber 5. Durham6. Carmino 7. Stratford 8. Castorville 9. Kettleman 10. Bishop11. Parlier 12. Calipatria 13. Mc_Arthur 14. UC_Riverside 15. Brentwood16. San_Luis_Obispo 17. Blackwells_corner 18. Los Banos 19. Buntigville 20. Temecula21. Santa_Ynez 22. Seeley 23. Manteca 24. Modesto 25. Irvine26. Oakville 27. Pomona 28. Frenso_State 29. Santa_Rosa 30. Browns_Valley31. Lindcove 32. Meloland 33. Alturas 34. Cuyama 35. Tulelake36. Goleta_foothills 37. Windsor 38. De_Laveaga 39. Westlands 40. Sanel_Valley41. Santa_Monica

Figure 4. Monthly means of the PET timeseries for each station.

Hydrology 2021, 8, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. Hourly means of the PEV timeseries for each month. 

 
Figure 6. Monthly standard deviations of the PET timeseries for each station. 

 
Figure 7. Hourly standard deviations of the PEV timeseries for each month. 

0.0
0.1
0.2
0.3
0.4

0 6 12 18 24

hourly 
mean (

mm)

hour

1 2 3 4 5 6 7 8 9 10 11 12

0
10
20
30
40
50
60

1 2 3 4 5 6 7 8 9 10 11 12

month
ly stand

ard dev
iation (

mm)

Month

1. Five Points 2. Davis 3. Firebaugh Teles 4. Gerber 5. Durham6. Carmino 7. Stratford 8. Castorville 9. Kettleman 10. Bishop11. Parlier 12. Calipatria 13. Mc_Arthur 14. UC_Riverside 15. Brentwood16. San_Luis_Obispo 17. Blackwells_corner 18. Los Banos 19. Buntigville 20. Temecula21. Santa_Ynez 22. Seeley 23. Manteca 24. Modesto 25. Irvine26. Oakville 27. Pomona 28. Frenso_State 29. Santa_Rosa 30. Browns_Valley31. Lindcove 32. Meloland 33. Alturas 34. Cuyama 35. Tulelake36. Goleta_foothills 37. Windsor 38. De_Laveaga 39. Westlands 40. Sanel_Valley41. Santa_Monica

0.00
0.05
0.10
0.15

0 6 12 18 24

hourly
 standa

rd devi
ation (

mm)

hour

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5. Hourly means of the PEV timeseries for each month.
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Figure 6. Monthly standard deviations of the PET timeseries for each station.
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4. Results

The PBF marginal distribution function is fitted to each transformed timeseries
(e.g., Figure 11), and the parameters for all transformed timeseries can be seen in Table 2.
Note that the fit of the PBF to all timeseries is exceptionally good. From Table 2, it can be
observed that the transformed PEV and PET processes exhibit a light-tail behavior. The average
values of the shape parameters are estimated as ξ ≈ 0.04 and ζ ≈ 5.7 for the CIMIS dataset,
and ξ = 0.08 and ζ = 7.6 for the ERA5 transformed timeseries. It has been shown [25] that the
tail index, ξ, does not depend on the averaging scale. Therefore, the slight differences in the
estimated values are either due to statistical uncertainty or to differences in the nature of the data.

Hydrology 2021, 8, x FOR PEER REVIEW 10 of 15 
 

 

The PBF marginal distribution function is fitted to each transformed timeseries (e.g., 
Figure 11), and the parameters for all transformed timeseries can be seen in Table 2. Note 
that the fit of the PBF to all timeseries is exceptionally good. From Table 2, it can be ob-
served that the transformed PEV and PET processes exhibit a light-tail behavior. The av-
erage values of the shape parameters are estimated as ξ ≈ 0.04 and ζ ≈ 5.7 for the CIMIS 
dataset, and ξ = 0.08 and ζ = 7.6 for the ERA5 transformed timeseries. It has been shown 
[25] that the tail index, ξ, does not depend on the averaging scale. Therefore, the slight 
differences in the estimated values are either due to statistical uncertainty or to differences 
in the nature of the data. 

Additionally, the combined climacogram from all the empirical ones for the CIMIS 
transformed timeseries is depicted in Figure 12 and compared to the one from the ERA5 
transformed timeseries depicted in Figure 13. It can be observed that a Hurst–Kolmogorov 
behavior is detected in both data sources, with a Hurst parameter of approximately 0.65. 
Specifically, the estimated parameters for the CIMIS dataset are H = 0.64 and q = 1.17 
months (M is assumed to be 0.5 because the empirical climacogram is very close to an fGn 
process), and for the ERA5 timeseries they are H = 0.69, q = 19.7 h, and M = 0.8. 

