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Abstract Causality is a central concept in science, in philosophy and in life. However, 

reviewing various approaches to it over the entire knowledge tree, from philosophy to 

science and to scientific and technological application, we locate several problems, which 

prevent these approaches from defining sufficient conditions for the existence of causal 

links. We thus choose to determine necessary conditions that are operationally useful in 

identifying or falsifying causality claims. Our proposed approach is based on stochastics, 

in which events are replaced by processes. Starting from the idea of stochastic causal 

systems, we extend it to the more general concept of hen-or-egg causality, which includes 

as special cases the classic causal, and the potentially causal and anticausal systems. 

Theoretical considerations allow the development of an effective algorithm, applicable to 

large-scale open systems, which are neither controllable nor repeatable. The derivation 

and details of the algorithm are described in this paper, while in a companion paper we 

illustrate and showcase the proposed framework with a number of case studies, some of 

which are controlled synthetic examples and others real-world ones arising from 

interesting scientific problems. 
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ὡς ἐγὼ οὐ νῦν πρῶτον ἀλλὰ καὶ ἀεὶ τοιοῦτος οἷος τῶν ἐμῶν μηδενὶ ἄλλῳ πείθεσθαι ἢ τῷ λόγῳ ὃς ἄν 

μοι λογιζομένῳ βέλτιστος φαίνηται. 

I am not only now but always a man who follows nothing but the reasoning which on consideration 

seems to me best. 

Plato, Crito, 46b-47d, quoting Socrates 
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1 Introduction 

Causality (or causation1) is a central concept in science, in philosophy and in life, yet its 

meaning is not clear. Difficulties in disambiguating it extend over the entire knowledge 

tree, from philosophy and to science to scientific and technological applications. When it 

comes to science, an operational framework is well established, which is based on the 

notion of controlled and repeatable experiments. However, this framework is not 

applicable to large-scale open systems, which are neither controllable nor repeatable. The 

difficulties in identifying causality in such systems are amplified. Even though several 

algorithms have been proposed to identify causality in such systems, based on 

probabilistic considerations and statistical processing of data, they are mostly 

problematic. 

 Apparently, as giants in philosophy and science have not yet resolved these 

problems, one should not expect our humble set of two companion papers to do that. On 

the other hand, existing knowledge gaps offer us grounds for trying to make some 

headway in attempting to locate and elucidate those gaps (Section 2 of this paper) and 

propose a different identification framework applicable to open systems (Section 3 of this 

paper). We illustrate and showcase the proposed framework by means of a number of 

case studies, some of which are controlled synthetic examples and others real-world ones 

characterizing interesting scientific problems. To avoid a long paper, we present the case 

studies in the companion paper (Koutsoyiannis et al. 2022a). 

2 Theoretical background 

2.1 Philosophical background 

There is a mystery in the concept of cause. While at first glance it seems clear what we 

mean with the word, whenever we consider it more closely, we find ourselves unable even 

to define it. Aristotle (384–322 BC) seems to have noticed this, for he wrote, among other 

things:  

that which when present is the cause of something, when absent we sometimes 

consider to be the cause of the contrary; for example, we consider the absence of the 

captain to be the cause of the ship's capsizing, whereas his presence was the cause of 

the ship's rescue” (ὃ γὰρ παρὸν αἴτιον τοῦδε, τοῦτο καὶ ἀπὸν αἰτιώμεθα ἐνίοτε τοῦ 

 
1 The terms “causation” and “causality” most of the times, also in this text, are typically used interchangeably 
as synonymous, meaning the existence of a cause-effect relationship. We note though that the two terms 
sometimes have been used with slightly differing meanings. The former sometimes (e.g. Sion 2010) denotes 
a deterministic cause-effect relationship (deterministic causality). The latter may also mean the principle 
that everything has a cause (e.g. Bunge 1979, p.3). 
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ἐναντίου, οἷον τὴν ἀπουσίαν τοῦ κυβερνήτου τῆς τοῦ πλοίου ἀνατροπῆς, οὗ ἦν ἡ 

παρουσία αἰτία τῆς σωτηρίας [Bekker number 195a12-14]).  

In some languages, the original meaning of the word appears to be “the one who is 

to blame”. According to various dictionaries, the Greek word “αἴτιος”, which comes from 

the verb “αἴνυμαι”, “to grab”, must originally have meant “he who has a part”. Likewise, 

the Latin word “causa” is also the origin of "accuse". The German "Ursache", on the other 

hand, literally means “the original thing”. This suggests two important aspects of what we 

understand as cause: (i) insofar as identifying a cause is identifying what is responsible 

for something, it provides an explanation; (ii) insofar as a cause is the origin/ground 

leading to some occurrence, it is connected with the idea of some process (physical or 

psychological). However, this common understanding of the notion of cause hides certain 

philosophical problems. 

The Scottish philosopher David Hume (1711-1776) was the first to raise doubts 

about the existence of causes. His work has been so influential that almost all modern 

philosophical and scientific studies referring to causation start the thread from him. He 

pointed out that causal connections are not visible or otherwise directly perceivable by 

our senses. When a flame causes heat, we perceive the flame, we perceive the heat, but 

the causal connection between the flame and the heat we do not perceive; we deduce it. 

From the time of birth, we observe certain regularities in the world. For Hume, when we 

say that the flame is the cause and heat is the effect, we only express an observed 

regularity—a physical law. Here is a related passage from Hume (1748, Section VI, part 

I—with modernized spelling and punctuation): 

Suppose a person, though endowed with the strongest faculties of reason and 

reflection, to be brought on a sudden into this world; he would indeed immediately 

observe a continual succession of objects, and one event following another; but he 

would not be able to discover anything further […] Suppose, again, that he has 

acquired more experience, and has lived so long in the world as to have observed 

familiar objects or events to be constantly conjoined together. What is the consequence 

of this experience? He immediately infers the existence of one object from the 

appearance of the other. Yet he has not, by all his experience, acquired any idea or 

knowledge of the secret power by which the one object produces the other; nor is it by 

any process of reasoning he is engaged to draw this inference. 

Hume’s conclusion is that the concept of a cause is merely a way we use to describe 

regularities.  

Hume’s attack on the notion of cause served as a wake-up call for the German 

philosopher Immannuel Kant (1724–1804), who agreed with Hume’s diagnosis but not 

his conclusion. Rather, he argued that Hume did not go far enough (Kant 1787/1998, 
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B788-9; pp. 653-4; see Gardner 1999, p.11). This was one of the triggers for Kant’s so-

called “critical turn” which introduced a revolutionary approach to how we understand 

what it is to be an object. While Kant did not doubt that knowledge of objects starts with 

the information we receive through our senses, the question of how this sensory input 

leads to the experience/knowledge/representation of an object is one that philosophy 

had never really provided a satisfactory answer to. Rather than assume, as his 

predecessors had done, that our knowledge of objects depends in some way (that has 

never been explained—e.g. how does raw sensory information lead to the representation 

of an object?) upon objects that are already given to us independently of our cognition, he 

proposed that our cognition is partly responsible for constituting such objects. So, 

features like space, time and causality are contributed by the subject as ways of 

structuring the raw sensory input. The concept of cause and effect in particular, and Kant’s 

claim that “All alterations occur in accordance with the law of the connection of cause and 

effect” (Kant 1787/1998, B232, p. 304) play a fundamental role in the temporal structure 

of objective experience. For our purposes, what is important in Kant’s understanding of 

causality is that (a) it is understood in terms of rule-governedness (i.e. that which is 

regular has a rule governing its behaviour), and (b) the temporal/causal order is 

irreversible (ibid. B237, pp. 306-7). These two characteristics will be used below. 

The general question of how to define and identify causes remains however and this 

is the locus of the contemporary debate around the concept of cause. Many philosophers 

and mathematicians have attempted to answer it by developing theories of causation. 

These are based on interventions (A causes B if by deliberately creating A, B follows), 

counterfactuals (A causes B if B would not have occurred had A been absent), necessary 

and sufficient conditions (A causes B if A is necessary and sufficient for B to occur), or 

probability (A causes B if the presence of A increases the probability of B; see section 2.2). 

