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Apparently, our scientific community has recently discovered that things change…
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Raphael's “School of Athens” (1509–1510; Apostolic Palace, Vatican City; http://en.wikipedia.org/wiki/School_of_Athens.

http://en.wikipedia.org/wiki/School_of_Athens
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Heraclitus (ca. 540-480 BC)
◼ Πάντα ῥεῖ.

Everything flows [Quoted in Plato’s Cratylus, 
339-340].

◼ Τὰ ὄντα ἰέναι τε πάντα καὶ μένειν οὐδέν.

All things move and nothing remains still [from 
Plato's Cratylus, 401d].

◼ Πάντα χωρεῖ καὶ οὐδὲν μένει.

Everything changes and nothing remains still
[ibid, 402,a].

◼ Δὶς ἐς τὸν αὐτὸν ποταμὸν οὐκ ἂν ἐμβαίης .

You cannot step twice into the same river [from 
Plato's Cratylus, 402a].Heraclitus (figured by Michelangelo) in Raphael's 

School of Athens; 
http://en.wikipedia.org/wiki/Heraclitus.

http://en.wikipedia.org/wiki/Heraclitus
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Aristotle (384-322 BC) in Meteorologica
Change
◼ ὅτι οὔτε ὁ Τάναϊς οὔτε ὁ Νεῖλος ἀεὶ ἔρρει, ἀλλ' ἦν ποτε ξηρὸς ὁ τόπος ὅθεν ῥέουσιν· τὸ γὰρ ἔργον ἔχει 

αὐτῶν πέρας, ὁ δὲ χρόνος οὐκ ἔχει. ... ἀλλὰ μὴν εἴπερ καὶ οἱ ποταμοὶ γίγνονται καὶ φθείρονται καὶ μὴ 
ἀεὶ οἱ αὐτοὶ τόποι τῆς γῆς ἔνυδροι, καὶ τὴν θάλατταν ἀνάγκη μεταβάλλειν ὁμοίως. τῆς δὲ θαλάττης τὰ
μὲν ἀπολειπούσης τὰ δ' ἐπιούσης ἀεὶ φανερὸν ὅτι τῆς πάσης γῆς οὐκ ἀεὶ τὰ αὐτὰ τὰ μέν ἐστιν θάλαττα 
τὰ δ' ἤπειρος, ἀλλὰ μεταβάλλει τῷ χρόνῳ πάντα.

Νeither the Tanais [River Don in Russia] nor the Nile have always been 
flowing, but the region in which they flow now was once dry: for their life has 
a bound, but time has not… But if rivers are formed and disappear and the 
same places were not always covered by water, the sea must change 
correspondingly. And if the sea is receding in one place and advancing in 
another it is clear that the same parts of the whole earth are not always 
either sea or land, but that all changes in course of time [I.14, 353a 16]

Conservation of mass within the hydrological cycle.
◼ ὥστε οὐδέποτε ξηρανεῖται· πάλιν γὰρ ἐκεῖνο φθήσεται καταβὰν εἰς τὴν αὐτὴν τὸ προανελθόν.

Thus, [the sea] will never dry up; for what has gone up beforehand will return 
to it [II.3, 356b 26].

◼ κἂν μὴ κατ' ἐνιαυτὸν ἀποδιδῷ καὶ καθ' ἑκάστην ὁμοίως χώραν, ἀλλ' ἔν γέ τισιν τεταγμένοις χρόνοις
ἀποδίδωσι πᾶν τὸ ληφθέν.

Even if the same amount does not come back every year or in a given place, 
yet in a certain period all quantity that has been abstracted is returned [II.2, 
355a 26].

Aristotle in Raphael's 
“School of Athens”; 
http://en.wikipedia.org/wi
ki/Aristotle.

http://en.wikipedia.org/wiki/Aristotle


Science (= pursuit of the truth) vs. sophistry
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ἔστι γὰρ ἡ σοφιστικὴ φαινομένη σοφία οὖσα δ᾿ οὔ, καὶ ὁ σοφιστὴς χρηματιστὴς ἀπὸ
φαινομένης σοφίας ἀλλ᾿ οὐκ οὔσης.

