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Abstract In a companion paper, we develop the theoretical background of a stochastic 

approach to causality with the objective of formulating necessary conditions that are 

operationally useful in identifying or falsifying causality claims. Starting from the idea of 

stochastic causal systems, the approach extends it to the more general concept of hen-or-

egg causality, which includes as special cases the classic causal, and the potentially causal 

and anticausal systems. The framework developed is applicable to large-scale open 

systems, which are neither controllable nor repeatable. In this paper we illustrate and 

showcase the proposed framework in a number of case studies. Some of them are 

controlled synthetic examples and are conducted as a proof of applicability of the 

theoretical concept, to test the methodology with a priori known system properties. Other 

are real-world studies on interesting scientific problems in geophysics, and in particular 

hydrology and climatology. 
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疑惑深 智慧深 疑惑浅 智慧浅  

(Deep doubts, deep wisdom; shallow doubts, shallow wisdom – Chinese proverb) 

1 Introduction 

The companion paper (Koutsoyiannis et al., 2022) studies theoretically the identification 
and characterization of a causal link between two stochastic processes 𝑥(𝑡) and 𝑦(𝑡), 

which represent two natural processes. Our proposal relies on the relationship: 

𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

−∞

+ 𝑣(𝑡) (1) 

where 𝑣(𝑡) is another stochastic process (not necessarily white noise), assumed 

uncorrelated to 𝑥(𝑡), which represents the part of the process that is not explained by the 
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causal link. The function 𝑔(ℎ) is the impulse response function (IRF) of the system 
(𝑥(𝑡), 𝑦(𝑡)); to see this, we set 𝑣(𝑡) ≡ 0 and 𝑥(𝑡) = δ(𝑡) (the Dirac delta function, 

representing an impulse of infinite amplitude at 𝑡 = 0 and attaining the value of 0 for 𝑡 ≠
0), and we readily get 𝑦(𝑡) = 𝑔(𝑡). 

For any two processes 𝑥(𝑡) and 𝑦(𝑡), equation (1) has infinitely many solutions in 

terms of the function 𝑔(ℎ) and the process 𝑣(𝑡). An obvious and trivial one is 𝑔(ℎ) ≡

0, 𝑦(𝑡) ≡ 𝑣(𝑡). The sought solution is the one that corresponds to the minimum variance 

of 𝑣(𝑡), called the least-squares solution. Assuming that this has been determined for the 

system (𝑥(𝑡), 𝑦(𝑡)), we call that system:  

1. potentially causal if 𝑔(ℎ) = 0 for any ℎ < 0, while the explained variance is non 

negligible; 

2. potentially anticausal if 𝑔(ℎ) = 0 for any ℎ > 0, while the explained variance is non 
negligible (this means that the system (𝑦(𝑡), 𝑥(𝑡)) is potentially causal); 

3. potentially hen-or-egg (HOE) causal if 𝑔(ℎ) ≠ 0 for some ℎ > 0 and some ℎ < 0, 

while the explained variance is non negligible; 

4. noncausal if the explained variance is negligible. 

In the above we use the adverb “potentially” to highlight the fact that the conditions 

tested provide necessary but not sufficient conditions for causality. In a potentially causal 

(or anticausal) system the time order is explicitly reflected in the definition. In a 

potentially HOE causal system the time order needs to be clarified by defining the 

principal direction. The most natural indices for this are: (a) the time lag ℎc maximizing 

the absolute value of cross-covariance; (b) the mean (time average) of the function 𝑔(ℎ); 

and (c) the median ℎ1/2 of the function 𝑔(ℎ).  

 Assuming that processes 𝑥(𝑡) and 𝑦(𝑡) are positively correlated (i.e. an increase in 

𝑥(𝑡) would result in an increase in 𝑦(𝑡); if not we multiply one of the two by −1), we seek 

an optimal solution for the IRF by minimising the variance of 𝑣(𝑡). We also set additional 

desiderata for  

(a) an adequate time span 𝕙 of ℎ;  

(b) a nonnegative 𝑔(ℎ) ≥ 0 for all ℎ ∈ 𝕙; and  

(c) a smooth 𝑔(ℎ) with the smoothness expressed as a constraint 𝐸 ≤ 𝐸0, where 

E is determined in terms of the second derivative of 𝑔(ℎ) and 𝐸0 is a real 

number. 

 The proposed theoretical framework is formulated in terms of natural, i.e., 

continuous time. On the other hand, as the estimation of the IRF relies on data in an 

inductive manner, and data are only available in discrete time, conversion of the 

continuous- to a discrete-time framework is necessary for the application. This results in  
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𝑦𝜏 = ∑ 𝑔𝑗𝑥𝜏−𝑗

∞

𝑗=−∞

+ 𝑣𝜏 (2) 

where the sequence 𝑔𝑗  is determined from the function 𝑔(ℎ) in the companion paper. 

Furthermore, any data set is finite and allows only a finite number of 𝑔𝑗  terms to be 

estimated. Therefore, in the applications the summation limits ±∞ in equation (2) are 

replaced by ±𝐽, apparently assuming that 𝑔𝑗 = 0 for |𝑗| > 𝐽, where, in order to identify 

𝑔𝑗  from data, 𝐽 should be chosen much lower than the length of the dataset. 

If we exclude the nonnegativity constraint, then the problem of identifying the IRF 

has an analytical solution (equation (37) in the companion paper). However, a numerical 

solution is always possible, simple and fast. The theoretical framework is illustrated, 

tested and explored in a number of case studies which are presented below. The majority 

of these are synthetic, with a priori known system properties, and they serve to test the 

methodology developed. The remaining are real-world case studies that serve to illustrate 

the usefulness of the method. 

Apparently, the estimation of the IRF from data involves uncertainty. As explained 

in the companion paper (Koutsoyiannis et al., 2022), the method of choice for the 

uncertainty assessment is Monte Carlo simulation, because the complexity of the 

calculations for optimizing the IRF fitting do not allow analytical solutions. To make the 

study short, this task was kept out of its scope. However, a preliminary investigation and 

some first results are provided in the Supplementary Information, section SI2.1, where it 

is shown that (i) the uncertainty in the IRF ordinates per se can be large if no constraints 

are used to determine it, (ii) the use of constraints decreases the uncertainty, and (iii) the 

uncertainty in the key characteristics related to causality (time directionality, time lags, 

explained variance) is small, irrespective of the constraints used. 

Increased estimation uncertainty may also result in spurious causality claims. As 

high autocorrelation increases uncertainty in the long term, this could be a major case 

leading to false identification of causality. This is illustrated in the Supplementary 

Information (Section SI2.2) by means of a synthetic example, in which the processes 𝑥𝜏 

and 𝑦𝜏 are, by construction, independent of one another, but with high autocorrelation. 

Techniques to handle such situations and avoid false conclusions are also discussed there. 

As also explained in the companion paper (Koutsoyiannis et al., 2022), the proposed 

method for the determination of the ordinates 𝑔𝑗  based on the minimization of the 

variance of the error process, is, by its construction, nonparametric. A well-known 

weakness of determining numerous ordinates is that it is an over-parameterized problem. 