Combinations of these approaches have also been proposed. However, no completely 

satisfactory characterization has been formulated. Naturally, this philosophical perplexity 

is also reflected in the mathematical representation of causality, which defines the scope 

of our study. In particular, this paper and its companion are a contribution to the 

probabilistic approach to causality. 

2.2 Probabilistic theories of causality 

While the above considerations show that it is difficult to define what causality is, we have 

seen grounds for presupposing it is intimately connected with temporal asymmetry and 

irreversibility. Thus, Mehlberg (1983) explained that “no causal process (i.e., such that of 

two consecutive phases, one is always the cause of the other) can be reversible” and also 

presented the causal theory of time, according to which “two events are simultaneous by 
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definition if there can be no causal action between them”. The issue of time directionality 

of causality was also discussed by Kline (1980). 

Further, insofar as a causal link is governed by some rule, it is natural to turn to a 

mathematical representation of causation. In a deterministic framework, the definition of 

what constitutes a causal link can be formalised into a “logic of causation” (e.g. Sion, 2010). 

Application of the deterministic framework in describing a natural system is rather easy 

if the system is simple and the mechanisms acting on the system are well understood (e.g. 

gravity is a cause behind Earth’s rotation around the Sun, as well as for chains of 

sequential events, such as the popular example of a falling row of dominoes, depicted on 

the cover page of the cited book by Sion). The problem of detecting and establishing 

causality becomes challenging when the mechanisms are complex and not well 

understood, and when inference by deduction together with empirical causal laws is not 

possible. In this case we have to resort to induction based on observations, use 

probabilistic logic and model the system by stochastics.  

Among the first who connected causality with probability and statistics were Hopf 

(1934), and Birkhoff and Lewis Jr. (1935). The latter authors used the term “causal 

system”, for which they noted: 

In the practical calculation with actual causal systems, only a limited degree of 

accuracy is sought, since the laws of the system are at most an idealization of the actual 

laws, and the isolation of the system from other systems, which is always postulated, 

can never be more than imperfectly realized. 

Later, Wold (1954, 1960), as well as Strotz and Wold (1960) also studied causality in the 

framework of econometrics and made again, within this framework, a connection with 

probability and statistics.  

Probabilistic definitions of causality are based on time asymmetry on the one hand 

and conditional probability on the other hand. Thus, Suppes (1970) defined it as follows 

 An event Bt′ [occurring at time t′] is a prima facie cause of the event At [occurring at 

time t] if and only if  

(i) 𝑡′ < 𝑡,  

(ii) 𝑃(𝐵𝑡′) > 0,  

(iii) 𝑃(𝐴𝑡|𝐵𝑡′) > 𝑃(𝐴𝑡).  

The notion of a “prima facie cause” is discussed below. In plain language, the cause must 

precede the effect and the conditional probability of the effect under the condition of the 

cause must exceed the unconditional probability. This definition does not exclude the 

possibility of more than one cause. 
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Suppes’s third criterion conveys the idea that the presence of the cause raises the 

probability of occurrence of the effect. This idea is arguably better expressed as an 

inequality between conditional probabilities (Skyrms 1980): 

(iii΄) 𝑃(𝐴𝑡|𝐵𝑡′) > 𝑃(𝐴𝑡|𝐵𝑡′) 

where 𝐵𝑡′  is the absence (non-occurrence) of event 𝐵𝑡′ . However, using the obvious 

relationship 𝑃(𝐴𝑡) = 𝑃(𝐴𝑡𝐵𝑡′) + 𝑃(𝐴𝑡𝐵𝑡′), it can easily be shown that the two versions 

are equivalent. Cox (1992) points out that such a condition still allows for “spurious 

causality”. The latter could only be eliminated by adding a condition such as: 

(iv) there is no event 𝐶𝑡′′  at time 𝑡′′ < 𝑡′ < 𝑡 such that 𝑃(𝐴𝑡|𝐵𝑡′𝐶𝑡′′) =

𝑃(𝐴𝑡|𝐵𝑡′𝐶𝑡′′). 

A version of this condition was also defined by Salmon (1998) within his statistical-

relevance theory of explanation, as the key to distinguishing between statistical and 

causal relevance which he defines as: 

(iv΄) there is no event 𝐶𝑡′′  at time 𝑡′′ < 𝑡′ < 𝑡 which “screens off” 𝐵𝑡′  from 𝐴𝑡  such 

that 𝑃(𝐴𝑡|𝐵𝑡′𝐶𝑡′′) = 𝑃(𝐴𝑡|𝐶𝑡′′). 

Salmon’s example of statistical relevance which is not causal and therefore defines a 

spurious correlation is if 𝐴𝑡 , 𝐵𝑡′ , 𝐶𝑡′′  refer respectively to the occurrence of a storm, a 

barometer drop and an air pressure drop. However, conditions such as (iv) or (iv΄) are 

pretty much impossible to verify satisfactorily in practice. This places limits upon the 

practical use of these characterisations of causation. 

Another popular definition, given by Granger (1980), is the following: “𝑌𝑛 is said to 

cause 𝑋𝑛+1, if 𝑃(𝑋𝑛+1 ∈ 𝐴|𝛺𝑛) ≠ 𝑃(𝑋𝑛+1 ∈ 𝐴|𝛺𝑛 − 𝑌𝑛) for some A.” In this, Granger 

assumes discrete time which he denotes as 𝑛, while he denotes 𝛺𝑛 “the knowledge in the 

universe available at that time” and 𝑌𝑛 the information composed of “the values taken by a 

variable 𝑌𝑡 up to time 𝑛, where 𝑌𝑛 ∈ 𝛺𝑛” (with the last notation best rendered as 𝑌𝑛 ⊆ 𝛺𝑛). 

Further, he provided three axioms, the first of which is equivalent to (i) above and the 

third highlights the constancy in causality direction throughout time.  

In his earlier publication, which has been much more influential2, Granger (1969) 

gave a different version of his definition in an attempt to be statistically testable. With his 

notation of the later definition stated above, the condition upon which the earlier 

definition is based reads var[𝑋𝑛+1|𝛺𝑛] < var[𝑋𝑛+1|𝛺𝑛 − 𝑌𝑛]. That is, the probability of an 

event here becomes variance and the inequality sign “≠” here becomes “<”. Granger 

(1969) clarified his mathematical expression thus: “𝑌𝑡 is causing 𝑋𝑡 if we are better able to 

predict 𝑋𝑡 using all available information than if the information apart from 𝑌𝑡 had been 

used.” Furthermore, Granger (1969) defined the feedback in this way (after replacing the 

 
2 27 000 Google Scholar citations vs. 2300 of Granger (1980).  
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notation with that of Granger (1980)): “If var[𝑋𝑛+1|𝛺𝑛] < var[𝑋𝑛+1|𝛺𝑛 − 𝑌𝑛], 

var[𝑌𝑛+1|𝛺𝑛] < var[𝑌𝑛+1|𝛺𝑛 − 𝑋𝑛] we say that feedback is occurring […], i.e., feedback is 

said to occur when 𝑌𝑡 is causing 𝑋𝑡 and also 𝑋𝑡 is causing 𝑌𝑡”. 

Granger (1969) also proposed what has later been known as the “Granger causality 
test”. This is based on the improvement in the prediction of a process 𝑦𝜏 by considering 

the influence of a “causing” process 𝑥𝜏. Notice that, at this point on, we do not follow 

Granger’s original notational conventions; rather we make it clear that 𝑥𝜏 and 𝑦𝜏 are 

stochastic processes and we underline stochastic (random) variables and stochastic 

processes to distinguish them from common variables (representing single real numbers) 

and deterministic functions, respectively. The prediction equation is the Granger 

regression model: 

𝑦𝜏 = ∑ 𝑎𝑗𝑦𝜏−𝑗

𝜂

𝑗=1

+ ∑ 𝑏𝑗𝑥𝜏−𝑗

𝜂

𝑗=1

+ 𝜀𝜏 (1) 

where 𝑎𝑗  and 𝑏𝑗  are the regression coefficients and 𝜀𝜏 is an error term. Notice that the 

equation (1) does not include the term 𝑥𝜏 that is synchronous with 𝑦𝜏 and thus it excludes 

what Granger calls “instantaneous causality”. We note though that in reality this does not 

indicate “instantaneous causality” but treatment of discrete time as if it were continuous 

(we discuss this point in sections 3.3 – 4.) The test is based on the null hypothesis (𝐻0) 
that the process 𝑥𝜏 is not actually causing 𝑦𝜏, formally expressed as: 

𝐻0: 𝑏1 = 𝑏2 = ⋯ = 𝑏𝜂 = 0. (2) 

Algorithmic details of the test are given in Gujarati and Porter (2009), among others. The 

test is quite popular and several software platforms include free applications to execute 

it3. The rejection of the null hypothesis is commonly interpreted in the literature with the 
statement “𝑥𝜏 Granger-causes 𝑦𝜏”. 