 
Figure 11. Observed and theoretical results of the PBF marginal distribution function of the PET 
transformed timeseries at the Davis station. 

Table 2. Parameters of the marginal probability distribution function for all transformed timeseries 
of each station (note that the squared correlation coefficient is R2 > 0.99 for all models). The symbols 
ξ, ζ, λ, and d correspond to Equation. (1). 

Sequence 
Number Name ξ ζ λ (mm) d (mm) 

1 Five Points 0.100 4.5 240.0 –105.0 
2 Davis 0.094 9.2 355.1 –236.0 
3 Firebaugh Teles 0.071 8.0 353.2 –227.5 
4 Gerber 0.078 8.2 349.6 –227.9 
5 Durham 0.063 6.3 285.2 –167.6 
6 Carmino 0.034 5.8 326.1 –191.1 
7 Stratford 0.054 8.0 427.1 –286.5 
8 Castorville 0.049 5.4 132.7 –45.7 
9 Kettleman 0.018 4.7 308.4 –154.0 

10 Bishop 0.067 10.4 304.9 –171.3 
11 Parlier 0.042 6.4 326.8 –199.4 
12 Calipatria 0.093 7.7 285.2 –131.2 

0.00.10.20.30.40.50.60.70.80.91.0

-250 -200 -150 -100 -50 0 50 100 150 200 250 300 350

Surviva
l proba

bility fu
nction

Monthly ETo (mm)
ObservedModel

Figure 11. Observed and theoretical results of the PBF marginal distribution function of the PET
transformed timeseries at the Davis station.
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Table 2. Parameters of the marginal probability distribution function for all transformed timeseries
of each station (note that the squared correlation coefficient is R2 > 0.99 for all models). The symbols
ξ, ζ, λ, and d correspond to Equation (1).

Sequence Number Name ξ ζ λ (mm) d (mm)

