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Abstract This report contains Supplementary Information, namely, mathematical 

derivations, justifications and illustrations, for the paper series Revisiting causality using 

stochastics and in particular its second part, Applications (Koutsoyiannis et al., 2022b). It 

comprises three sections, namely Assessment of uncertainty in the identification of the 

impulse response function and its characteristics (SI2.1), On high autocorrelations and 

spurious IRF estimates (SI2.2), Parametric approach to identification of the impulse 

response function (SI2.3), and Example of application of the parametric approach to 

modern temperature and CO₂ datasets (SI2.4). We note that this Supplementary 

Information (except section SI2.2) was not contained in the initial submission, but was 

added to address important comments raised by the reviewers. 

SI2.1 Assessment of uncertainty in the identification of the impulse 

response function and its characteristics  

While a complete study on the assessment of uncertainty in the identification of the 

impulse response function (IRF) is not in the scope of the two companion papers, here we 

provide a preliminary investigation with some first results, leaving more thorough 

research for future publications. As explained in the main papers (Koutsoyiannis et al., 

2022a,b) the method of choice for the uncertainty assessment is the Monte Carlo 

simulation, as the complexity of the calculations for optimizing the IRF fitting do not allow 

analytical solutions. Monte Carlo simulation requires a (stochastic) model to be available 

and it is most reliable if the model is completely known a priori.  

 For this reason, we have chosen to provide an uncertainty assessment for two of the 

synthetic case studies contained in the main paper, for which the true IRF is a priori 

known and could be compared with the estimates. Namely, we have chosen to use the 
model, comprising the processes, 𝑥𝜏, 𝑦𝜏 and 𝑢𝜏 and equations (3)-(6) of the main paper 

(Koutsoyiannis et al., 2022b). More specifically, the synthetic case studies of the current 

investigation are similar to cases #8 and #10 of the main paper (Koutsoyiannis et al., 



2 

2022b) but with much higher variance of the noise term 𝑢𝜏, so as to assess the credibility 

of the methodology under high noise. Namely, we chose the variance of the noise term 𝑢𝜏 

twice that of 𝑥𝜏, so that the explained variance of the causal model be around 1/3. It is 

reminded that both cases #8 and #10 refer to a causal model with an IRF with 21 known 

weights, where the difference in the two cases relies in unconstrained (#8) or constrained 

(#10) roughness.  
Ten different time series of 𝑦𝜏 were generated, each one with a different realization 

of 𝑢𝜏 and the same realization of 𝑥𝜏; the latter is kept the same as in the original 

applications #8 and #10. Then, for each of the 10 time series two IRFs were calculated, 

one using the nonnegativity constraint only (as in #8) and the other using both the 

nonnegativity and the roughness constraint (as in #10). The ten IRFs of the former and 

the latter case are plotted in the left and the right panel of Figure SI2.1, respectively, in 

the form of spaghetti plots.  

As seen in the left panel of Figure SI2.1, the fact that the system is causal is well 

captured even without using the roughness constraint but the shape of the IRF is too noisy 

and hence uncertain. If we take the average of the ordinates of the different realizations 

at each time lag, the resulting curve, also shown in Figure SI2.1, becomes smoother and 

allows the expectation that the roughness would be eliminated with a large number of 

Monte Carlo simulations. On the other hand, the right panel shows that, when the 

roughness is constrained, the uncertainty becomes negligible and the entire shape of the 

true IRF is well captured even with one simulation. Some small negative bias is seen close 

to time lag zero, where the second derivative of the true IRF (𝑔′′(ℎ)) is highest. Also, a 

small scatter of the IRFs is seen at the highest lags. 