 It is clear that Granger’s statement “𝑌𝑡 is causing 𝑋𝑡 if we are better able to predict 

𝑋𝑡…” in reality identifies improvement of predictability with causality, or in other words, 

statistical association with causation. If this statement is taken together with his 

regression equation (1), in which the involved parameters are calculated through 

correlation coefficients, it eventually identifies correlation with causation. But the 

mantras “association is not causation” and “correlation is not causation” express a widely 

held opinion which we believe is correct.4 Granger (1980) was clearly aware of this: 

 
3 For example, the function GRANGER_TEST is available for Excel by C. Zaiontz (Real Statistics Using Excel, 
http://www.realstatistics.com/; Real Statistics Examples Workbooks. http://www.real-
statistics.com/free-download/real-statistics-examples-workbook/; accessed on 1 September 2020). 
4 Google counts 348 000 appearances of the former and 533 000 of the latter. 

http://www.realstatistics.com/
http://www.real-statistics.com/free-download/real-statistics-examples-workbook/
http://www.real-statistics.com/free-download/real-statistics-examples-workbook/
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when discussing the interpretation of a correlation coefficient or a regression, most 

textbooks warn that an observed relationship does not allow one to say anything about 

causation between the variables. 

Replacing correlation with probability, as did Granger (1980) and before him 

Suppes (1970), does not change the essence in the problem. Perhaps this is the reason 

why Suppes used the term “prima facie cause” in his definition given above (the adjective 

prima facie, originating from Latin, means based on the first impression; accepted as 

correct until proved otherwise). Suppes attributed the expression to J. Hintikka but he did 

not explicitly explain it. Furthermore, he discussed spurious causes and eventually defined 

the genuine cause as a “prima facie cause that is not spurious”; he also discussed the very 

existence of genuine causes. The term “prima facie cause” was also used by Granger. In 

particular, Granger and Newbold (1986) noted that a cause satisfying a causality test “still 

remains prima facie because it is always possible that, if a different information set were 

used, then [it] would fail the new test”. This is in line with the inductive, rather than 

deductive, character of statistical tests, insofar as the conclusion is never the confirmation 

of a hypothesis but only its non-rejection.  

Despite these caveats, the term “Granger causality” is very popular, particularly in 

the expression “Granger causality test” (e.g., Gujarati and Porter, 2009). This terminology 

has misled many to understand the test as identifying causality and resolving the 

“correlation is not causation” problem. In fact, all it detects is correlation, not genuine 

causality. 

Cohen (2014) clearly saw the problem when he suggested replacing the term 

“Granger causality” with “Granger prediction” after correctly pointing out that: 

Results from Granger causality analyses neither establish nor require causality. 

Granger causality results do not reveal causal interactions, although they can provide 

evidence in support of a hypothesis about causal interactions. 

The ambition to identify genuine causes with statistical tools and thereby overcome 

the concern that “correlation is not causation” has motivated others to find statistics other 

than the correlation coefficients to characterize causality. For example, Liang (2016) used 

the so-called information flow (or information transfer) between two processes, while in 

later works this method has been called “Liang causality” (Stips et al., 2016). He asserted 

that “causation implies correlation, but not vice versa” (Liang, 2016) and “causality actually 

can be rigorously derived in terms of information flow from first principles” (Liang, 2018), . 

On the other hand, Koutsoyiannis and Kundzewicz (2020) asserted that: 

[The] vanity [of this approach] to determine genuine causality is easy to infer: It 

suffices to consider the case where the two processes for which causality is studied are 

jointly Gaussian. It is well known that in any multivariate Gaussian process, the 
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covariance matrix (or the correlation matrix along with the variances) fully 

determines all properties of the multivariate distribution of any order. For example, 

the mutual information in a bivariate Gaussian process is (Papoulis, 1991) 

𝐻[𝑦|𝑥] = ln (𝜎𝑦√2πe(1 − 𝑟2)) (3) 

where 𝜎𝑦 and r denote standard deviation, and correlation, respectively. Thus, using 

any quantity related to entropy (or information) is virtually identical to using 

correlation. Furthermore, in Gaussian processes, whatever statistic is used in 

describing causality is readily reduced to correlation. This is evident even in Liang 

(2016), where, e.g., in his Equation (102), the information flow turns out to be the 

correlation coefficient multiplied by a constant.  

In a similar vein, Verbitsky et al. (2019) used a technique of distances of multivariate 

vectors to reconstruct the system dynamics. To do so, they assumed that “each time series 

is a variable produced by its hypothetical low dimensional system of dynamical equations”. 

But if indeed the system dynamics were of low dimensionality, it would be preferable to 

model the system by deduction, rather than induction based upon doubtful statistical 

techniques. As pointed out by Koutsoyiannis and Kundzewicz (2020) (also referring to 

Koutsoyiannis, 2006),  

such assumptions and techniques are good for simple toy models but, when real world 

systems are examined, low dimensionality appears as a statistical artifact because the 

reconstruction actually needs an incredibly high number of observations to work, 

which are hardly available. The fact that the sums of multivariate vectors of distances 

is a statistical estimator with huge uncertainty is often missed in studies of this type, 

which treat data as deterministic quantities, thereby obtaining unreliable results. We 

do not believe that the Earth system and Earth processes […] are of low dimensionality.  

A more satisfactory framework was proposed by Hannart et al. (2016), based on the 

works by Pearl (2009) and Pearl et al. (2016). In it they used the so-called causal graph 

reflecting the assumed dependencies among the studied variables along with the notion 

of exogeneity (perhaps borrowed from Wold (1960), and Strotz and Wold (1960)). To 

define the latter, they stated that “a sufficient condition for X to be exogenous wrt any 

variable is to be a top node of a causal graph.” But importantly, this assumes that we 

already have a causal graph, i.e., a way of identifying causes.  

Further, central to the framework of Hannart et al. (2016) is the notion of 

intervention of an experimenter (perhaps again borrowed from Strotz and Wold (1960)). 

But clearly, while experimentation is feasible in laboratory experiments, it is infeasible in 

natural (e.g. geophysical) processes. To bypass this fundamental obstacle, Hannart et al. 

resorted to the “so-called in silico experimentation”. While this is indeed an impressive 

name, it simply means experimentation with a mathematical model that represents the 
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process. It is trivial to note that models, however sophisticated, are not identical to the 

real world. Hence, objectively the technique examines a hypothetical “causality” that is 

incorporated in the model rather than natural causality. Arguably, calculating 

probabilities by model simulations is inferior to inspecting the model’s equations or code. 

The latter method would be more appropriate to reveal what “causality” is incorporated 

into the model through its construction.  

Hannart et al. (2016), studied the probability of occurrence of an event Y, conditional 

upon the two-valued (binary) variable 𝑋𝑓, which indicates whether or not a forcing f is 

present, for which they stated: 

The probability 𝑝1 = 𝑃(𝑌 = 1|𝑋𝑓 = 1) of the event occurring in the real world, with f 

present, is referred to as factual, while 𝑝0 =  𝑃(𝑌 = 1|𝑋𝑓 = 0) is referred to as 

counterfactual. […] The so-called fraction of attributable risk (FAR) is then defined as 

FAR = 1 −
𝑝0

𝑝1
 (4) 

The FAR is interpreted as the fraction of the likelihood of an event that is attributable 

to the external forcing. 

They showed that, under some conditions, FAR is a probability, which they denoted PN 

and called probability of necessary causality. They stressed that it “is important to 

distinguish between necessary and sufficient causality” and they associated PN, “with the 

first facet of causality, that of necessity”. They claimed to have “introduced its second facet, 

that of sufficiency, which is associated with the symmetric quantity 1 − (1 – 𝑝1)/(1 − 𝑝0)”; 

they denoted it as PS and called it probability of sufficient causality.  