1 Five Points 0.100 4.5 240.0 –105.0

2 Davis 0.094 9.2 355.1 –236.0

3 Firebaugh Teles 0.071 8.0 353.2 –227.5

4 Gerber 0.078 8.2 349.6 –227.9

5 Durham 0.063 6.3 285.2 –167.6

6 Carmino 0.034 5.8 326.1 –191.1

7 Stratford 0.054 8.0 427.1 –286.5

8 Castorville 0.049 5.4 132.7 –45.7

9 Kettleman 0.018 4.7 308.4 –154.0

10 Bishop 0.067 10.4 304.9 –171.3

11 Parlier 0.042 6.4 326.8 –199.4

12 Calipatria 0.093 7.7 285.2 –131.2

13 Mc_Arthur 0.038 6.8 340.7 –223.3

14 UC_Riverside 0.071 4.2 145.7 –14.8

15 Brentwood 0.072 7.4 344.0 –221.1

16 San_Luis_Obispo 0.077 4.6 138.0 –25.1

17 Blackwells_corner 0.001 5.1 352.9 –196.8

18 Los Banos 0.056 7.2 367.4 –235.1

19 Buntigville 0.025 6.0 327.6 –193.9

20 Temecula 0.074 5.1 145.7 –26.0

21 Santa_Ynez 0.012 5.1 199.9 –78.5

22 Seeley 0.085 7.7 285.3 –116.6

23 Manteca 0.046 4.3 233.0 –107.6

24 Modesto 0.013 3.7 231.3 –100.0

25 Irvine 0.031 4.1 132.3 –15.5

26 Oakville 0.002 3.5 188.2 –65.3

27 Pomona 0.025 6.0 208.3 –91.1

28 Frenso_State 0.031 3.3 210.4 –72.4

29 Santa_Rosa 0.026 3.6 169.3 –61.1

30 Browns_Valley 0.004 4.4 279.5 –143.7

31 Lindcove 0.045 6.2 315.7 –190.4

32 Meloland 0.029 5.2 268.0 –94.7

33 Alturas 0.019 5.0 259.4 –142.3

34 Cuyama 0.030 6.8 343.4 –197.5

35 Tulelake 0.022 5.2 262.2 –146.8

36 Goleta_foothills 0.017 4.7 129.3 –18.5

37 Windsor 0.001 3.1 166.1 –51.4

38 De_Laveaga 0.001 5.5 195.3 –90.9

39 Westlands 0.018 3.2 230.2 –76.6

40 Sanel_Valley 0.001 6.6 385.2 –252.7

41 Santa_Monica 0.016 4.7 144.3 –33.4

42 CIMIS (meanl) 0.040 5.7 260.8 –132.4

43 ERA5-PEV 0.076 7.6 0.63 –0.54
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Additionally, the combined climacogram from all the empirical ones for the CIMIS
transformed timeseries is depicted in Figure 12 and compared to the one from the ERA5
transformed timeseries depicted in Figure 13. It can be observed that a Hurst–Kolmogorov
behavior is detected in both data sources, with a Hurst parameter of approximately 0.65.
Specifically, the estimated parameters for the CIMIS dataset are H = 0.64 and q = 1.17 months
(M is assumed to be 0.5 because the empirical climacogram is very close to an fGn process),
and for the ERA5 timeseries they are H = 0.69, q = 19.7 h, and M = 0.8.

Hydrology 2021, 8, x FOR PEER REVIEW 11 of 15 
 

 

13 Mc_Arthur 0.038 6.8 340.7 –223.3 
14 UC_Riverside 0.071 4.2 145.7 –14.8 
15 Brentwood 0.072 7.4 344.0 –221.1 
16 San_Luis_Obispo 0.077 4.6 138.0 –25.1 
17 Blackwells_corner 0.001 5.1 352.9 –196.8 
18 Los Banos 0.056 7.2 367.4 –235.1 
19 Buntigville 0.025 6.0 327.6 –193.9 
20 Temecula 0.074 5.1 145.7 –26.0 
21 Santa_Ynez 0.012 5.1 199.9 –78.5 
22 Seeley 0.085 7.7 285.3 –116.6 
23 Manteca 0.046 4.3 233.0 –107.6 
24 Modesto 0.013 3.7 231.3 –100.0 
25 Irvine 0.031 4.1 132.3 –15.5 
26 Oakville 0.002 3.5 188.2 –65.3 
27 Pomona 0.025 6.0 208.3 –91.1 
28 Frenso_State 0.031 3.3 210.4 –72.4 
29 Santa_Rosa 0.026 3.6 169.3 –61.1 
30 Browns_Valley 0.004 4.4 279.5 –143.7 
31 Lindcove 0.045 6.2 315.7 –190.4 
32 Meloland 0.029 5.2 268.0 –94.7 
33 Alturas 0.019 5.0 259.4 –142.3 
34 Cuyama 0.030 6.8 343.4 –197.5 
35 Tulelake 0.022 5.2 262.2 –146.8 
36 Goleta_foothills 0.017 4.7 129.3 –18.5 
37 Windsor 0.001 3.1 166.1 –51.4 
38 De_Laveaga 0.001 5.5 195.3 –90.9 
39 Westlands 0.018 3.2 230.2 –76.6 
40 Sanel_Valley 0.001 6.6 385.2 –252.7 
41 Santa_Monica 0.016 4.7 144.3 –33.4 
42 CIMIS (meanl) 0.040 5.7 260.8 –132.4 
43 ERA5-PEV 0.076 7.6 0.63 –0.54 

 

 
Figure 12. Observed and theoretical climacograms through the HK model for all the available PET 
transformed timeseries adjusted for bias, with the 25% and 75% quantiles (note that the coefficient 
of determination for the model is R2 = 0.993). 

0.001
0.010
0.100
1.000

1 10 100

Standa
rdized 

climaco
gram

Scale (month)

Observed meanObserved q25Observed q75Model
Figure 12. Observed and theoretical climacograms through the HK model for all the available PET
transformed timeseries adjusted for bias, with the 25% and 75% quantiles (note that the coefficient of
determination for the model is R2 = 0.993).
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Figure 13. Observed and theoretical climacograms through the HK model for the ERA5 transformed
timeseries adjusted for bias (note that the coefficient of determination for the model is R2 = 0.997).

5. Discussion

Here we discuss how the above results can contribute to the existing literature relating
to the potential evaporation and evapotranspiration from the point of view of stochastics
and, in particular, of the HK dynamics.