Sophistry is the semblance of wisdom without the reality, and the sophist is one who 
makes money from apparent but unreal wisdom.

[Aristotle, On Sophistical Refutations, 165a21]

καὶ τὴν σοφίαν ὡσαύτως τοὺς μὲν ἀργυρίου τῷ βουλομένῳ πωλοῦντας σοφιστὰς
ὥσπερ πόρνους ἀποκαλοῦσιν.

Those who offer wisdom to all comers for money are known as sophists, just like 
prostitutors.

[Xenophon, Memorabilia, 1.6.13, quoting Socrates]

φίλος μέν Σωκράτης, ἀλλά φιλτάτη ή ἀλήθεια.
(Latin version: Amicus Socrates, sed magis amica veritas.) 

Socrates is dear (friend), but truth is dearest.
[Ammonius, Life of Aristotle]
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Socrates 
(470 – 399 BC)

Xenophon
(430 – 354 BC)

Aristotle
(384 – 322 BC)



Modern sophistry in support of politico-economical agendas

◼ Despite the decision of the European 
Parliament, there is no climate 
emergency as a physical reality.

◼ There is “climate emergency” as a 
political state.
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https://www.europarl.europa.eu/news/en/p
ress-room/20191121IPR67110/ https://clintel.org/world-climate-declaration/

I am one of the ~1000 
signatories.

https://www.civilprotection.gr/en

What is most 
frightening?
A natural climate 
emergency?
Or a political 
“climate 
emergency”?

https://www.europarl.europa.eu/news/en/press-room/20191121IPR67110/
https://clintel.org/world-climate-declaration/
https://www.civilprotection.gr/en


The economic consequences of modern sophistry
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Data source: https://transparency.entsoe.eu/.

European energy strategy 
and energy prices in 
Greece

https://energy.ec.europa.eu/topics/energy-strategy_en
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COVID and an unfortunate experiment 
◼ COVID-caused lockdowns 

caused the greatest in 
history decrease of CO2

emissions.

◼ The global CO2 emissions 
were over 5% lower in the 
first quarter of 2020 than in 
that of 2019 (IEA, 2020).

◼ However, the increasing 
pattern of atmospheric CO2 
concentration, as measured 
in Mauna Loa, did not 
change.
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Graph from Koutsoyiannis and Kundzewicz (2020); see next page.



Causal relationship between 
CO₂ & temperature: 
“ὄρνις ἢ ᾠὸν;” (“hen or egg?”)
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T↗ CO₂↗

Plutarch used the example of the hen and the egg to 
pose a type of causality as a philosophical problem: 
“Πότερον ἡ ὄρνις πρότερον ἢ τὸ ᾠὸν ἐγένετο”
—”Which of the two came first, the hen or the egg?”
(Plutarch, Moralia, Quaestiones convivales, B, 
Question III).

Plutarch  
(AD 46 –119)
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Instrumental temperature 
and CO₂ data in search of 
causality

Which is the cause and which the effect?
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Differenced monthly time series of global temperature 
(UAH) and logarithm of CO₂ concentration (Mauna 
Loa).

Annually averaged time series of differenced 
temperatures (UAH) and logarithm of CO₂ 
concentration (Mauna Loa). Each dot represents the 
average of a one-year duration ending at the time of 
its abscissa. 

Graphs from Koutsoyiannis and Kundzewicz (2020). Notice that 
logarithms of CO₂ concentration are used for linear equivalence with 
temperature. The differenced processes represent changes in the 
original processes.



Changes in CO₂ 
follow changes in 
global temperature
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temperature (UAH) and logarithm of CO₂ concentration (Mauna Loa).

