
Abstract: Uncertainty and change in geophysical processes can be robustly quantified by analyzing the observed variability. A challenging task in engineering 
studies is to introduce a framework that can simulate this observed variability while preserving only important stochastic attributes. An innovative methodology for 
genuine simulation of stochastic processes is presented based on the recent work by Koutsoyiannis and Dimitriadis (2021). The proposed algorithm includes the 
demanding task of simulating any second-order dependence structure of a process (with a focus on long-range dependence behaviour) and any marginal 
distribution (with focus on heavy tails) through the explicit preservation of its autocovariance function and its cumulants. The long-range dependence behaviour 
(i.e., power-law drop of variance vs. scale) and heavy-tails are known to be highly associated with the variability magnitude of a process, through which the range of 
its predictability-window can be also quantified. To estimate this range, an extensive global-scale network of stations of key hydrological-cycle processes (i.e., near-
surface hourly temperature, dew point, relative humidity, sea level pressure, atmospheric wind speed, streamflow, and precipitation; for details see Dimitriadis et 
al., 2021) is analyzed using ensemble techniques and the proposed stochastic simulation algorithm. The limitations of existing methodologies for the stochastic 
simulation and estimation of the predictability-window, and how can they be tackled through the proposed approach, are discussed over applications in flood risk 
management.
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1. Quantification of uncertainty through variability (I)

Complexity (non-linear interaction 
of numerous physical processes; 
e.g., consider the three-body 
problem by Poincare, 1980).

(intrinsic) ⇅ (deterministic)

Uncertainty (properly defined 
through the Theory of Probability 
and Stochastics; Kolmogorov, 
1933).

(synthesis) ⇅ (quantification) 

Variability (expressed through 
second-order statistics).

Source:  https://en. wikipedia. org/wiki
/Three − body_problem



2. Quantification of uncertainty through variability (II)

Source: https://en. wikipedia. org/wiki/Edward_Norton_Lorenz

Lorenz-system (1963) dimensionless 
variables (denoted XL, YL and ZL), with 
randomly varying initial values between 
-1 and 1, a time step dt=Δ=0.01, time 
length 103, and σL=10, rL=8 and bL=8/3.

Source: 
Dimitriadis et al., 

(2016).



3. Quantification of variability at the scale domain (I)

The observed (simulated) variability is suggested to be quantified (generated) at the scale 
domain through the climacogram (i.e., variance of the averaged process vs. scale; Koutsoyiannis, 
2010), rather at the lag domain through the autocovariance function or the frequency domain 
through the power-spectrum (see limitations and discussion in Dimitriadis and Koutsoyiannis, 
2015; and generalization in Stochastics at the scale domain in Koutsoyiannis, 2021).

The definition of the climacogram unbiased estimator is (underline quantities denote random 
variables and ∧ for estimation):

where κ = k/Δ is the dimensionless scale, k the continuous-scale, Δ the time-space resolution of 
the continuous-process x, [n/κ] the integer part of n/κ, n the length of the discrete-process xi 

with mean μ, and xi
(κ) is the i-th element of the averaged sample of the process at scale κ, i.e., 

    with            , and the CBS                                                  .



4. Quantification of variability at the scale domain (II)

For example, a model that fits adequately numerous geophysical processes (e.g., see review and 
applications in Dimitriadis et al., 2021) is (Koutsoyiannis, 2016):

where λ is the variance at scale 0, a is a scale parameter in units of the scale k, M is the 
dimensionless fractal parameter (Gneiting and Schlather, 2014) indicative of the roughness (M 
< 0.5) or smoothness (M > 0.5) of the fine scales (while the case M = 0.5 corresponds to the 
absence of fractal behaviour), and H is the Hurst parameter indicative of the strength of the 
long-range dependence (i.e.; for 0.5 < H < 1, while the case H = 0.5 corresponds to a white-noise 
behaviour, and 0 < H < 0.5 to an anti-persistence one). Note that other models may also capture 
the medium-scale drop of variance (Dimitriadis and Koutsoyiannis, 2015; 2018):

while for additional attributes, more generalized models are introduced (Koutsoyiannis, 2021).



5. Quantification of variability at the scale domain (III)

For the quantification of the joint-effect between the marginal F(x) and the second-order 
dependence structure, the Knowable (K-) moments are proposed (and here, particularly, the 
hyper-central ones), which are shown to have additional merits as compared to the classical, L-
moments, etc., and thus, enabling more reliable estimations from data  (Koutsoyiannis, 2021). 
For example, the hyper-central K-kurtosis and K-skewness can be expressed as:

       and         
  
where for p ≥ q

and 𝑛 is the length of the sample, Ƹ𝜇 = σ𝑖=1
𝑛 𝑥𝑖 /𝑛 is the estimator of the mean, and 𝑥(𝑖:𝑛) is the

observed sample rearranged in ascending order.