Alternative techniques may overcome this problem using a parametric model (such as a 

Box-Jenkins model or an autoregressive moving average exogenous—ARMAX—model; 

Young, 2011, 2015). In our nonparametric approach the over-parameterization problem 



4 

can also be tackled—and here lies the usefulness of imposing constraints (a)-(c) discussed 

above. For comparison, an additional parametric method, formulated in terms of 

parameterizing the IRF per se in continuous time is also discussed and compared to the 

proposed non-parametric method in the Supplementary Information, section SI2.3. This 

method is also applied in one of the case studies in the Supplementary Information, 

section SI2.4.  

2 Case studies 

Thirty case studies have been conducted, whose results are summarized in Table 1. In all 

of them we started by assuming a potentially HOE causal model with a rather small 

number of weights 𝑔𝑗 , namely 41 (i.e. 𝐽 = 20). Depending on the results of the estimation 

procedure, the system is deemed potentially HOE causal if we have 𝑔𝑗 > 0 for both some 

positive and some negative lags j, and potentially causal if 𝑔𝑗 = 0 for all 𝑗 < 0 (or 

anticausal if this happens for all 𝑗 > 0). If the explained variance ratio is close to 0, the 

system would be deemed noncausal, but this case did not appear in the case studies. 

Furthermore, if it happens that at the edge of the window the IRF vanishes off (𝑔±𝐽 = 0), 

we have a strong indication that the chosen 𝐽 = 20 (defining the window size) is sufficient 

to recover the system dynamics in terms of causality. The opposite case would mean that 

a larger time window with a greater J is required. The optimal J in this case is not 

investigated as our scope here is not to construct an optimal model for a specific system, 

but only to test the proposed methodology and seek some insights within it.  

The majority of the case studies are synthetic (#1 to #18) and are conducted as a 

proof of concept, i.e., to test the methodology developed with a priori known system 

properties. The remaining are real-world case studies divided in two subcategories. 

Namely, studies #19 to #22 deal with the precipitation – runoff system which is well 

understood in hydrology. Here we try to investigate whether our framework is consistent 

with the known fact that precipitation at a specific location is the cause and runoff at the 

associated location the effect. In other words, here we know a priori that precipitation 

causes runoff and we test our methodology (whether it can capture this known fact) 

rather than try to find the actual causality direction. On the contrary, studies #23 – #30 

deal with systems that are much more complex and not well understood. Namely, in 

studies #23 – #28 we investigate the links between atmospheric temperature and CO₂ 

concentration (cf. Koutsoyiannis and Kundzewicz, 2020) and in studies #29 – #30 we 

investigate the links between atmospheric temperature and El-Niño Southern Oscillation 

(ENSO; cf. Kundzewicz et al., 2020). 
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Table 1 Summary indices for the results of all case studies elaborated. The ℎc is the time lag maximizing the 

cross-covariance 𝑐𝑦𝑥(ℎ), or equivalently the cross-correlation 𝑟𝑦𝑥(ℎ) ≔ 𝑐𝑦𝑥(ℎ)/√𝑐𝑥𝑥(0)𝑐𝑦𝑦(0); 𝜇ℎ is the 

mean (time average) of the function 𝑔(ℎ); ℎ1/2 is the median of the function 𝑔(ℎ); 𝑒 is the explained variance 

ratio; and 𝜀 is the roughness ratio. In parentheses are the true values for the cases that they are known. 

Case system Direction ℎc 𝜇ℎ ℎ1/2 𝑟𝑦𝑥(ℎ𝑐) 𝑒 𝜀 # 

Synthetic cases         
Pure HOE causal 
(symmetric), 41 weights, no 
constraints  

𝑥 → 𝑦 0 (0) 0 (0) 0 (0) 0.954 1 3.7×10–5 * 1 

𝑦 → 𝑥 0 (0) 0 (0) – § 0.954 0.99 1.22* 2 

As #2 but with 21 weights 𝑦 → 𝑥 0 (0) 0.02 (0) – § 0.954 0.99 3.2×10–5 * 3 

As #3 with roughness constr. 𝑦 → 𝑥 0 (0) 0.11 (0) – § 0.954 0.98 2.4×10–5 * 4 

As #2 but with nonnegativity 
constraint (or both) 

𝑦 → 𝑥 0 (0) 0 (0) 0.2 (0) 0.954 0.91 0* 5 

Causal, 21 weights, no 
constraints 

𝑥 → 𝑦 
6  

(6) 

6.86 

(6.84) 

– § 

(5.42) 
0.947 0.94 1.32 6 

𝑦 → 𝑥 –6 (–6) –6.50 – § 0.947 0.97 1.4×10–3 7 

Causal, 21 weights, no 
roughness constraint 

𝑥 → 𝑦 
6  

(6) 

6.79 

(6.84) 

5.49 

(5.42) 
0.947 0.94 0.633 8 

𝑦 → 𝑥 –6 (–6) –5.73 –5.62 0.947 0.94 0.0053 9 

Causal, 21 weights, both 
constraints 

𝑥 → 𝑦 
6  

(6) 

6.86 

(6.84) 

5.34 

(5.42) 
0.947 0.94 1.9×10–5 * 10 

𝑦 → 𝑥 –6 (–6) –5.15 –4.49 0.947 0.93 3.2×10–5 * 11 

Synthetic, causal, 21 weights 
exponentiated, both 
constraints 

𝑥 → 𝑦 6  6.64  5.89 0.554 0.32 1.2×10–6 * 12 

𝑦 → 𝑥 –6 –3.34 –4.62 0.554 0.43 9.8×10–7 13 

Causal, 1025 weights, both 
constraints 

𝑥 → 𝑦 
8  

(8) 

9.65 

(298.3) 

8.87 

(184.9) 
0.704 0.57 4.6×10–5 * 14 

𝑦 → 𝑥 –8 (–8) –8.38 –8.31 0.704 0.50 1.4×10–3 * 15 

HOE causal (symmetric), 
2049 weights, both 
constraints 

𝑥 → 𝑦 0 (0) 0.06 (0) 0.06 (0) 0.758 0.71 1.7×10–5 * 16 

𝑥 → 𝑦 0 (0) 0.06(0) 0.08 (0) 0.758 0.71 5.5×10–6 17 

𝑦 → 𝑥 0 (0) –0.28 –0.26 0.758 0.57 4.7×10–4 18 

Geophysical cases         

Precipitation – runoff (time 
step: 3 h) 

𝑃 → 𝑅 6 10.24 9.83 0.198 0.17 1.4×10–4 * 19 

𝑅 → 𝑃 –6 –6.14 –6.04 0.198 0.04 0.768 * 20 

Precipitation – runoff 
transformed by eqn. (9) 
(time step: 3 h) 

𝑃′ → 𝑅′ 8 10.84 10.72 0.173 0.68 1.5×10–4 * 21 

𝑅′ → 𝑃′ –8 –8.24 –7.89 0.173 0.03 0.293 * 22 

Modern temperature and 
CO₂ data (time step: month) 

Δ𝑇 → Δln[CO₂] 5 7.70 6.35 0.480 0.31 1.3×10–5 * 23 

Δln[CO₂] → Δ𝑇 –5 –5.67 –5.49 0.480 0.23 7.3×10–4 * 24 

Paleoclimatic temperature 
and CO₂ data (time step: 
millennium) 

Δ𝑇 → Δln[CO₂] 0 0.79 1.11 0.404 0.17 9.0×10–4 25 

Δln[CO₂] → Δ𝑇 0 –0.56 –0.82 0.404 0.17 1.6×10–3 26 

As #25 - #26 but cumulative 
(time step: millennium) 