 

Figure SI2.1 Spaghetti plots of the IRFs for synthetic case studies similar to cases #8 and #10 (left and right, 
respectively) of the main paper (Koutsoyiannis et al., 2022b) but with variance of the error term 𝑢𝜏 twice 

that of 𝑥𝜏 . Each panel shows ten different IRFs calculated from ten different Monte Carlo realizations of the 

process 𝑦𝜏, each one with a different realization of the noise 𝑢𝜏, and the same realization of 𝑥𝜏  (see more 

details in the text). The double black line shows the true IRF and the dotted line with squares the average 
of ten Monte Carlo realizations. 
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Furthermore, scatter plots of the characteristic indices of the 20 different IRFs are 

shown in Figure SI2.2. For each of the ten time series there are two estimates of each 

index, one estimated using the nonnegativity constraint only (as in #8) and the other 

using both the nonnegativity and the roughness constraint (as in #10). The scatter plots 

show the former versus the latter. The left panel of the figure shows the time indices of 

the IRFs, namely ℎc (the time lag maximizing the cross-correlation 𝑟𝑦𝑥(ℎ)), 𝜇ℎ (the time 

average of the function 𝑔(ℎ)), and ℎ1/2 (the median of the function 𝑔(ℎ)). We note that, 

among them, ℎc is independent of the estimated 𝑔(ℎ) as it is directly estimated from the 

time series. The right panel shows the indices of strength of the potential causal 

relationship, namely 𝑒 (the explained variance ratio) and 𝑟𝑦𝑥
2 (ℎ𝑐), which again is 

independent of the estimated 𝑔(ℎ) as it is directly estimated from the time series. The 

quantity 𝑟𝑦𝑥
2 (ℎ𝑐) denotes the explained variance in the simplified case that the causality 

relationship had been determined in terms of an IRF with only one nonnegative ordinate 

(at lag ℎ𝑐).  

 

Figure SI2.2 Scatter plots of characteristic indices of the estimated IRFs shown in Figure SI2.1 for the ten 
generated time series of the processes 𝑥𝜏 , 𝑦𝜏. The coordinates in each plot are the estimates of the indices 

using the nonnegativity constraint only (vertical axis) and using both the nonnegativity and the roughness 
constraint (horizontal axis). (Left) Time indices of the IRFs, where ℎc is the time lag maximizing the cross-
correlation 𝑟𝑦𝑥(ℎ), 𝜇ℎ is the mean (time average) of the function 𝑔(ℎ) and ℎ1/2 is the median of the 

function 𝑔(ℎ). (Right) Indices of strength of the causal relationship, where 𝑒 is the explained variance ratio 
and 𝑟𝑦𝑥

2 (ℎ𝑐) is the explained variance in the simplified case that the causality relationship had been 

determined in terms of an IRF with only one nonnegative ordinate (at lag ℎ𝑐).  

 Overall, Figure SI2.2 allows to make the following remarks: 

• All indices show a small scatter and thus small uncertainty (coefficient of variation 

not exceeding 7%), around their true values. This is the case even if the roughness 

constraint was not used in the estimation of the IRF, despite the erratic appearance 

of the IRF in this case. 

• The estimates are practically equal (plotted over the equality line) in the two 

estimation options (with or without the roughness constraint); an exception is 
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seen for the median ℎ1/2 only. This illustrates the high robustness in estimating 

these indices and hence of the identification of the necessary conditions for 

causality. 

• The variation of the estimates of the explained variance ratio 𝑒 is about the same 

as that of 𝑟𝑦𝑥
2 (ℎ𝑐) (smaller than 3%). As the latter quantity is a characteristic of the 

time series and is independent of the IRF, this suggests that the estimation of the 

IRF per se does not increase the uncertainty that is already present because we do 

not have full information on the processes but only the information contained in 

the realization thereof (the available time series). 

SI2.2 On high autocorrelations and spurious IRF estimates 

As stated in the main papers (Koutsoyiannis et al., 2022a,b), high autocorrelation results 

in increased estimation uncertainty and may even result in spurious causality claims. To 
illustrate this, we devise a synthetic example, in which the processes 𝑥𝜏 and 𝑦𝜏 are, by 

construction, independent of each other and with high autocorrelation.  