Which is the cause 
and which the effect?

Maximum cross-correlation coefficient (MCCC) and corresponding time lag in months. 

Monthly time 
series

Annual time series –
sliding annual window

Annual time series –
fixed annual window

Temperature - CO₂ series MCCC Lag MCCC Lag MCCC Lag

UAH – Mauna Loa 0.47 5 0.66 8 0.52 12

UAH – Barrow 0.31 11 0.70 14 0.59 12

UAH – South Pole 0.37 6 0.54 10 0.38 12

UAH – Global 0.47 6 0.60 11 0.60 12

CRUTEM4 – Mauna Loa 0.31 5 0.55 10 0.52 12

CRUTEM4 – Global 0.33 9 0.55 12 0.55 12

Graph and table from Koutsoyiannis and 
Kundzewicz (2020). 



Development and application of a theoretical framework 
for 
causality
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Mathematical representation
◼ Any two stochastic processes 𝑥 𝑡 and 𝑦 𝑡 can be related by

𝑦 𝑡 = ∞−׬
∞
𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ + 𝑣(𝑡)

where 𝑔(ℎ) is the Impulse Response Function (IRF) and 𝑣(𝑡) is another process uncorrelated to 
𝑥 𝑡 .

◼ There exist infinitely many pairs (𝑔 ℎ , 𝑣 𝑡 ) of which we find the least squares solution—LSS: 
that resulting in the min var 𝑣 𝑡 , or the max explained variance 𝑒 ≔ 1 − var 𝑣 𝑡 /var[𝑦 𝑡 ].

◼ Assuming that the LSS 𝑔 ℎ has been determined, the system (𝑥 𝑡 , 𝑦 𝑡 ) is: 

1. potentially causal if 𝑔 ℎ = 0 for any ℎ < 0, while the explained variance is non negligible;

2. potentially anticausal if 𝑔 ℎ = 0 for any ℎ > 0, while the explained variance is non 
negligible (this means that the system (𝑦 𝑡 , 𝑥 𝑡 ) is potentially causal);

3. potentially hen-or-egg (HOE) causal if 𝑔 ℎ ≠ 0 for some ℎ > 0 and some ℎ < 0, while the 
explained variance is non negligible;

4. noncausal if the explained variance is negligible.

◼ The framework of causality identification is constructed for case 3, with all other three cases 
resulting as special cases.
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Illustration 
of the four 
different 
cases of 
potential 
causality
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IR
F

< 0                                0                                 > 0
Time lag

Potentially causal Potentially anticausal

Potentially hen-or-egg causal Noncausal



Premises of the developed methodology
◼ Our framework is for open systems (in particular, geophysical systems), in which:

❑ External influences cannot be controlled or excluded. 

❑ Only a single realization is possible.

❑ There is dependence in time.

◼ Our framework is not formulated on the basis of events, but of stochastic processes.

◼ It is understood that only necessary conditions of causality can be investigated using 
stochastics. The usefulness of this objective lies in its ability:

❑ to falsify an assumed causality, and

❑ to add statistical evidence, in an inductive context, for potential causality and its 
direction.

◼ The only “hard” requirement kept from previous studies is the time precedence of the 
cause from the effect.
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Additional mathematical considerations 
◼ We also set additional desiderata for

(a) an adequate time span 𝕙 of ℎ (the causal action is not instant);
(b) a nonnegative 𝑔 ℎ ≥ 0 for all ℎ ∈ 𝕙 (replacing 𝑥 𝑡 with −𝑥 𝑡 for negative correlation);

(c) a smooth 𝑔(ℎ) assured by a constraint 𝐸 ≤ 𝐸0, where 𝐸 is determined in terms of the

second derivative of 𝑔(ℎ) (𝛦 ≔ ∞−׬
∞

𝑔′′ ℎ
2
dℎ) and 𝐸0 is a positive number.