However, the framework has several drawbacks and can fail, as illustrated by the 

following counter-example by Koutsoyiannis and Kundzewicz (2020): When the 

atmospheric temperature is high people wear light clothes and also sweat much more 

than when it is cold. Thus, the weight of clothes improves the prediction of the sweat 

quantity. Koutsoyiannis and Kundzewicz (2020) used the two-valued stochastic variables 
𝑥, 𝑦, 𝑧 to model the states of temperature, clothes weight and sweat, respectively, and 

assumed a hypothetical “artificial intelligence entity” (AIE) which decides on causality 

based upon the probability rules of Hannart et al. (2016). After assigning plausible values 

to the conditional probabilities of high sweat for the four conditions of cold/hot and 

heavy/light clothes, and following detailed numerical calculations of PN and PS, they 

obtained the absurd result that the AIE will decide that there is all necessary and sufficient 

evidence that light clothes cause high sweat. Hannart et al. (2016) might protest that the 

absurd result occurs because of improper assignment of the exogenous variable. But how 

could the AIE know that? How do we know the chain of causation a priori in order to 

create the causal graph? 
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The above critical summary of some recent and earlier studies on causality 

strengthens what was stated by Koutsoyiannis and Kundzewicz (2020), i.e., that 

“identifying genuine causality is not a problem of choosing the best algorithm to establish a 

statistical relationship (including its directionality) between two variables” and, ultimately, 

that “the big philosophical problem of causality cannot be resolved by technical tricks”.  

Therefore, here we focus on simpler problems, such as falsifying an assumed 

genuine causality and adding statistical evidence, in an inductive context, for potential 

causality and its direction. 

3 Proposed framework 

3.1 From seeking a definition to defining necessary conditions 

Coming back to the probabilistic definitions of causality summarized in section 2.2, we 

may remark that they do not have the clarity and unambiguousness required in science. 

The only clear element, at least in a classical physical framework, is the time precedence 

of the cause from the effect. The conditional probability element of the definition or the 

related axioms do not help clarify real causality, if we assume that such a thing really 

exists. If the inequality 𝑃(𝐴𝑡|𝐵𝑡′) > 𝑃(𝐴𝑡) entails (prima facie) causality then the opposite 

one, 𝑃(𝐴𝑡|𝐵𝑡′) < 𝑃(𝐴𝑡) also does, because it can be written as 𝑃(𝐴𝑡|𝐵𝑡′) > 𝑃(𝐴𝑡). Indeed, 

using standard probability calculus and noting that 𝑃(𝐴𝑡|𝐵𝑡′) < 𝑃(𝐴𝑡) implies 𝑃(𝐴𝑡𝐵𝑡′) <

𝑃(𝐴𝑡)𝑃(𝐵𝑡′) we find: 

𝑃(𝐴𝑡|𝐵𝑡′) =
𝑃(𝐴𝑡𝐵𝑡′)

𝑃(𝐵𝑡′)
=

𝑃(𝐴𝑡) − 𝑃(𝐴𝑡𝐵𝑡′)

1 − 𝑃(𝐵𝑡′)
>

𝑃(𝐴𝑡) − 𝑃(𝐴𝑡)𝑃(𝐵𝑡′)

1 − 𝑃(𝐵𝑡′)
= 𝑃(𝐴𝑡) (5) 

Therefore, the only case where (prima facie) causality is excluded is stochastic 

independence, in which 𝑃(𝐴𝑡|𝐵𝑡′) = 𝑃(𝐴𝑡) or, equivalently, 𝑃(𝐴𝑡𝐵𝑡′) = 𝑃(𝐴𝑡)𝑃(𝐵𝑡′). It is 

thus understandable why Granger (1980) generalized the inequality order “>” in Suppes’s 

(1970) definition, replacing it with “≠”.  

A similar argument can be applied by reversing the time inequality 𝑡′ < 𝑡 to 𝑡′ > 𝑡, 

and stating that in the latter case, provided that the events 𝐴𝑡  and 𝐵𝑡′  are not independent, 

𝐴𝑡  (prima facie) causes 𝐵𝑡′ .  

Thus, in effect the existing definitions assert that any two events that are neither 

synchronous nor independent establish a causal relationship, with the direction of 

causality determined by the time order. This is too general to have any usefulness. Also, it 

is rather unnecessary, as it does not add anything important to the well-defined notion of 

(in)dependence. 

There are additional problems with the usefulness of the above definitions, related 

to the estimation of probabilities from real-world data. One may assume that the notions 

of experimentation and its repeatability tacitly lie behind these definitions. And indeed, 
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these are possible in experimental physics in which laboratory experiments are used. A 

laboratory case represents a closed system where one can exclude influences from all 

kinds of external factors, which may even be very distant (cf. quantum entanglement, for 

instance). This, however, cannot be the case in open systems. Thus, in geophysics (a 

particular case of an open system) there is no repeatability because of the influence of 

these ever-changing external factors and the impossibility of controlling such large 

systems. The temporal evolution of a geophysical system is unique and unrepeatable, so 

that we cannot have observed samples. We can only have time series that cannot be 

regarded as a sample because consecutive measurements are never independent. Details 

about the differences between random samples and time series can be found in 

Koutsoyiannis (2021).  

 For these reasons, here we abandon the use of the notion of events and we 

reformulate the notion of causation on the basis of stochastic processes, which are 

families of (infinitely many) stochastic variables indexed by time. A series of observations 

from a natural process is termed a time series and is regarded as a single (and unique in 

geophysical processes) realization of a stochastic process.  

 Furthermore, given the philosophical problems that, as we have seen, characterise 

attempts to give a a definition of causality, we limit our scope of our investigation to 

providing necessary (and not sufficient) conditions of causality. We stress that necessary 

conditions are particularly useful in falsifying hypotheses of causality, rather than 

confirming it. An obvious necessary condition which we retain from all existing 

definitions of causality is the time precedence of the cause with respect to the effect. Other 

conditions are studied below. As the necessary conditions can hardly confirm causality, 

we use the term potential causality (cf. the Aristotelian notion of δύναμις—Latin: potentia; 

English: potency or potentiality). 

3.2 Basic concepts and definitions 

Let 𝑥(𝑡) and 𝑦(𝑡) denote two stochastic processes in continuous time t. We recall from 

stochastics (e.g. Papoulis, 1991, pp. 405, 508) that the two processes form a causal system, 
with 𝑥(𝑡) being the cause and 𝑦(𝑡) the effect, if they are related by: 

𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

0

 (6) 

Here the deterministic function 𝑔(ℎ) is termed impulse response function (IRF), with ℎ 

being a time lag. In the case of a causal system (sometimes also called nonanticipative 

system), 𝑔(ℎ) = 0 for any ℎ < 0. Noticeably, Papoulis did not provide a definition of 

causality per se, but used the concept of a causal system, defined through equation (6). 

The property characterizing a causal system is precisely defined by the zero values of IRF 
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for negative lags (Papoulis, 1991, p. 405). Notice that all values of 𝑥(𝑡) that contribute to 

𝑦(𝑡) through the integral of the right-hand side of equation (6) correspond to a time 

period earlier than t, i.e. to the past. Also notice that, in theory, the entire past matters and 

hence the infinity in the upper limit of the integral. In practice the function 𝑔(ℎ), if 

determined from observations, has to be assumed zero beyond a certain value, i.e. the 

upper limit of the integral becomes finite. This, for example, has been the case in the 

application of the idea in hydrology, namely in the notion of the unit hydrograph (an 

implementation of the IRF in precipitation-runoff), even though its pioneers (Nash, 1959, 

Dooge, 1959) also used the full (infinite) range. Finally, notice the linearity of the 

relationship, which is discussed further below. 