Specifically, two time series 𝑥𝜏 and 𝑦𝜏, each of length 500, are generated 

independently from each other. The time series 𝑥𝜏 is constructed by the deterministic rule 

𝑥𝜏 = 1 + 0.001𝜏. If its values are treated statistically, the resulting autocorrelation 

estimate is constant for all lags, �̂�𝑥𝑥(ℎ) = 1. The time series 𝑦𝜏 is generated from a Hurst-

Kolmogorov process with Gaussian distribution and with a high Hurst parameter, 𝐻 =

0.95, reflecting strong long-range dependence (LRD). By now, it is well known (e.g. Cohn 

and Lins, 2005; Koutsoyiannis, 2013) that realizations of processes with LRD look 

“trendy” even though the processes are stationary. This is evident in Figure SI2.5 (upper), 

which depicts both time series. Their auto- and cross-correlations, estimated using 

standard statistical estimators, are shown in Figure SI2.5 (lower). Interestingly, while by 

construction the cross correlations are 𝑟𝑦𝑥(ℎ) = 0 for any lag ℎ, their estimates �̂�𝑦𝑥(ℎ) 

appear very high, i.e., 0.46 ± 0.21 in the plotted interval of lag ℎ, (−100,100). 

Because of the high cross-correlations, if we estimate the IRF with the proposed 

method, as seen in Figure SI2.4, spurious Hen-or-Egg (HOE) causality is identified in both 
directions 𝑥 → 𝑦 and 𝑦 → 𝑥. The dominant causality direction appears to be 𝑦 → 𝑥 with 

mean lag 𝜇ℎ = 2.6, median lag ℎ1/2 = 3.2 and explained variance ratio 𝑒 = 0.47. All these 

are obviously invalid estimates (as there are no true lags in this case and the true value of 

the explained variance ratio is 𝑒 = 0), even though the calculations are correct.  

Naturally, a remedy in such spurious cases is to reduce the autocorrelations. This 

becomes possible if instead of the time series 𝑥𝜏 and 𝑦𝜏 we study the differenced time 

series Δ𝑥𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1 and Δ𝑦𝜏 ≔ 𝑦𝜏 − 𝑦𝜏−1. Taking the differences is definitely 

reasonable: if 𝑥𝜏 causes 𝑦𝜏, then a change in 𝑥𝜏 should cause a change in 𝑦𝜏. In our example, 
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we will have constant Δ𝑥𝜏 = 0.001 and hence the cross-covariances would be zero, which 

will exclude any causality claim. 

 

Figure SI2.3 (upper) Time series of the synthetic example described in the text. (lower) Auto- and cross-
correlation function estimates for the two time series.  

 

Figure SI2.4 IRFs for the synthetic example of spurious IRF estimation due to high autocorrelation of Figure 
SI2.3 for causality directions (left) 𝑥 → 𝑦 and (right) 𝑦 → 𝑥. For the estimated IRFs the number of weights 

is 2𝐽 + 1 with 𝐽 = 20. 
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SI2.3 Parametric approach to identification of the impulse response 

function 

It is reminded that the basic equation for the potentially HOE causal system between the 
processes 𝑥(𝑡) and 𝑦(𝑡) in continuous (natural) time 𝑡 is: 

𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

−∞

+ 𝑣(𝑡) (SI2.1) 

where 𝑔(ℎ) is the IRF. While in the two companion papers (Koutsoyiannis et al., 2022a,b) 

to determine the IRF we have adopted a constrained non-parametric optimization 

approach, we note that an expression of 𝑔(ℎ) through a parametric mathematical 

equation also constitutes a valid approach. In fact, such an approach has been in use in 

hydrology since the 1950s. Nash (1959) conceptualized the approach in terms of flow 

routing through a cascade of linear reservoirs, and demonstrated that, under this 

assumption, the resulting IRF is a gamma probability density function. At the same time, 

he gave the relevant tools to estimate the parameters of the function. Koutsoyiannis and 

Xanthopoulos (1989) heuristically introduced a variety of mathematical expressions, 

resembling known probability density functions, and outlined parameter estimation 

approaches using measurements.  