◼ Although the theoretical framework is formulated in terms of natural (continuous) time, the 
estimation of the IRF relies on data in an inductive manner, and data are only available in 
discrete time. Conversion of the continuous- to a discrete-time framework results in

𝑦𝜏 = σ𝑗=−∞
∞ 𝑔𝑗𝑥𝜏−𝑗 + 𝑣𝜏

where the sequence 𝑔𝑗 can be determined accurately from the function 𝑔 ℎ . 

◼ Furthermore, any data set is finite and allows only a finite number of 𝑔𝑗 terms to be estimated. 
Therefore, in the applications the summation limits ±∞ are replaced by ±𝐽, assuming that 𝑔𝑗 = 0
for 𝑗 > 𝐽, where, 𝐽 should be chosen much lower than the length of the dataset.

◼ A solver can be used to resolve the constrained optimization problem: The determination of 𝑔𝑗 is 

based on the minimization of var 𝑣 𝑡 subject to the constraints. 
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Application to the temperature – [CO₂] problem

Conclusion: The common perception that increasing [CO₂] causes increased T can be excluded as it 
violates the necessary condition for this causality direction. 
In contrast, the causality direction T → [CO₂] is plausible.
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Treating the system (T,[CO₂]) as potentially HOE 
causal, we conclude that it is potentially causal 
(mono-directional) with explained variance 31%.

Treating the system ([CO₂], T) as potentially HOE 
causal, we conclude that it is potentially anticausal
(counter-directional) with explained variance 23%.



Co-evolution 
of 
temperature, 
CO₂ 
concentration 
and sea level 
in the 
Phanerozoic 
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Digression—
Offering food for thought 
and amusement:
Science violates the rules 
of political correctness
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Yesterday, Gregory Wrightstone was 
permanently banned from LinkedIn 
because he posted the graph on the 
right, constructed from the paper by 
Berner and Kothavala (2001).

See also: Geology Banned, https://youtu.be/MkdStlTGoeU.

https://youtu.be/MkdStlTGoeU


Climate is changing … since 4.5 billion years ago
◼ The graph has been 

constructed from estimates 
by Kuhn et al. (1989). 
Temperature is expressed in K 
and corresponds to 35°
latitude; a change in the 
temperature ratio by 10% 
corresponds to ~29 K.

◼ Although the estimates are 
dated and uncertain, evidence 
shows existence of liquid 
water on Earth even in the 
early period, when the solar 
activity was smaller by 20-
25% (the faint young Sun 
problem; Feulner, 2012). 
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Note: The title of this slide is identical to the title of an invited lecture to 
the University of Bologna in 26 November 2019. The lecture was cancelled 
after activist reactions, based on lies promoted by a blog and covered in a 
newspaper. See details in Koutsoyiannis (2019).



Instrumental data of a long period: The Roda Nilometer
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Photos by Loai Samen
and Mohamd Mubarak; 
Google maps, 
https://goo.gl/maps/T8N
UgoDAorK2 and 
https://goo.gl/maps/dsd
JHJYVv572.

The Roda Nilometer, near Cairo, offers the longest instrumental data on Earth. Water entered through three tunnels 
and filled the Nilometer chamber up to river level. The measurements were taken on the marble octagonal column 
(with a Corinthian crown) standing in the centre of the chamber; the column is graded and divided into 19 cubits 
(each slightly more than 0.5 m) and could measure floods up to about 9.2 m. A maximum level below the 16th mark 
could portend drought and famine and a level above the 19th mark meant catastrophic flood.

https://goo.gl/maps/T8NUgoDAorK2
https://goo.gl/maps/dsdJHJYVv572


What do the Roda Nilometer data say?
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Graph and data from Koutsoyiannis (2013); the data can 
be downloaded from https://www.itia.ntua.gr/1351/.
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Hurst-Kolmogorov dynamics and the perpetual change of Earth’s 
climate Hurst-Kolmogorov (HK) 

dynamics is described 
by a very simple 
equation:

𝛾𝑘 =
𝛾1

𝑘2−2𝐻

where 𝑘 is time scale, 
𝛾𝑘 is the variance of 
the time-averaged 
process at scale 𝑘 and 
H is the Hurst 
parameter. 