 The theory of causal systems has been based upon a pioneering work by 

Kolmogorov (1941) followed by works by Wold (1948) and Wiener (1949). Notably, Wold 

(1938, 1948), influenced by Kolmogorov (see his interview by Hendry and Morgan, 1994), 

introduced the celebrated Wold decomposition, proving that any stochastic process can 

be decomposed into a regular process (i.e., a process linearly equivalent to a white noise 

process) and a predictable process (i.e., a process that can be expressed deterministically 

in terms of its past values). In none of these works did these pioneers use the term “causal 

system”, nor did they explicitly speak about causality. However, each of them studied a 

form of the linear filter that was later to be called causal. The objective of these works was 

to enable stochastic prediction based on the past, a prediction which Kolmogorov and 

Wiener called “extrapolation”. A little later, Bode and Shannon5 (1950), drawing upon 

Kolmogorov’s and Wiener’s works, made the connection with causality, stating: 

How is it possible to predict at all the future behavior of a function when all that is 

known is a perturbed version of its past history? This question is closely associated with 

the problems of causality and induction in philosophy and with the significance of 

physical laws. 

The connection with causality is also mentioned by Robbins (1959). In the 1960s, 

the term “causal system”, earlier used with a different meaning by Birkhoff and Lewis Jr. 

(1935) as mentioned above, was connected with Kolmogorov’s and Wiener’s 

“extrapolation” filter (essentially our equation (6)), particularly in the literature of 

communication engineering (Drenick, 1963; Post, 1963; Sharnoff, 1964; Masani, 1966; 

Keats, 1967; Parzen, 1968; Clifton, 1968). But it was perhaps the book by Papoulis (1991, 

first edition – 1965), that disseminated the concept of a “causal system”. 

 The relationship of equation (6) is an ideal that we can hardly meet, in a precise 

fashion, in a natural process. In fact, it can only be valid in a mathematical process that is 

 
5 It is relevant to note than two years earlier, Shannon (1948) had introduced the modern definition of 
entropy, while Wiener (1948) in his famous book Cybernetics, had used essentially the same definition 
(albeit with a negative sign) for information. 
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defined by equation (6). Therefore, if we keep equation (6) as a definition of a causal 

process, we will exclude causality in natural processes. Instead, here we call the system 

defined by equation (6) a classic causal system and we will relax the requirements for 

calling a system causal. What is meant by ‘classic’ is that the effect is (1) fully explained (2) 

by one well-identified cause. This condition is implicitly assumed in the absence of other 

additive terms in equation (6), either random 𝑣(𝑡) (i.e., 𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ
∞

0
+ 𝑣(𝑡)) 

or causal from a second cause 𝑧(𝑡) (i.e., 𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ
∞

0
+ ∫ 𝑟(ℎ)𝑧(𝑡 − ℎ)dℎ

∞

0
). 

 We recall that, given any two stationary stochastic processes 𝑥(𝑡) and 𝑦(𝑡), we can 

write an equation relating them of the form (cf. Papoulis, 1991, equation (14.12)): 

𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

−∞

+ 𝑣(𝑡) (7) 

where, compared to equation (6), in the lower limit of the integral we have replaced 0 

with −∞ and also added a third stochastic process, 𝑣(𝑡), assumed to be uncorrelated with 

𝑥(𝑡). The function 𝑔(ℎ) is no longer unique, but infinitely many such functions exist. The 

most interesting among them is the one that corresponds to the minimum variance of 

𝑣(𝑡), typically called the least-squares solution. Since this is a general property of any two 

processes, we can also write it in the reverse direction, i.e.,  

𝑥(𝑡) = ∫ 𝑔1(ℎ)𝑦(𝑡 − ℎ)dℎ

∞

−∞

+ 𝑣1(𝑡) (8) 

where again the most interesting of the infinitely many solutions is the one yielding the 

minimum variance of 𝑣1(𝑡). Note that, 𝑔1(ℎ) in equation (8) is different from 𝑔(ℎ) in (7)—

there is no symmetry. Likewise, the process 𝑣1(𝑡), which is now uncorrelated to the 

process 𝑦(𝑡), is different from 𝑣(𝑡). Naturally, the selection of the optimally applicable 

equation between equations (7) and (8) depends upon which of them gives the minimum 
variance in relative terms, i.e. as a proportion of the variance of 𝑦(𝑡) or 𝑥(𝑡), respectively. 

In what follows we will exclusively use equation (7) which denotes a causality direction 

𝑥 → 𝑦. When we examine the reverse direction, 𝑦 → 𝑥, instead of explicitly using equation 
(8), we interchange processes (𝑥(𝑡), 𝑦(𝑡)) and again use equation (7). Equivalently, the 

final choice of the direction 𝑥 → 𝑦 or 𝑦 → 𝑥 depends upon which maximizes the explained 

variance ratio, defined as 

𝑒 ≔ 1 −
var[𝑣]

var [𝑦]
 (9) 

We will discuss some additional desiderata for the two IRFs below, which also define 

additional criteria for the selection of the best solution.   
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Further explanations on the motivation for the use of equation (7) as necessary 

condition for causation are provided in Supplementary Information (Section SI1.2), 

including a justification for its linear form. The linearity of the equation is kept from the 

original definition of a causal system by Papoulis (1991) (equation (6)). Certainly, 

linearity could be regarded by many as a limitation of our approach and possible future 

nonlinear extensions thereof could be considered. However, it is our opinion that linearity 

may suffice for most problems, for the following reasons: 

• We use a stochastic approach, in which the meaning of linearity vs. nonlinearity is 

dramatically different from that in deterministic approaches, something not often 

recognized in literature. In stochastics, linearity is rather a powerful characteristic 

enabling the study of demanding problems, rather than a limitation. For example, 

stochastic dynamics need not be nonlinear to produce realistic trajectories and 

change. Conversely, in a deterministic system with linear dynamics, any 

perturbation of initial conditions dies off, as does the potential for change—and 

hence the importance of nonlinearity in deterministic approaches (Koutsoyiannis 

2014a, 2021; Koutsoyiannis and Dimitriadis, 2021),  

• In stochastics, linearity is not an (over)simplification of the dynamics but has some 

sound justification, as indicated by the already mentioned Wold decomposition, in 

which the stochastic component (the regular process) is linearly equivalent to a 

white noise process (i.e. a linear combination of white noise terms; Wold, 1938, 

1948; Papoulis 1991). 

• In addition, linearity in a stochastic description results from maximum entropy 

considerations (under plausible conditions; e.g. Papoulis, 1991) and hence it is 

related to the most powerful mathematical and physical principle of maximum 

entropy (Jaynes, 1991; Koutsoyiannis et al. 2008; Koutsoyiannis 2014b). 

• In a stochastic approach, a deviation from linearity can be conveniently 

incorporated through an error term, which is already included in our proposed 

equation (7), in order to generalize Papoulis’ (1991) original equation (6).  

• The fact that linearity is not regarded as a severe limitation in causality assessment 

is indirectly reflected in the popularity of Granger’s (1969) approach, which is also 

linear (equation (1)). 

• In the companion paper (Koutsoyiannis et al., 2022 and its Supplementary 

Information), we show that the linear form of the framework effectively captures 

the important characteristics of causality, even in cases that the true dynamics is a 

priori known to be nonlinear.  

We further note that our proposed bivariate approach to causality could allow for the 

possibility of “spurious” causality, where changes in both variables are affected by 

another cause, possibly with different time delays and response functions. This is not a 
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drawback insofar as our framework of detecting necessary, rather than sufficient, 

conditions. But further, the inclusion of an error term in it allows for such more remote 

causes to be represented in the framework. Additional clarifications on multiple causes 

are provided in Supplementary Information (Section SI1.2), 

 Following the above considerations, and assuming that a least-squares solution of 
equation (7) has been determined for the system (𝑥(𝑡), 𝑦(𝑡)), we will call that system:  

1. potentially causal if 𝑔(ℎ) = 0 for any ℎ < 0, while the explained variance is non 

negligible; 

2. potentially anticausal if 𝑔(ℎ) = 0 for any ℎ > 0, while the explained variance is non 
negligible (this means that the system (𝑦(𝑡), 𝑥(𝑡)) is potentially causal); 

3. potentially hen-or-egg (HOE) causal if 𝑔(ℎ) ≠ 0 for some ℎ > 0 and some ℎ < 0, 

while the explained variance is non negligible; 

4. noncausal if the explained variance is negligible. 

These cases are graphically illustrated in Figure 1. We note that the term “negligible” can 

be quantified in statistical terms, e.g. by invoking statistical significance. However, here 

we will treat this in a practical manner leaving the related theoretical reflections for future 

research. In the hypothetical case that the explained variance reaches its upper limit, i.e., 

1 (100%), it may be justified to replace the term “potentially” with “classic”, in accordance 

with the definition given above for a classic causal system. Further, we note that in some 

texts the term “noncausal” is used for systems which here we call “potentially HOE causal”. 