𝑇 → ln[CO₂] 1 1.74 1.87 0.875 0.86 7.9×10–5 27 

ln[CO₂] → 𝑇 –1 –1.10 –1.03 0.875 0.77 0.018 28 

Modern temperature and SOI 
data (time step: month) 

ΔSOI → Δ𝑇 7 6.31 5.84 0.525 0.39 4.2×10–5 * 29 

Δ𝑇 → ΔSOI –7 –5.03 –5.64 0.525 0.30 5.4×10–5 * 30 

* The roughness was calculated without considering the second derivative at zero.   
§ We have not defined the median in cases that include negative values of 𝑔𝑗 . 
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Notice that for each case, each of the directions 𝑥 → 𝑦 and 𝑦 → 𝑥 are investigated 

separately as there is no symmetry (or antisymmetry) in the produced IRFs in the two 

directions and, hence in the quantified measures, which are summarized in Table 1. When 

we refer to direction 𝑦 → 𝑥 we mean that we interchange the time series 𝑥 and 𝑦 and still 

estimate the IRF in the same way, as described in our equations (e.g. equation (1)), in 

which the direction 𝑥 → 𝑦 is assumed. 

The details of the case studies are given in the following subsections.  

2.1 Synthetic examples 

All synthetic examples are based on the same input series 𝑥𝜏, which was constructed by 

the methodology in Koutsoyiannis (2020a) whose software is available online as 

Supplementary Information of that paper.  

In particular, to generate 𝑥𝜏 we use the moving average scheme: 

𝑥𝜏 = ∑ 𝑎𝑖𝑤𝜏−𝑖

𝐼

𝑖=−𝐼

 (3) 

where 𝐼 = 1024, 𝑤𝜏 is white noise, assumed standard Gaussian, and the sequence of 

coefficients 𝑎𝑖 is assumed time symmetric, i.e., 𝑎−𝑖 = 𝑎𝑖, and is determined assuming a 

Filtered Hurst-Kolmogorov process with a generalized Cauchy-type climacogram (FHK-C; 

Koutsoyiannis 2016, 2017): 

𝛾(𝑘) = 𝜆2 (1 + (
𝑘

𝛼
)

2𝑀

)

𝐻−1
𝑀

 (4) 

The term climacogram denotes the variance 𝛾(𝑘) of a stochastic process averaged at time 

scale 𝑘, as a function of 𝑘; by specifying it, all second order properties of the process 

(autocovariance, power spectrum, variogram) are also uniquely specified. In the last 

equation α and λ are scale parameters with dimensions of [𝑡] and [𝑥] , respectively, while 

M (fractal parameter) and H (Hurst parameter) are dimensionless parameters 

determining the dependence structure at a local level (smoothness or fractality) and the 

global level (long-range dependence). The parameter values are chosen as 𝜆 = 1, 𝛼 =

20, 𝐻 = 𝑀 = 0.85. The chosen values of H and M suggest respectively (long-term) 

persistence and (short-term) smoothness of the process 𝑥𝜏. We deliberately choose a high 

value of Hurst parameter H, corresponding to a process with long-range dependence, in 

order to make the case study more challenging and insightful, also noting that a high H 

implies high uncertainty, also in the estimation process. The resulting autocorrelations 

are high, but not prohibitively high in the sense described in Section SI2.2 of the 

Supplementary Information of this paper. 

We recall (Koutsoyiannis, 2010, 2016) that the discrete time autocovariance 𝑐𝜂 for 

integer time lag η is the second discrete derivative of the climacogram multiplied by the 
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square of the time scale. Specifically, assuming a discretization time step 𝐷 = 1, the 

autocovariance is  

𝑐𝜂 =
1

2
((𝜂 − 1)2𝛾(|𝜂 − 1|) − 2𝜂2𝛾(|𝜂|) + (𝜂 + 1)2𝛾(|𝜂 + 1|)) (5) 

The series of coefficients 𝑎𝑖 is calculated from that of 𝑐𝜂 as described in detail in 

Koutsoyiannis (2020a). 
The system output 𝑦𝜏 is calculated in our synthetic case studies from an equation 

similar to (3) but now replacing the white noise 𝑤𝜏 with the input 𝑥𝜏, and the latter with 

the output 𝑦𝜏, while also adding some noise 𝑢𝜏: 

𝑦𝜏 = ∑ 𝑎𝑖𝑥𝜏−𝑖

𝐼𝐻

𝑖=−𝐼𝐿

+ 𝑢𝜏 (6) 

where the integers 𝐼𝐿 and 𝐼𝐻 differ in the various applications as specified below. The noise 

𝑢𝜏 is assumed Gaussian with standard deviation 0.5, except in one case marked as “pure” 

(applications #1 and #2) where no noise is added. The length of the generated series is 

8000 in all synthetic case studies. Here we assume that only these synthetic series are 

known, while the generation equation (6) is unknown, and we will try to recover (or 

approximate) it from the data by using equation (2). 

 We note that, since the sequence of 𝑎𝑖 was determined assuming (long-term) 

persistence (𝐻 = 0.85), all 𝑎𝑖 are nonnegative. Hence in case where 𝐼𝐿 , 𝐼𝐻 ≤ 𝐽, if our 

method works well, we expect to find that the sequence of 𝑔𝑖 (which we assume unknown 

and try to estimate by our method) is identical to the sequence of 𝑎𝑖. This, however, will 

apparently not be the case if 𝐼𝐿 , 𝐼𝐻 > 𝐽. 

 In case studies #1 and #2 we use 𝐼𝐿 = 𝐼𝐻 = 20 without noise, thus building a 

symmetric HOE causal system without an error term. In this case, assuming 𝐽 = 20 (41 

weights) without using the constraints for roughness and nonnegativity (i.e. using the 

analytical solution of equation (37) in the companion paper, with λ = 0), we fully recover 

the system dynamics in the direction 𝑥 → 𝑦 (case study #1), as shown in Figure 1 (left). 

As seen in Table 1, the variance is fully explained by that dynamics (𝑒 = 1).  

If we reverse the direction, i.e. 𝑦 → 𝑥, without using any constraint (case study #2), 

the explained variance ratio remains very high, 𝑒 = 0.99 (Table 1), but the IRF, depicted 

in Figure 1 (right), becomes very rough. Clearly, the time symmetry is captured, but apart 

from this, the shape of the IFR looks like representing a random pattern alternating 

between positive and negative parts. Does such an alternating random pattern suggest 

causality?  

One may claim that the number of weights (41) is too high and regard the random 

shape as an artefact of non-parsimonious modelling (even though the data size is quite 

large, 8000, which should support the estimation of 41 parameters). For this reason, we 
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have also tried to recover the dynamics with fewer (21) weights (𝐽 = 10). The resulting 

IRF is also plotted in Figure 1 (right) and again has a similar shape, with a symmetric, yet 

random pattern alternating between positive and negative parts. The explained variance 

ratio remains almost equally high, 𝑒 = 0.99 (Table 1, case study #3), which certainly 

suggests that the solution with 41 weights could become more parsimonious without 
sacrificing predictability. But does this high predictability of 𝑥𝜏 from 𝑦𝜏 suggest causality, 

given the rough and alternating pattern of weights? 