For random processes 
(e.g. “roulette”) H=0.5. 

For natural processes 
0.5 < 𝐻 < 1
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“Although in random 
events groups of high or 
low values do occur, their 
tendency to occur in 
natural events is greater. 
This is the main difference 
between natural and 
random events.”

Kolmogorov proposed a 
stochastic process that 
describes a behaviour 
unknown at that time. It 
was discovered a decade 
later in geophysics by 
Hurst.

Climate 
stochastics: 
Kolmogorov, 
Hurst and 
the Nile

Kolmogorov (1940)

Hurst (1951)



Modern long records of 
instrumental data: 
Rainfall in Bologna
◼ The mean annual values for 50 years after 

1820 show an upward trend. A classical 
statistical test for a linear trend using merely 
these data values would reject the 
stationarity hypothesis at a p-value of 
7.7 × 10–4.

◼ “Trends” are for kids. Adults use better 
descriptions of long-term variability, namely 
Hurst-Kolmogorov (HK) dynamics. 
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Dataset details Station: BOLOGNA, Italy, 44.50°N, 11.35°E, +53.0 m

Period: 1813-2018 (206 years).

Source of graphs: Koutsoyiannis (2021b).

Sources of data: also detailed in Koutsoyiannis (2021b).



Drought in 
Athens: 
Was it due 
to a 
“trend”, 
possibly 
suggesting 
“climate 
crisis”
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A similar «trend» in the 
rainfall time series.

Explains the «trend» in 
runoff.
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The historical time series 
of runoff up to 1986/87 
at one of the rivers 
supplying Athens, 
Boeoticos Kephisos.

A multi-year «trend» is 
observed.
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Next was a shocking 
drought.

Intense and persistent: 
Mean flow less than half 
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average; duration 7 years.
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Handling the long-lasting drought in Athens
◼ Close collaboration of (a) the National Technical University of Athens, (b) the Athens 

Water Supply and Sewerage Company (EYDAP), and (c) The Ministry of Environment 
and Public Works. 

◼ Understanding that droughts are regular natural events—not associated to human 
influences.

◼ Proper modelling the drought within a stochastic Hurst-Kolmogorov framework
(Koutsoyiannis, 2011).

◼ Development of a sophisticated decision support system (Koutsoyiannis et al., 2003).

◼ Transparency and veritable information to the population of Athens, and its 
engagement in the management of the crisis.

◼ Design and implementation of an increasing block rate pricing structure, combined 
with water conservation legislation measures (Xenos et al., 2002).

◼ Increased water supply through technological measures (see next slide).
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Results of the crisis management

◼ Not even in one house in not even one day throughout this 7-year period 
was there a water supply failure due to the drought.

◼ The water consumption of Athens was decreased by 1/3.

◼ New groundwater resources were exploited.

◼ In 1.5 year, a new tunnel was constructed and 
operated, diverting water from the Evinos
River to Athens.

◼ In another 4 years, the new dam on the Evinos
River was completed, thus increasing the water 
quantity transferred to Athens.

◼ Now Athens has a perfect water supply system.
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Rejected approach 1: 
Trend based
◼ The “trend model” is worse than that 

of a constant average (see table).

◼ According to the “trend model”, the 
flows would disappear a little after 
2050…

◼ In reality all three reservoirs spilled
in 2006 and again two of them in 
2020 and 2021. 

◼ Conclusion: It is absurd to use such 
simplistic methods such as trend 
extrapolations.
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Root mean square errors (in m3/s) for the two validation periods 
for the linear-trend model and the constant-mean model, fitted 
to the calibration period (1937-87)

Validation period 1907-37 1987-2019

Assuming linear trend 13.4 12.7

Assuming constant mean 9.3 10.3

Boeoticos Kephisos runoff and projected trend.