In other texts, the potentially HOE causal systems are treated as causal systems with 

feedback.  

In this respect, in a HOE causal system, earlier realizations of 𝑥(𝑡) affect the current 

realization of 𝑦(𝑡), but also earlier realizations of 𝑦(𝑡) affect the current realization of 

𝑥(𝑡). Thus, each one of the processes 𝑥(𝑡) and 𝑦(𝑡) is correlated to both the past and the 

future of the other one. This may seem paradoxical in terms of a conventional way of 

thinking about causality, but it is not more paradoxical than the expression “hen-or-egg”, 

first used by Plutarch (Moralia, Quaestiones convivales, B, Question III). Clearly, Plutarch 

(and subsequent users of this expression) did not mean one particular hen and one 

particular egg; in this case the existence or not of a causal relationship would be easy to 

tell. Rather, he meant the sequences of all hens and all eggs, something similar with what 

the abstract term “process” used here represents. For further explanation of the term 

“hen-or-egg” see Koutsoyiannis and Kundzewicz (2020). 
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Figure 1 Explanatory sketch for the definition of the different potential causality types. For each graph the 
mean 𝜇ℎ is also plotted with dashed line.  

It is often stated that in causal systems the present of the process 𝑦(𝑡) does not 

stochastically depend on the future of 𝑥(𝑡) (i.e., 𝑥(𝑡 + ℎ), ℎ > 0). This may be intuitive, but 

it is also clearly wrong: the intuition involves a confusion between causal and stochastic 

dependence. To see this, we define the autocovariance 𝑐𝑥𝑥(ℎ) of process 𝑥(𝑡),  

𝑐𝑥𝑥(ℎ) ≔ cov[𝑥(𝑡 + ℎ), 𝑥(𝑡)] (10) 

where cov[𝑎, 𝑏] ≔ E[(𝑎 − E[𝑎])(𝑏 − E[𝑏])] denotes the covariance of any stochastic 

variables 𝑎, 𝑏 and E[𝑎] denotes the mean of 𝑎. Likewise, we define the autocovariance 

𝑐𝑦𝑦(ℎ) of the process 𝑦(𝑡). The cross-covariance of the two processes is 

𝑐𝑦𝑥(ℎ) ≔ cov [𝑦(𝑡 + ℎ), 𝑥(𝑡)] (11) 

It is easily seen that the autocovariance is an even function of the lag ℎ, i.e., 𝑐𝑥𝑥(−ℎ) =

𝑐𝑥𝑥(ℎ) and that this does not hold for the cross-covariance, 𝑐𝑦𝑥(ℎ), which is generally an 

asymmetric function of ℎ; here the symmetry appears if we change the order of the 

variables, i.e., 𝑐𝑥𝑦(ℎ) = 𝑐𝑦𝑥(−ℎ). Furthermore, it is shown in the Supplementary 

Information (Section SI1.3; see also Papoulis, 1991) that the autocovariance and cross-

covariance functions are related by 

𝑐𝑦𝑥(ℎ) = ∫ 𝑔(𝑎)𝑐𝑥𝑥(ℎ − 𝑎)d𝑎

∞

−∞

 (12) 

Now, in a potentially causal system the latter equation takes the form 

IR
F

< 0                                0                                 > 0
Time lag

Potentially causal Potentially anticausal

Potentially hen-or-egg causal Noncausal
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𝑐𝑦𝑥(ℎ) = ∫ 𝑔(𝑎)𝑐𝑥𝑥(ℎ − 𝑎)d𝑎

∞

0

 (13) 

The covariance of 𝑦(𝑡) with the future variable 𝑥(𝑡 + ℎ), ℎ > 0 is cov [𝑥(𝑡 + ℎ), 𝑦(𝑡)] =

cov [𝑥(𝑡), 𝑦(𝑡 − ℎ)] = 𝑐𝑦𝑥(−ℎ) and is determined as 

𝑐𝑦𝑥(−ℎ) = ∫ 𝑔(𝑎)𝑐𝑥𝑥(−ℎ − 𝑎)d𝑎

∞

0

= ∫ 𝑔(𝑎)𝑐𝑥𝑥(ℎ + 𝑎)d𝑎

∞

0

 (14) 

This is clearly nonzero, which proves that independence of the current value 𝑦(𝑡) from 

the future of 𝑥(𝑡) does not hold. There is only one trivial exception, i.e., when 𝑐𝑥𝑥(ℎ + 𝑎) =

0 for any 𝑎, which is the case only if the cause 𝑥(𝑡) is white noise. This exception, along 

with the fact that the future 𝑥(𝑡 + ℎ) does not functionally appear in equation (6), seems 

to have been the culprit for misleading our intuitions.  

 Clearly, in a potentially causal system the time order is explicitly reflected in the 

definition. In a potentially HOE causal system the time order needs to be clarified by 

defining the principal direction. This could be done in several ways, the most natural 

being the following: 

1. The time lag ℎ = ℎc maximizing the (absolute value of) cross-covariance 𝑐𝑦𝑥(ℎ), 

(equation (11)). 

2. The mean (time average) of the function 𝑔(ℎ), defined as: 

𝜇ℎ ≔ ∫ ℎ 𝑔(ℎ)dℎ

∞

−∞

/𝐻0, 𝐻0 ≔ ∫ 𝑔(ℎ)dℎ

∞

−∞

 (15) 

3.  The median ℎ1/2 of the function 𝑔(ℎ), implicitly defined by: 

∫ 𝑔(ℎ)dℎ

ℎ1/2

−∞

=
1

2
𝐻0 (16) 

The index ℎc is independent of the function 𝑔(ℎ), while the other two depend on it. The 

indices 𝜇ℎ and ℎ1/2 are meaningful for 𝐻0 ≠ 0 and for 𝑔(ℎ) ≥ 0, respectively. It is 

reasonable to expect that, unless a system is noncausal (with 𝐻0 = 0), all three variants, 

ℎc, 𝜇ℎ, ℎ1/2, will have the same sign, which determines a principal direction in the HOE 

causality. Thus, if the sign is nonnegative, the principal causality direction is 𝑥(𝑡) → 𝑦(𝑡). 

The principal direction is crucial for the understanding of the system studied. For 
example, in a system characterized as 𝑥(𝑡) → 𝑦(𝑡), if we speak about a positive feedback, 

we would mean that the effect of 𝑥(𝑡) on 𝑦(𝑡) is magnified, rather than vice-versa. 

 By taking expectations in equation (7), it is readily seen that,   

𝜇𝑦 = 𝐻0𝜇𝑥 + 𝜇𝑣 (17) 
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where 

𝜇𝑦 ≔ E [𝑦(𝑡)] , 𝜇𝑥 ≔ E[𝑥(𝑡)], 𝜇𝑣 ≔ E[𝑣(𝑡)] (18) 

Additional bulk characteristics of the IRF—more specifically, its temporal means and 
higher moments in relation to those of the processes 𝑥(𝑡)and 𝑦(𝑡)—are given in the 

Supplementary Information (section SI1.4). 

3.3 Properties and desiderata for IRF 

In contrast to Granger’s analysis of causality (section 2.2), which treats the processes in 

discrete time by definition, here we treat them in continuous (i.e. natural) time, and we 

only convert them to discrete time for estimation purposes. If we think of the processes 

in natural time, we understand that a causality relationship is not an instantaneous one. 
In other words, if 𝑥(𝑡′) affects 𝑦(𝑡), where 𝑡′ < 𝑡, it is reasonable to assume that, for small 

ℎ, 𝑥(𝑡′ ± ℎ) will also affect 𝑦(𝑡). Therefore, the IRF, 𝑔(ℎ), is not a Dirac delta function, but 

one with some domain, 𝕙 ⊆ ℝ, of nonzero (and potentially infinite) measure, where 

𝑔(ℎ) ≠ 0 for ℎ ∈ 𝕙. It is also reasonable to assume that 𝑔(ℎ) is a continuous function and 

has the same sign for all ℎ ∈ 𝕙. The latter can be justified as follows. If 𝑥(𝑡′) is positively 

correlated with 𝑦(𝑡), then it is reasonable that 𝑥(𝑡′ ± ℎ) are also positively correlated with 

𝑦(𝑡). Without loss of generality, in what follows we will assume that 𝑔(ℎ) ≥ 0 for ℎ ∈ 𝕙 

(if it were 𝑔(ℎ) ≤ 0, we would reflect 𝑥(𝑡), i.e. replace it with −𝑥(𝑡), and hence 𝑔(ℎ) would 

also be reflected becoming nonnegative).  