6. Stochastic synthesis preserving several aspects of variability (I)

A challenging task in engineering studies is to introduce a framework that can simulate the 
observed variability while preserving only important stochastic attributes, such as:
1. Any second-order dependence structure of a process with focus on long-range dependence 

(Hurst, 1951; Kolmogorov, 1940) and small-scale fractal behaviour at the scale domain.
2. Any marginal distribution with focus on heavy-tails (e.g., Pareto-Burr-Feller distributions).
3. Explicit preservation of the autocovariance function and cumulants (including intermittency, 

Koutsoyiannis 2016; joint-moments up to 4 in Dimitriadis and for any number of moments 
in Koutsoyiannis and Dimitriadis, 2021; and time-irreversibility; Koutsoyiannis, 2019; 
expansion up to the 2nd scale in Vavoulogiannis et al., 2021).

The steps for a stochastic analysis (after having removed before the analysis and added back after the analysis any known deterministic 
behaviour). Source: Koutsoyiannis and Dimitriadis (2016).



7. Global-scale analysis (I)

Application of the above estimators to an hourly and daily resolution massive database of 
global-scale ground stations of key hydrological-cycle natural processes (i.e., near-surface 
temperature, dew-point, relative humidity, sea level pressure, wind-speed, precipitation 
and streamflow; more details and sources see in Dimitriadis et al., 2021).

Note that, in total, approximately 50 × 1010 data values are extracted and handled from over 
2 × 105 stations.



8. Global-scale analysis (II)

The K-skewness vs. K-
kurtosis, for the key 
hydrological-cycle and grid-
turbulence processes, and 
the empirically calculated 
limits of the mixed Pareto-
Burr-Feller distribution for 
probabilities of zero values 
at 25% and 75%:

The mean values of the K-
skewness and K-kurtosis 
for each process are 
depicted by the square 
markers with the x-symbol 
inside. (Source: Dimitriadis 
et al., 2021).



9. Global-scale analysis (III)

Both fractal and long-range dependence behaviour are traced in all key hydrological-cycle 
processes through the mean standardized climacospectrum, i.e. ζ(k)/ζ(1). Dashed and 
continuous lines in streamflow and precipitation correspond to hourly and daily stations 
(Source: Dimitriadis et al., 2021).



10. Global-scale analysis (IV)

Summary statistics of the scale, fractal and Hurst parameters of the second-order 
dependence structure adjusted for bias based on the climacogram and CBS estimation, with 
the 5% and 95% quantiles in parentheses, and for each key hydrological-cycle process of 
hourly resolution (Source: Dimitriadis et al., 2021).



11. Predictability window (I)

For the estimation of the local future mean at period length κ (conditional on the present and 
past values of the discrete process xi), i.e.,

we follow Koutsoyiannis (2021) approach, by selecting only the past 0 ≤ 𝜈 ≤ 𝑛 values, i.e.,

that minimize the square error between these estimations, i.e.,                                                    .

It can be shown that the standardized mean square error is (Koutsoyiannis, 2021):

A(κ, ν)
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12. Predictability window (II)

For each key hydrological-cycle process and for a range of period lengths, we estimate the 
predictability limit up to the variance of the process.
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13. Application

To compare the predictability time windows, we 
consider a recorded outflow of 4000 days of 
streamflow at Ali Efenti in Thessaly.
To compare the observed (OB) timeseries with 
the synthetic one adjusted for marginal function, 
long-range dependence and time-irreversibility 
(TI), as well as without time-irreversibility (TR) 
and also with a white-noise (WN) behaviour.
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14. Concluding Remarks for Discussion

1) For estimating the predictability limits through the stochastic approach, both the marginal 
function and the second-order dependence structure are required to be analyzed.

2) The marginal function is quantified through the K-moments and modelled with the Pareto-Burr-
Feller distribution, while the second-order dependence structure is quantified through the 
climacogram at the scale domain and modelled with an LRD-type model (both identified in 
numerous key hydrological-cycle processes via ensemble techniques).

3) For the stochastic synthesis of the recorded variability, an explicit stochastic scheme is 
suggested, since any transformation from/to Gaussian processes may underestimate certain 
observed aspects such as time-irreversibility, intermittency, joint-effects, etc.

4) The required past values and the mean square error (standardized with the variance) both 
increase with future period length.

5) Precipitation is considered by far the most difficult to accurately predict.

Thank you!
For questions please also consider sending an email (pandim@itia.ntua.gr) to initiate a fruitful discussion.
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