Source: Koutsoyiannis (2021b).
See additional evidence about the inappropriateness of trends in 
Iliopoulou and Koutsoyiannis (2020).

Not known at the time 
of the drought
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Source: Iliopoulou and Koutsoyiannis (2020). Explanation: AM: annual maxima, AT: annual totals, 
WDAV: annual wet-day average rainfall, PD: probability dry.

Are trends 
effective for 
rainfall 
prediction?

D. Koutsoyiannis, Stochastic modelling of hydrological extremes in a perpetually changing climate

We assess the ‘trends’ 
effectiveness in long-term 
projections via a prediction-
oriented evaluation 
framework.
We compare the predictive 
performance of global and 
local trend models over 
climatic periods (30 years) to 
the one obtained by global and 
local mean models.



Extreme rainfall projections – Local mean models 
are the best

32

The study includes the 60 longest 
available daily rainfall records 
worldwide, surpassing 150 years 
of daily values.
The models’ predictive 
performance ranks from best to 
worse as follows:

1. L-Mean
2. G-Mean
3. G-Trend
4. L-Trend

In persistent processes, where 
clustering arises, local 
information is likely to be more 
relevant for prediction.

Fixed periods

Moving-window periods

D. Koutsoyiannis, Stochastic modelling of hydrological extremes in a perpetually changing climate

Source: Iliopoulou and Koutsoyiannis (2020). 



Rejected approach 2: Based on climate-models
◼ Outputs from 3 climate models for 2 future scenarios were examined (Koutsoyiannis et al., 2007).

◼ The original climate model outputs (not shown) had no relation to reality (highly negative 
efficiencies at the annual time scale and above).

◼ After adaptations (or “cosmetic lifting”, also known as “downscaling”) the climate model outputs 
improved with respect to reality, thus achieving about zero efficiencies at the annual time scale.

◼ For the past, despite adaptations, 
the proximity of models with reality 
was not satisfactory.

◼ For the future, the runoff obtained by 
adapted climate models was too stable.

◼ Conclusion: It is dangerous (too risky) 
to use climate model projections.
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Do climate models provide guidance for the future?
◼ Short answer: No. 

◼ Long answer: They have not provided skill for the past. Notice: (1) the large error of 
the “Multimodel” ensemble in terms of the mean; (2) the increasing trend of climate 
model outputs after 1980, which did not appear in reality. 
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Source of graph: Koutsoyiannis (2020); 
observations come from the combined 
gauge and satellite precipitation data 
over a global grid (GPCP); climate model 
outputs are for the scenario “RCP8.5” 
(frequently referred to as “business as 
usual”); “Multimodel” refers to CMIP5 
scenario runs (entries: CMIP5 mean –
rcp85) and “Single model” refers to 
CCSM4 – rcp85 (ensemble member 0), 
where CCSM4 stands for Community 
Climate System Model version 4, released 
by NCAR. Data and model outputs are 
accessed through http://climexp.knmi.nl.

Thin and thick lines represent monthly 
values and running annual averages (right 
aligned).

No trend
Error of mean

http://climexp.knmi.nl/


Do climate models reproduce real-world rainfall?
◼ Short answer: 

No. 
◼ Long answer: 

Simulations of 
point rainfall 
have mostly 
negative 
efficiencies. 
Areal rainfall 
simulations are 
irrelevant to 
reality even at 
climatic scales.
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Source: Anagnostopoulos, et 
al. (2010); see also reviews by 
Pielke Sr. (2017), and Essex 
and Tsonis (2018) 
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Do climate models 
reproduce real-world 
rainfall? (2)
◼ The example in the graphs compares actual 

rainfall data over the entire territory of Italy 
(from NCEP-NCAR Reanalysis 1 data) with those 
predicted by climate models (mean of the 
output data of the Coupled Model 
Intercomparison Project, CMIP6).