Here we clarify that the problem of identifying causality is different from that of 

recovering the full system dynamics. The former and not the latter, is the scope of our 

study. We note that, while there exist oscillatory nonlinear systems, in which the sign of 

𝑔(ℎ) could alternate, we avoid subsuming them under the causality notion, particularly 

when causality is inferred from data in an inductive manner. This choice is consistent with 

Cox’s (1992) conditions for causality, according to which the effect “shows a monotone 

relation with ‘dose’” of the cause. Here we note that in our framework the “dose” is not 

regarded as an instantaneous event, but one with some time span (see details in 

Supplementary Information, section SI1.2). 

 The continuity desideratum can be quantified by defining a measure of roughness 

and demanding that it be restricted below a threshold. We may define such a roughness 

index by means of the squares of second derivative (cf. Koutsoyiannis, 2000). Specifically, 

we define a roughness index as 

𝛦 ≔ ∫ (𝑔′′(ℎ))
2

dℎ

∞

−∞

 (19) 

In summary the desiderata for the IRF are: 

• an adequate time span 𝕙; 
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• nonnegativity, 𝑔(ℎ) ≥ 0 for all ℎ ∈ 𝕙; 

• smoothness, 𝐸 ≤ 𝐸0, where 𝐸0 is a real number; 

• minimum variance of 𝑣(𝑡). 

3.4 Estimation of IRF 

The literature offers several methods for estimating an IRF in terms of auto- and cross-

correlations (Young, 2011, 2015) or their Fourier transforms, i.e., power spectra and 

cross-spectra (e.g. Papoulis, 1991). Here we seek a more direct method that can work with 

time series of observations per se, being easily understandable and reproducible by any 

reader using simple computational means, and can also host our desiderata for the IRF. 

In dealing with observations, we first note that they are necessarily made in discrete 

time τ, representing the time period (𝜏 − 1)𝐷 to 𝜏𝐷 (where τ is integer and D is the 

discretization time step). It is assumed that each measurement represents the time 

average of the process in this period (other cases are also discussed in the Supplementary 

Information, Section SI1.1). Thus, 

𝑥𝜏 ≔
1

𝐷
∫ 𝑥(𝑡)d𝑡

𝜏𝐷

(𝜏−1)𝐷

  (20) 

and likewise for 𝑦𝜏 and 𝑣𝜏. The discrete-time version of equation (7) becomes 

𝑦𝜏 = ∑ 𝑔𝑗𝑥𝜏−𝑗

∞

𝑗=−∞

+ 𝑣𝜏 (21) 

Specifically, using the definition of the discrete-time processes in equation (20) we show 

in the Supplementary Information (Section SI1.1) that equation (21) follows from (7) and 

that the discrete-time version of the IRF is related to the continuous-time one by 

𝑔𝑗 =
1

𝐷
(𝐺((𝑗 − 1)𝐷) − 2𝐺(𝑗𝐷) + 𝐺((𝑗 + 1)𝐷))  (22) 

where 

𝐺(𝑏) ≔ ∫ ∫ 𝑔(ℎ)dℎ

𝑎

−∞

d𝑎

𝑏

−∞

  (23) 

Second, the observation period L is finite and hence the series 𝑔𝑗  sought should 

necessarily be assumed of finite length too. We thus formulate the estimation equation as 

�̂�𝜏 = ∑ 𝑔𝑗𝑥𝜏−𝑗

𝐽

𝑗=−𝐽

+ 𝜇𝑣 (24) 

where �̂�𝜏 is the estimate of 𝑦𝜏 given the series of 𝑔𝑗  and J is an integer chosen as 𝐽 ≪ 𝐿 and 

𝜇𝑣 is determined from equation (17). This estimation results in an error:  
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𝜐𝜏 ≔ 𝑦𝜏 − �̂�𝜏 = 𝑦𝜏 − ∑ 𝑔𝑗𝑥𝜏−𝑗

𝐽

𝑗=−𝐽

− 𝜇𝑣 (25) 

Assuming that we have simultaneous observations of the 𝑥𝜏 and 𝑦𝜏 series, for a length L 

the estimator of the variance of 𝜐𝜏 is  

𝛾𝜐 ≔
1

𝐿 − 2𝐽
∑ (𝑦𝜏 − ∑ 𝑔𝑗𝑥𝜏−𝑗

𝐽

𝑗=−𝐽

− 𝜇𝑣)

2𝐿−𝐽

𝜏=𝐽+1

 (26) 

and the explained variance ratio is 

𝑒 ≔
 𝛾𝜐

 𝛾𝑦
  (27) 

 As already mentioned, the above least-squares-based determination of the 

ordinates 𝑔𝑗  is not the only technique for the identification of the IRF; additional 

techniques can be found in Young (2011, 2015 and references therein). A well-known 

weakness of determining numerous ordinates is that it is an over-parameterized problem, 

which is typically addressed by assuming a parametric model (such as a Box-Jenkins 

model or an autoregressive moving average exogenous—ARMAX—model; Young, 2011, 

2015). Here we prefer to use a nonparametric approach and we tackle the over-

parameterization problem by imposing the roughness threshold, as discussed above. An 

additional parametric method, formulated in terms of parameterizing the IRF per se in 

continuous time is also discussed and compared to the proposed non-parametric method 

in the Supplementary Information of the companion paper (Koutsoyiannis et al., 2022; 

sections SI2.3 and SI2.4). 

 Now the roughness index of the IRF can be formulated by replacing the continuous 

second derivative with the discrete one as  

𝐸 ≔ ∑ (𝑔𝑗−1 − 2𝑔𝑗 + 𝑔𝑗+1)
2

𝐽−1

𝑗=−𝐽+1

 (28) 

and can also be expressed as a standardized index by 

𝜀 ≔
𝛦

8 ∑ 𝑔𝑗
2𝐽

𝑗=−𝐽

 (29) 

The constant 8 in the denominator has been introduced in order for the standardized 

roughness index ε of nonnegative 𝑔𝑗  to have a maximum value of 1 (which becomes 2 

without the nonnegativity constraint), while its least value is obviously zero. The zero 

value corresponds to the case where all 𝑔𝑗  are identical. The value 1 corresponds to the 

case where J is large (theoretically, tends to infinity) while the IRF is saw-like with 𝑔2𝑗 =

𝑔0(1 − (𝑗 ⌈𝐽 2⁄ ⌉⁄ )2) (even values of the index) and 𝑔2𝑗+1 = 0 (odd values of the index). 
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It is computationally convenient to write the above equations in vector form, also 

replacing estimators with estimates and stochastic processes with time series of 

observations (cf. Koutsoyiannis, 2000). Thus, we will have 

�̂� = 𝑿𝒈 + 𝝁 (30) 

where �̂� ≔ [�̂�𝐽+1, … , �̂�𝐿−𝐽]
T

 is the vector of estimates of 𝒚 ≔ [𝑦𝐽+1, … , 𝑦𝐿−𝐽]
T

, 𝒈 ≔

[𝑔−𝐽, … , 𝑔0, … , 𝑔𝐽]
T

 is a vector with the 2𝐽 + 1 elements of IRF, 𝝁 is a vector with 𝐿 − 2𝐽 

elements, all equal to 𝜇𝑣, and X is a matrix with 𝐿 − 2𝐽 rows, numbered 𝐽 + 1 to 𝐿 − 𝐽, and 

2𝐽 + 1 columns whose row numbered τ is 𝒙𝜏 ≔ [𝑥𝜏+𝐽, … , 𝑥𝜏, … , 𝑥𝜏−𝐽]. 