 

Figure 1 IRFs for synthetic applications #1 (left) and #2 – #3 (right) representing a HOE causal (symmetric) 
system without an error term. By construction, the true IRF has 41 nonzero weights (𝐼𝐿 = 𝐼𝐻 = 20) and the 
system dynamics does not contain a random term. No constraints were used in the IRF estimation. For the 
estimated IRF the number of weights is 2𝐽 + 1 with 𝐽 = 20 (applications #1 – #2) or 𝐽 = 10 (application 
#3). 

 

Figure 2 IRFs for synthetic applications #4 (left; 𝐽 = 10 roughness constraint) and #5 (right; 𝐽 = 20, 
nonnegativity constraint) representing a HOE causal (symmetric) system without an error term, the same 
as in Figure 1.  

To decrease the roughness, we have included case study #4 with direction 𝑦 → 𝑥, 21 

weights and a roughness constraint. The solution is depicted in Figure 2 (left), where a 

more logical pattern of the IRF is seen. This was achieved almost with a negligible cost in 

predictability (𝑒 = 0.98 in case study #4 vs. 0.99 in case study #3; Table 1). Yet again we 
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have an alternation of negative and positive parts. Notably, 𝑔0 = 3.2, while 𝑔±1 = −0.4. 

The alternation of signs for a change of lag of just 1 is fully understandable in terms of 

improving predictability, but does it have any meaning in establishing causality?  

Our final application with the same data set and direction 𝑦 → 𝑥 is case study #5 in 

which we enable the nonnegativity constraint (with or without the roughness constraint). 

Here we get a reasonable solution (Figure 2, right), with only one nonzero weight at time 

lag zero. The resulting explained variance ratio is somewhat smaller, 𝑒 = 0.91, and is fully 
due to the high lag-zero cross-correlation of 𝑥𝜏 and 𝑦𝜏 (𝑟𝑦𝑥(0) = 0.94). All characteristic 

time lags are equal to 0, reflecting the full temporal symmetry, as also happens with the 

direction 𝑥 → 𝑦 (case study #1). Yet in this fully symmetric case, even if we did not know 
that 𝑦𝜏 was constructed from 𝑥𝜏, we would conclude that there is a preferential causality 

direction, 𝑥 → 𝑦, as this results in higher explained variance and a more consistent and 

prolonged IRF (a bigger time span 𝕙).  

In case studies #6 and #7 we use 𝐼𝐿 = 0, 𝐼𝐻 = 20, thus making a typical causal system 

(including an error term). If we do not use any constraint, we get the solutions shown in 

Figure 3 (left for 𝑥 → 𝑦, right for 𝑦 → 𝑥). In both cases, the time directionality 𝑥 → 𝑦 is 

captured (see Table 1) but the rough shape in the direction 𝑥 → 𝑦 (case study 6) and the 

alternating positive and negative IRF values in both directions do not have any 

relationship with the true system dynamics. Interestingly, the explained variance ratio is 

higher in the direction 𝑦 → 𝑥 (𝑒 = 0.97) than in 𝑥 → 𝑦 (𝑒 = 0.94), which could not be 

expected. While causality can be inferred from characteristic time lags, the IRFs do not 

help in understanding causality. At this stage the results seem rather puzzling but things 

will become clearer with the next case studies. 

 

Figure 3 IRFs for synthetic applications #6 (left) and #7 (right) representing a causal system. By 
construction, the IRF has 21 nonzero weights (𝐼𝐿 = 0, 𝐼𝐻 = 20) and a random term in the system dynamics. 
No constraints were used in the estimation of IRF. 

In case studies #8 and #9 we use the same time series 𝑥𝜏 and 𝑦𝜏 as in applications 

#6 and #7. Here we additionally enrol the nonnegativity constraint for the IRF estimation, 
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but not the roughness one. As seen in Figure 4 (left) and Table 1, the estimated IRF 

reproduces the zero 𝑔𝑗  for time lags 𝑗 < 0, thus capturing the direction and the correct 

time lags, but the IRF is far from the true system dynamics because it is very rough. If we 

reverse the direction, i.e. 𝑦 → 𝑥, the system becomes anticausal (zero 𝑔𝑗  for time lags 𝑗 >

0), thus again recovering the correct causality direction. In both cases the explained 

variance ratio is very high, 𝑒 = 0.94, while, as seen in Figure 4 (right), case #9 results in a 

rather smooth IRF. Yet the clearly positive lags for 𝑥 → 𝑦 and negative ones for 𝑦 → 𝑥 do 

not leave any doubt that the causality direction is the former.  

 

Figure 4 IRFs for synthetic applications #8 (left) and #9 (right) representing a causal system, the same as 
that of Figure 3. Only the nonnegativity constraint was used in the estimation of IRF. 

 

Figure 5 IRFs for synthetic applications #10 (left) and #11 (right) representing the same causal system as 
that in Figure 4, but using both the nonnegativity and the roughness constraint in the IRF estimation. 

Case studies #10 and #11 again use the same time series 𝑥𝜏 and 𝑦𝜏 as in #6 – #9, 

representing the same typical causal system. The difference is that we now use both 

constraints, nonnegativity and small roughness. As seen in Figure 5 (left), now the system 

dynamics is fully recovered, while, as seen in Table 1, this has been done at virtually no 

cost in terms of explained variance ratio, which is as high as in case #8 (𝑒 = 0.94). If we 
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investigate the reverse direction, 𝑦 → 𝑥 (Figure 5 right), the system correctly appears as 

anti-causal (zero 𝑔𝑗  for time lags 𝑗 > 0), thus again recovering the correct causality 

direction.  

The above illustrations of the IRF behaviour with and without the constraints prove 

that both constraints are essential in studying causality. Therefore, in what follows, we 

always use both of them. 

Another interesting question to investigate is this. What happens if the system is 

nonlinear in nature, while our entire framework is based on a linear relationship? To 

study this question, we exponentiate the time series 𝑦𝜏 of case studies #8 – #11, while we 

leave 𝑥𝜏 unchanged and we apply the linear framework again. In other words, now the 

actual system is 

𝑦𝜏 = exp (∑ 𝑎𝑖𝑥𝜏−𝑖

𝐼𝐻

𝑖=0

) exp(𝑢𝜏) (7) 

and we try to approximate it in a linear fashion and estimate it as 

𝑦̂𝜏 = ∑ 𝑔𝑗𝑥𝜏−𝑗

𝐽

𝑗=−𝐽

+ 𝜇𝑣 (8) 

Now we should expect a larger variance of 𝑣𝜏 because of the disagreement between the 

actual system and the model used for causality detection. 

As seen in Figure 6 (left), referring to the direction 𝑥 → 𝑦, our framework correctly 

detected that we have a potentially causal system. The characteristic time lags do not 

show a noteworthy change in comparison with case #10, despite the fact that, as seen in 

Table 1, the explained variance ratio has been substantially reduced from 0.94 to 0.32. If 

we change the direction to 𝑦 → 𝑥 (Figure 6, right), the ratio increases to 0.43, and the 

causality appears as HOE type, but with the correct principal direction, 𝑥 → 𝑦 (anticausal 

at 𝑦 → 𝑥). Therefore, here we locate a potential problem of the methodology, as the actual 

causality is not HOE.  