Superposition (linear combination) of many parametric functions of a certain type 

provides a more flexible composite parametric expression for the IRF. This is known as 

expansion of a function with respect to some basis functions. In our framework, the so-

called alpha basis functions, which are often used within neural networks (Rall, 1967; 

Destexhe et al., 1994; Guo et al., 2019) can be appropriate because of their time-

asymmetric shape. The alpha function is a special case of the gamma probability density 

function for shape parameter equal to 1, i.e.,  

𝛼𝑖(ℎ) =
ℎ − ℎ𝑖

𝜂𝑖
exp (−

ℎ − ℎ𝑖

𝜂𝑖
) U (

ℎ − ℎ𝑖

𝜂𝑖
) (SI2.2) 

where ℎ𝑖  and 𝜂𝑖  are parameters, 𝑖 = 1, … , 𝐼, is an index and U denotes the (Heaviside) unit 

step function. Given the 𝐼 elementary functions, the IRF is expressed by the composite 

expression 

𝑔(ℎ) = ∑ 𝜃𝜄

𝐼

𝑖=1

𝛼𝑖(ℎ) (SI2.3) 

where 𝜃𝑖  are additional parameters. Note that our basis function is either potentially 

causal for 𝜂𝑖 > 0, ℎ𝑖 ≥ 0 or potentially anticausal for 𝜂𝑖 < 0, ℎ𝑖 ≤ 0, while the 

superposition of several such basis functions could well lead to potential HOE causality. 

The scheme has, thus, 3𝐼 parameters, which can be determined by minimizing the fitting 
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error, again using a nonlinear solver, similar to what is described in the companion paper 

(Koutsoyiannis et al. 2022a). We recall from there that in order to move from continuous 

time to discrete time, we need first to determine a double integral, which for our ith basis 

function is 𝐴𝑖(𝑏) ≔ ∫ ∫ 𝛼𝑖(ℎ)dℎ
𝑎

−∞
d𝑎

𝑏

−∞
 and can be easily evaluated to: 

𝐴𝑖(𝑏) = 𝜂𝑖
2 (

𝑏 − ℎ𝑖

𝜂𝑖
− 2 + 𝑒

−
𝑏−ℎ𝑖

𝜂𝑖 (2 +
𝑏 − ℎ𝑖

𝜂𝑖
)) U (

𝑏 − ℎ𝑖

𝜂𝑖
) (SI2.4) 

By virtue of equation (22) of the companion paper (Koutsoyiannis et al., 2022a) we find 

the discretized version of 𝛼𝑖(ℎ) as: 

𝛼𝑖𝑗 =
𝐴𝑗((𝑗 − 1)𝐷) − 2𝐴𝑗(𝑗𝐷) + 𝐴𝑗((𝑗 + 1)𝐷)

𝐷
 (SI2.5) 

where for convenience we have restricted ℎ𝑖 𝐷⁄  to be an integer. Finally, the discrete-time 

IRF is 

𝑔𝑗 = ∑ 𝜃𝜄

𝐼

𝑖=1

𝛼𝑖𝑗  (SI2.6) 

Hence the problem is to determine the parameters ℎ𝑖  𝜂𝑖 , 𝜃𝜄, 𝑖 = 1, … , 𝐼 by optimization, a 

task that can be easily tackled by any solver.  

SI2.4 Example of application of the parametric approach to modern 

temperature and CO₂ datasets 

Here we perform three pairs of applications of the parametric framework described in 

section SI2.3 to one of the data sets, namely the modern temperature and CO₂ data, for 

which the applications of the nonparametric framework #23 and #24 have been 

conducted in the main paper (Koutsoyiannis et al., 2022b).  

In the first pair of applications, denoted in Table SI2.1 and Figure SI2.5 as #SI1 for 

causality direction Δ𝑇 → Δln[CO₂] and #SI2 for causality direction Δln[CO₂] → Δ𝑇, four 

basis functions are used without any constraint. While the main direction of causality 

becomes clear again, i.e. Δ𝑇 → Δln[CO₂] as in the #23 of the main paper (Koutsoyiannis et 

al., 2022b), interestingly, some negative parts of IRFs appear in Figure SI2.5 for this pair 

of applications. We attribute them to statistical effects. If one assumed that these reflect 

some reality (such as an oscillational causality behaviour), one would have to accept some 

paradoxes. For example, with reference to the case Δln[CO₂] → Δ𝑇, in which 𝑔(ℎ) is 

negative for most possible lags (upper right corner of Figure SI2.5), one would have to 

accept that an increase of CO₂ concentration in the past would result in a decrease of 

temperature in the present and future. 