◼ The climate models severely underpredict 
rainfall—mostly the high values—as well as its 
variability.

◼ A professional hydrologist normally would not 
use such incompetent model outputs.
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Do climate models simulate the real-world 
rainfall extremes?
◼ Tsaknias et al. (2016—multirejected paper) tested the reproduction of extreme events by three 

climate models of the IPCC AR4 at 8 test sites in the Mediterranean which had long time series of 
temperature and 
precipitation. 

◼ They concluded that 
model results are 
irrelevant to reality 
as they seriously 
underestimate 
extreme events. 
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Upper row: Daily annual 
maximum precipitation at 
Perpignan and Torrevieja; Lower 
row: empirical distribution 
functions of the data in upper 
row.

Source: Tsaknias et al. (2016).



A scientific approach to extreme rainfall: The ombrian model
◼ An ombrian model (from the Greek ombros, meaning rainfall) describes the stochastic properties 

of the distribution of rainfall at any time scale.
◼ From an ombrian model that is simple enough, the ombrian relationships, also known with the 

misnomer rainfall intensity (𝑥) – duration – frequency curves are directly extracted. Duration and 
frequency are meant to be time scale (𝑘) and return period (𝑇) respectively. 

◼ For small time scales a Pareto distribution with discontinuity at the origin is assumed:

𝐹 𝑘 𝑥 = 1 − 𝑃1
𝑘

1 + 𝜉
𝑥

𝜆(𝑘)

− Τ1 𝜉

◼ It is shown by theoretical reasoning (Koutsoyiannis, 2021b) that the tail index 𝜉 is constant, while 

the probability wet, 𝑃1
𝑘

, and the state scale parameter, 𝜆(𝑘), are functions of the time scale 𝑘. 
◼ For large time scales the Pareto-Burr-Feller (PBF) distribution is assumed:

𝐹 𝑘 𝑥 = 1 − 𝑃1
(𝑘)

1 + 𝜉
𝑥

𝜆 𝑘

𝜁(𝑘)
− Τ1 𝜉

◼ In this case a new parameter 𝜁 𝑘 is introduced, which is again a function of time scale. The 
Pareto distribution is a special case of PFB for 𝜁 𝑘 = 1. In contrast to the Pareto distribution, 
whose density is a decreasing function of 𝑥, the PBF tends to be bell-shaped for increasing 𝜁 𝑘 . 
Here we sacrifice the constancy of tail index (= 𝜉/𝜁(𝑘)) to assure simplicity and ergodicity.
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Ombrian model 
simplification and 
regionalization 
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◼ For small time scales (up to a 
few days), a simplification of the 
ombrian model is possible:

𝑥 = 𝜆
𝑏(𝑇)

𝑎(𝑘)
, 𝑎 𝑘 = 1 +

𝑘

𝛼

𝜂
, 

𝑏 𝑇 =
𝑇

𝛽

𝜉
− 1

◼ This involves four parameters, 
𝛼, 𝜂, 𝜉, 𝛽, 𝜆, with 𝜂 related to the 
Hurst parameter and 𝜉 being 
the tail index.

◼ Some of the parameters can be 
constant in large geographical 
areas, as in the example shown 
for Thessaly, Greece.

α (h) η (-) ξ (-) β (years)
0.03 0.64 0.18 0.013

Source: Iliopoulou et al. (2022).



Are there alternative 
approaches? – The poor 
hydrological performance 
of climate models
◼ IPCC (2013a) conjectured that the water vapour

amount in the atmosphere would increase and 
the hydrological cycle would intensify.