It is not too difficult to resolve this ambiguity: If we produce a scatter plot of 𝑦𝜏 vs. 
𝑥𝜏 (Figure 7, right), it becomes evident that the relationship of 𝑥𝜏 and 𝑦𝜏 is not linear; for 

comparison, Figure 7 (left) shows a similar plot for case studies #8 – #11, which is typical 

for linear relationships. Once we are aware of the nonlinearity, we will perform a 
nonlinear transform on 𝑥𝜏, 𝑦𝜏 or both, and reapply the methodology on the transformed 

series. In this particular case, if we apply the logarithmic transformation on 𝑦𝜏, we will 

switch to cases #8 – #11 and we will fully recover the system dynamics. Additional details 

on the application of this technique are given in section 2.2. 
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Figure 6 IRFs for synthetic applications #12 (left) and #13 (right) representing the causal system of Figure 
5, but with exponentiating the output of the latter.  

 

Figure 7 Scatter plots of synchronous 𝑦𝜏  vs. 𝑥𝜏  for applications #8 – #11 (left) and #12 – #13 (right). 

 In the next case studies, #14 and #15, we have a causal model with long-range cross-

dependence, constructed by using 𝐼𝐿 = 0, 𝐼𝐻 = 1024 in equation (6). However, we keep 

using 𝐽 = 20 in our causality detection framework and thus we do not expect to fully 

recover the true long-term system dynamics. We only test whether we can correctly 

detect causality and its direction. Using only the roughness constraint we find the IRF 

shown in Figure 8 (left). Notice that the true (theoretical) IRF curve exceeds the horizontal 

axis span by far, going up to lag 1024, while the plotted area coincides with the time 

window of the sought IRF estimate (i.e., it goes up to lag 20 only). As seen in Table 1 the 

true characteristic lags 𝜇ℎ, ℎ1/2 are of the order of 200 while with our chosen time window 

we can estimate lags up to 20—and most likely of the order of 10. Indeed, the 

methodology captured the mono-directional causality yet the estimated characteristic 

time lags are, as expected, too small compared to the true ones of Table 1. Interestingly, 

Figure 8 (left) shows increasing IRF magnitude beyond the estimated average lag time. 

This may seem inconsistent, as the true IRF does not contain an increasing branch. 

However, this is a reasonable behaviour reflecting the fact that the chosen time window 

(𝐽 = 20) is too narrow to contain the true IRF. It is thus reasonable for our framework to 
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increase the power of the most distant components (closer to lag 20) as a replacement of 

the power of even more distant ones.  

It is most important that the estimated IRF reproduces the zero 𝑔𝑗  for time lags 𝑗 <

0, thus capturing the correct causality direction. If we reverse the direction, i.e. 𝑦 → 𝑥, the 

system becomes anti-causal (zero 𝑔𝑗  for time lags 𝑗 > 0), thus again recovering the correct 

causality direction. In both cases the explained variance ratio is high, 𝑒 = 0.57 and 0.50, 

for 𝑥 → 𝑦 and 𝑦 → 𝑥, respectively. Notably, in the latter case if we considered only the 

correlation with just one term, with time lag –8, the explained variance ratio would be 

virtually the same. Overall, the results do not leave any doubt that the true causality 

direction is 𝑥 → 𝑦.  

 

Figure 8 IRFs for synthetic applications #14 (left) and #15 (right) representing a causal system. By 
construction, the IRF has 1025 nonzero weights (𝐼𝐻 = 1024) and a random term in the system dynamics. 

In our final synthetic applications, #16 – #18, we consider a symmetric HOE causal 

system. This is similar to that in the first applications #1 and #2 , except that we now use 

long-range cross-dependence with 𝐼𝐿 = 𝐼𝐻 = 1024 and include a random term 𝑢𝜏. 

Applications #16 and #17, depicted in Figure 9 (left), examine the causal direction 𝑥 → 𝑦 

and they only differ in the roughness term in optimization of IRF. Namely, in application 

#16 the roughness was calculated without considering the second derivative at zero, in 

agreement with the fact that in the true system the second derivative is not defined at 

zero due to discontinuity of the first derivative. In application #17 all roughness terms are 

included and, as a result, a smoother IRF curve is produced. In both cases, our 

methodology captures the time symmetry of the system. The increasing 𝑔𝑗  as the j 

approaches ±20 give an alert that our time window is too narrow to capture the long-

range cross-dependence—something similar with what we observed in application #14. 

If we reverse the direction, i.e. 𝑦 → 𝑥 (application #18), again the time symmetry of the 

system is confirmed, but now the explained variance ratio (Table 1) decreases from 𝑒 =

0.71 (for 𝑥 → 𝑦) to 0.57 (for 𝑦 → 𝑥). Notably, in the latter case, if we considered only the 

synchronous (lag 0) cross-correlation, the explained variance ratio would be virtually the 
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same. For this reason, we will again choose as preferential the direction 𝑥 → 𝑦 and try a 

wider time window to determine the IRF. 

 

Figure 9 IRFs for synthetic applications #16 and #17 (left), and #18 (right) representing a symmetric HOE 
causal system. By construction, the IRF has 2049 nonzero weights (𝐼𝐿 = 𝐼𝐻 = 1024). In “estimation 1” the 
roughness was calculated without considering the second derivative at zero (application #16), while in 
“estimation 2” all roughness terms are included (application #17). 

2.2 Precipitation – runoff  

At the global scale, the hydrological cycle is obviously a family of processes that act in a 

cyclical manner (Koutsoyiannis, 2020b), precipitation – runoff – precipitation – …, and 

therefore can be thought of as a hen-or-egg case of causality. However, if we specify a 

particular location on Earth, the situation is different and it is well known that at a local 

scale runoff is caused by past precipitation upstream in the drainage basin in a mono-

directional fashion. We thus expect that precipitation (P) and runoff (R) data should 

reflect this pattern.1  

 To explore this, we use rainfall and streamflow data from the database of the U.S. 

Geological Survey for the site USGS 01603000 North Branch Potomac River Near 

Cumberland, MD (39°37'18.5"N, 78°46'24.3"W, catchment area 2271 km2). The data 

series are for the period 2013-10-01 to 2021-02-25 for a time step of 15 min (a part of 

these data was also used for a similar purpose in Koutsoyiannis, 2019). The discharge data 

were converted to metric units (from cubic feet per second to m3/s and the precipitation 

data from inches to mm). Both series have a small percentage of missing values, which 

 
1 There is a common perception in the hydrological community that the precipitation – runoff 
transformation can be modelled in a deductive way. Epistemologically, this cannot hold, as a river basin is 
a complex geophysical system (cf. Bode and Shannon, 1950, quoted in the companion paper; Koutsoyiannis 
et al., 2022). It is true that some of the mechanisms of the transformation are described by differential 
equations as dynamical systems. However, the modelling of the entire system cannot be reliably made 
without data and without moving from a deterministic to a stochastic description (cf. Montanari and 
Koutsoyiannis, 2012; Koutsoyiannis and Montanari, 2022). Therefore, induction is absolutely necessary. 
This remains a demanding problem as reflected in the notion of equifinality (Beven, 2019). 
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were left unfilled. The series were aggregated to a time scale of 3 h in order for our time 

window of length 40 to represent a period of a few days (120 h or 5 d).  