Recalling from the main papers (Koutsoyiannis et al., 2022a,b) that oscillatory 

behaviours are mostly spurious, we proceed to a second pair of applications imposing the 
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nonnegativity constraint, namely #SI3 for causality direction Δ𝑇 → Δln[CO₂] and #SI4 for 

causality direction Δln[CO₂] → Δ𝑇. Again, we use four basis functions but we note that 

eventually the solver annihilated one of them (overparameterization). Now everything 

seems reasonable, and again the main direction of causality is clearly Δ𝑇 → Δln[CO₂] as in 

all similar applications. All summary characteristics are very close to the ones of the 

nonparametric approach, as seen in Table SI2.1.  

Finally, the most parsimonious case with only one basis function is also considered 

and shown in Table SI2.1, namely #SI5 for causality direction Δ𝑇 → Δln[CO₂] and #SI6 for 

causality direction Δln[CO₂] → Δ𝑇, as well as in Figure SI2.5. Even in this case the results 

are satisfactory and agree with those of all other cases, with a noticeable but very small 

decrease in the explained variance ratio.  

Overall, these additional applications confirm the robustness and reliability of the 

proposed framework and, at the same time, strengthen the validity of the results reported 

in the main paper (Koutsoyiannis et al., 2022b). 

Table SI2.1 Summary indices for the results of the additional case studies elaborated for the modern 
temperature and CO₂ data (time step: month). For comparison, the results of the nonparametric approach 
(cases #23 and #24) are also copied from the main paper in the end of the table. The ℎc is the time lag 
maximizing the cross-covariance 𝑐𝑦𝑥(ℎ), or equivalently the cross-correlation 𝑟𝑦𝑥(ℎ) ≔ 𝑐𝑦𝑥(ℎ)/

√𝑐𝑥𝑥(0)𝑐𝑦𝑦(0); 𝜇ℎ is the mean (time average) of the function 𝑔(ℎ); ℎ1/2 is the median of the function 𝑔(ℎ); 

𝑒 is the explained variance ratio; and 𝜀 is the roughness ratio. 

Case Direction ℎc 𝜇ℎ ℎ1/2 𝑟𝑦𝑥(ℎ𝑐) 𝑒 𝜀 # 

Four basis functions, no 
constraint 

Δ𝑇 → Δln[CO₂] 5 9.08  – * 0.480 0.32 0.098 SI1 

Δln[CO₂] → Δ𝑇 –5 –59.5 – * 0.480 0.42 0.0024 SI2 

Four basis functions, 
nonnegativity constraint  

Δ𝑇 → Δln[CO₂] 5 7.81 5.33 0.480 0.31 0.069 SI3 

Δln[CO₂] → Δ𝑇 –5 –5.40 –4.98 0.480 0.24 0.022 § SI4 

One basis function, no 
constraint 

Δ𝑇 → Δln[CO₂] 5 7.10 6.23 0.480 0.29 0.0031 SI5 

Δln[CO₂] → Δ𝑇 –5 –5.38 –5.05 0.480 0.24 0.048 SI6 

Nonparametric approach, 
results copied from the 
main paper, #23 and #24 

Δ𝑇 → Δln[CO₂] 5 7.70 6.35 0.480 0.31 1.3×10–5 § SI7 

Δln[CO₂] → Δ𝑇 –5 –5.67 –5.49 0.480 0.23 7.3×10–4 § SI8 

* We have not defined the median in cases that include negative values of 𝑔𝑗 . 
§ The roughness was calculated without considering the second derivative at zero.   
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Figure SI2.5 IRFs for of temperature – CO₂ concentration based on the modern time series. Left column: 
Causality direction Δ𝑇 → Δln[CO₂]; right column: causality direction Δln[CO₂] → Δ𝑇. 1st row: applications 
#SI1 and #SI2 (four basis functions, no constraint); 2nd row: applications #SI3 and #SI4 (four basis func-
tions, nonnegativity constraint); 3rd row: applications #SI5 and #SI6 (one basis function, no constraint); 4th 
row: applications #SI7 and #SI8 (nonparametric approach, results copied from main paper, #23 and #24). 
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