◼ However, the water vapour amount is 
fluctuating—not increasing monotonically 
(prediction falsified).
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Source of graph: Koutsoyiannis (2020); reanalysis data (NCEP-NCAR & ERA5): 
http://climexp.knmi.nl; satellite data, NVAP: Vonder Haar et al. (2012) (Figure 4c, 
after digitization); satellite data, MODIS: https://giovanni.gsfc.nasa.gov/giovanni/; 
averages from Terra and Aqua platforms.

Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively.

http://climexp.knmi.nl/
https://giovanni.gsfc.nasa.gov/giovanni/


Do satellite data of the 21st century show 
increasing presence of water vapour amount?
◼ Both Terra and Aqua satellite platforms for all atmospheric levels suggest decreasing trends.

◼ Hence, the data are opposite to the IPCC conjecture. Apparently this suggests that climate 
models do not 
represent the 
physics 
correctly.
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Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively.
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Do precipitation and 
evaporation increase?

◼ Both precipitation and evaporation are 
fluctuating—not increasing 
monotonically.

◼ Hence, the IPCC conjecture is falsified.
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Source of graph: Koutsoyiannis (2020); reanalysis data (NCEP-NCAR & ERA5), 
gauge-based precipitation data gridded over land (CPC), and combined gauge 
and satellite precipitation data over a global grid (GPCP): 
http://climexp.knmi.nl.

Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively.

http://climexp.knmi.nl/


Is monthly maximum daily precipitation increasing? 
◼ The graphs show the variation of an 

index of extreme rainfall, which is 
the monthly maximum daily 
precipitation, areally averaged over 
the continents.

◼ In all continents, this index is 
fluctuating—not increasing 
monotonically.

◼ In particular, the satellite 
observations show decreasing, 
rather than increasing trends in the 
21st century.
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Source of graph: Koutsoyiannis (2020); reanalysis data 
(NCEP-NCAR & ERA5, gauge-based precipitation data 
gridded over land (CPC), and combined gauge and satellite 
precipitation data over a global grid (GPCP): 
http://climexp.knmi.nl.

Thin and thick lines represent monthly values and running 
annual averages (right aligned).
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Is daily precipitation variability increasing? 
◼ The standard deviation of 

daily rainfall, areally averaged, 
as seen both from CPC and 
GPCP observational data, 
decreases, thus signifying 
deintensification of extremes 
in the 21st century.

◼ Again, it will be more prudent 
to speak about fluctuations
rather than deintensification. 
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Source of graph: Koutsoyiannis (2020); gauge-based precipitation data gridded over land (CPC), and combined gauge and satellite precipitation data 
over the entire Earth (GPCP): http://climexp.knmi.nl.

Thin and thick lines of the same colour represent 
monthly values and running annual averages (right 
aligned), respectively.

http://climexp.knmi.nl/


Has the risk from extremes 
increased in the last century?

◼ The risk from natural disasters has been 
spectacularly decreased.

◼ Currently, it is in the bottom of the list of risks 
from all hazards.

◼ We owe that decrease to engineering and 
technology.

◼ Instead of casting pessimistic prophesies for the 
future, in the last century engineers improved 
hydro-technology, water management, and risk 
assessment and reduction.
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Final suggestions
◼ Let’s do science.

❑ Abstain from the propaganda of “climate emergency”.
❑ Abstain from supporting political agendas by turning science to sophistry.

◼ Let’s disregard climate model outputs, as well as trendy approaches inspired by the 
“climate crisis” agenda. 

◼ Let’s base our estimates and predictions on observational data.
❑ Exploit long time series even from sites at a distance from that of interest.
❑ Study geographical variations.
❑ Give more emphasis on most recent data. 

◼ In dealing with droughts, let’s give importance to the Hurst-Kolmogorov behaviour
◼ In dealing with floods, let’s additionally give importance to the heavy distributional tails.
◼ Let’s be attentive on important statistical tasks.

❑ Use robust techniques for parameter estimation of models to avoid biases.
❑ Include faithful representation of uncertainty.

◼ Let’s be aware that a scientific approach to extremes relies on advanced stochastics.
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