 Indeed, Figure 10 (left) and Table 1 (case study #19) suggest a causal system with 

direction 𝑃 → 𝑅, a time span > 20 time units (60 h) and characteristic time lags > 10 time 

units (30 h). The increasing 𝑔𝑗  beyond the time lag 𝑗 = 17, is clearly an artefact produced 

by the fact that the time span of the causal relationship exceeds the size of our time 

window. Had the latter been large enough, we would expect to see a shape like a unit 

hydrograph, with a monotonically decreasing limb after the peak at time lag 6 (see below). 

If we reverse the direction, i.e. 𝑅 → 𝑃 (Figure 10, right, and Table 1, case study #20) we 

just confirm that the true causality direction is the opposite, i.e. 𝑃 → 𝑅. The explained 

variance ratio in the direction 𝑅 → 𝑃 is very low, 𝑒 = 0.04, not greater than implied by 

merely the maximum cross-correlation value. In the correct direction, 𝑃 → 𝑅, this 

increases by a factor of 4 (𝑒 = 0.17). Yet the latter value would still be too low if our aim 

were to capture the system dynamics. One reason for this low value is the narrow time 

window, as already discussed. A second reason becomes obvious from the scatter plot of 

runoff vs. precipitation in Figure 11 (left). The scatter plot does not suggest linearity and 

we may expect a larger e if we transform the two variables.  

 

Figure 10 IRFs for precipitation – runoff case studies #19 (left) and #20 (right). 

 We choose to apply to each of the variables a single-parameter (c) transformation 

suggested in an entropy maximization framework (Koutsoyiannis, 2014), namely 

𝑃′ = 𝑐P ln (1 +
𝑃

𝑐P
) , 𝑅′ = 𝑐R ln (1 +

𝑅

𝑐R
) (9) 

where the two parameters were optimized simultaneously with the IRF and were found 

to be 𝑐P = 0.0392 mm h⁄ , 𝑐R = 0.001 m3 s⁄ . Practically, the low values of the parameters 

mean that the transformations made are almost pure logarithmic. Yet the transformation 

in equation (9) is more advantageous than the pure logarithmic, because of its property 

of keeping the smallest values for P or 𝑅 < 𝑐 virtually unchanged and the zero values 
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precisely unchanged. The scatter plot of the transformed variables is presented in Figure 

11 (right). While a linear arrangement of the points is more visible in the transformed 

variables rather than in the untransformed ones (Figure 11, left), there was no 

improvement (actually there was slight worsening) in the achieved maximum cross-

correlation (Figure 11 and Table 1). Yet the transformation resulted in a substantial 

improvement in the explained variance ratio: from 𝑒 = 0.17 it increased fourfold, to 𝑒 =

0.68 for the direction 𝑃′ → 𝑅′. In the opposite direction there was no change. This means 

that a cross-correlation at a single time lag is a very poor representation of (potential) 

causality and justifies our framework which is based on an appropriate range of time lags.  

 The IRFs of the transformed processes are shown in Figure 12, which is not 

essentially different from Figure 10. This means that, while the transformation offers 

explanatory power, our methodology, even applied to the untransformed processes, is 

able to reveal the causal relationship (recall also case studies #12 – #13 and see 

theoretical explanation in Section SI1.2 of the Supplementary Information of the 

companion paper—Koutsoyiannis et al., 2022).  

 

Figure 11 Scatter plots of lagged runoff (R) vs. precipitation (P), where the time lag is the one that 
maximizes cross-correlation. Left: untransformed variables, applications #19 – #20; right: transformed 
variables, applications #21 – #22.  
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Figure 12 IRFs for transformed precipitation – runoff case studies #21 (left) and #22 (right); for the IRFs 
of the original data set see Figure 10.  

 To show that the increasing limb of 𝑔𝑗  beyond the time lag 𝑗 = 17 in applications 

#19 and #21 is an artefact of the small time window, we repeated the calculations with a 

time window twice as long, i.e. 𝐽 = 40 instead of 𝐽 = 20. The results are shown in Figure 

13. Where there were increasing limbs in applications #19 and #21, now there is 

continuation of the decreasing limbs, as expected. As a result, the characteristic lags 

increased: in 3-h time units, the mean 𝜇ℎ became 17.35 and 19.10 for untransformed and 

transformed variables, respectively (from 10.24 and 10.84, respectively); and the median 

ℎ1/2 increased to 15.64 and 18.54 (from 9.83 and 10.72, respectively). The explained 

variance increased to 0.26 and 0.71 for untransformed and transformed variables, 

respectively (from 0.17 and 0.68, respectively). However, again there appear (smaller) 

increasing limbs close to the right end of the wider window. This means that even 𝐽 = 40 

is still not enough to recover the dynamics and we should choose an even higher value of 

𝐽. But as we have repeatedly stated, the scope of the study is not to provide a model of the 

process but to explore causality. 

 

Figure 13 IRFs for precipitation – runoff case studies similar to #19 (left; untransformed variables) and 
#21 (right; transformed variables) but with a with a time window twice as long, i.e. 𝐽 = 40 instead of 𝐽 =
20; results are plotted only for nonnegative lags.  
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2.3 Atmospheric temperature and CO₂ concentration 

The problem related to the causal relationship between atmospheric temperature (T) and 

concentration of carbon dioxide ([CO₂]) is regarded by many as part of a “settled science” 

yet it remains challenging and still debated. For example, the study by Koutsoyiannis and 

Kundzewicz (2020) concluded, making use of the hen-or-egg causality concept and based 

on the analysis of modern measurements of T and CO₂, that the principal causality 

direction is 𝑇 → [CO₂], despite the common conviction that the opposite is true. In 

addition, using palaeoclimatic proxy data from Vostok ice cores, Koutsoyiannis (2019) 

and Koutsoyiannis and Kundzewicz (2020) found a time lag of [CO₂] from T of a thousand 

years. Here we re-examine both modern and paleo data sets with our proposed causality 

detection methodology.  

 As modern observations for global temperature we use the satellite dataset 

developed at the University of Alabama in Huntsville (UAH). The temperature of three 

broad levels of the troposphere is inferred from satellite measurements of the oxygen 

radiance in the microwave band, using advanced (passive) microwave sounding units on 

NOAA and NASA satellites (Spencer and Christy, 1990; Christy et al., 2007). The dataset 

begins in 1979 continues to date. It is publicly available at a monthly scale in the form of 

time series of “anomalies” (defined as differences from long-term means) for several parts 

of the Earth, as well as in map form. Here we use only the global average (noting that 

Liang, 2022, disputes the use of averages as he claims that generally they conceal regional 

patterns of change) on the monthly scale for the lowest level, referred to as the lower 

troposphere. For the CO₂ concentration we use the most famous dataset, that of the Mauna 

Loa Observatory (Keeling et al., 1976). The Observatory, located on the north flank of 

Mauna Loa Volcano, on the Big Island of Hawaii, USA, at an elevation of 3397 m above sea 

level, is a premier atmospheric research facility that has been continuously monitoring 

and collecting data related to the atmosphere since 1958. Here we examine the common 

42-year period of the two datasets (1979 to May 2021) at a monthly scale.  

Both data sets were also used by Koutsoyiannis and Kundzewicz (2020) who also 

examined a ground-based temperature data series (CRUTEM.4.6.0.0 global T2m land 

temperature) and three additional CO₂ series (Barrow, Alaska, USA; South Pole; global 

average). The results did not substantially differ for the different pairs of T – [CO₂] series 

and therefore here we limit our current analysis to one pair. We additionally note that we 

also examined the temperature data of the other two satellite levels for the troposphere 

and the results were very similar to those reported here for the lower troposphere. 