The stochastic analysis of the potential evaporation (PEV) and potential evapotranspi-
ration (PET) presented is useful (a) to highlight the stochastic similarities between them,
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(b) to quantify the variability and uncertainty of these processes, and (c) to develop a
stochastic model capable of simulating important stochastic characteristics, for purposes
such as forecasting and risk management. The PEV timeseries is extracted in hourly res-
olution as a reanalysis ensemble over California and through the ERA5 network, while
for the PET, the high-quality CIMIS dataset with 41 stations is used over the same area
for comparison.

The analysis of the above three tasks is performed based on the stochastic metrics
and Hurst–Kolmgorov (HK) dynamics. Moreover, the marginal structures and second-
order dependence structures are compared to the structures of each other and of other
key hydrological-cycle processes such as temperature, relative humidity, wind speed,
streamflow, and precipitation, as analyzed from a global network of stations in [25].

In particular, and similar to the global analysis, it is illustrated how the Pareto–Burr–
Feller (PBF) probability distribution function may well describe the marginal structure of
both the hourly PEV and monthly PET. Additionally, both processes are shown to exhibit a
light-tail behavior. However, it is noted that the shape parameters of the PBF (i.e., ξ and ζ),
which characterize the type of the tail, are slightly smaller in the CIMIS data (i.e., overall
mean from stations 0.04 and 5.7, respectively) as compared to the reanalysis data (i.e., 0.08
and 7.6, respectively), indicating a heavier tail for the latter.

Additionally, it is found that, similarly to the other key hydrological-cycle processes
mentioned above, both PEV and PET processes exhibit long-range dependence, with a
Hurst parameter of medium strength. In particularly, H is estimated as 0.65 and 0.68 for
the PET and PEV processes, respectively, which is weaker than the ones for temperature,
relative humidity, solar radiation, and wind speed (0.80–0.85 [25]) and stronger than the
one for precipitation (i.e., 0.61 [25]) for the examined range of scales spanning from the
hourly resolution to the climatic scales. This can be interpreted as an indication that the
PET and PEV processes have a wider predictability time window than precipitation’s, and
narrower than the rest (i.e., entailing a higher degree of long-term unpredictability).

As a final remark, the need to apply a suitable stochastic model to reproduce important
characteristics, such as LRD behavior, is stressed. The work shows the robust use of a
stochastic framework to simulate the variability and uncertainty of a hydrometeorological
process in emerging new practices and challenges:

• Stochastic modelling of evapotranspiration at a fine time scale (e.g., hourly) is con-
sidered to be useful for numerous agronomist applications because it is strongly
connected to the forecast of the plant water demands. In recent years of micro-farm
techniques, the stochastic modelling of evapotranspiration, with sound physical-
interpretation, has tracked the attention of the scientific community in order to simu-
late more accurately the water-food-energy nexus.

• A proper stochastic model for the simulation of the evapotranspiration should be
based at a wide range of spatio-temporal scales and meteorological conditions; thus, a
global-scale analysis is important in order to identify stochastic similarities so as to
improve the simulation techniques.

• Stochastic simulation of the error analysis between the modelled and the measured
Penman–Monteith assessment could highly contribute to improving potential evapo-
transpiration estimates.

• Stochastic PET modeling could offer a solid probabilistic frame for identifying the
long-term trend of hydrometeorological components in horizons greater than the
available records and thus is of potential interest for climatological studies.

6. Conclusions

A stochastic model is presented for hourly potential evaporation (PEV) and monthly
potential evapotranspiration (PET) based on the ERA5 hourly reanalysis data and the
Penman–Monteith model applied to the well-known CIMIS network.

It was found that both the marginal probability distributions of PEV and PET are light-
tailed when estimated through the Pareto–Burr–Feller distribution function. Additionally,
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the long-range dependence of both the PEV and PET is found to be of moderate strength,
quantified through a Hurst parameter of 0.64 and 0.69, respectively.

The above results reveal the stochastic similarities between the ground and reanalysis
data series. Additionally, the results are shown to be consistent to the hydrological-path of
the marginal and dependence structures of Hurst–Kolmogorov dynamics. In particular,
both PET and PEV can be placed between the stochastic structures of temperature, relative
humidity, solar radiation, and wind speed (i.e., strong LRD and light- to medium-tail) and
the precipitation’s structures (i.e., weak LRD and heavy tail). Finally, it is discussed how
the existence of, even moderate, long-range dependence and tail distribution increase the
variability and uncertainty of both processes, and thus limit their predictability.
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