 Now, the estimate of the variance of 𝜐𝜏 is  

𝛾(𝒈) =
1

𝐿 − 2𝐽
(𝒚 − 𝑿𝒈 − 𝝁 )T(𝒚 − 𝑿𝒈 − 𝝁 ) (31) 

while the roughness index is  

𝐸 = 𝒈T𝜳Τ𝜳𝒈 (32) 

where 𝜳 is a matrix with 2𝐽 − 1 rows and 2𝐽 + 1 columns whose ijth entry is 

𝜓𝑖𝑗 = {
2 𝑗 = 𝑖 + 1

−1 |𝑗 − 𝑖 − 1| = 1
0 otherwise

 (33) 

In this way, the estimation of IRF is formulated as the following optimization 

problem: 

minimize 𝛾(𝒈) =
1

𝐿 − 2𝐽
(𝒚 − 𝝁 − 𝑿𝒈 )T(𝒚 − 𝝁 − 𝑿𝒈 )

subject to 𝒈T𝜳Τ𝜳𝒈 ≤ 𝐸0

 𝒈 ≥ 𝟎

 (34) 

If we ignore the last constraint (nonnegativity) and combine the second one (small 

roughness) with the objective function using a weight (multiplier) 𝜆/(𝐿 − 2𝐽), we obtain 

an unconstrained optimization problem, i.e. 

minimize 𝑓(𝒈) ≔ (𝒚 − 𝝁 − 𝑿𝒈 )T(𝒚 − 𝝁 − 𝑿𝒈 ) + 𝜆𝒈T𝜳Τ𝜳𝒈 (35) 

which has an analytical solution. Indeed, 𝑓(𝒈) has derivative 

d𝑓

d𝒈
= 2𝒈T𝑿Τ𝑿 + 2𝜆𝒈T𝜳Τ𝜳 − 2(𝒚 − 𝝁 )T𝑿 (36) 

Equating the derivative to 0 and solving for g we find  

𝒈 = (𝑿Τ𝑿 + 𝜆𝜳Τ𝜳)−1 𝑿Τ(𝒚 − 𝝁 ) (37) 

One may notice in equation (37) that the term 𝑿Τ𝑿 represents autocovariance estimates 

of the process 𝒙𝜏 while the term 𝑿Τ𝒚 represents cross-covariance estimates of the 

processes 𝒙𝜏 and 𝒚𝜏. By increasing the weight 𝜆 of the roughness term 𝜳Τ𝜳 we can 
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decrease the roughness of g and thus with a proper choise of λ we can satisfy the 

roughness constraint.  

If the solution in equation (37) also satisfies the nonnegativity constraint, then we 

have determined the IRF sought analytically. Otherwise, we have to abandon the 

analytical solution and solve the problem numerically, as no analytical solution is 

available for the nonnegativity constraint (Chen and Plemmons, 2009). However, all 

software platforms, including common spreadsheet software, provide solvers that can 

easily tackle the full optimization problem in equation (34) within seconds or minutes, 

depending on the time series length. 

The discussion of the analytical solution helps us to understand that the 

autocovariance, and hence the autocorrelation, even though it does not explicitly appear 

in the numerical version of the optimization procedure, strongly influences the parameter 

estimation. It is relevant to mention that high autocorrelation results in increased 

estimation uncertainty and may even result in spurious causality claims. This is illustrated 

in the Supplementary Information of the companion paper (Koutsoyiannis, 2022, Section 

SI2.2) along with techniques to handle such situations and avoid false conclusions. 

4 Discussion and conclusions 

We have briefly examined various approaches to the notion of causality and the criteria 

for identifying an event as causally responsible for another. When dealing with physical 

quantities whose values are only known with some degree of certainty, a probabilistic 

approach to identifying causal links is required. However, attempts to define probabilistic 

necessary and sufficient conditions have all been found to have limitations. In particular, 

it is clear that no sufficient condition for concluding to a causal link has ever been 

identified.  

This therefore suggests that the focus should be exclusively upon identifying 

necessary conditions for causation. Additionally, in view of the additional problem of 

validating probabilistic statements about a unique occurrence of a putative causal link, it 

is practically necessary to resort to considering stochastic processes rather than uniquely 

temporally located events. 

Drawing upon Papoulis’s proposal for a causal system consisting of two stochastic 
processes 𝑥(𝑡) and 𝑦(𝑡), which turns upon the existence of an impulse response function 

(IRF) connecting the two, we identified necessary conditions for the existence of a (linear) 
causal link either from 𝑥 to 𝑦 or 𝑦 to 𝑥, or of a hen-or-egg (HOE) situation in which causal 

influences appear to go in both directions. The distinction between these depends upon 

the nonexistence of nonzero weights of the linear relationship for negative (respectively 

positive) lags for the 𝑥 → 𝑦 causation (respectively the 𝑦 → 𝑥 causation) with HOE 

otherwise. Additionally, the IRF must enable enough of the variance of the caused process 
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to be explained for a causal link to be a possibility. Additional constraints of smoothness 

and nonnegativity of the IRF are included in the method. 

An additional benefit of the proposed method, albeit not discussed above, is its 

direct applicability to the simulation of bivariate processes that exhibit time directionality 

and causality. Conventional stochastic models generate time symmetric processes. The 

problem of simulating a scalar process with time directionality has been tackled recently 

(Koutsoyiannis, 2019, 2020). The present framework provides direct methods to simulate 

time-directional vector processes with two variates, as well as hints for multivariate 

processes—a problem to be studied in future research. 

The methodological framework proposed herein features substantial differences 

from existing methods, such as those discussed in section 2.2. A first difference is in its 

epistemological background which leads to a less ambitious objective, that of seeking 

necessary conditions of causality rather than sufficient ones. The usefulness of this 

objective lies in its ability to falsify an assumed causality and to add statistical evidence, 

in an inductive context, for potential causality and its direction. 

 A second difference is that our focus is upon maximizing not the predictability per 

se, but the lucidity in identifying the (potentially causal) relationship between two 
processes 𝑥𝜏 and 𝑦𝜏. This can be seen by comparing Granger’s expression in equation (1) 

with our expression in equation (24). To estimate 𝑦𝜏, the former includes terms 𝑦𝑖 for 

times earlier than τ while the second does not. Such terms may increase predictability but 
say nothing about a potentially causal relationship between the two processes 𝑥𝜏 and 𝑦𝜏; 

rather, they may obscure that relationship, as autocorrelation is by definition symmetric 

in time.  

 Furthermore, by its construction, our framework can detect not only mono-

directional (potentially) causal relationships, but also causality of HOE type. Notably, our 

method is formulated from the outset for the latter case, while the former case will be 

obtained as a result if in one of the two directions the IRF weights are zero. Further, like 

other methods (e.g. Granger’s) our method allows testing in two directions, 𝑥 → 𝑦 and 

𝑦 → 𝑥. The results in each direction are not anti-symmetrical in terms of the estimated 

IRFs and thus the method provides two different views of the (potentially) causal 

relationship, thus becoming more insightful. 

 A fourth difference of our method from many other methods lies in the recognition 

that natural time is continuous rather than discrete (nb., some methods, e.g. Liang, 2016, 

also use continuous time). The discrete-time relationships, which are necessary in 

estimation based on observations, are deduced from the continuous-time formulation, 

rather than taken as such from the outset. To understand the importance of this difference 

in foundation, consider a classic causal system in continuous time. If we considered the 

system in discrete time from the outset, then the weight for lag zero would be zero to 
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exclude synchrony (cf. Granger’s expression in equation (1)). But considering continuous 

time, it becomes clear from equation (22) that 𝑔0 = (𝐺(𝐷))/𝐷 ≠ 0 and this is not a 

violation of the axiom of time precedence.  

The properties of an adequate time span of causality, instead of an instantaneous 

action, along with the nonnegativity and roughness (or smoothness) constraints are 

additional specific features of the method. Their importance derives from their enabling 

the true dynamics of the system (𝑥𝜏, 𝑦𝜏) to be revealed, in addition to just identifying the 

time lags—at least for systems consistent with the constraints, i.e. not those with 

oscillatory or excessively rough actual dynamics. This importance will become evident in 

the second part of this study, devoted to applications (Koutsoyiannis et al., 2022). On the 

negative side, the constraints certainly make the formal statistical testing more 

challenging. This would certainly be feasible with a Monte Carlo approach, but it is not 

within the scope of this paper.  
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