Furthermore, in our analysis we follow the data pre-processing justified in 

Koutsoyiannis and Kundzewicz (2020); namely: 
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1. We take the logarithms of [CO₂], based on Arrhenius’s (1896) rule that when [CO₂] 

increases in geometric progression, T will increase nearly in arithmetic 

progression. 

2. We take the difference of each monthly value from that of the same month of the 

previous year. This diminishes the effect of seasonality while eliminating possible 

artificial effects of the convention of giving the temperature data as “anomalies” 

(departures from changing monthly means) rather than actual values.  

We note that, since we are differencing the process, taking the average of 12 

consecutive monthly differences (which is a more established process) is equivalent to 

taking a difference for a time step of 12 months (notice that 𝑥2 − 𝑥1 + 𝑥3 − 𝑥2 + ⋯ 𝑥13 −

𝑥12 = 𝑥13 − 𝑥1). We further note that Koutsoyiannis and Kundzewicz also examined the 

non-differenced series and showed that they give spurious results due to the continuously 

rising [CO₂] in the time window of modern observations, which results in autocorrelation 

values that are virtually 1 for all lags. Here the case of spurious results due to very high 

autocorrelation is explained more thoroughly—see Section SI2.2 in Supplementary 

information, and notice the similarity of Figure SI2.3 with Figure 9 in Koutsoyiannis and 

Kundzewicz (2020).  

 Hence the examined processes are Δ𝑇 and Δln[CO₂]. Figure 14 gives the obtained 

IRFs in the directions Δ𝑇 → Δln[CO₂] (left panel) and Δln[CO₂] → Δ𝑇 (right panel). 

Impressively, the results are not different from those in the precipitation – runoff case 

study. Clearly, the results in Figure 14 suggest a (mono-directional) potentially causal 

system with T as the cause and [CO₂] as the effect. Hence the common perception that 

increasing [CO₂] causes increased T can be excluded as it violates the necessary condition 

for this causality direction. Even the possibility of hen-or-egg causality, supported by 

Koutsoyiannis and Kundzewicz (2020), is not confirmed by the new methodological 

framework. The causality direction Δ𝑇 → Δln[CO₂] is further supported by all numerical 

indices given in Table 1, as well as the graphical comparison of modelled and empirical 

cross-correlation functions depicted in Figure 15. Namely: 

• All characteristic time lags (ℎ𝑐, 𝜇ℎ, ℎ1/2) are positive in the direction Δ𝑇 → Δln[CO₂] 

(ranging from 5 to about 8 months), and negative in the direction Δln[CO₂] → Δ𝑇. 

• The explained variance ratio is greater in the direction Δ𝑇 → Δln[CO₂] (𝑒 = 0.31) 

than in the direction Δln[CO₂] → Δ𝑇 (𝑒 = 0.23). 

• In the direction Δ𝑇 → Δln[CO₂], the cross-correlation function, reconstructed from 

the IRF and the autocorrelation function using the discretized version of equation 

(12) in the companion paper; Koutsoyiannis et al., 2022), agrees impressively well 

with the empirical cross-correlation function. In the direction Δln[CO₂] → Δ𝑇 the 

proximity of the two is much lower. 
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Remarkably, however, the explained variance ratio of 𝑒 = 0.31 is low and suggests 

that the two processes have a behaviour that is much more complex and affected by 

additional geophysical processes. However, insofar the relationship of these two 

processes is concerned, this explained variance ratio is adequate to detect the main 

characteristics, i.e. direction and time lags. Indications for this adequacy are provided by 

the precipitation – runoff case study (section 2.2), in which 𝑒 = 0.17, as well in the 

additional controlled (synthetic) case study that is provided in Supplementary 

Information (section SI2.1, 𝑒 = 1/3).  

Having gathered strong indications that in the recent decades the increase of 

temperature is potentially the cause of the increased CO₂ concentration, while the 

opposite is not probable, it is interesting to examine if this is also the case for longer 

periods. To this aim we use the datasets from the Vostok ice cores (Jouzel et al., 1987; 

Petit et al., 1999; Caillon et al., 2003) which were originally given for an irregular time 

step and were regularized in the study of Koutsoyiannis (2019) for a time resolution of 

1000 years. 

 

Figure 14 IRFs for of temperature – CO₂ concentration based on the modern time series. (left) Case study 
#23 (Δ𝑇 → Δln[CO₂]); (right) case study #24 (Δln[CO₂] → Δ𝑇).  
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Figure 15 (upper) Autocorrelation function of (left) Δ𝑇 and (right) Δln[CO₂]. (lower) Cross-correlation 
functions, empirical and reconstructed (marked as “modelled”) from the IRF and the autocorrelation 
functions in the upper panels, using the discretized version of equation (12) in the companion paper, for 
case studies (left) #23 and (right) #24. 

We study again the processes Δ𝑇 and Δln[CO₂], where the differences are taken for 

1 time step (1000 years). Figure 16 gives the obtained IRFs in the directions Δ𝑇 →

Δln[CO₂] (left panel) and Δln[CO₂] → Δ𝑇 (right panel). Here the results support a HOE 

causality. Nonetheless, again the principal direction is Δ𝑇 → Δln[CO₂] with a time lag of 

the order of 1000 years (0.79 to 1.11 time steps for Δ𝑇 → Δln[CO₂]; –0.56 to –0.82 time 

steps for Δln[CO₂] → Δ𝑇; see Table 1, case studies #25 – #26). The explained variance 

ratio is small, 𝑒 = 0.17 in both directions.  
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Figure 16 IRFs for of temperature – CO₂ concentration based on the proxy time series from the Vostok ice 
cores. (left) Case study #25 (Δ𝑇 → Δln[CO₂]); (right) case study #26 (Δln[CO₂] → Δ𝑇). 

As the proxy data sets are free of monotonic trends and produce reasonable 

empirical autocorrelation functions (see Koutsoyiannis, 2019), here we could also apply 

our framework for the non-differenced processes. We initially note that, if 𝑥𝜏 is a 

differenced process (where the differences are taken for 1 time step) and 𝑋𝜏 the non-

differenced (original) one, then the two are related by  

𝑋𝜏 = ∑ 𝑥𝑗

𝜏

𝑗=1

 (10) 

and likewise for 𝑌(𝑡) and 𝑉(𝑡). In this case from equation (2) it follows 

𝑌𝜏 = ∑ 𝑔𝑗𝑋𝜏−𝑗

∞

𝑗=−∞

+ 𝑉𝜏 (11) 

This is identical to equation (2) which means that the original and differenced processes 

are related with the same potential causality equation involving the same IRF. 

Furthermore, as a result of aggregation, and the resulting smoothing of the noise 𝑉𝜏, it is 

expected that the explained variance ratio should be higher after aggregation.  

We test if this happens in the case of the proxy T and [CO₂] data. Figure 17 gives the 

obtained IRFs in the directions 𝑇 → ln[CO₂] (left panel) and ln[CO₂] → 𝑇 (right panel). The 

shapes of the curves are quite similar as those of Figure 16. Again, we find HOE causality 

with principal direction is 𝑇 → ln[CO₂] and with a time lag of the order of 1000 years (1.74 

to 1.87 time steps for Δ𝑇 → Δln[CO₂]; –1.03 to –1.10 time steps for ln[CO₂] → 𝑇; see Table 

1, case studies #27 – #28). The explained variance ratio increased substantially, from 𝑒 =

0.17 to 𝑒 = 0.86 and is greater in the direction 𝑇 → ln[CO₂], thus confirming the latter as 

the principal causality direction. 
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Figure 17 IRFs for of temperature – CO₂ concentration based on the proxy time series from the Vostok ice 
cores as in Figure 16 but for the aggregated (non-differenced) processes. (left) Case study #27 (𝑇 →
ln[CO₂]); (right) case study #28 (ln[CO₂] → 𝑇).  

2.4 Atmospheric temperature and ENSO 

For a second case study related to climate, we examine the El Niño–Southern Oscillation 

(ENSO) in relation to the global temperature. The ENSO is associated with irregular, anti-

persistent (at the time scale of a few years, else known as quasi-periodic), variation of sea 

surface temperature and air pressure over the tropical Pacific Ocean. It is broadly 

recognized as the principal climate variability mode (McPhaden et al., 2006). There exists 

a plethora of indices related to ENSO, among which here we use the Southern Oscillation 

Index (SOI) of the USA’s National Oceanic and Atmospheric Administration (NOAA) (see 

also Kaplan, 2011). 

In a recent paper, Kundzewicz et al. (2020) examined several ENSO indices, as well 

as indices of similar phenomena in the Pacific and in the Atlantic, and found that they 

meaningfully influence the global mean annual temperature. Here we examine a single 

pair of processes, the UAH temperature, also used in case studies #23 – #28 (section 2.3), 

and the SOI. While Kundzewicz et al. (2020) processed the residuals from 5-year running 

averages to remove the influence of large-scale fluctuations, here we use the data without 

averaging. However, in both time series we take the difference of each monthly value from 

that of the same month of the previous year, a technique already described in section 2.3. 

The results are depicted in Figure 18, which suggests a clear case of a potentially 

causal system in the direction SOI → 𝑇. As seen in Table 1, the characteristic lags are close 

to 6 months and the explained variance is 0.39. We note that the technique used by 

Kundzewicz et al. (2020) (residuals from 5-year running averages) explained a higher 

percentage of the variance (>0.60), which means that there is a margin for improvement 

of the results obtained here. However, as already mentioned, the scope of the current 

study is the exploration of potential causality, rather than the building of a reliable model.  
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Figure 18 IRFs for of South Oscillation Index (SOI) and temperature (T). (left) Case study #29 (ΔSOI → Δ𝑇); 
(right) case study #30 (Δ𝑇 → ΔSOI).  

3 Discussion and conclusions 

The theoretical methodology proposed in the companion paper (Koutsoyiannis et al., 

2022) was applied to a range of case studies, both synthetic (artificial) and real world. 

Since the system dynamics in the artificial cases is known, this enables the method to be 

tested and validated. We showed that the method does not introduce any spurious 

potential causation when none is present in the system dynamics, except in cases of very 

high autocorrelation (see Section SI2.2 in Supplementary Information), which, 

nonetheless, is easily handled by studying the changes in the time series (differenced time 

series) instead of the original time series. Further, the requirement that the IRF 

coefficients be nonnegative is, on its own, sufficient to enable the correct direction of 

causality to be inferred. (Recall from the companion paper—Koutsoyiannis et al., 2022—

that we do not subsume oscillatory nonlinear systems, in which the sign of 𝑔(ℎ) could 

alternate, under the causality notion, which accords with Cox’s (1992) conditions for 

causality and in particular the monotonic relation of the cause with the effect.) When the 

roughness condition is added, this enables the correct system dynamics to be recovered.  

We showed how to deal with the presence of nonlinearity (in which case a nonlinear 

transform of the potential cause should be carried out) and of long-term persistence in 

the time-series (which causes rising limbs in the IRF at the edges of its domain). 

 In addition to causality studies of synthetic examples, the theoretical framework 

was also applied to three real-world geophysical examples. In the first case, the causing 

of runoff by rainfall over a catchment is well established. The proposed framework 

indicates the correct direction of causation, even while suggesting the need for a nonlinear 

transformation and the need to extend the size of the domain of the IRF. The framework 

was further validated in its ability to detect the clear causal connection between Southern 

Oscillation Index and global mean annual temperature. 
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 The remaining real-world case study led to an important side product of the current 

research. This is the surprising finding that, while in general the causal relationship of 

atmospheric T and CO₂ concentration, as obtained by proxy data, appears to be of hen-or-

egg type with principal direction 𝑇 → [CO₂], in the recent decades the more accurate 

modern data support a conclusion that this principal direction has become exclusive. In 

other words, it is the increase of temperature that caused increased CO₂ concentration. 

Though this conclusion may sound counterintuitive at first glance, because it contradicts 

common perception (and for this reason we have assessed the case with an alternative 

parametric methodology in the Supplementary Information, section SI2.4, with results 

confirming those presented here), in fact it is reasonable. The temperature increase began 

at the end of the Little Ice Period, in the early 19th century, when human CO₂ emissions 

were negligible; hence other factors, such as the solar activity (measured by sunspot 

numbers), as well as internal long-range mechanisms of the complex climatic systems had 

to play their roles. 

A possible physical mechanism for the [CO₂] increase, as a result of temperature 

increase, was proposed by Koutsoyiannis and Kundzewicz (2020) and involves 

biochemical reactions, as, at higher temperatures, soil respiration, and hence natural CO₂ 

emissions, are increasing. In addition, as pointed out by Liu et al. (2017) the influence of 

El Niño on climate is accompanied by large changes to the carbon cycle, with the 

pantropical biosphere releasing much more carbon into the atmosphere during large El 

Niño occurrences. Noticeably, in a very recent paper, Goulet Coulombe and Göbel (2021) 

seem to confirm the finding by Koutsoyiannis and Kundzewicz (2020), yet they deem it 

an “apparently counterintuitive finding that GMTA [global mean surface temperature 

anomalies] explains a larger portion of the forecast error variance of CO₂ than vice versa”. 

To “resolve” it, they “explore a last avenue, that of using annual CO₂ emissions”. However, 

using anthropogenic CO₂ emissions, which contribute only a small portion (3.8%) to the 

global carbon cycle (Koutsoyiannis, 2021), as a principal variable is definitely less 

meaningful than using the atmospheric CO₂ concentration. 

We believe that counterintuitive results, such as those about the causal link between 

temperature and CO₂ concentration conveyed in this paper, can indeed open up avenues 

of research. However, these avenues of research might not resolve the issue in a way 

compatible with what intuition dictates. In the history of science, such avenues were often 

created when established ideas were overturned by new findings.  

 By letting the geophysical records speak for themselves, with the help of our original 

methodology, we discovered a regularity that apparently contradicts common opinion. 

Our innovative findings should be given considerable attention as well as careful and 

critical scrutiny in the form of public discussion by the scientific community, which will 

undoubtedly improve understanding. If the methodology we proposed in the companion 
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paper (Koutsoyiannis et al., 2022) stands up to scrutiny, then our novel, high-impact 

results, i.e. those of cases #23 – #28 in the present paper, will have to be taken seriously 

and interpreted. Further research on the regularities of the causal behaviour of the 

climate system reported herein, being of considerable importance and relevance, is 

urgently needed. 
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